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ABSTRACT
The rheology of a capsule suspension in two-dimensional confined Poiseuille flow is studied numerically using an immersed-boundary
lattice Boltzmann method. The effects of capsule volume fraction ϕ and bending stiffness Eb on the rheology of the suspension are
investigated first. The apparent viscosity does not monotonically increase with ϕ: the variation curve can be divided into four flow
regimes. In each regime, there is a distinct equilibrium spatial configuration. The overall lateral position of the capsules is directly con-
nected with the apparent viscosity. Then, we propose to investigate the effect of inertia on the capsule configuration in dilute cases
and the capsule transport in concentrated cases. For dilute cases, phase diagrams of flow regimes on the (ϕ, Eb) plane are plotted.
It is found that, as the Reynolds number (Re) increases, the range of values for regime I, with a single-line configuration, reduces,
while the range for regime II (transition configuration) increases. It is highly correlated with the equilibrium lateral position of a sin-
gle capsule. For even larger Re, the range for regime IV (random configuration) increases rapidly and dominates because the larger
inertia makes the arrangement more random. For concentrated cases, we observe that the optimal volume fraction, at which the trans-
port of capsules is a maximum, increases with Re. This study may help to understand the collective behavior of capsules in Poiseuille
flows.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0032113., s

I. INTRODUCTION

Capsule suspensions are ubiquitous in both biological (blood)
and industrial (mining and petroleum) systems. In the presence of
capsules, Newtonian solvent fluids can exhibit non-Newtonian rhe-
ological properties. The rheological properties of the suspension
are particularly interesting when different spatial configurations of
capsules occur.1,2

The rheological properties of a capsule suspension are basically
governed by the dynamics and lateral position of the capsule. The
dynamics of a single capsule in Poiseuille flow has been extensively
studied. It has been shown that with different bending stiffnesses,
tube confinements, or viscosity ratios between the inner and outer
fluid of the capsule membrane, the capsule can form parachute, bul-
let, and slipper shapes.3–14 Thorough analyses of the entire phase
diagram of these dynamical processes have been performed.15–19

Lateral migration is another important physical quantity that needs
to be considered. The variation of equilibrium lateral position with

the mechanical properties of a capsule has been studied.20–24 It has
been found that, in capsule suspensions, if the lateral positions of
the capsules are close to the wall, the local viscosity in the vicin-
ity of the walls, and therefore the apparent viscosity, is significantly
enhanced.25

The connections between the suspension rheology and the lat-
eral positions or spatial configuration of capsules have been dis-
cussed in the literature. Capsules in dilute or semi-dilute cases may
be well-organized in one or two rows in simple shear flows or
Poiseuille flows.1,2,26–28 The spatial configuration depends on the
fluid inertia, volume fraction, and mechanical properties of the
capsules. Shen et al.1 and Thiebaud et al.2,29 studied the influ-
ence of spatial configurations on rheological suspension proper-
ties in simple shear flows. Krüger et al.25 investigated the distri-
bution and rheological properties of Poiseuille flows, but only at a
specific volume fraction. In addition, most of the previous studies
focused on the spatial configurations of rigid particles.30–33 As far
as we know, the variation of the spatial capsule configuration and
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rheology with volume fraction has never been investigated for
Poiseuille flows.

Most of the previous studies have focused on flows at very low
Reynolds number.1,2,25,34–38 However, the inertial effect also plays an
important role in the distribution of capsules. It may be used to
enhance mixing and it may also be applied to separate capsules in
straight or curved geometry, according to their different equilibrium
lateral positions. Some studies have systematically investigated the
inertial effect on the dynamics of deformable objects.39–50 However,
most of these studies focused on the dynamics of a single capsule or
the properties of capsule suspensions with a fixed volume fraction.
In this study, the combined influence of fluid inertia and volume
fraction on the spatial configurations of the capsule, as well as on the
rheological properties of the fluid, is investigated.

Particle or capsule transportation in vessels or man-made pipes
may be determined by the flow rate and the concentration of the
suspension. Many studies have shown that there is an optimal con-
centration that maximizes material transfer in transport systems. For
example, the optimal erythrocyte (red blood cell) volume fraction in
humans is ∼40%–50%.1,51 In this paper, we explore the effect of fluid
inertia on the optimal capsule volume fraction and explain it in the
context of capsule shear stress.

In this study, we performed a series of numerical simulations
to discuss the relation between capsule distributions and appar-
ent viscosity in Poiseuille flows. The equilibrium spatial configu-
rations are analyzed, and the overall lateral equilibrium location
of capsules is quantified. Dilute and concentrated cases are dis-
cussed in detail. For dilute cases, phase diagrams of flow regimes
on the (ϕ, Eb) plane are plotted and the inertial effect is ana-
lyzed. Capsules’ distribution in the suspension is connected with
the equilibrium lateral position of a single capsule. For concentrated
cases, the inertial effect is also discussed. Besides, we observe an
optimal volume fraction in which the capsules’ flow rate is max-
imum. The influence of inertia on the optimal volume fraction is
explored.

The article is organized as follows. In Sec. II, the membrane
model and numerical method are introduced and the method is
validated. Section III presents the main results for a single cap-
sule and a capsule suspension. Finally, conclusions are provided
in Sec. IV.

II. MEMBRANE MODEL AND NUMERICAL METHOD
A. Membrane model

The capsule is surrounded by a membrane, which prevents it
from stretching, compressing, and bending excessively.52 When the
capsule deforms, to satisfy the non-slip boundary condition, there is
a force jump across the membrane. The membrane then generates
an elastic force T(x, t) containing forces due to surface tension and
bending. The surface tension force can be calculated from a con-
stitutive law; here, the neo-Hookean law is employed. The surface
tension is53–55

Te = ks(ϵ − 1), (1)

where ks is the shear modulus of elasticity and ϵ is the stretch ratio.
To include the bending resistance, the approach of Pozrikidis54 is
employed, which is

Tb =
d
dl
[kb(κ − κ0)], (2)

where kb is the bending modulus, l is the curve coordinate of the
membrane, κ is the instantaneous curvature, and κ0 is the reference
curvature. The membrane elastic force is the sum of the two forces,

T = Tet + Tbn, (3)

where t and n are unit vectors in the tangent and normal directions,
respectively.

B. Numerical method
Our numerical method combines the lattice Boltzmann method

(LBM) and the immersed boundary method (IBM). The LBM origi-
nates from lattice gas automation (LGA). Macroscopically, it is able
to solve the incompressible Navier–Stokes equations (see Ref. 56 for
more details). The discretized lattice Boltzmann equation is

fi(x + ciΔt, t + Δt) − fi(x, t) = 1
τ
(fi(x, t) − f eqi (x, t)) + ΔtFi, (4)

where f i(x, t) is the discretized distribution function at location x
and time t, f eqi (x, t) is the equilibrium distribution function, ci is
the discretized velocity vector, and here the D2Q9 velocity model
is adopted. τ is the relaxation time, and it is related to the kinematic
viscosity ν by ν = 1/2c2

sΔt(2τ − 1). Fi is the external force term.
The equilibrium distribution function is

f eqi (x, t) = ωiρ[1 +
1
c2
s
(ci ⋅u) +

1
2c4

s
(ci ⋅u)2 − 1

2c2
s
(u ⋅u)]. (5)

The external force term is written as57

Fi = (1 − 1
2τ
)ωi(

ci − u
cs

+
ci ⋅ u
c4
s

ci) ⋅F, (6)

where ωi is the weighting factor. ωi = 4/9 for
i = 0, ωi = 1/9 for i = 1, 2, 3, 4, and ωi = 1/36 for i = 5, 6, 7, 8.
cs = 1

√

3
Δx
Δt is the lattice sound speed, where Δx and Δt are lattice

spacing and time step, respectively.
The macroscopic quantities can be obtained from the moments

of the distribution function. The fluid density is

ρ =∑ fi. (7)

The fluid velocity is

ρu =∑ cifi +
1
2
ΔtF. (8)

The IBM was developed by Peskin58 and is very useful for
coupling the fluid flow and the movement of capsules. It has been
applied extensively to fluid–structure interaction problems. It has
also proved to be very useful for simulating the motion and deforma-
tion of capsules in fluid.59 In this method, the solid body is immersed
in the fluid and the membrane is discretized into many Lagrangian
points. To ensure a non-slip boundary condition, the velocity
of a Lagrangian point is interpolated from the surrounding fluid
nodes, i.e.,
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u(s) =∑f δ(s − x)u(x), (9)

where s and x are the locations of the Lagrangian points and
fluid nodes, respectively, and δ is the delta function. The loca-
tion of each Lagrangian point and the new geometry of the cap-
sule at the next time step can be determined from the kinematic
formula. Using Eq. (3), we can calculate the force acting on each
Lagrangian point, which should be spread to surrounding fluid
nodes, i.e.,

F(x) =∑mδ(s − x)T(s). (10)

It is noted that this force should be added to the lattice Boltz-
mann equation as an external force.59 The delta function is chosen
to be

δ(x − s) = 1
Δx2 δ(

x − x(s)
Δx

)δ( y − y(s)
Δx

), (11)

where

δ(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
4
(1 + cos(πr

2
)), r ≤ 2

0, r > 2.
(12)

In this way, the physical non-slip boundary condition is satisfied.

C. Validation
To validate our numerical method, we simulate the motion

of a capsule in a simple shear flow with shear rate γ̇, as shown
schematically in Fig. 1(a). A circular capsule is initially placed in
the center of the computational domain. The radius of the cap-
sule is a and the size of the computational domain is 16a × 16a.
The Reynolds number is Re = 4γ̇a2

ν = 0.05, so the fluid inertia is
very small. The capillary number is Ca = (ρνγ̇a)/ks = 0.04 and
the dimensionless bending moduli Eb = kb/(a2ks) are 0.025, 0.05,
and 0.1.

The Taylor deformation parameter Dxy = Lmax−Lmin
Lmax+Lmin

is usually
used to quantify the capsule dynamics. A large Dxy denotes a large
deformation. Lmax and Lmin are the major and minor axes of the cap-
sule, respectively. Figure 1(b) shows Dxy as a function of time. It is
seen that our results in the three different cases are all consistent with
those in Ref. 60.

FIG. 1. (a) A capsule in a simple shear flow. (b) Evolution of the Taylor deformation
parameter Dxy .

III. RESULTS AND DISCUSSION
In the present study, the suspension rheology in a channel of

width h is investigated. Figure 2 shows a schematic of a capsule sus-
pension in a two-dimensional (2D) Poiseuille flow. Periodic condi-
tions are imposed at the inflow (left) and outflow (right) boundaries
of the domain, as adopted by many previous studies.25,36,55 Flow is
induced by a body force g along the x-axis. The velocity profile of
the unperturbed flow is

u0 =
gh2

2μ0
( y
h
− y2

h2 ), (13)

where μ0 is the dynamic viscosity of the fluid.
In our simulations, the particle radius is a = 25Δx and the

membrane is discretized into 250 Lagrangian points so that the
arc length is of the same order of magnitude as the lattice length.
When the capsules get sufficiently close to each other, the high
pressure between them would act as the repulsive force and push
them away. In addition, because of deformation, the membranes
of the capsule may contract inward. Hence, capsules do not over-
lap. In our simulations, no extra lubrication is included. For real
blood flow, the diameters of human capillaries and arterioles are
usually 3–55 times the cell radius.34 Here, the channel width is
h = 6a and the channel length is 30a, which is long enough to
obtain accurate results.55,61 The Reynolds number is defined as
Re = 2ρUa/μ0, where U is the mean flow velocity. Other key param-
eters are the shear capillary number Ca = μ0U/ks, dimensionless
bending modulus Eb = kb/(ksa2), and volume fraction ϕ = (Nπa2)/S,
where N is the number of capsules and S is the area of the computa-
tional domain. Here, Ca is set as a constant to 0.1 and the viscosity
ratio between the internal and external fluids of the membrane is
unity λ.

A. Dynamics of a single capsule
In this section, we present the behavior of a single capsule. In

a Poiseuille flow, the shear rate changes from zero at the center of
the channel to the peak value at the wall. The lateral locations of the
capsules can significantly affect the suspension rheology. Here, we
focus on the effects of Re and Eb on the lateral location of capsules.

The equilibrium lateral location ye is normalized to Y = |ye
− h/2|/(h/2). When Y = 0, the capsule is on the centerline of the
channel. Figure 3(a) shows the equilibrium lateral position Y as a
function of Re and Eb. It is found that when Eb is not very small,
e.g., Eb = 0.02, Y first increases with Re and then decreases. The
peak appears between Re = 10 and Re = 30. The increase or decrease
depends mainly on two forces: the force toward the wall generated
by the shear gradient and the force toward the centerline due to the
effect of the wall. The behavior is the result of a competition between
the two forces.23

FIG. 2. Capsule suspension in a 2D Poiseuille flow. The capsules are randomly
distributed initially.
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FIG. 3. (a) Equilibrium lateral location
and (b) Taylor deformation of a single
capsule as a function of Re and Eb.

It is also found that, for a given Re, the equilibrium state has
softer capsules (smaller Eb) closer to the centerline. For example,
at Re = 20, for Eb = 0.1, 0.05, 0.02, and 0.008, the equilibrium lat-
eral locations are ∼0.28, 0.23, 0.14, and 0.01, respectively. This trend
is consistent with the conclusions of Krüger et al.25 Here, we also
note that when Eb is small enough, e.g., Eb = 0.008, the capsule
almost remains at the centerline and its equilibrium lateral position
is independent of Re.

Taylor deformation parameters of capsules are shown in
Fig. 3(b). It can be found that capsules with larger Eb are less likely to
deform. At a specific Eb, the variation trend of Dxy is similar to that
of Y because at a larger Y, there is a larger local shear rate.

B. Apparent suspension viscosity and capsule
distribution

In 2D Poiseuille flow without a capsule, the volume flux along
the x-axis is

Q0 = ∫
h

0
u0(y)dy =

gh3

12μ0
, (14)

where u0 is the velocity along the x axis. For a capsule suspension, the
formula for the volume flux Qs is similar to Eq. (14) except μ0 should
be replaced by the apparent viscosity μa. Hence, if Qs is known, the
relative apparent viscosity μa can be obtained from25,55

μa =
μ
μ0
= Q0

Qs
, (15)

where μ is the apparent viscosity of the capsule suspension.
Figure 4 shows the instantaneous μa for different volume frac-

tions ϕ. It is found that after t > 1000 (t has been normalized
by Ly/2U), each instantaneous μa curve varies around a constant
value with a small amplitude. The change in the time-averaged
value of apparent viscosity μa is less than 1%, so we assume that
the suspension flow has reached an equilibrium state in each case
in Fig. 4.

The time-averaged apparent viscosity μa quantifies a character-
istic of the equilibrium state. Figure 5 shows μa as a function of ϕ.
We can see that, for a given Eb, μa generally increases with ϕ. This
can be understood as follows: as the number density of the capsules
increases, the suspension flows less easily.

From Fig. 5, we can also see that μa is usually smaller for softer
capsules than for more rigid capsules, at a given ϕ. This is a well-
known phenomenon in capsule suspensions.62 Because the softer
capsules adapt to the flow more easily, they do not disturb the flow
field as much, so the apparent viscosity is closer to that of the sol-
vent. The phenomenon can also be explained from the point of view
of the capsule lateral position. It is presented later in this subsection.

Figure 5 shows that the apparent viscosity does not increase
monotonically with ϕ. The curve can be divided into four sections
according to the growth rate. In regime I (ϕ = 0%–10%), μa increases
with ϕ. In regime II (ϕ = 10%–18%), μa increases slowly or even
decreases with ϕ. In regime III (ϕ = 18%–32%), μa increases again
until the next inflection point, which is around ϕ = 32%. In regime
IV (ϕ > 32%), μa increases rapidly with ϕ.

To understand the variation in apparent viscosity, we look at
the typical equilibrium spatial configurations of the capsules in each
flow regime, which are shown in Fig. 6. It is found that when ϕ is low
(regime I), the capsules form a single-file configuration [see Fig. 6(I)]
and are uniformly distributed.

FIG. 4. Instantaneous apparent viscosity as a function of time in the cases with
different ϕ but identical Re and Eb (Re = 10, Eb = 0.008). The curves from bot-
tom to top are the cases with ϕ = 6.98%, 20.94%, 34.91%, 41.89%, and 48.87%,
respectively.
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FIG. 5. Apparent viscosity as a function of ϕ at Re = 10. The curve can be divided
into four regimes: regime I: ϕ = 0%–10%, regime II: ϕ = 10%–18%, regime III:
ϕ = 18%–32%, and regime IV: ϕ > 32%. Vertical dashed lines denote borders of
each regimes.

In regime II, it seems that the capsules no longer fit into one
row, so a second row begins to develop [see Fig. 6(II)]. In this regime,
ϕ is still not very large. The main feature is that the gap between cap-
sules is large and two rows of capsules are arranged alternately. It
should be noted that there is not always the same number of cap-
sules on either side of the centerline. This is a transition state from
a single-line to a double-line configuration. Figure 6(III) shows the
typical double-line configuration of regime III. There are two rows,
which are almost symmetric about the centerline. The number of
capsules in each row is equal and the capsules do not shift between
two rows. In regime IV, the suspension becomes denser with a larger
ϕ. The capsules can shift between the two rows and the configura-
tion becomes more random and unstable [see Fig. 6(IV)]. Interest-
ingly, Shen et al.1 also noticed similar phenomena in simple shear
flows.

To describe the capsule distribution quantitatively, the equilib-
rium lateral position of the capsules and the depletion layer thick-
ness of the suspension are discussed. The second moment of capsule

density is defined to describe the overall lateral distribution, 25

M2 =
1
h ∫

h

0
ϕ(y)(y − h

2
)

2

dy, (16)

where ϕ(y) is the volume fraction profile between the channel walls.
For a given lateral position y, ϕ(y) is the ratio of the lattice nodes
occupied by capsules to the total number of nodes, along the x
direction. The normalized overall lateral position of the capsules is25

Δ =
√

4M2

ϕh2 . (17)

The larger the Δ is, the further the capsules are from the centerline.
If the capsules spread homogeneously, Δ = 1/

√
3 ≈ 0.57. The cell-

free layer thickness d is defined as the minimum distance between
the capsules and the walls. The variation in overall lateral position Δ
as a function of ϕ is shown in Fig. 7(a): it is found that this variation
is different in each regime.

It is found from Fig. 7(a) that when ϕ is small (regime I), Δ
increases with increasing ϕ. Hence, in this regime, when the num-
ber of capsules increases, the capsules become further from the
centerline [see Fig. 6(I)].

In regime II, the capsules do not concentrate in one row but are
distributed over two rows [see Fig. 6(II)]. In this way, the number
of capsules in each row may be lower than that in the single row in
regime I. As mentioned above, fewer capsules in each row lead to a
smaller overall lateral location of the row (Δ), so Δ in regime II may
be smaller than in regime I [see Fig. 7(a)].

In regime III, as ϕ increases, there are more capsules in both
rows, and the gap spacing between neighboring capsules becomes
small [see Fig. 6(III)]. Due to the interaction between them, the cap-
sules stay away from the centerline, so there is a jump in Δ between
regimes II and III [see Fig. 7(a)].

In regime IV, the two-line configuration becomes unstable and
some capsules are squeezed into the gap between the two rows, i.e.,
the centerline region. Hence, the overall lateral location decreases
and there is a drop in Δ between regimes III and IV. When the num-
ber of capsules further increases, extra capsules are squeezed to the
region close to the wall, so the overall Δ increases with increasing ϕ
in regime IV [see Fig. 7(a)]. Hence, the overall lateral displacement
is highly correlated with the apparent viscosity. When the capsules
are closer to the wall, due to high viscosity dissipation, the apparent
viscosity of the suspension increases. 25

FIG. 6. Equilibrium configurations in regimes I–IV: (I) the one-file configuration, (II) the transition configuration, (III) the two-file configuration, and (IV) the random configuration.
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FIG. 7. (a) Equilibrium lateral position of
capsules and (b) equilibrium depletion
layer thickness of the capsule suspen-
sion at Re = 10 and Eb = 0.008, 0.02.
Δ and d are averaged over a long time.
Vertical dashed lines denote borders of
the regimes.

In the following, we discuss the effect of the bending rigidity
of the capsules. In Fig. 7(a), the curve for Eb = 0.02 is mostly above
the curve for Eb = 0.008, so Δ tends to be larger for rigid capsules
than for soft capsules. This means that more rigid capsules are closer
to the wall, leading to a larger μa. In Fig. 7(a), at ϕ ≈ 10%, there is
an exception that Δ for Eb = 0.008 is larger than that for Eb = 0.02.
In fact, this exception can be attributed to the configuration tran-
sition. The configurations of cases Eb = 0.008 and Eb = 0.02 at
ϕ ≈ 10% are single-line and transition states, respectively. According
to the analysis above, the transition state is closer to the centerline
(smaller Δ).

Figure 7(b) shows the depletion layer thickness d as a function
of ϕ. d is approximately complementary to Δ: when Δ increases,
the capsules come closer to the wall and d decreases. Hence, the
depletion layer thickness generally decreases with increasing ϕ.

Figure 8 shows ϕ(y) for four typical cases belonging to regimes
I to IV. For ϕ = 10.47%, this corresponds to regime I with the
single-line configuration. The curve is asymmetric because the cap-
sules deviate from the centerline and concentrate on one side. For
the case ϕ = 13.96%, this corresponds to regime II with the tran-
sition configuration. It seems that both rows of capsules are con-
centrated closer to the centerline. For the cases ϕ = 27.93% and
31.42%, these correspond to regime III and IV (the random config-
uration), respectively. In the random configuration, more capsules
appear in the centerline region than in the two-file configuration
(see the blue dashed-dotted line and black dotted line). Hence, the
overall lateral location (Δ) decreases when ϕ goes from 27.93% to
31.42%. These observations are consistent with the above analysis
of Fig. 7.

In summary, the configuration of capsules is directly correlated
with the overall equilibrium lateral location, which determines the
apparent viscosity of the suspension.

C. Dilute cases
The following discussions are based on dilute and concentrate

cases. The dilute cases include the cases in regimes I, II, and III. Their
volume fraction is usually less than 25%, which may depend on Re.
The concentrated cases are in regime IV with ϕ > 25%. For dilute
cases, the phase diagrams of the regimes and the Reynolds number

effect on the phase diagrams would be discussed. For concentrate
cases, the capsule flow rate is investigated.

In this subsection, we discuss the dilute cases. The Eb–ϕ
phase diagrams of configurations at different Re are shown in
Fig. 9. As expected, in all three phase diagrams, regime I mainly
appears in low ϕ regions while regime IV appears when ϕ is large.
The differences between the phase diagrams are analyzed in the
following.

From Fig. 9(a), it is found that, at Re = 1, regime I is domi-
nant and it occupies about half of the (ϕ, Eb) plane. At Re = 10, the
area of regime II is larger and it is the major regime, especially for
large Eb. This can be attributed to the equilibrium lateral position
of a single capsule. At Re = 1, there is only one equilibrium lat-
eral position, on the centerline. Under these circumstances, capsules
tend to move toward the centerline rather than spread out on either
side of the centerline until the single row is saturated (see Fig. 10).
Conversely, at Re = 10, the equilibrium lateral position of a single

FIG. 8. Volume distribution along the y axis of different volume fractions at
Re = 10 and Eb = 0.008. Red line: ϕ = 10.47%, orange dashed line: ϕ = 13.96%,
black dotted line: ϕ = 27.93%, and blue dashed-dotted line: ϕ = 31.24%.
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FIG. 9. Phase diagrams in the (ϕ, Eb) plane for (a) Re = 1, (b) Re = 10, and
(c) Re = 50.

capsule is off-center; the capsule can reach equilibrium on either side
of the centerline. Capsules reach equilibrium on both sides rather
than only one side of the centerline, even if the single row is not satu-
rated. The transition configuration forms easily [Fig. 6(b)] atRe = 10.
Therefore, the range of ϕ values for regime I is relatively small and
regime II dominates at Re = 10.

With increasing inertia, the borders of regimes III and IV move
toward the left, especially for rigid capsules, at Re = 50. It can be
seen from Fig. 9(c) that, compared to Re = 1 and 10, the inertia at
Re = 50 is so large that even at low ϕ the distribution of capsules

FIG. 10. One-file configuration along the centerline.

tends to be random. In this way, regime IV dominates the phase
diagram. On the other hand, Fig. 9(c) also shows that the area of
regime I increases slightly at Re = 50 compared to that at Re = 10. To
understand this, we check the equilibrium lateral position of a single
capsule in Fig. 3 and find that, in the case of Re = 50, the capsule is
closer to the centerline than in the case of Re = 10, especially at small
Eb, e.g., when Eb = 0.008 and 0.02, the capsule is on the centerline.
Just like the situation at Re = 1, capsules tend to stay on the centerline
until the row becomes saturated at Re = 50, so the range of regime I
increases slightly again.

It is noticed that in Figs. 9(b) and 9(c), when ϕ is small and
Eb is large, a part of regime II plotted may become regime I,
which depends on the initial capsule distributions. If all capsules
are initially located on one side of the centerline, it would form
the equilibrium one-file configuration (regime I). Otherwise, the
transition structure (regime II) would appear. Since the capsules
initially located on both sides of the centerline is more general, in
Figs. 9(b) and 9(c), the region (small ϕ and larger Eb) is still labeled
regime II.

Channel width h is another important parameter that would
influence the regime transitions. The (ϕ, h) phase diagram is shown
in Fig. 11(a). It is found that when h = 4a, the channel confine-
ment is so strong that only regime I would appear and no matter
how we change the Eb, there only is regime I in a dilute suspension.
As h increases, e.g., h = 6a, regimes II, III, and IV appear. When
the channel is wide, e.g., h = 8a, only regimes III and IV appear
even in a very dilute suspension. Because the confinement effect
of the channel is diminished, the capsules can move more freely
and they do not necessarily stay in just a single row or two rows.
Figure 11(b) shows the (ϕ, Eb) phase diagram at h = 8a. Regime
IV expands with the increase in Eb and the variation trend is the
same as that at h = 6a (see Fig. 9). Hence, h = 6a is a typical chan-
nel in which all the regime transitions will happen at different Eb
and Re.

In summary, the capsule configuration depends not only on the
inertia and mechanical modulus but also on the channel width and
the equilibrium lateral position of a single capsule.

D. Concentrated cases
In this subsection, the apparent viscosity and capsule flow

rate for high volume fractions (ϕ > 25%) are studied. Under
these circumstances, the capsules generally migrate randomly
(regime IV).

To investigate the effect of inertia, we study the behavior
of a suspension with a fixed volume fraction at different Re.
Figure 12 shows μa as a function of Re and Eb when Re < 80.
It is found that when Eb = 0.05, μa increases monotonically with
increasing Re. However, when Eb is smaller, μa increases first and
then decreases with increasing Re. This result is consistent with that
of Ref. 25.

The equilibrium lateral position and depletion layer thick-
ness are plotted as a function of Re in Fig. 13. The variation
in the equilibrium lateral position is similar to that of apparent
viscosity (Fig. 12), since these two quantities are strongly cor-
related. It seems that the capsules are strongly focused toward
the centerline upon increasing Re: this is referred to as “inertial
focusing.”
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FIG. 11. (a) Phase diagram in the (ϕ, h) plane for the cases of Re = 10 and Eb = 0.008 and (b) phase diagram in the (ϕ, Eb) plane for the cases of Re = 10 and h = 8a.

The connections between Figs. 12 and 13 can be understood in
the following way. First, we recall the variation of the lateral location
for a single capsule (see Fig. 3). It increases first and then decreases
with increasing Re; the overall trend is similar to that of a capsule
suspension. Moreover, the range of Re where the maximum lateral
equilibrium position of a single capsule appears is between Re = 10
and 30. This coincides with the range for the capsule suspension,
which is between Re = 20 and 40. Since the dense capsule suspen-
sion is composed of many capsules, there is a natural connection
between the behavior of many capsules and that of a single cap-
sule. For example, if a single capsule migrates close to the wall, it
is impossible for a group of such capsules to stay away from the wall.
On the other hand, the distribution of capsules in the suspension is
significantly affected by the interactions between capsules. As can
be seen, in a dense suspension at a larger Re, the overall equilib-
rium lateral location is still large and not as close to zero as that
in the case of a single capsule. It is easy to imagine that the dis-
persion of the capsules is caused by the interactions between the
capsules.

FIG. 12. Apparent viscosity μa as a function of Re (ϕ is around 26.18%).

The capsule flow rate Qc is another important issue. It is
defined by determining the capsule area through a given cross sec-
tion of the channel in unit time and is normalized by the flow
rate of the capsule-free fluid Q0. According to Ref. 34, there is
a maximum capsule flow rate (or optimal transport) at an opti-
mal value of ϕ. The optimal transport appears between ϕ = 30%
and ϕ = 50% in their simulations. Our results for normalized cap-
sule flow rates Qc

Q0
at Re = 1.0, 10, and 20 are shown in Fig. 14(a).

It is found that there is an optimal transport at ϕ = 35%–45%,
which is consistent with their result. In addition, the optimal vol-
ume fraction increases from 0.35 to about 0.45 with increasing Re.
It is noted that the capsule flow rate Qc increases with increas-
ing Re. However, because Q0 increases more significantly with
increasing Re, the normalized capsule flow rate decreases with
increasing Re.

The flow rate of a fluid usually depends on its viscosity. It is
worth investigating how the viscosity of the suspension affects the
transport of capsules. To do this, we analyze the capsule shear stress.
The particle stress tensor∑ij can be obtained from62,63

∑ij =
1
Vϕ

N

∑
1
∫ [ fix′i + μ0(λ − 1)(uinj + ujni)]dA, (18)

where f i is the elastic force in the membrane, x′ and u are the posi-
tion and velocity on the capsule surface, respectively, n is the unit
vector normal to the capsule surface, V is the volume of the domain
and N is the number of capsules. The capsule shear stress is

Sxy = ∑12

μ0γ̇
, (19)

where γ̇ is defined as 2U/Ly. Capsule shear stress as a function
of ϕ is plotted in Fig. 14(b). It is found that the capsule shear
stress reaches a minimum at ϕ = 38%, 42%, and 45% for Re
= 1.0, 10, and 20, respectively. At these volume fractions, the cap-
sule flow rates reach their maxima [see Fig. 14(a)]. Hence, the
capsule shear stress is highly correlated with the transport of cap-
sules. The capsule shear stress is analogous to the drag force on the
capsule exerted by the surrounding fluid. A small drag force pro-
motes the movement of capsules, which leads to a large capsule flow
rate.
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FIG. 13. Lateral position (a) and deple-
tion layer thickness (b) as functions of
Re.

FIG. 14. Capsule flow rate (a) and cap-
sule shear stress (b) as functions of ϕ.
The solid arrows approximately link the
peaks or valleys from low Re to high Re
cases.

IV. CONCLUSION

In this study, we performed 2D simulations of capsule suspen-
sions using the immersed-boundary and lattice-Boltzmann meth-
ods. We found that the increase in apparent viscosity with vol-
ume fraction is non-monotonic and can be divided into four
regimes. In each regime, capsules exhibit distinct configurations:
single line, transition, double line, and random. To analyze the con-
figurations quantitatively, the overall lateral location (Δ), depletion
layer thickness (d), and volume distribution [ϕ(y)] are presented.
It is found that capsule configurations affect the equilibrium Δ
and they are highly correlated with the apparent viscosity of the
suspension.

Typical dilute cases (capsules are well-organized, ϕ < 25%) and
dense cases (capsules are random, ϕ > 25%) are discussed. In dilute
cases, the phase diagram in the (ϕ, Eb) plane is plotted and the
inertial effect is investigated. When Re is small (Re = 1), regime I
dominates the phase diagram. As Re increases (Re = 10), regime I
decreases and regime II expands. This is due to the equilibrium lat-
eral position of a single capsule. At Re = 1, the equilibrium position
is on the centerline. With the increase in ϕ, the capsules can only
stay on the single row (centerline) until the row is saturated. Thus,
regime I can occupy a large area of the phase diagram. However,

for Re = 10, there are two equilibrium lateral positions. Capsules
would stay on both sides rather than one side of the centerline, so
it is easy to form regime II. At a larger Re (Re = 50), regime IV (ran-
dom configuration) occupies about half of the (ϕ, Eb) plane because
larger inertia makes the arrangement more random. Besides, at
Re = 50, regime I also increases slightly compared to that of
Re = 10 since, for a single capsule, the equilibrium position is on
the centerline at Re = 50. In summary, the capsule configuration is
determined by not only the inertia and mechanical modulus but also
the channel width and the equilibrium lateral position of a single
capsule.

In dense cases, inertia focusing is observed. Again, we found
that the overall behavior of the capsule suspension depends on not
only the dynamics of a single capsule but also the capsule–capsule
interaction, which is consistent with Ref. 25. Then, the capsule flow
rate as a function of ϕ is studied at different Re. Optimal transport
is observed at ϕ = 35%–45% with the smallest capsule shear stress.
In fact, the capsule shear stress is the analogy to the drag force. A
smaller capsule shear stress, i.e., a smaller drag force, would lead to
a larger capsule flow rate. In addition, the optimal volume fraction
increases with the increase in Re. This study may shed some light
on understanding the collective behavior of capsules in Poiseuille
flows.
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