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a b s t r a c t 

The dynamics of a capsule in general flows is studied analytically and numerically. The capsule is mod- 

eled as a liquid-filled drop enclosed by a membrane. We adapted the Keller-Skalak (KS) theory and 

Skotheim-Secomb model to the case of general flow, the governing equations are derived. It is found 

that when viscosity ratio λ = 1 , the capsule dynamics in general flows is controlled by two dimension- 

less parameters, the ratio of vorticity to strain rate of the flow and the ratio of the elastic force to fluid 

stress. In the literature, the transition between swinging (SW) and tumbling (TU) is always one way (TU 

to SW). As far as we know, it is the first time that the TU-SW-TU transition has been identified, i.e., the 

transition may also transfer from SW to TU after the transition (TU to SW) occurs under some circum- 

stances. The possible mechanism is that the rotation of the flow suppresses the deformation along the 

vorticity direction of the capsule. The shape dynamics of a capsule is studied in detail and the rheology 

of dilute capsule suspension is also investigated briefly. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Soft biological particles, such as vesicles, cells and capsules,

ave drawn much attention for many years and there are many

heoretical, numerical, and experimental studies [1–8] . Detailed

tudies of a single particle are critical for understanding the rhe-

logy of bio-fluids. However, till today even behaviors of one sin-

le particle is not fully understood. A complete theoretical study

n this topic is not easy. For example, the shape of the particle is

ot given a priori and continuously deforming. The shape evolu-

ion of the particle is determined by the dynamic balance between

he interfacial forces and fluid stresses. To simplify the theoretical

nalysis, some studies [9,10] constrained the number of degrees of

reedom and others [11,12] applied asymptotic analyses to investi-

ate the dynamics. Due to the difficulties in theoretical study, there

re many experimental [5,13] or numerical studies [2,14–17] . 

Here, we define capsule as a kind of unbreakable, hermetic

embrane which is chemically or physically cross-linked [18] . The

embrane provides the resistance to shear and to change of vol-

me. It has been shown that there is a steady tank-treading mo-

ion in simple shear flow when the capsule is initially spherical

14] . If the capsule is not initially spherical, a transition from tank-

reading to tumbling may occur through reducing shear rate or in-

reasing viscosity ratio λ [10,15] . The swinging mode, which lies
∗ Corresponding author. 
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etween tank-treading and tumbling, has been experimentally de-

ected for red blood cells (RBCs) [1,9] . In this mode, the shape de-

ormation is periodic and the inclination oscillates around a mean

ngle with respect to the direction of the flow. The swinging mode

as also been found for capsule [15] . Due to the lacking of bending

ffect in capsule, the wrinkles would occur because of the com-

ressive stress in the membrane that is imposed by the flow [19–

1] . 

Unlike capsules, vesicles exhibit a strong resistance to changes

f volume, total surface area, and bending. Vesicles are not sensi-

ive to strain. Hence, they can not show shear elasticity [15] . There

re numerous theoretical and experimental studies on vesicles. In

he KS theory [10] , the particle is supposed to be a shape-fixed el-

ipsoid, which is enclosed by an inextensible membrane. And tran-

ition from tank-treading to tumbling mode is investigated. Fischer

22] introduced a shape memory model for the RBCs, in which, the 

im of a red blood cell is always consisted of the same part of the

embrane after relaxation from deformation. A regime of inter-

ittent dynamics, characterized by several swinging cycles inter-

upt by a tumbling regularly near the transition from tank-treading

o tumbling, was first observed by experiment [1] . Benefiting from

he shape memory model [22] , Abkarian et al. [1] and Skotheim

t al. [9] introduced the energy barrier for the membrane based on

he KS theory, and the model is able to predict the existence of the

ntermittent motion. 

However, this intermittent motion is unable to be obtained in

umerical simulations [3,16,23,24] . Considering the shape param-

ter, Noguchi [25,26] predicted the synchronized rotation of phase

http://dx.doi.org/10.1016/j.compfluid.2016.05.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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angle and inclination angle with integer ratios of the frequen-

cies, which is different from the intermittent motion predicted by

[9] . Vlahovska et al. [27] concluded that the intermittent behav-

ior in [9] is a result of the shape-fixed assumption in the reduced

models, in which only small-deformation is considered. They also

pointed out that the intermittent behavior would be suppressed if

there is a deformation along the vorticity direction. However, in

the simple shear flow, the deformation along the vorticity direc-

tion is inevitable. Hence, the intermittent motion is difficult to be

observed. 

Although Abkarian et al. [1] observed the intermittent behav-

ior, the mechanism is not fully understood. Now days, numerical

simulations become an important tool to study the intermittent

dynamics. Cordasco et al. [28] and Peng et al. [29] showed that

there is a large deformation along the vorticity direction during the

TU-SW transition. More recently, Cordasco and Bagchi [4] present

the computational evidence for the intermittent motion, which is

characterized by an irregular sequence of TU interrupted by an SW,

or vice versa, and synchronized motion with the cell rotation and

membrane rotation with integer ratio of the rotational frequen-

cies. The membrane in-plane elastic energy is introduced to ex-

plain these dynamics observed in the simulations [4] . 

However, the intermittent behavior research mentioned above

are all based on the dynamics of vesicle and RBCs, in which the

bending effects cannot be ignored [30] . In present work, we focus

on capsule’s intermittent dynamics without bending stiffness. Ben-

efiting from the conclusion that the intermittent behavior would

be suppressed by deformation along the vorticity direction [27] ,

we introduce an important dimensionless parameter, the ratio of

the vorticity to the strain rate [31] . The elastic energy form in the

model of Skotheim and Secomb [9] is based on the shape mem-

ory model, which is derived from experiment data. Here, an con-

crete energy form derived from the nonlinear membrane constitu-

tive model is used in both our theoretical analysis and numerical

simulations. It is expected to yield a better theoretical and numer-

ical comparison. The capsule’s membrane is assumed to follow the

neo-Hookean (NH) law. It is found that the transition from TU to

SW is no longer one way, i.e., an initial tumbling capsule may re-

turn to TU state after the TU-SW transition rather than eventually

reach a stable swinging state. 

The present work is intended to provide a better understanding

of the behavior of an initially nonspherical capsule in general flow.

In this work, the dynamics of a nonspherical capsule is studied

both analytically and numerically. First, the analytical calculation

help us to determine dimensionless parameters. Because a capsule

in general flow is different from the capsule in elongational and

simple shear flow, the dimensionless parameters for the two flows

may be not identical. Second, although there are some assump-

tions in the theoretical analysis, the approximate phase diagram

for the motion of the capsule can be obtained through the theo-

retical analysis. The approximate phase diagram is helpful for pa-

rameter chosen in our numerical simulations. 

In Section 2 , the theoretical model and numerical method are

introduced briefly. Next, in Section 3 , through numerical simula-

tions, accurate phase diagram can be obtained. Our results for the

mode transition and shape dynamics are discussed and compared

with the theoretical predictions. Also, the rheology of dilute sus-

pension is investigated briefly. Finall y, conclusions are presented in

Section 4 . 

2. Methods 

2.1. Theoretical model 

In this section, our derivation follows the theoretical frame in

[9,10] . The equations for the motion of capsules based on Jeffery’s
heory [32] have been derived by Keller and Skalak [10] ana-

ytically. They also improved the results of Roscoe [33] , in which

he inclination angle of the particle is assumed constant. Here,

ore general flows beyond simple shear flow are considered in our

erivation, and the flow is still a plane flow. The undisturbed flow

ith a space-fixed frame shown in Fig. 1 is denoted by ̂ u 0 
i 
, the ve-

ocity gradient is 

i u 

0 
j = s i j − εi jk ω k , (1)

here s ij is the symmetric strain tensor, ω k is the vorticity vector.

 = 

√ 

tr(s 2 
i j 
) / 2 and ω = | ω k | are the strain rate and the vorticity,

espectively. Here an important dimensionless parameter is defined

s 

≡ ω/s, (2)

hich refers to the ratio of vorticity to strain rate. Then the veloc-

ty field of fluid is obtained as 

 

0 
1 = (s + ω) ̂  x 2 , u 

0 
2 = (s − ω) ̂  x 1 , u 

0 
3 = 0 . (3)

Due to the moment balance of the capsule, the rate of change

f the inclination angle θ is obtained as [10] 

 t θ = −ω − 2 a 1 a 2 

a 2 
1 

+ a 2 
2 

∂ t φ + s 
a 2 1 − a 2 2 

a 2 
1 

+ a 2 
2 

cos 2 θ, (4)

here a 1 and a 2 are semi-major axis and semi-minor axis in the

hear plane, respectively. If the velocity and stress field shown in

ppendix A are known, the internal dissipation D and the rate of

ork W p done by the external fluid on the ellipsoid can be derived

refer to [10] for more details): 

 = V μ
′ 
f 1 (∂ t φ) 2 , (5)

 p = V μ( f 2 (∂ t φ) 2 + 2 s f 3 ∂ t φcos 2 θ ) , (6)

he parameters are defined in Appendix A and V is the volume

f the capsule. The work done by external fluid on the capsule is

ot only consumed by the internal dissipation, but also transferred

o the elastic energy stored in the membrane [1,9] . Suppose that

he membrane follows the neo-Hookean law, which has the energy

orm [34] 

 

NH = 

1 

6 

E 

(
I 1 − 1 + 

1 

I 2 + 1 

)
, (7)

here E is the Young’s modulus, and I 1 = λ2 
1 

+ λ2 
2 

− 2 , I 2 =
(λ1 λ2 ) 

2 − 1 are the first and second strain invariants, respectively.

1 and λ2 are the principle strains. Here the elastic energy form is

 

NH = 

2 

3 

z 2 1 Esin 

2 φ, (8)

nd the detailed derivation is shown in Appendix B . 

The energy balance of the capsule is 

 p = D + ∂ t 

∮ 
S c 

W 

NH , (9)

his yields 

 μ( f 2 (∂ t φ) 2 + 2 s f 3 ∂ t φcos 2 θ = V μ
′ 
f 1 (∂ t φ) 2 + 

2 

3 

ES c z 
2 
1 sin 2 φ∂ t φ, 

(10)

here S c is the surface area of the capsule. 

Combining Eqs. (4) and (10) and scaling time with t = T / 2 s, it

ields the dimensionless evolution equations for phase angle φ and
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Fig. 1. The schematic diagram of the model. (a) the velocity field of the flow with � = 4 , (b) the membrane model of an ellipsoidal capsule in general flow. 

Table 1 

Comparison of parameters. 

Type Excess area Viscosity ratio Membrane property Ratio of vorticity to stain rate 

Ref. [36] Vesicle 
 λ κ ω 
s 

Ref. [37] Vesicle 
 λ κ NA 
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Fig. 2. Discretization of a sphere. 
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nclination angle θ , 

 T φ = h 1 (�sin 2 φ + cos 2 θ ) , 

∂ T θ = −1 

2 

� − h 2 ∂ T φ + h 3 cos 2 θ, (11) 

here h 1 = − f 3 
f 2 −λ f 1 

, h 2 = 

2 a 1 a 2 
a 2 

1 
+ a 2 

2 

, h 3 = 

a 2 
1 
−a 2 

2 

2(a 2 
1 
+ a 2 

2 
) 
. Suppose R 0 is an

quivalent spherical radius for capsule volume V , i.e., V = 

4 
3 πR 3 

0 
nd we define S c = (4 π + 
) R 2 

0 
, another important dimensionless

arameter � is 

≡ − (4 π + 
) Ez 2 1 

4 πR 0 μ f 3 s 
. (12) 

Now the equations for the evolutions of phase angle φ and

nclination angle θ are derived. They are totally characterized by

hree dimensionless parameters λ, � and � under the assumption

hat the capsule preserves an undeformed shape. In present work,

he main task is to study the influence of vorticity on the dynamics

f the capsule. Because the viscosity ratio effects have been stud-

ed extensively [10,23,26,35] , the viscosity ratio λ is set to be unity

n our study. We focus on the effects of � and �. 

Here we would like to perform a comparison for key parame-

ers in the literature. Lebedev et. [36] and Kaoui et al. [37] claimed

hat the dynamics of vesicle depends on two and three dimen-

ionless parameters, respectively. Actually the nondimensional pa-

ameters are consistent in the two works. The key parameters in

36,37] and the present work is listed in Table 1 . The membrane

roperty in the table means bending rigidity or shear elasticity.

ebedev et al. [36] considered the rotational effect while Kaoui

t al. [37] did not. Two nondimensional parameters in Lebedev et al.

36] were derived from the four parameters listed in the table

hrough theoretical analysis. However, Kaoui et al. [37] using the

hree parameters listed in the table directly and “it may be useful

or any future attempts to analyze experimental data” [37] . 

It is also noticed that the two works [36,37] both investigated

esicles instead of capsules. They payed attention to the bending

ffect and the membrane is treated as incompressible in their vesi-

le model. However, in our capsule model, the bending effect is

ot considered, and the membrane is not treated as incompress-

ble, which results in shear elasticity. 

In our study, three nondimensional parameters λ, �, and � are

erived from the four parameters listed in Table 1 through the-

retical analysis, which is similar to the procedure in [36] . Three
arameters may be the minimum requirement to describe prop-

rly the dynamics of a capsule. 

.2. Numerical method 

.2.1. Finite element membrane model 

In our study, the membrane dynamics is numerically solved by

nite element method, in which the neo-Hookean constitutive law

7) is adopted. The 3D capsule membrane is discretized into flat

riangular elements. To discretize the unstressed interface, each tri-

ngular face of a regular octahedron is subdivided into 4 n trian-

ular elements. These elements are then projected radically onto a

phere. The geometry of each element is described by its three ver-

ices. The discretization of a sphere surface is shown in Fig. 2 . For

blate spheroid, it is necessary to make the coordinates multiply

y the aspect ratio of the oblate spheroid. 

First, the problem is reduced to a 2D(planar) deformation by

ransforming the undeformed and deformed surface elements to a

ommon plane using rigid-body rotations, the detailed method is

iven in [34] . Here gives the in-plane displacements v of the ver-

ices and the displacement gradient tensor D . Then the in-plane



34 H. Ye et al. / Computers and Fluids 134–135 (2016) 31–40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 , e 1
−1 

0 

−1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

t  

m  

m  

f  

i  

s  

d  

I  

o  

X

 

m  

i

 

T  

f  

i  

S  

f  

w  

a  

t

δ  

w

δ  

 

t  

m

 

 

t  

(

F  

 

E

ρ  

 

a  

s  

t  

l  

i  




principal strains are: 

λ2 
i = 

1 

2 

[ G 11 + G 22 ±
√ 

(G 11 − G 22 ) 2 + 4 G 

2 
12 

] , i = 1 , 2 , (13)

where G = D 

T D . The elastic forces acting on the three vertices of

a triangular element are obtained from the strain energy function

W 

NH using the principal of virtual work as 

f ( x 

′ , t) = −∂W 

NH 

∂ x 

′ . (14)

Then, the in-plane force f 
p 

can be obtained as 

f 
p = 

∂W 

NH 

∂λ1 

∂λ1 

∂ v 
+ 

∂W 

NH 

∂λ2 

∂λ2 

∂ v 
. (15)

Because each node of the discrete membrane belongs to more than

one element, the resultant force on a node is the sum of the forces

exerted by the surrounding elements directly attached to the node.

So far, the calculated force is the fluid force acting on the capsule

membrane. Its equal and opposite counterpart is the force acting

on the fluid. It is distributed to the surrounding fluid by the im-

mersed boundary method which will be discussed below. 

2.2.2. Multi-block lattice Boltzmann method 

The general flow is solved by Lattice Boltzmann method (LBM),

which is an efficient solver for the Navier–Stokes (NS) equations

with a low Reynolds number. Here, the D3Q19 model is used and

the discrete lattice Boltzmann equation (LBE) reads 

f i ( x + e i 
t, t + 
t ) = f i ( x , t ) − 1 

τ
( f i ( x , t ) − f eq 

i 
( x , t ) ) , (16)

where f i ( x , t) is the distribution function for particles with ve-

locity e i at position x and time t, 
t is the lattice time interval,

f 
eq 
i 

( x , t) is the equilibrium distribution function and τ is the non-

dimensional relaxation time. 

In the D3Q19 model, the fluid particles have the possible dis-

crete velocities stated as follows [34,38] : 

[ e 0 , e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , e 7 , e 8 , e 9 , e 10 , e 11 , e 12 , e 13 , e 14 , e 15 , e 16 , e 1[ 

0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 

0 0 0 1 −1 0 0 1 −1 1 −1 0 0 0 

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 

The equilibrium distribution function f 
eq 
i 

( x , t) can be calculated

as: 

f eq 
i 

(x , t) = ω i ρ

[
1 + 

e i · u 

c 2 s 

+ 

( e i · u ) 2 

2 c 4 s 

− (u ) 2 

2 c 2 s 

]
, (18)

where the weighting coefficients ω i = 1 / 3(i = 0) , ω i = 1 / 18(i = 1 −
6) , ω i = 1 / 36 (i = 7 − 18) . The term c s represents the sound speed

which equals 
x/ ( 
√ 

3 
t) . 

The relaxation time is related to the kinematic viscosity ν by 

ν = 

(
τ − 1 

2 

)
c 2 s 
t. (19)

Once the particle density distribution is known, the fluid density

and momentum are calculated as 

ρ = 

∑ 

i 

f i , ρu = 

∑ 

i 

f i e i . (20)

Here the multi-block lattice Boltzmann method proposed by Yu

and Girimaji [39] is employed. We consider a two-block system,

the computational domain is divided into two blocks which are

connected through the interface. The lattice space ratio between

coarse and fine grids equals two. The capsule is immersed in the

fine mesh block. On the interface between the two blocks, the ex-

change of variables follows a certain relation so that the mass and

momentum are conserved and the stress is continuous across the

interface. Detailed method is explained in [34] . 
8 ] = 

0 0 0 0 

1 1 −1 −1 

1 −1 1 −1 

] 

. 
(17)

.2.3. Immersed boundary method 

In our study, the immersed boundary method is adopted

o couple the finite element model with the lattice Boltzmann

ethod, in which a force density is distributed to the Cartesian

esh in the vicinity of the moving boundary in order to account

or the effect of the boundary. In the follows, x represents a point

n the Eulerian coordinates, which is used to solve the fluid flow.

 represents a boundary node of the capsule in a Lagrangian coor-

inates, which is used to solve the deformation of the membrane.

n the Eulerian coordinates, the position of a Lagrangian node s

n the capsule membrane is X ( s , t) , which has three components

 = (X, Y, Z) . 

In order to satisfy the no-slip boundary condition, the flexible

embrane should move with the same velocity as the fluid around

t. That is 

∂ X ( s , t) 

∂t 
= u ( X ( s , t)) . (21)

his condition will cause the capsule to deform. The membrane

orce density F ( s , t) , which is induced by capsule deformation,

s obtained by the finite element membrane model discussed in

ection 2.2.1 , and is distributed to the fluid mesh points near it by

 ( x , t) = 

∫ 
F ( s , t) δ( x − X ( s , t)) d s , (22)

here f ( x , t) is the fluid body force density and δ is a smoothed

pproximation of the Dirac Delta function. In the present 3D study,

he function is chosen to be 

( x − X ( s , t)) = δ(x − X ( s , t)) δ(y − Y ( s , t)) δ(z − Z( s , t)) , (23)

here 

(r) = 

⎧ ⎨ ⎩ 

1 

4 

(
1 + cos 

(
π | r| 

2 

))
, r ≤ 2 

0 , r > 2 . 

(24)

The same approximation function is used to obtain the veloci-

ies of the Lagrangian nodes on the moving boundary. The mathe-

atical form can be written as follows: 

∂ X 

∂t 
= 

∫ 
u ( x , t) δ( x − X ( s , t)) d x . (25)

To take into account the fluid body force density f ( x , t ), an extra

erm F i 
t should be added into the right hand side of the LBE ( Eq.

16) ) [40] , i.e., 

 i 
t = (1 − 1 

2 τ
)
tω i 

[
e i − u 

c 2 s 

+ 

( e i · u ) 

c 4 s 

e i 

]
· f . (26)

Correspondingly, the equation for momentum of the fluid, i.e.,

q. (20) , should be replaced by 

u = 

∑ 

i 

f i e i + 

1 

2 

f 
t. (27)

The validations of this method, such as the grid-independence

nd time step-independence studies, and deformation of capsule in

imple shear flow, have been presented in details in [16,34] . Here,

he computational domain is a cubic box with side 10 R 0 which is

arge enough to neglect the boundary effect. The grid resolutions

n the fine and coarse blocks are 
x f = 
y f = 
z f = R 0 / 12 and

x c = 
y c = 
z c = R / 6 , respectively. 
0 
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Fig. 3. The evolution of the capsule. (a) � = 0 . 2 and (b) � = 0 . 4 with different �; (c) � = 2 and (d) � = 4 with different �. 
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The initial velocity field is prescribed by Eq. (3) . The velocity

istribution on the boundaries is fixed as that in the initial state

 Eq. (3) ). Since the velocities on the boundary nodes are specified,

he velocity boundary condition proposed by Zou and He [41] can

e implemented for each boundary nodes. Due to the low Reynolds

ow ( Re ≈ 0.01) and small size of the capsule compared to the

hole computational domain, the perturbation of the capsule on

he flow is very small and the fixed velocity boundary condition is

alid. 

The capsule is discretized into 8192 triangular elements con-

ecting 4098 nodes. The capsule is initially oblate with shape pa-

ameter r 2 = 

a 2 
a 1 

= 

10 
11 unless it is specially stated, the initial incli-

ation angle is π
4 . The Taylor deformation parameter D xy is 

 xy = 

L − B 

L + B 

, (28) 

here L and B are semi-major and semi-minor axes, respectively.

he time is nondimensionalized by 1 
2 s . 

. Results and discussion 

.1. Shape dynamics of a capsule in general flow 

It is noted that in our derivation, i.e., Eq. (11) , the shape of the

apsule is supposed to be fixed. However, the shape will change

ontinuously in the numerical simulation. Hence, the numerical re-

ults will be different from the theoretical results. In the follows,

ffects of the two dimensionless parameters � and � on the de-

ormation of the capsule are studied numerically in detail. 

Usually � dominates the deformation of the capsule because �

s the ratio of elastic stress to viscous force of the fluid exerting

n the capsule. However, from Fig. 3 (a) and (b), it is seen that �

lso affect the capsule deformation and for a fixed �, the deforma-

ion of capsule decreases with the increase of �, which is similar

o the effect of viscosity ratio λ on the capsule deformation [10] .
t is also found that a larger � results in a shorter period of the

eformation. 

The effect of � is similar to that of λ but with some differences.

n the effect of λ, increasing λ makes the capsule more viscous and

he dynamic force in the membrane increases even the strain rate s

s fixed. However, the increasing of � results in the acceleration of

he rotation of the flow and it can not change the dynamic force

f the strain rate s is fixed [24] . Because the deformation of the

apsule would need time to evolve, when � is larger, the evolution

eriod is reduced and the deformation magnitude is suppressed.

hat is shown in Fig. 3 (a) and (b). 

The period of the deformation is mainly determined by �.

hrough many tests with different � and �, it is found that the

eriod of deformation T D times � is a constant, i.e., 

 D � = 1 /C 0 , (29) 

here C 0 = 0 . 15625 . Hence, 2 π/ (�T D ) = 2 πC 0 = 1 . This is also

upported by cases of � = 4 and � = 8 in Fig. 3 (a) and (b). It is

een that the period in the case of � = 4 is two times of that in

he case � = 8 . 

From Fig. 3 (c), it is seen that when � is relatively small, the

eformation magnitude decreases with the increase of �. However,

rom Fig. 3 (d), we can see that when � is large, the deformation is

lmost independent of �. As the explanation mentioned above, if

is large enough, capsule would experience the same deforming

rocedure no matter what � is. In other words, as T D is inversely

roportional to �, if � is large enough to suppress the deformation

rocedure of the case with the largest � (e.g., � = 1 . 0 in Fig. 3 (d)),

hen all of the cases with other smaller � would undergo the same

uppressed procedure. 

We give a brief theoretical explanation to the influence of �

n the deformation of the capsule. Here, following [27] , we only

onsider a nearly spherical capsule, the radial position r s of the

urface of the capsule membrane can be expressed by 

 s = 1 + ε f (ϑ, ϕ, t) , (30)
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Fig. 4. The average value of R over one period as a function of � when � = 0 . 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Phase diagram of the capsule dynamical states in general flow. The grey 

scales represent the three regimes obtained by theoretical model. The symbols and 

the dashed lines represent numerical results. Blue filled circles, green filled squares, 

and red filled triangles represent SW, TU, and TU-SW transition modes, respectively. 

Pink filled diamonds denote TU-SW-TU mode. The dashed lines represent bound- 

aries of different modes. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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where f is the deviation of the capsule shape from a spherical

shape. f is expanded into series of scalar spherical harmonics Y jm 

,

f = 

∞ ∑ 

j=2 

j ∑ 

m = − j 

f jm 

Y jm 

. (31)

We add the rotational part of the flow to the governing Eq.(3.16)

in [27] , then it can be written as 

∂ f 22 

∂T 
= i � f 22 − i � − �( f 22 − g 22 ) , (32)

where � = 

8 
√ 

30 π
(23 λ+32) 

√ 



, � = 

16 E 
6(23 λ+32) μsR 0 

and g 22 is the initial

shape function with the same definition of f 22 . If we set 

f 22 = Rexp(−2 iθ ) , (33)

where R is a parameter connected with the Taylor deformation pa-

rameter D xy (see Eq. (35) ), we can obtain the shape evolution equa-

tion 

∂R 

∂T 
= �sin 2 θ − �R + 

1 

2 

�
√ 


cos (2 φ − 2 θ ) . (34)

We use the result of Eq. (11) to obtain the value of θ and φ, then

the shape equation is solved by Runge–Kutta scheme. The average

value of R as a function of � is shown in Fig. 4 with � = 0 . 2 . 

The Taylor deformation parameter can also been written as a

function of R [42] 

D xy ≈ R 

8 

√ 

15


π
. (35)

From Fig. 4 , we can see R decreases with the increase of � when

� is not large, which means that increasing � suppresses the de-

formation of the capsule. In Eq. (11) , the capsule is assumed to

be a shape-preserving ellipsoid. Usually, theoretical studies have to

adopt this assumption to simplify the analysis. Although there is a

discrepancy between the assumption and the reality, Eq. (11) pro-

vides the theoretical basis for further analysis. If the deformation

of the capsule is considered at beginning, the governing equations

for the motion of the capsule would be very complicated. Here af-

ter the theoretical results from Eq. (11) are obtained, Eq. (34) is

adopted, which includes the effect of deformation. In this way, we

got preliminary solution taking into account the deformation ef-

fect. Then we are able to explain the numerical results qualita-

tively. 
.2. Intermittent dynamics 

The normalized mean tumbling rate is defined as [24,42] 

 

˙ θ〉 ≡ 〈 ∂ T θ〉 
〈 ∂ T θ〉 + 〈 ∂ T φ〉 , (36)

here 

〈 ∂ T θ〉 ≡ lim 

t→∞ 

1 

t 

∫ t 

0 

∂ T θ (T ) dT , 

 ∂ T φ〉 ≡ lim 

t→∞ 

1 

t 

∫ t 

0 

∂ T φ(T ) dT . (37)

n a pure tumbling motion, the inclination angle θ grows continu-

usly while the phase angle φ oscillates, which implies the mean

umbling rate 〈 ̇ θ〉 = 1 for a large time t . On the contrary, in a pure

winging motion, the phase angle φ grows without bounds while

he inclination angle θ oscillates, which implies 〈 ̇ θ〉 = 0 for a large

 . Obviously, the intermittent regime corresponds to a mean tum-

ling rate between 0 and 1. 

Here, different dynamic modes are identified according to the

volution of inclination angle in our numerical study. The phase di-

gram of different regimes spanning on the ( �, �) plane is shown

n Fig. 5 . Three grey scale regimes represent SW, Intermittent, TU

odes, which are obtained through solving Eq. (11) by fourth or-

er Runge–Kutta scheme. Here, Eq. (34) is not used. If the shape

eformation is taken into account, i.e., incorporating Eq. (34) into

q. (11) , Eq. (11) would be very difficult to solve because the coef-

cients in Eq. (11) , such as h 1 , h 2 and h 3 are all functions of time.

or example, the coefficients in h 1 will be very complicated (see

A.8) and (A.10) ). 

The numerical simulation results are also shown in Fig. 5 . The

ymbols and the dashed lines are the modes and boundaries of dif-

erent modes, respectively. Blue filled circles, green filled squares,

nd red filled triangles represent SW, TU, and TU-SW transition

odes, respectively. Pink filled diamonds denote the new mode

hat we find: TU-SW-TU mode. It is seen that the boundaries pre-

icted theoretically are not consistent with those obtained from
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Fig. 6. The evolution of inclination angle with � = 5 , � = 0 . 1 . 
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o

he numerical results. However, it is not surprise because in the

resent theoretical predictions, the capsule shape is initially fixed.

he theoretical predictions will be close to the numerical results if

he initial shape is replaced by the deformed shape in the theoret-

cal model [24,42] . Because the shape deformation as a function

f time depends on not only � but also �, it would be difficult to

heoretically analyze the deformation [25,26] . 

From the Fig. 5 we see that the profile of the distribution of the

odes is similar to the results of [42] , in which the horizontal axis

s the viscosity ratio. Here we present some connections between

he viscosity ratio λ and dimensionless parameter �. If Eq. (11) is

ivided by −h 1 = 

1 
λ∗ , it yields 

 τ φ = −(�sin 2 φ + cos 2 θ ) , 

∂ τ θ = −1 

2 

�λ∗ − h 2 ∂ τ φ + h 3 λ
∗cos 2 θ, (38) 

here τ = T /λ∗. if we set � = 1 , it would reduce to the expression

n [42] . From Eq. (38) , it is seen that there are two terms in the

volution equation of θ containing λ∗. However, there is only one

erm including the parameter �. To analyze contributions of these

wo terms, first we assumed that �λ∗ is a constant. If λ∗ is small

nd � is large, then contribution of the third term in the RHS of

he second equation in Eq. (38) is minor compared to the first

erm. Under this circumstance, the two cases that only changing
∗ and only changing � contribute equivalently to the equation.

ence, in the region of large �, the phase (mode) distributions in

he phase diagram that we obtained (see Fig. 5 ) is consistent with

hose in the literature [3,23,24] . 

If λ∗ is large ( �λ∗ = const), then contribution of the last term in

he RHS of Eq. (38) is comparable to the first term. The two cases

hat only changing λ∗ and only changing � are different, then it

ould lead to different results for the evolution of θ . In this situ-

tion, � is not large enough, the phase distribution in the phase

iagram is different from those in previous studies, which is dis-

ussed following. 

Here we focus on the new transition mode of TU-SW-TU, which

s shown in Fig. 6 with the parameters � = 5 , � = 0 . 1 . In the

ransition mode, an initially tumbling mode transfers to swinging

ode, and then it would return to a tumbling mode, and within

ur simulation time ( T = 40 ) it will maintain this steady tumbling

ode. In [3] and [23] , the transition is always one way, in which

he capsule would maintain a stable swinging mode after tran-

ition from tumbling, and this cannot reverse. Fig. 6 shows that

he SW motion continues for about 8 dimensionless time (approx-

mately 5 ≤ T ≤ 13). The SW may be not transient because the cap-

ule has sufficient time to adapt with the imposed flow. According

o previous studies, the SW motion is more stable than tumbling

TU) motion. That is why only one way transition (TU-SW) is ob-

erved in the literature. Recently, Cordasco et al. [4] proposed a

echanism that the membrane in-plane elastic energy is relevant

o the intermittent motion of RBC. However, here the capsule is
n ellipsoid particle which is different from the RBC with circular

iconcave discoid shape, such mechanism does not work. 

Now we provide an explanation for the observed dynamics in

umerical simulations. As shown in Fig. 5 , the region of the TU-

W-TU transition is constricted to a range with a moderate � and

ow �. The energy barrier theory reveals that the capsule with

ower � would be more likely to overcome the energy barrier

ue to large hydrodynamic shear force. However, the conclusion

s based on the assumption that the deformation is large when

he capsule has a lower �. Here, the deformation is small at a

ower �. As discussed in Sec. 3.1 , large � would confine the defor-

ation, which implies that the deformation along vorticity direc-

ion is constant or changing little due to volume preservation. That

s consistent with the explanation of [27] . In other words, at this

ange (approximately 5 < � < 10, and low �), the effect of con-

traint on the deformation along vorticity direction is dominated,

hich is totally different from the energy barrier mechanism. 

When � is moderate (approximately � ≈ 6), the capsule with

maller � deforms less than that in the cases of � = 1 , which is a

urely shear flow, i.e., due to the rotation of the fluid, the suppres-

ion to the deformation is stronger. So, the capsule with small �

s more likely to transit to tumbling mode than the capsules with

arge �. While when � becomes larger, the deformations are al-

ost identical and independent of �. Under this circumstance, the

eformation would not affect the transition. On the condition, the

nergy barrier theory is valid, in which when � is low, the fluid

hear stress acting on the capsule is sufficient to force the mem-

rane to tank tread [9] . 

In present work, our object is capsule, a kind of membrane

hich provides shear resistance without bending effect. On the

ther hand, the bending resistance may not alter the TB-SW-TB

ransition. Cordasco et al. [4] studied the motion of red blood cell

ynamics using the model with shear and bending effect. At page

84 in [4] , Cordasco et al. pointed out that the intermittent motion

s relevant to the in-plane energy and the bending resistance has

ittle effect on the transition boundary. So, here we did not con-

ider the effect of bending. 

.3. Effects of initial aspect ratio and initial inclined angle 

In simple shear flow, the effect of initial aspect ratio has been

tudied in [10,15] and it has been found that a capsule deviating

argely from spherical profile is more likely to transit to tumbling

ode. Fig. 7 shows the aspect ratio effect on the transition dy-

amics in our study. From Fig. 7 , it is seen that in the simple shear

ow ( � = 1 ), capsules with small initial aspect ratio could tran-

it to tumbling motion with softer membrane (lower �), which is

onsistent with that observed in [10,15] . Actually not only � = 1

ut also the other � > 1, the similar situation can be observed,

.e., for cases with smaller initial aspect ratio, transition to tum-

ling motion becomes easier (with lower �) (see Fig. 7 ). 

From Fig. 7 , it is also seen that for the same �, a capsule with

maller initial aspect ratio would transit to tumbling motion at a

ower �. Here � represents the rotational strength of the fluid.

ence, the capsule needs less rotation effect of the fluid to tran-

it to tumbling mode. For the TU-SW and TU-SW-TU transition

odes, the situation is similar, i.e., less rotation effect (lower �)

s required for cases with smaller initial aspect ratio. Hence, the

oundaries between different modes are all shifted to lower � and

regime for the capsule with smaller initial aspect ratio. 

The effect of the initial inclined angle on the TU-SW-TU is

lso investigated. The phase diagrams for different initial angles

 θ0 = 0 , π8 , 
3 π
8 , 

4 π
8 , ) are all similar with negligible discrepancies

not shown). Hence, the initial inclined angle almost has no effect

n the mode transition. 
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Fig. 7. Phase diagrams for capsule dynamic states with different initial aspect ratio. (a) r 2 = 0 . 3 , (b) r 2 = 0 . 5 , (c) r 2 = 0 . 7 and (d) r 2 = 0 . 8 . Note that the horizontal axis 

ranges are different in each plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The mean intrinsic viscosity [ ̄η] as a function of � for cases � = 2 , 4 , 6 , 8 . 
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3.4. Rheology of dilute suspension 

Instead of the dimensionless particle stress tensor [2,43] , here

the intrinsic viscosity [35,44] is used to evaluate the contribution

of the capsules on the bulk rheology. 

[ η] = 

ηe f f − 1 

�
, (39)

where ηeff is the dimensionless effective viscosity defined as

ηe f f = 

σ̄12 

2 e 0 
12 

, and � is the concentration. Substituting Eq. (A.2) into

Eq. (39) , the intrinsic viscosity can be calculated as 

[ η] = 

μA 

∗
12 

2 e 0 
12 

�
= 

4 μ

�

g 1 e 
∗
12 − α2 

2 g 
′ 
3 

(
ζ ∗

12 − ε 12 k 
˙ θ
)

g 
′ 
3 

(
α2 

1 
g 1 + α2 

2 
g 2 

) 1 

2 scos ( 2 θ ) 

= 

4 μ

�

1 

J 
{ M − N ( �sin 2 φ + cos 2 θ ) } , (40)

where J = g 
′ 
3 
(α2 

1 
g 1 + α2 

2 
g 2 ) , M = 

1 
2 g 1 + α2 

2 
g 
′ 
3 
h 3 and if we set tanα =

a 2 
1 
−a 2 

2 
2 a 1 a 2 

, then N = h 1 (g 1 tanα + 

α2 
2 

g 
′ 
3 

cosα − h 2 α
2 
2 

g 
′ 
3 
) . It seems that

Eq. (8) does not contain the parameter �, which means that the

rotation of the fluid flow has no contribution to the bulk rheology

of the flow. 

However, � plays an important role in the rheology of the sus-

pension through the shape dynamics effect because J, M and N are

all functions of shape parameters. Hence, they should be functions

of �. This result of a dilute suspension ( � � 1) is shown in Fig. 8 .

The mean value of intrinsic viscosity, [ ̄η] , is computed by averaging

[ η] over one period. It is seen that for a specific �, [ ̄η] increases

with �. 

It is also found that [ ̄η] decreases with � for the same �. Here,

for a given �, a larger � could shorten the period of the distur-

bance of the capsule on the flow, i.e., the � suppresses the dis-

turbance. Gao et al. [35] proposed that if the particles in the sus-
ension disturb the flow less, the intrinsic viscosity may decrease.

ence, [ ̄η] would become smaller. It is also seen from Fig. 8 that

 ̄η] may be less than 0, which indicates that the suspension is less

iscous than the fluid in some special conditions [35] . 

. Conclusion 

We have investigated the dynamics of a nonspherical capsule

n general flow using theoretical and numerical analyses. The nu-

erical results have discrepancies with the theoretical results due
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o the fixed shape assumption in the theoretical analysis. On the

ther hand, we focus on analyzing the transition dynamics. Two

ransition behaviors (the TU-SW transition and TU-SW-TU transi-

ion ) are found in the intermittent regime, which is different from

he intermittent behavior predicted by theoretical models. To the

est of our knowledge, the TU-SW-TU transition has not been ob-

erved in capsule dynamics up to now and it is the first time that

e obtained this transition in general flow. The mechanism for

he TU-SW-TU transition may be associated with the deformation

long the vorticity direction. The effects of � (the ratio of vorticity

o the strain rate) on the deformation of capsule is demonstrated.

t seems that � suppresses the deformation in the vorticity direc-

ion, which triggers the TU-SW-TU transition. Also, the effect of ini-

ially aspect ratio of the capsule is investigated. The result shows

hat a capsule deviating largely from spherical profile is more likely

o transit to tumbling mode, which is similar to the situation of a

apsule in simple shear flow. Finally, the intrinsic viscosity as func-

ions of the two dimensionless parameters � and � is studied by

heoretical and numerical analyses. 
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ppendix A. Stress field of the system 

The velocity field of the membrane in the body-fixed frame is

ssumed to be 

 

m 

1 = ν0 (−a 1 /a 2 ) x 2 , u 

m 

2 = ν0 (a 2 /a 1 ) x 1 , u 

m 

3 = 0 , (A.1)

here ν0 is defined as ν0 = ∂ φ/∂ t . φ is phase angle shown in

ig. 1 . Then the stress tensor can be written as 

i j = −pδi j + μ(A 

∗
i j + 2 e m 

i j ) , (A.2)

here p is an arbitrary constant pressure and e m 

i j 
is defined as 

 

m 

i j = 

1 

2 

(u 

m 

j,i + u 

m 

i, j ) . (A.3)

he tensor A 

∗
i j 

are independent of x i , two elements of A 

∗
i j 

are 

 

 

 

 

 

A 

∗
11 = 

4 

3 

2 g 1 e 
∗
11 − g 2 e 

∗
22 − g 3 e 

∗
33 

g 
′′ 
2 
g 

′′ 
3 

+ g 
′′ 
3 
g 

′′ 
1 

+ g 
′′ 
1 
g 

′′ 
2 

, 

A 

∗
12 = 4 

g 1 e 
∗
12 − α2 

2 g 
′ 
3 (ζ

∗
12 − ε123 

˙ θ ) 

g 
′ 
3 
(α2 

1 
g 1 + α2 

2 
g 2 ) 

, 

(A.4) 

here 

 

∗
i j = e 0 i j − e m 

i j , (A.5)

 

0 
i j = 

1 

2 

(u 

0 
j,i + u 

0 
i, j ) , (A.6)

nd 

 

 

 

 

 

 

 

 

 

ζ ∗
i j 

= ζ 0 
i j 

− ζ m 

i j 
, 

ζ 0 
i j 

= 

1 

2 

(u 

0 
j,i 

− u 

0 
i, j 

) , 

ζ m 

i j 
= 

1 

2 

(u 

m 

j,i 
− u 

m 

i, j 
) . 

(A.7) 
he other parameters are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g 1 = 

∫ ∞ 

0 

ds 

(α2 
1 

+ s )

, 

g 
′ 
1 = 

∫ ∞ 

0 

ds 

(α2 
2 

+ s )(α2 
3 

+ s )

, 

g 
′′ 
1 = 

∫ ∞ 

0 

sds 

(α2 
2 

+ s )(α2 
3 

+ s )

, 


2 = (α2 
1 + s )(α2 

2 + s )(α2 
3 + s ) , 

(A.8) 

here αi denotes the dimensionless axes 

i = a i /a 0 , (A.9) 

nd a 0 = (a 1 a 2 a 3 ) 
1 
3 . ˙ θ is the angular velocity of the ellipsoid in

he space-fixed frame. The other elements of A 

∗
i j 

and the integrals

 2 , g 
′ 
2 
... could be obtained by the permutation of the subscripts. 

The parameters in (5) and (6) are defined as: 

r 2 = a 2 /a 1 , r 3 = a 3 /a 1 , 

z 1 = 

1 

2 

(r −1 
2 − r 2 ) , z 2 = g 

′ 
3 (α

2 
1 + α2 

2 ) , 

f 1 = (r 2 − r −1 
2 ) 2 , f 2 = 4 z 2 1 (1 − 2 /z 2 ) , f 3 = −4 z 1 /z 2 , (A.10) 

ppendix B. The elastic energy form for capsule 

According to the theoretical model, the element on the mem-

rane is assumed to move along a ellipsoidal shape, then the kine-

atic equation of membrane can be described by [10] 

 1 = x 0 1 cosφ − 1 

r 2 
x 0 2 sinφ, 

 2 = x 0 2 cosφ + r 2 x 
0 
1 sinφ, 

 3 = x 0 3 , (B.1) 

here x 0 
i 

defines the initial position of a material point in the

embrane at time t = 0 . Hence the deformation gradient tensor

s 

 i j = 

⎡ ⎢ ⎣ 

cosφ − sinφ

r 2 
0 

r 2 sinφ cosφ 0 

0 0 1 

⎤ ⎥ ⎦ 

. (B.2) 

The left Cauchy-Green tensor is 

 

2 = F · F T 

= 

⎡ ⎢ ⎢ ⎢ ⎣ 

cos 2 φ + 

sin 

2 φ

r 2 
2 

r 2 sinφcosφ − 1 

r 2 
sinφcosφ 0 

r 2 sinφcosφ − 1 

r 2 
sinφcosφ r 2 2 sin 

2 φ + cos 2 φ 0 

0 0 1 

⎤⎥⎥⎥⎦
(B.3

Then we set det 
∣∣V 2 ∣∣ = 0 , 

2 −
(

2 cos 2 φ + 

sin 

2 φ

r 2 
2 

+ r 2 2 sin 

2 φ

)
λ + 

(
cos 2 φ + 

sin 

2 φ

r 2 
2 

)
× (r 2 2 sin 

2 φ + cos 2 φ) − 4 z 1 sin 

2 φcos 2 φ = 0 . (B.4) 

It yields 

2 
1 + λ2 

2 = r 2 2 sin 

2 φ + 

sin 

2 φ

r 2 
2 

+ 2 cos 2 φ

= 

(
r 2 2 + 

1 

r 2 
2 

− 2 

)
sin 

2 φ + 2 

= 4 z 2 1 sin 

2 φ + 2 , (B.5) 
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(
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r 2 
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)
(r 2 2 sin 

2 φ + cos 2 φ) − 4 z 1 sin 

2 φ

= 1 . (B.6)

The first and second strain invariants I 1 and I 2 are 

I 1 = λ2 
1 + λ2 

2 − 2 = 4 z 2 1 sin 

2 φ, 

I 2 = λ2 λ2 − 1 = 0 . (B.7)

For the neo-Hookean Law [17,34] , we have 

 

NH = 

1 

6 

E 

(
I 1 − 1 + 

1 

I 2 + 1 

)
= 

1 

6 

EI 1 

= 

2 

3 

z 2 1 Esin 

2 φ. (B.8)
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