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Abstract
We propose a hybrid lattice-Boltzmann finite-difference method to simulate
axisymmetric multiphase flows. The hydrodynamics is simulated by the
lattice-Boltzmann equations with the multiple-relaxation-time (MRT) collision
model and suitable forcing terms that account for the interfacial tension
and axisymmetric effects. The interface dynamics is captured by the finite-
difference solution of the convective Cahn–Hilliard equation. This method is
applied to simulate a quiescent drop, an oscillating drop, a drop spreading on
a dry surface and a drop accelerated by a constant body force. It is validated
through comparisons of the computed results for these problems with analytical
solutions or numerical solutions by other different methods. It is shown that
the MRT-based method is able to handle more challenging cases than that with
the single-relaxation-time collision model for axisymmetric multiphase flows
due to its improved stability.

PACS numbers: 47.11.−j, 47.55.D−

1. Introduction

Over the last few decades, there has been substantial development in computer simulation of
complex multiphase flows, which are commonly encountered in many important industries
such as oil and gas, and chemical engineering, as well as in some emerging technologies such
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as digital microfluidics. There exist mainly two types of simulation methods for multiphase
flows: particle-based and continuum-based. There are two fundamental requirements for any
method to simulate multiphase flows: (1) to capture/track the interface motion; (2) to capture
the interfacial tension effects and their coupling with the flow. Accordingly, in a continuum
formulation, two sets of equations are usually solved: one for the interface dynamics and the
other for the fluid flow. For the first, well-known methods in the literature include the front-
tracking [39], volume-of-fluid [33], level-set [4] and phase-field, or also known as diffuse-
interface, methods [1, 19]. Among various simulation methods, the lattice-Boltzmann method
(LBM) has attracted much attention due to its simplicity and superior parallel computing
performance [5, 34]. One of the popular approaches in the LBM, the free-energy-based
LBM [36, 35], is closely connected with the phase-field/diffuse-interface method [1]. In
most free-energy-based LBMs, two sets of distribution functions (DFs) are employed to
simulate the phenomena described by the two sets of equations in the continuum formulation
[35, 20, 31, 25, 42, 29, 28, 6]. However, there are some issues in this approach, all of which
are related to the interface equation. They have been summarized by Huang et al [17] and are
briefly revisited next. In essence, these issues are rooted in the use of one set of independent
DFs, say, gi (i = 0, 1, . . . , b), of which the total number b + 1 is determined by the lattice
velocity model (e.g., b + 1 = 9 for D2Q9) and each has its evolution equation, for the
interface dynamics. However, the interface dynamics may be well described by one evolution
equation like the Cahn–Hilliard equation (CHE) involving only one independent variable, the
order parameter φ and its derivatives (or in the common formulation, involving two related
variables: φ and the chemical potential μ). The way to handle interfaces in the previous LBM
mentioned above not only requires more memory, but also incurs a series of other issues as
listed below. (1) There is the need to empirically choose the relaxation parameter for gi (when
the single-relaxation-time (SRT) collision model is used, or a set of relaxation parameters if
the multiple-relaxation-time (MRT) collision model is used, as in [6]). (2) Often, there are
some differences between the macroscopic equation recovered from gi’s evolution equations
and the CHE, and extra efforts may be required to devise a suitable form for the equations of
gi [25, 42]. (3) There is the need to design suitable initial and boundary conditions for gi under
various conditions if different kinds of problems have to be simulated (which are not so well
established as those for the lattice-Boltzmann equations (LBEs) for hydrodynamics). (4) It is
not easy to use a variable mobility in the CHE using gi within the LBM framework [20]. (5)
The LBM typically uses the second-order explicit time stepping [5], which may overly limit
the maximum time step for the CHE.

To overcome these issues while retaining the advantageous features of LBM, some
attempts have been made to develop hybrid methods for multiphase flows. Tiribocchi et al [37]
proposed a hybrid method for binary fluid mixtures by combining the LBM for hydrodynamics
and the finite-difference method (FDM) for interface dynamics. Huang et al [17] developed a
similar hybrid method, but with the FDM replaced by the finite-volume method; besides, they
used the fourth-order Runge–Kutta method for the time stepping of the CHE.

We note that much earlier hybrid methods were developed for thermal flows with the LBM
for the fluid flow and the FDM for the temperature field, for instance, by Lallemand and Luo
[23], Peng et al [30] and Mezrhab et al [26]. These hybrid methods were devised to overcome
some problems (spurious mode coupling and numerical instability) in the LBM for thermal
flows with only one set of DFs [23, 26]. Thus, the motivation is somewhat different from that
of the hybrid methods for multiphase flows. A hybrid thermal LBM has been employed to
study flows in Czochralski crystal growth [30] and some other thermal flows under different
configurations and conditions [26, 27]. Recently, a hybrid method has been proposed and used
by Gonnella et al [7] and Tiribocchi et al [38] to simulate thermal multiphase flows with the
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FDM applied for both the order parameter and the internal energy. An even more complex
hybrid method has been developed by Henrich et al [12] for the simulation of cholesteric
liquid crystals in which an order parameter tensor with five independent components has to
be dealt with properly. In addition to the hybrid methods for flows with more physics, there is
one kind of hybrid method in which conventional discretization schemes are applied for one
component of the velocity, usually the azimuthal velocity component in axisymmetric flows
[30, 14].

Axisymmetric flows are special cases of three-dimensional (3D) flows. The axisymmetric
conditions greatly simplify the formulation and two-dimensional (2D) grids may be used for
their simulation. The development and study of axisymmetric LBM have been quite active
in recent years (see [9, 30, 31, 14, 32, 28, 43, 15]) because of the significant savings in
computational cost when compared with a fully 3D simulation for such flows. Till now, the
LBM for axisymmetric multiphase flows has been considered only by Premnath and Abraham
[31] and by Mukherjee and Abraham [28]. Premnath and Abraham [31] used the SRT collision
model, which is not as stable as the MRT model. Mukherjee and Abraham [28] extended the
work by Lee and Lin [25] for flows with high density ratio and employed the MRT collision
model, and were able to simulate very challenging axisymmetric multiphase flows. It is noted
that they both used two sets of DFs, of which the one for interface dynamics has the above-
mentioned issues and is much more complicated than the FDM for the CHE. In this paper,
we propose a hybrid method that integrates the LBM for axisymmetric fluid flows with the
FDM for axisymmetric interface dynamics. At present, for simplicity, we consider binary fluid
mixtures with uniform density and viscosity, for which the phase-field theory is applicable
and the governing equations are well established [19, 2, 41].

We would highlight that the use of conventional discretizations for the interfacial dynamics
(the CHE) brings more flexibility and could improve the capability of interface capturing.
Besides, further extensions of this hybrid method to multiphase flows with different densities
and viscosities (to be carried out in future) require only the change of the LBM part. It is noted
that in this paper, we only consider axisymmetric flows with vanishing azimuthal velocity (as
in most previous works like [31, 28]).

This paper is organized as follows. In section 2, the theoretical model and the hybrid
method are described in detail. In section 3, some drop problems are studied using the proposed
method and the respective results are discussed. Section 4 concludes this paper.

2. Theoretical model and numerical methodology

The present method is based on the phase-field model for binary fluids. As mentioned earlier,
there are two types of dynamics being considered, hydrodynamics for fluid flow and interfacial
dynamics, which are closely coupled. The LBM is employed to simulate the hydrodynamics,
which is usually described by the Navier–Stokes equations (NSEs), whereas the equation
describing the interface motion (the CHE) is solved by the FDM for spatial discretization and
the Runge–Kutta method for time marching. For convenience, the complete set of governing
equations is denoted as the ‘NSCH’ equations. The individual components of the present
method are described as follows.

2.1. Phase-field model

In the phase-field model, an order parameter φ is used to distinguish different fluids, and a
free-energy functional is defined as

F (φ,∇φ) =
∫

V

(
�(φ) + 1

2
κ|∇φ|2

)
dV +

∫
S
ϕ(φ) dS, (2.1)
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where �(φ) is the bulk free-energy density and takes the form

�(φ) = a(φ2 − 1)2, (2.2)

with a being a constant. This form indicates that φ varies between −1 (in one fluid) and 1
(in the other fluid). In equation (2.1), the second term is the interfacial energy density with κ

being another constant, and the last term in the surface integral is the surface energy density,
which takes the following form [3]:

ϕ(φσ ) = −ωφσ , (2.3)

where ω is a parameter related to the wetting property, and φσ is the order parameter on the
surface. Young’s equation determines the contact angle θw on the wall (measured in the fluid
with φ > 0) as

cos θw = 1
2 [(

√
1 + ω̃)3 − (

√
1 − ω̃)3], (2.4)

with the dimensionless parameter ω̃ defined as

ω̃ = ω√
2κa

. (2.5)

The chemical potential μ is calculated by taking the variation of the free-energy functional
with respect to the order parameter

μ = δF
δφ

= d�(φ)

dφ
− κ∇2φ = 4aφ(φ2 − 1) − κ∇2φ. (2.6)

The coefficients a and κ can be related to the interfacial tension σ and interface width W
as [16]

a = 3σ

4W
, (2.7)

κ = 3σW

8
. (2.8)

Assuming that the diffusion is driven by the chemical potential gradient, the evolution of the
order parameter is governed by the convective CHE [19]:

∂φ

∂t
+ (u · ∇)φ = ∇ · (M∇μ), (2.9)

where M is the mobility (assumed to be constant here).
Near a solid wall, the boundary condition for the order parameter φ reads [3, 16]

κn · ∇φ|S = κ
∂φ

∂n

∣∣∣∣
S

= −ω, (2.10)

which is simplified to be ∂φ

∂n |S = 0 given a contact angle θw = 90◦. The boundary condition
for the chemical potential μ is simply

n · ∇μ|S = ∂μ

∂n

∣∣∣∣
S

= 0. (2.11)

Note that the above zero-normal-gradient conditions for φ and μ are applicable on symmetric
boundaries and open boundaries (far away from the interfaces) as well.
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2.2. LBM for hydrodynamics of axisymmetric flows

Before the presentation of the LBM details, it is necessary to introduce the coordinate system
for axisymmetric flows and the continuum flow equations. In general, the three basic cylindrical
coordinates are (r, θ, z). For axisymmetric flows, ∂θ () = 0. In this paper, since we consider
only flows with vanishing azimuthal velocity (i.e. uθ = 0), the velocity vector may be written as
(ur, 0, uz). With the interfacial tension effects modeled by the phase-field model, the governing
equations for the incompressible axisymmetric flows of binary fluids having uniform density
and viscosity may be written as
∂ur

∂r
+ ur

r
+ ∂uz

∂z
= 0, (2.12)

∂ur

∂t
+

(
ur

∂ur

∂r
+ uz

∂ur

∂z

)
= −∂Sp

∂r
+ ν

(
∂2ur

∂r2
+ 1

r

∂ur

∂r
+ ∂2ur

∂z2
− ur

r2

)
− φ

∂μ

∂r
, (2.13)

∂uz

∂t
+

(
ur

∂uz

∂r
+ uz

∂uz

∂z

)
= −∂Sp

∂z
+ ν

(
∂2uz

∂r2
+ 1

r

∂uz

∂r
+ ∂2uz

∂z2

)
− φ

∂μ

∂z
, (2.14)

where Sp is a term similar to the hydrodynamic pressure in the single-phase incompressible
flow [19]. Here in order to use the usual notation for 2D Cartesian coordinates, we replace
(z, r) with (x, y). Correspondingly, (uz, ur) are replaced by (ux, uy) (or (u, v); for convenience,
both notations may be used in the following). Note that r is always non-negative in cylindrical
coordinates, whereas y could have negative values in Cartesian coordinates. Due to symmetry,
we consider only half of the domain with y being non-negative.

2.2.1. LBM with SRT. The LBM is employed to simulate the hydrodynamics described by
the above governing equations, i.e. equations (2.12)–(2.14). First, the LBEs with SRT are
described. As mentioned before, there have been quite a few recent works on the LBM for
axisymmetric flows. Several axisymmetric LBMs have been studied and compared by Huang
and Lu [15] for the simulation of single-phase flows. It was found that those models are similar
in accuracy (second-order accurate), whereas the model by Zhou [43] has the best stability
among them. Not aiming to compare various models again in the context of multiphase flow
simulation, we adopt the specific form of source and forcing terms to mimic the axisymmetric
effects by Zhou [43]. Another issue is on how to apply the forcing (and source) terms. Very
early, one of the simplest forms was given by He et al [11] (note that, in our understanding,
Zhou actually used this form in his work [43] though he presented a somewhat different form,
the so-called centered scheme, with different interpretations). Later, Guo et al analyzed the
discrete lattice effects in various forms of forcing scheme and proposed a formulation that
minimizes such effects [8]. It has been widely adopted in the literature (e.g., see [6, 7]).
Recently, a dedicated study on the forcing term in single-phase and multiphase LBMs has
been carried out by Huang et al [13]. We do not intend to investigate so many forcing schemes
in this work. But, in view of their popularity, we consider the two ways to apply the forcing
(and source) terms mentioned above. For convenience, the one according to He et al [11] is
denoted as ‘centered’ (following Zhou [43]), and the other by Guo et al [8] is denoted as
‘GZS’ based on the first letters of the authors’ last names (Guo, Zheng and Shi).

With the ‘centered’ formulation, the LBEs with appropriate forcing for the axisymmetric
effects and the interfacial tension effects are given by [43, 15]

fi(x + eiδt, t + δt ) − fi(x, t) = − 1

τ f
[ fi(x, t) − f eq

i (x, t)] + δtSi|(x+ 1
2 eiδt ,t+ 1

2 δt )

+ δt
1

c2
s

wiei · FST|(x+ 1
2 eiδt ,t+ 1

2 δt )
, (2.15)
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where ei (i = 0, 1, . . . , b) is the lattice velocity (for the D2Q9 model used here [22], b = 8),

ei =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, 0) for i = 0,(
cos

[
(i − 1)π

2

]
, sin

[
(i − 1)π

2

])
c for i = 1, 2, 3, 4,(

cos

[
(2i − 9)π

4

]
, sin

[
(2i − 9)π

4

])
c for i = 5, 6, 7, 8,

(2.16)

with c being the lattice velocity, δt the time step (δx = cδt is the grid spacing), cs the LBM
sound speed (cs = c/

√
3 for D2Q9) and wi the weight for different lattice velocities:

wi =

⎧⎪⎨
⎪⎩

4
9 for i = 0,
1
9 for i = 1, 2, 3, 4,
1

36 for i = 5, 6, 7, 8.

(2.17)

Si contains the source terms to account for the axisymmetric effects, and it is given by [43, 15]

Si = S(1)
i + S(2)

i , S(1)
i = wiS = −wi

ρuy

y
, S(2)

i = 1

c2
s

wiei · Faxisym, (2.18)

where S is a source term to account for the change in the continuity equation, ρ is the density
(nearly a constant) and Faxisym is the virtual ‘force’ to mimic the axisymmetric effects:

Faxisym = (Faxisym,x, Faxisym,y) =
(−ρuxuy

y
+ ρν

y

∂ux

∂y
,
−ρuyuy

y
+ ρν

y

(
∂uy

∂y
− uy

y

))
.

(2.19)

In equation (2.15), FST accounts for the interfacial tension effects and takes the form

FST = −φ∇μ. (2.20)

The equilibrium DF f eq
i is

f eq
i = wi

{
ρ + ρ

[
1

c2
s

ei · u + 1

2c4
s

(ei ⊗ ei − c2
s I) : (u ⊗ u)

]}
. (2.21)

The subscript in equation (2.15), |(x+ 1
2 eiδt ,t+ 1

2 δt )
, denotes that the respective terms take their

values at the position x + 1
2 eiδt and time t + 1

2δt . It should be noted that in this ‘centered’
scheme, the evolution equations are in fact still explicit because in the Chapman–Enskog
expansion, the high-order terms may be neglected [15, 43]. The final formulation coincides
with that given in [16]. The second-order moments of f eq

i satisfy the following relation:
b∑

i=0

eiα eiβ f eq
i = ρuαuβ + Spδαβ, (2.22)

where Sp = ρc2
s . The density and momentum are calculated from the zeroth- and first-order

moments of fi:

ρ =
b∑

i=0

fi, ρu =
b∑

i=1

fiei. (2.23)

For very small LBM Mach number MLBM = |u|max

cs
(|u|max is the maximum velocity magnitude),

the density ρ varies slightly around a constant value. By the Chapman–Enskog expansion,
equations (2.12)–(2.14) can be obtained in the long-time, large-wavelength limit with the
kinematic viscosity ν related to the relaxation parameter τ f as

ν = c2
s (τ f − 0.5)δt . (2.24)
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In practice, the LBEs are implemented through two steps: collision and streaming. Specifically,
equation (2.15) is split as

fi(x, t+) = fi(x, t) − 1

τ f

[
fi(x, t) − f eq

i (x, t)
] + δtSi + δt

1

c2
s

wiei · FST, (2.25)

fi(x + eiδt, t + δt ) = fi(x, t+), (2.26)

of which the first step is completely local and the second simply involves the propagation of
the post-collision DF to the respective neighbor according to the lattice velocity.

The ‘GZS’ formulation is different from the ‘centered’ one mainly in two aspects: one
is the form of the forcing terms and the other is the calculation of the macroscopic variables.
Besides the method given in the original paper by Guo et al [8], the ‘GZS’ formulation may
also be derived by integrating the discrete Boltzmann equations (with forcing terms) in time
with the second-order trapezoidal approximation for the collision and forcing terms, together
with a re-definition of the DFs [15]. Specifically, it contains the following formulas for the
evolution equations and macroscopic variables [8, 15, 6],

fi(x + eiδt, t + δt ) − fi(x, t) = − 1

τ f
[ fi(x, t) − f eq

i (x, t)] +
(

1 − 1

2τ f

)
δtwiS

+
(

1 − 1

2τ f

)
δt

1

c2
s

wi

[
(ei − u) + ei · u

c2
s

ei

]
· (Faxisym + FST), (2.27)

ρ =
b∑

i=0

fi + 1

2
δtS, ρu =

b∑
i=1

fiei + 1

2
δt (Faxisym + FST). (2.28)

From the above, it is seen that the ‘GZS’ formulation appears to be a bit more complicated
than the ‘centered’ one.

Near a solid wall, the bounce-back-by-link (BBL, also known as half-way wall bounce-
back) condition is applied for fi [11, 44, 34]. In this work, two other boundary conditions are
also encountered, namely the free slip and periodic boundary conditions. The details about
them may be found in [34].

2.2.2. LBM with MRT. It is known in the literature that the LBM with SRT is not so stable
at high Reynolds numbers as the LBM with MRT. To have a better stability property, one
can employ the MRT-LBM. The present MRT-LBM follows that proposed by Lallemand and
Luo [22]. In the MRT-LBM, the collision step in the LBEs is carried out in the moment
space spanned by the moments (kinetic modes) formed through some properly chosen
transformations of the DFs, containing the density and momentum.

When no source terms are present, the evolution equations of the DFs in the MRT-LBM
are given as [22]

| f (x + eiδt, t + δt )〉 − | f (x, t)〉 = −S[| f (x, t)〉 − | f eq(x, t)〉], (2.29)

where S is the collision matrix, |()〉 denotes the column vector, for instance,

| f (x, t)〉 = ( f0(x, t), f1(x, t), . . . , fb(x, t))T . (2.30)

The moments are given by

mj = 〈φ j| f 〉 = 〈 f |φ j〉, ( j = 0, 1, . . . , b), (2.31)

where |φ j〉 is an orthogonal basis set constructed from polynomials of some vectors related to
the lattice velocity ei. Using the above transformations, the evolution equations can be written
as

| f (x + eiδt, t + δt )〉 − | f (x, t)〉 = −M−1S[|m(x, t)〉 − |meq(x, t)〉], (2.32)

7
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where the matrix M represents the transformation from the DF space to the moment space
(M−1 is the inverse transformation), and meq are the equilibrium moments.

For the D2Q9 velocity model used here, the transformation matrix M is [22]

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.33)

The corresponding nine moments are [22]

|m〉 = (ρ, e, ε, jx, qx, jy, qy, pxx, pxy)
T , (2.34)

where e is related to the energy, ε is related to the energy square, jx and jy are the x- and
y-components of the momentum, qx and qy are related to the x- and y-components of the energy
flux and pxx and pxy are related to the stress tensor. Up to second order in ρ, jx and jy, the
equilibria of the non-conserved moments are given by

e(eq) = −2ρ + 3
(

j2
x + j2

y

)
, (2.35)

ε(eq) = ρ − 3
(

j2
x + j2

y

)
, (2.36)

q(eq)
x = − jx, (2.37)

q(eq)
y = − jy, (2.38)

p(eq)
xx = (

j2
x − j2

y

)
, (2.39)

p(eq)
xy = jx jy. (2.40)

The diagonal collision matrix S is

S = diag(0,−s1,−s2, 0,−s4, 0,−s6,−s7,−s8), (2.41)

where s2, s4 and s6 can be adjusted with no effects on the transport coefficients (to second
order in the wavenumber), s1 determines the bulk viscosity and s7 = s8 = 1

τ f
determines the

shear viscosity [22]. Based on the guidelines and suggestions in [22], we use the following
values for the adjustable relaxation parameters: s1 = 1.5, s2 = s4 = s6 = 1.1. Note that they
are not uniquely determined, but the study of their effects on the results (hopefully to be small
as long as they are within the ranges given in [22]) is out of the scope of this paper.

Next, the source and forcing terms are considered. In general, they may be added either
into the moment space or directly into the equations for the DFs (as in equation (2.15)). In
this work, they are applied in the moment space. For the ‘centered’ formulation and the D2Q9
velocity model, the column vector in the moment space corresponding to the source term (for
continuity equation) reads

[S,−2S, S, 0, 0, 0, 0, 0, 0]T , (2.42)

and that corresponding to the (total) forcing term reads

[0, 0, 0, FT,x,−FT,x, FT,y,−FT,y, 0, 0]T , (2.43)

8
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with FT,x and FT,y being the x- and y-components of the total force FT (= Faxisym + FST). For
the ‘GZS’ formulation, the column vector corresponding to the source term reads

[S, (1 − 0.5s1)(−2S), (1 − 0.5s2)S, 0, 0, 0, 0, 0, 0]T , (2.44)

and that corresponding to the forcing terms reads [6]⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
6(1 − 0.5s1)(u · FT )

−6(1 − 0.5s2)(u · FT )

(1 − 0.5s3)FT,x

−(1 − 0.5s4)FT,x

(1 − 0.5s5)FT,y

−(1 − 0.5s6)FT,y

2(1 − 0.5s7)(uxFT,x − uyFT,y)

(1 − 0.5s8)(uxFT,y + uyFT,x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.45)

Besides, the density and momentum components (ρ, jx and jy) in equations (2.35)–(2.40) are
now computed from equation (2.28). It is seen that in the MRT-LBM, the ‘GZS’ formulation
is even more complicated than the ‘centered’ one (as compared with the situation in the
SRT-LBM).

We have found that for typical case studies (to be presented later), the results computed by
the ‘GZS’ and ‘centered’ formulations have only very small differences (some comparisons
will be given later). Thus, we prefer using the ‘centered’ formulation (i.e. the simpler one),
and it is the default choice in this work.

In the MRT-LBM, the LBEs are implemented in two steps similar to those in the SRT-
LBM except that the collision step is performed in the moment space. It involves first the
transformation of the DFs to the moments, then the relaxation for each moment, and finally
the transformation of the moments back to the DFs. The streaming step remains unchanged.

2.3. Finite-difference method for interface dynamics

As described in section 2.1, the interface dynamics is modeled through the order parameter
field governed by the CHE, i.e. equation (2.9). Note that equation (2.6) is required to calculate
the chemical potential in equation (2.9). Using the notations for cylindrical coordinates in
section 2.2, the CHE for axisymmetric flows may be written as

∂φ

∂t
+

(
u
∂φ

∂x
+ v

∂φ

∂y

)
= M∇2

axisymμ, (2.46)

where the Laplacian of μ in cylindrical coordinates is

∇2
axisymμ = ∂2μ

∂y2
+ 1

y

∂μ

∂y
+ ∂2μ

∂x2
. (2.47)

Similarly, in cylindrical coordinates, the chemical potential can be written as

μ = 4aφ(φ2 − 1) − κ

(
∂2φ

∂y2
+ 1

y

∂φ

∂y
+ ∂2φ

∂x2

)
. (2.48)

In the present hybrid method, the phase-field variables (including φ and μ) are defined on the
same grid points as the DFs fi, and they are updated at the same time segments (i.e. t = 0,
δt , 2δt ,. . .). Therefore, the coupling between the hydrodynamics and interfacial dynamics is
relatively straightforward.
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2.3.1. Spatial discretization. For the evaluation of the derivatives of phase-field variables,
two types of schemes have been tried: (1) the common second-order centered scheme (denoted
as 2nd); (2) a scheme based on the D2Q9 velocity model which has better isotropic properties
and is also second-order accurate (denoted as iso). When the 2nd scheme is used, the first
derivatives and the (usual) Laplacian (in Cartesian coordinates) of φ are calculated as
∂φ

∂x
= 1

2δx
[φ(x + e1δt ) − φ(x + e3δt )], (2.49)

∂φ

∂y
= 1

2δx
[φ(x + e2δt ) − φ(x + e4δt )], (2.50)

∂2φ

∂x2
+ ∂2φ

∂y2
= 1

δ2
x

[φ(x + e1δt ) + φ(x + e3δt ) + φ(x + e2δt ) + φ(x + e4δt ) − 4φ(x)]. (2.51)

When the iso scheme is used, the derivatives are obtained as

∂φ

∂x
= 3

cδx

8∑
i=1

wieixφ(x + eiδt ), (2.52)

∂φ

∂y
= 3

cδx

8∑
i=1

wieiyφ(x + eiδt ), (2.53)

∂2φ

∂x2
+ ∂2φ

∂y2
= 6

δ2
x

[
8∑

i=1

wiφ(x + eiδt ) − (1 − w0)φ(x)

]
. (2.54)

It is noted that the above two types of formulas are used to evaluate the derivatives in FST in
the source term of LBEs as well, but the derivatives in Faxisym (specifically, ∂u

∂y and ∂v
∂y ) are

simply calculated by the common second-order centered schemes since the velocity field is
relatively smooth.

In some previous studies, the iso scheme was found to be able to reduce the spurious
velocity in the interfacial region of multiphase flows [37]. However, there are some differences
between this work and that by Tiribocchi et al [37], in which the iso scheme was applied to
evaluate the derivatives in the LBEs and not in the CHE. In addition, Tiribocchi et al used
the first-order upwind scheme to discretize the convective terms in the CHE [37], which has
a lower order of accuracy and larger numerical dissipation (though the stability is improved).
We will make some comparisons between the 2nd and iso schemes for certain cases under the
current implementation. Note that for most of the problems studied in this work, the default
derivative evaluation scheme is the iso scheme.

2.3.2. Temporal discretization. Substituting either of the above two sets of formulas into
equation (2.46), one obtains its semi-discrete form which may be compactly written as

dφ

dt
≡ L(φ), (2.55)

where the right-hand side contains all the discretized spatial derivatives. In this work, the time
stepping employs the explicit fourth-order Runge–Kutta method. Note that the velocity field
is frozen during the time marching of the CHE from tn to tn+1(= tn + δt ). Specifically, the
time stepping follows these steps:

an = δtL(tn, φn),

bn = δtL
(
tn + 1

2δt, φ
n + 1

2 an
)
,

cn = δtL
(
tn + 1

2δt, φ
n + 1

2 bn
)
,

dn = δtL(tn + δt, φ
n + cn),

(2.56)

φn+1 = φn + 1
6 (an + 2bn + 2cn + dn). (2.57)
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2.4. Time marching of the coupled system

Equations (2.15), (2.46) and (2.48) form a coupled system (when the SRT-LBM is used; for
the MRT-LBM, equation (2.15) is replaced by the relevant equations in section 2.2.2). The
time marching of this system is essential to obtain the main variables at tn+1 from those at tn:

(ρn, un, vn, f n
i ;φn, μn) → (ρn+1, un+1, vn+1, f n+1

i ;φn+1, μn+1). (2.58)

One can do the time marching for the CHE first, i.e. to obtain φn+1, μn+1 by using equations
(2.56) and (2.57) (un, vn are fixed at this stage), and then carry out the LBM steps (for
instance, when SRT is used, equations (2.25) and (2.26) are applied with φn+1, μn+1 being
used to evaluate the interfacial tension force in equation (2.25)). Instead, one can also do the
time marching for the LBEs first and then that for the CHE. Some numerical tests show that
the change of the order does not affect the results in a significant way. Here, we adopt the
former.

2.5. Remarks on the advantages of hybrid method

By directly discretizing the CHE, the hybrid method overcomes the problems with the LBM
using two sets of DFs mentioned in section 1 while keeping some important advantages of LBM
(e.g., no need to solve the Poisson equation for the (hydrodynamic) pressure). Specifically, it
is advantageous because all the issues related to gi for the interfacial dynamics are no longer
present:

• It avoids the need to adjust the empirical relaxation parameter(s) for the DFs gi.
• The CHE is approximated with the spatial and temporal accuracies suitably controlled.
• The initial and boundary conditions for the phase-field variables (φ and μ) are easily

applied accurately.
• The time stepping for the CHE is more flexible: for instance, schemes with better stability

properties like high-order Runge–Kutta schemes (or even semi-implicit schemes) may be
used.

• It is easier to use a variable mobility M(φ) (i.e. a mobility dependent on the order
parameter).

Besides, the hybrid framework allows easier inclusion of more physical phenomena, for
example, the heat equation in thermal flows (e.g., [38]). Note that the fourth aspect about the
time stepping becomes more important as the interfacial thickness W (reflected by the Cahn
number Cn to be defined later) decreases because the CHE becomes stiffer at smaller Cn.

3. Results and discussions

3.1. Characteristic quantities, dimensionless numbers and common setup

Before presenting the results for a series of different test problems, we introduce the common
characteristic quantities and dimensionless numbers. In each problem, there is a drop of radius
R, which is chosen to be the characteristic length Lc. The constant density is selected as the
characteristic density ρc. The interfacial tension is σ and the kinematic viscosity is ν (thus,
the dynamic viscosity is μ = ρcν). No body force is included except for the last problem.
Following [21], we use a characteristic velocity Uc defined as follows:

Uc = σ

ρcν
. (3.1)

11
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Then, the characteristic time Tc is

Tc = Lc

Uc
= Rρcν

σ
. (3.2)

Note that all quantities of length, time and velocity below are scaled by Lc, Tc and
Uc, respectively (unless otherwise specified). With the above definitions of characteristic
quantities, the capillary number is given by

Ca = ρcνUc

σ
= 1, (3.3)

and the Reynolds number by

Re = UcR

ν
= σ

ρcν

R

ν
= σR

ρcν2
. (3.4)

It should be noted that the capillary number and the Reynolds number defined in this way do
not reflect the actual physics of the problem due to the velocity scale specifically selected, but
they are helpful in setting up the simulation.

In the phase-field model, two additional parameters are introduced: (1) the Cahn number,
defined to be the ratio of interface width over the characteristic length,

Cn = W

Lc
, (3.5)

and, (2) the Peclet number, which reflects the ratio of convection over diffusion in the CHE,

Pe = UcL2
c

Mσ
. (3.6)

Some previous studies have investigated or discussed the issue on how to choose these two
parameters to obtain reliable results for different problems [19, 41]. But it is not a major
concern here since we mainly focus on the numerical method and implementation. In this
work, these two parameters are picked in such a way that the proposed method may be verified
through comparisons with known laws or other methods using relatively low computational
cost.

The domain of simulation is a rectangle specified by 0 � x � Lx, 0 � y � Ly. In all
problems, the lower side is the symmetric axis on which the symmetric boundary conditions
are applied. In other words, all of the problems considered are within a cylindrical tube and
the domain is half of its cross-section passing through its axis. In the first several problems, we
assume that there are solid walls on the upper, left and right sides, where the BBL boundary
conditions are used for fi. Besides, the contact angles of all walls are assumed to be θw = 90◦.
Thus, the zero-normal-gradient condition is applied for both φ and μ. In the last problem,
the boundaries on the upper, left and right sides are different and the details will be described
later. The initial position of the drop center is (xc, yc).

In the LBM, the lattice units are usually used. For example, δx, δt and c are the lattice units
for length, time and velocity variables in the LBM, respectively (see section 2.2). They are
related to the above characteristic quantities and the spatial and temporal discretizations.
Suppose the characteristic length Lc is discretized by Nx uniform segments and the
characteristic time Tc is discretized by Nt uniform segments, then one has

δx = Lc

Nx
, δt = Tc

Nt
. (3.7)

The lattice velocity c is obtained as c = δx/δt . But note that the lattice units are not used in the
following. We just intend to clarify the connections between two different scaling systems.

12
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3.2. Quiescent drop

First, an initially spherical quiescent drop is considered. For this case, no significant
macroscopic flows are present. The common physical parameter is Ca = 1, the domain
size is Lx × Ly = 4 × 2, the center of the drop is (xc, yc) = (Lx/2, 0) = (2, 0) and the
numerical parameters are Cn = 0.2, Nx = 20, Nt = 80. Note that Nx is the parameter to
discretize the characteristic length (here the drop radius R, not the domain length Lx). The
Reynolds number takes one of the following values: 1 × 103, 1 × 104 and 1 × 105, the Peclet
number may be 2×103 or 4×103. This problem is useful for us to examine some fundamental
Cahn–Hilliard dynamics as explained next.

3.2.1. Initial condition and evolution toward equilibrium. In the present cylindrical
coordinates, using the above notations, the initial order parameter field for a spherical drop of
radius R with its center at (xc, yc) is specified as

φ(rd ) = − tanh

(
2(rd − R)

W

)
, (3.8)

where rd =
√

(x − xc)2 + (y − yc)2 is the distance away from the drop center. This order
parameter field does not correspond to the equilibrium condition for an interface with a finite
curvature. Driven mainly by the diffusion in the CHE, the exchange between interfacial and
bulk energies occurs [40] and the order parameter field evolves spontaneously toward the true
equilibrium state with the order parameters inside and outside the drop being φ

eq
in = 1 + ε

eq
in

and φ
eq
out = −(1 − ε

eq
out) (εeq

in and ε
eq
out taking some small positive values), which satisfy the

Laplace law:

pt
in − pt

out = pb
in

(
φ

eq
in

) − pb
out

(
φ

eq
out

) = σ

2Req
d

, (3.9)

where pb is the bulk pressure related to φ through the equation of state,

pb = φ
d�(φ)

dφ
− �(φ), (3.10)

and pt is the total pressure related to pb as

pt = Sp + pb − (
κφ∇2φ − 1

2κ|∇φ|2). (3.11)

During this process, the drop shrinks a bit; thus, the drop radius in equilibrium Req
d is slightly

smaller than the initial radius R. We note that this problem has been investigated systematically
by Yue et al [40]. Here, we use this problem for the validation of the present method and also
for comparing different schemes or methods.

From equation (3.9), assuming a quasi-equilibrium state at each moment, one can calculate
an evolving interfacial tension as

σnum(t) = 2Rd (t)
(
pb

in(φin(t)) − pb
out(φout(t))

)
, (3.12)

where the order parameters inside and outside the drop (φin and φout), and the drop radius Rd

are all functions of time. In this work, φin and φout were sampled at the drop center and some
point that is Rd +2Cn away from the center, respectively, so that both are outside the interfacial
region. Assuming that the drop shrinks isotropically, one can find Rd by simply measuring the
radius along the x-axis Rx. In practice, we also measured the radius in the y-direction along
the middle vertical line Ry. The temporal variation of Ry was found to agree with that of Rx

well (only very small differences were observed), and Rd was taken as (Rx + Ry)/2. In order
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Figure 1. Comparison of the evolutions of (a) the drop radius on the x-axis Rx and (b) the relative
deviation of the numerically measured interfacial tension �σnum (in per cent) by MRT-LB-FD and
NSCH-VS(FD) with Re = 1 × 103, Ca = 1, Cn = 0.2, Pe = 4 × 103, Nx = 20 and Nt = 80.

to validate the present method, the numerically measured interfacial tension σnum is compared
with the theoretical one σ by checking its relative deviation defined as

�σnum = σnum − σ

σ
× 100%. (3.13)

In addition, the maximum velocity magnitude
√

u2 + v2|max is monitored during simulation.
Here, we seek to verify that the present method and implementation are correct by

checking certain key characteristics of the solution like �σnum and/or comparing the current
results with those obtained from another different method. The method used for comparison
applies the FDM to directly solve the coupled NSCH equations using the vorticity-stream
function formulation for the NSEs and also using staggered grids for the flow variables (i.e.
the vorticity and stream function) and the phase-field variables [18]. For brevity, the present
method is denoted as MRT-LB-FD and the other method is denoted as NSCH-VS(FD).

3.2.2. Comparison between two methods: MRT-LB-FD versus NSCH-VS(FD). We focus on
one case with Re = 1 × 103, Ca = 1, Cn = 0.2, Nx = 20, Nt = 80, Pe = 4 × 103 first.
Figure 1 shows the evolution of the drop radius on the symmetric axis Rx (figure 1(a)) and
that of �σnum (figure 1(b)) by the present method and by NSCH-VS(FD). It is easy to find
that the two methods agree very well for the two quantities monitored. As mentioned above,
the drop shrinks a bit to achieve the true equilibrium and it is observed in figure 1(a) that
both methods predict that Rx decreases quickly during the initial stage, and slower and slower
afterward, reaching approximately 0.93 of its initial value at t = 500. The change of about
7% is relatively big and is related to the relatively large value of Cn [40]. From figure 1(b),
�σnum obtained by either method goes toward zero as time evolves, reaching about −5.6% at
t = 500, which indicates that the balance between the pressure and the interfacial tension is
gradually achieved. Besides, it is difficult to distinguish the two results on �σnum by the two
different methods.

3.2.3. Comparison between two schemes: 2nd versus iso. In section 2.3.1, two schemes
(2nd and iso) to evaluate the spatial derivatives of the phase-field variables were given,
and it was noted that the default is the iso scheme. Here, we compare the two schemes for
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Figure 2. Comparison of the maximum velocity magnitude
√

u2 + v2|max evolutions by the 2nd

scheme and the iso scheme with Re = 1 × 103, Ca = 1, Cn = 0.2, Pe = 4 × 103, Nx = 20 and
Nt = 80.

the quiescent drop problem by examining the maximum velocity magnitude
√

u2 + v2|max

observed during simulation. (It has been confirmed that the two schemes give very close
predictions for Rx and �σnum; thus, these two are not the main focus here.) Figure 2 gives
the semi-logarithmic plot of

√
u2 + v2|max’s evolutions by the two schemes using the same

set of parameters as above. It is seen from figure 2 that
√

u2 + v2|max in general remains to
be small (O(10−4)) during the whole simulation. This is expected since an initially quiescent
drop is considered and there is no significant macroscopic flow of any kind (either imposed
externally or caused by capillarity). From figure 2, one also finds that

√
u2 + v2|max shows

large fluctuations initially and almost keeps decreasing after certain time. For the two schemes
being compared, major differences are seen before t = 100, during which the fluctuation
by the 2nd scheme is much more violent than that by the iso scheme. The peak value of√

u2 + v2|max by the 2nd scheme is also much larger. These can make the 2nd scheme less
stable under more challenging numerical settings (as already encountered in some numerical
tests not shown here). We note that the iso scheme costs (slightly) more computation time,
but its improved stability makes it a worthy choice.

3.2.4. Comparison between two collision models: MRT versus SRT. Next, we study the
MRT- and SRT-based hybrid methods described in sections 2.2.1 and 2.2.2, respectively. We
still focus on the maximum velocity magnitude

√
u2 + v2|max in the simulation of a quiescent

drop. It should be noted that in diverged simulations below, the expected final equilibrium state
could not be reached. Figure 3 gives the logarithmic plots of the evolutions of

√
u2 + v2|max

at three Reynolds numbers, Re = 1 × 103, 1 × 104, 1 × 105, using the two collision models.
The Peclet number is Pe = 2 × 103, whereas all other parameters are the same as above.
It is seen that for all the Reynolds numbers,

√
u2 + v2|max by SRT is larger than that by

MRT (though only slightly when the computation is stable). At large Reynolds numbers
(Re = 1 × 104, 1 × 105), the computation using SRT becomes unstable quickly, as reflected
from the abruptly increasing

√
u2 + v2|max (exceeding 0.1 at around t = 30 for Re = 1 × 105

and at around t = 46 for Re = 1 × 104); the larger the Re is, the earlier the instability occurs.
By contrast, the computation using MRT remains stable in all cases.

3.3. Oscillating drop

In the second problem, we consider an initially deformed static drop specified by a prolate
spheroid having a minimum radius Rmin (in the direction perpendicular to the axis) and a
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Figure 3. Comparison of the maximum velocity magnitude
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u2 + v2|max evolutions by the SRT-
and MRT-based hybrid LB-FD method at Re = 1×103, 1×104, 1×105, with Ca = 1, Cn = 0.2,
Pe = 2 × 103, Nx = 20 and Nt = 80.

maximum radius Rmax (along the axis). Rmin and Rmax are related to the equilibrium radius Rd

(when the drop becomes spherical) as

R3
d = R2

minRmax. (3.14)

Upon release, the initially deformed drop starts to oscillate due to the imbalanced interfacial
tension forces. For drop oscillation, there is an analytical solution for the frequency of the nth
mode of oscillation (see [31] and reference therein),

ωn = ω∗
n − 1

2α
√

ω∗
n + 1

4α2, (3.15)

where ω∗
n is Lamb’s natural resonance frequency (inviscid prediction),

ω∗
n =

√
n(n + 1)(n − 1)(n + 2)σ

R3
d[nρg + (n + 1)ρl]

. (3.16)

In equation (3.16), ρl and ρg are the densities of the liquid (heavy fluid) and the gas (light
fluid). In this work, ρl = ρg = ρc, and equation (3.16) is simplified to be

ω∗
n =

√
n(n + 1)(n − 1)(n + 2)σ

R3
d(2n + 1)ρc

. (3.17)

In equation (3.15), the second and third terms represent the correction to ω∗
n due to viscous

effects, and the parameter α is given by

α = (2n + 1)2ρlρg
√

νlνg√
2Rd[nρg + (n + 1)ρl][ρl

√
νl + ρg

√
νg]

, (3.18)

where νl and νg are the kinematic viscosities of the liquid and gas. In this work, ρl = ρg = ρc,
νl = νg = ν, and equation (3.18) is simplified as

α = (2n + 1)
√

ν

2
√

2Rd

. (3.19)

From equations (3.15), (3.17) and (3.19), the period predicted by the inviscid theory T ∗
n and

the analytical period with viscous correction Tn can be calculated easily. After they are scaled
by the characteristic time Tc, one can obtain the dimensionless analytical periods T̃ ∗

n and T̃n as

T̃ ∗
n = 2π

(2n + 1)1/2

[n(n + 1)(n − 1)(n + 2)]1/2
Re1/2, (3.20)

16



J. Phys. A: Math. Theor. 46 (2013) 055501 J-J Huang et al

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0 50 100 150 200 250

R
x

t

Re = 100
Re = 200
Re = 400

Re = 1000

Figure 4. Comparison of the evolutions of the drop radius on the x-axis Rx at four different
Reynolds numbers, Re = 100, 200, 400 and 1000, with Ca = 1, Cn = 0.1, Pe = 4 × 103, Nx = 32
and Nt = 256.

T̃n = 2π
(2n + 1)1/2

[n(n + 1)(n − 1)(n + 2)]1/2
Re1/2

(
1 − 1

4
√

2

(2n + 1)5/4

[n(n + 1)(n − 1)(n + 2)]1/4
Re−1/4

+ 1

32

(2n + 1)5/2

[n(n + 1)(n − 1)(n + 2)]1/2
Re−1/2

)−1

. (3.21)

As in [31], the second mode of oscillation (n = 2) is considered here.
The common dimensionless parameters are Ca = 1, Cn = 0.1 and Pe = 4 × 103. The

Reynolds number Re takes the following values in a series of study: 100, 125, 200, 400, 625,
1000, 2000, 4000, 6250 and 10 000. The equilibrium radius is Rd = 1, and the minimum
and maximum radii are Rmin = 0.95 and Rmax = 1.11, respectively. The spatial and temporal
discretization parameters are Nx = 32 and Ny = 256. The domain size is Lx × Ly = 6 × 3
and the center of the drop is (xc, yc) = (Lx/2, 0) = (3, 0). The hybrid MRT-LB-FD method
with the iso scheme is used. In the following, the effect of Re is first examined, then some
comparisons with analytical solutions are provided.

The dynamically evolving drop radius on the symmetric line (the x-axis) Rx is examined
at four different Reynolds numbers: Re = 100, 200, 400 and 1000. Figure 4 compares the
evolutions of Rx at these Re. It is seen that, in accordance with the theoretical prediction, the
oscillation period increases with Re. Besides, the amplitude of oscillation also increases with
Re since at larger Re, the viscous damping effect is reduced.

Figure 5 gives the logarithmic plots of the analytical periods predicted by equations (3.20)
and (3.21), T̃ ∗

n and T̃n, and the periods measured in the simulations for all the Reynolds numbers
investigated. From figure 5, it is found that the viscous effect increases the period slightly, but
the increment decreases as Re becomes higher. This is expected because the viscous effects
are reduced at higher Re. It is also seen that the numerical prediction of the period follows the
analytical one with viscous correction (T̃n) quite closely. At smaller Re, the current method
overpredicts the period (still only slightly at Re = 100). Such good comparisons show that
the present method is able to capture the drop oscillation dynamics reasonably well with the
selected numerical parameters.

3.4. Spreading drop

The next problem we consider is an initially spherical static drop near a wall which tends to
spread due to the capillary force close to the surface. Note that the body force is not included
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Figure 5. Comparison of the variations of the (dimensionless) analytical periods (viscous and
inviscid) and the numerical period by MRT-LB-FD with the Reynolds number for an oscillating
drop (second mode, n = 2). Other parameters are fixed as Ca = 1, Cn = 0.1, Pe = 4 × 103,
Nx = 32 and Nt = 256.

and the wall on which the drop spreads is located on the left side with an equilibrium contact
angle θw = 90◦. The common physical parameters are Re = 20 and Ca = 1, the domain size
is Lx × Ly = 4 × 4 and the initial drop center is (xc, yc) = (1, 0). Such an initial condition
corresponds to a contact angle of 180◦, which differs substantially from θw. It is this difference
that induces large capillary force near the contact line and drives the drop to spread. The
numerical parameters are Cn = 0.1, Pe = 5 × 103, Nx = 32 and Nt = 256. In this problem,
we focus on the evolutions of the interface and velocity field, the drop height on the x-axis hx,
the drop ‘radius’ on the (left) wall Ry (i.e. the radius of the circle on the wall formed by the
contact line) and the maximum velocity magnitude

√
u2 + v2|max. Comparisons between two

different methods (MRT-LB-FD and NSCH-VS(FD)) are made where appropriate.
First, we show that the drop spreading behavior is captured by the present hybrid method

under the above parameters. Figure 6 gives the snapshots of the interface positions and velocity
fields at selected times t = 0, 10, 20, 30, 40 and 50. It is observed from figure 6 that a vortex
appeared near the interface in the early stage (see figure 6(b)) and it gradually moved away
from the drop (see figures 6(c)–( f )). Note that the vortex in fact corresponds to a circular loop
in three dimensions since an axisymmetric flow is studied here.

Next, we examine hx and Ry, and
√

u2 + v2|max. Figure 7 gives the evolutions of hx and Ry

(figure 7(a)) and that of
√

u2 + v2|max (figure 7(b)) from t = 0 to 100 by the hybrid MRT-LB-FD
method, together with the corresponding evolutions by NSCH-VS(FD). Again, the results by
the two different methods agree quite well. As the equilibrium contact angle of the left wall
is 90◦, upon reaching static equilibrium, in theory the drop should take a semispherical shape
with hx(t → ∞) = Ry(t → ∞) = Req, where Req is the radius of the final semispherical
drop. From the conservation of mass, it is found that Req = (2R3)1/3 ≈ 1.26 (denoted by the
horizontal line in figure 7(a)). In figure 7(a), it is observed that (under this set of parameters)
hx decreases relatively fast for 0 < t < 50, whereas Ry keeps increasing during this stage;
afterward, hx and Ry become closer to each other (almost overlap after certain time) and their
values are both quite close to the theoretical value (1.26). However, due to the specific form of
free energy, the drop slowly dissolves into the ambient fluid (see [21] and references therein),
which is similar to the first problem in which the drop shrinks slightly. Thus, both hx and Ry are
slightly smaller than Req and seems to keep decreasing (though at very low rates) in the final
stage. This resembles the reported situation in [21]. Corresponding to the two stages of the
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Figure 6. Snapshots of the interface and velocity field at t = 0, 10, 20, 30, 40, 50 by MRT-LB-FD
with Re = 20, Ca = 1, Cn = 0.1, Pe = 5 × 103, Nx = 32 and Nt = 256.
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‘radius’ on the (left) wall Ry (b) the maximum velocity magnitude

√
u2 + v2|max by MRT-LB-FD

and NSCH-VS(FD) with Re = 20, Ca = 1, Cn = 0.1, Pe = 5 × 103, Nx = 32 and Nt = 256.
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Figure 8. Comparison of the contours of (a) the velocity component u and (b) the velocity
component v at t = 20 by MRT-LB-FD (solid lines) and NSCH-VS(FD) (dashed lines) with Re = 20,
Ca = 1, Cn = 0.1, Pe = 5 × 103, Nx = 32 and Nt = 256. The interfaces are shown in thicker lines
(the small difference of the interface between the two methods is hard to see because of the line
thickness).

evolutions of hx and Ry, it is seen from figure 7(b) that
√

u2 + v2|max remains to be relatively
large (of order O(10−2)) for 0 < t < 50 and decays very fast afterward (of order O(10−4) at
t = 100) as the system gradually approaches its static equilibrium.

To make the comparison more comprehensive, we examine the velocity components u and
v at one selected moment with significant macroscopic flow (t = 20) by the present method
and by NSCH-VS(FD). Figure 8 shows the contours of u (figure 8(a)) and v (figure 8(b)) at
t = 20. It is found that overall the two methods give velocity fields that are quite close to
each other. At the same time, some notable differences are observed in regions far away from
the drop, but they do not seem to be significant and indeed they do not lead to substantial
differences in subsequent drop motions (as manifested through figure 7).
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Figure 9. Comparison of the evolutions of (a) the drop height on the x-axis hx and (b) the maximum
velocity magnitude

√
u2 + v2|max during drop spreading by the hybrid MRT-LB-FD method with

different forcing schemes (‘centered’ and ‘GZS’) with Re = 20, Ca = 1, Cn = 0.1, Pe = 5 × 103,
Nx = 32 and Nt = 256.

It was noted in section 2.2.2 that the two forcing formulations (‘GZS’ based on [8]
and ‘centered’ based on [11, 43]) give results that are very close to each other. Here, some
detailed comparisons are given for a drop spreading on a wall with the above parameters
(Re = 20, Ca = 1, Cn = 0.1, Pe = 5 × 103, Nx = 32 and Nt = 256). Figure 9 compares
the evolutions of the drop height on the x-axis hx (figure 9(a)) and the maximum velocity
magnitude

√
u2 + v2|max (figure 9(b)) computed using these two formulations. It is seen that

hx and
√

u2 + v2|max obtained by using them almost overlap when one observes at a large
scale; only when the plots are zoomed in (see the insets in figure 9) can some small differences
be noted. The small differences between the two forcing formulations were also observed
for some other cases like the drop accelerated by a constant body force to be discussed in
section 3.5 (for conciseness, comparisons for other cases will not be shown). According to Guo
et al [8], the macroscopic equations recovered from the LBEs using the ‘centered’ formulation
[11] contain some extra terms related to the force, the time step and the velocity, which would
cause certain deviations from the accurate solutions in the presence of variable forces; by
contrast, the ‘GZS’ formulation is free of such extra terms. Based on our tests, the effects of
the extra terms seem to be minor here. This may be due to the following reasons: (a) the binary
fluid simulations usually require small time steps (because of the property of the CHE), thus
making the discrete effects less important; (b) the interfacial tension forces are effective only
in a limited, small region (i.e. the interfacial region), instead of the whole field; (c) the velocity
is in general (required to be) small to ensure stable computations.

3.5. Drop accelerated by a constant body force

The last problem is on a drop accelerated by a constant body force. This problem differs from
the above ones in several aspects, probably the most important of which is that it has significant
flow. In this problem, a drop with a density ρd and dynamic viscosity ηd is surrounded by
another fluid with a density ρo and dynamic viscosity ηo. The whole fluid is subject to a constant
body force along the x-(z-)direction with its magnitude being az. Denote the density ratio as
rρ = ρd/ρo and the (dynamic) viscosity ratio as rη = ηd/ηo. Besides these two dimensionless
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parameters, two other parameters are important in this problem. They are the Eötvös number
(also known as the Bond number) and the Ohnesorge number (of the drop) [10]:

Eo = az�ρD2

σ
, Ohd = ηd√

ρdDσ
, (3.22)

where �ρ = ρd − ρo is the density difference and D(= 2R) is the (initial) diameter of the
drop.

Based on the properties of the surrounding fluid, another Ohnesorge number [10] can be
defined as

Oho = ηo√
ρoDσ

, (3.23)

which is related to Ohd as Oho = (
√

rρ/rη)Ohd . If we use the drop properties to
define those characteristic quantities (Lc = R, Uc = σ/ηd) and dimensionless numbers
(Re(= We) = ρdUcR

ηd
) in section 3.1, we find that those parameters are related to the newly

introduced parameters as

Re(= We) = 1√
2Oh2

d

, Eo = 4

(
1 − 1

rρ

)
a∗

zWe, (3.24)

where a∗
z = az/(U2

c /Lc) is the scaled body force magnitude. In addition, based on az and D,
another characteristic velocity U ′

c and another characteristic time T ′
c may be defined as

U ′
c =

√
azD, T ′

c =
√

D/az, (3.25)

which are related to Uc and Tc as

U ′
c =

√
2a∗

zUc, T ′
c =

√
2/a∗

z Tc. (3.26)

In what follows, the velocity and time are measured in U ′
c and T ′

c (instead of Uc and Tc),
respectively. Using the order parameter field φ, the density and (dynamic) viscosity may be
expressed as

ρ(φ) = 1
2 [ρd(1 + φ) + ρo(1 − φ)], η(φ) = 1

2 [ηd(1 + φ) + ηo(1 − φ)]. (3.27)

When the density difference is small (i.e. rρ is close to unity), one may employ the Boussinesq
approximation to deal with such problems [10, 24]. For completeness, the momentum equation
using the Boussinesq approximation is briefly derived as follows.

The original momentum equation in a vector form for two-phase flows with variable
density and viscosity and subject to a constant body force in the z-direction may be written as

ρ(φ)

(
∂u
∂t

+ (u · ∇)u
)

= −∇Sp + ∇ · [η(φ)(∇u + (∇u)T )] + FST + ρ(φ)azez, (3.28)

where ez denotes the unit vector in the z-direction. We are interested about the state in which the
drop only occupies a small portion of the whole field and the whole field is not far away from
its static equilibrium, under which the pressure is simply the hydrostatic pressure. Then, one
may rewrite the momentum equation as (see [24] for a similar but slightly different derivation)

ρ(φ)

(
∂u
∂t

+ (u · ∇)u
)

= −∇(Sp − ρoaz(z + z0)) + ∇ · [η(φ)(∇u + (∇u)T )]

+ FST + (ρ(φ) − ρo)azez, (3.29)

where z0 is a constant and may be safely neglected. Let S′
p = Sp − ρoaz(z + z0) (i.e. we are

concerned about the deviation from the static equilibrium). After one replaces ρ(φ) on the
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left-hand side with the average density ρ = (ρd + ρo)/2 (justified when rρ is close to unity),
one obtains the following momentum equation:

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇S′
p + ∇ · [η(φ)(∇u + (∇u)T )] + FST + (ρ(φ) − ρo)azez.

(3.30)

In addition, in the specific case considered below, the dynamic viscosity is uniform. Then,
equation (3.30) may be further simplified as (note: also using the incompressibility condition
∇ · u = 0)

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇S′
p + η∇2u + FST + (ρ(φ) − ρo)azez. (3.31)

Thus, the present governing equations (equations (2.13) and (2.14)) are still applicable once
the body force is included and a simple scaling is carried out (though, of course, with certain
approximations).

The setup for this problem is as follows. On the upper side, the free slip boundary condition
is applied (for fi), and on the left and right sides, the periodic boundary condition is used (for
fi). In addition, in this problem the interfaces are always (ensured to be) away from these
three sides. Therefore, the zero-normal-gradient condition can be applied for both φ and μ as
well. Initially, the drop is spherical, located on the axis near the left side, and there is no flow
anywhere. Under the action of the body force, the drop is accelerated gradually and moves
along the axis (in the z-direction).

We mainly investigate one case using the proposed hybrid MRT-LB-FD method and
compare the present results with those given by Han and Tryggvason [10]. In [10], the front-
tracking method [39] was employed to treat the interface and the (original) NSEs for flows
with variable density and viscosity were solved by an FDM (thus that work is denoted as
NS-FT-FD). It is noted that the results in [10] were well validated and compared favorably
with experimental results (for even more cases besides the one selected here). The specific
physical parameters are as follows: Eo = 144, Ohd = 0.0466, rρ = 1.15 and rη = 1 (giving
Oho = 0.05). All physical parameters are chosen to match one specific case in [10] with
abundant data for comparison and also within the capability of the present model (to allow the
use of the Boussinesq approximation).

During the simulation, two dynamic quantities are monitored: (a) the aspect ratio of the
drop, denoted by α and defined to be the drop thickness along the axis (in the x-(z-)direction)
over the maximum drop width (in the y-(r-)direction); (b) the centroid velocity of the drop in
the x-(z-)direction Vc which is calculated by

Vc =
∫

A|φ>0
ru(r, z) dr dz∫

A|φ>0
r dr dz

≈
∑

i, j|φi, j>0
ri, jui, j∑

i, j|φi, j>0
ri, j

, (3.32)

where A|φ>0 denotes the region where φ > 0. Other parameters are Cn = 0.06, Pe = 1000,
Nx = 50 and Nt = 2000, the domain size is Lx × Ly = 24 × 8 and the initial drop position is
(xc, yc) = (2, 0).

Figure 10 compares the evolutions of α and Vc for 0 � t ′ � 15 (note: t ′ is measured in
T ′

c ) with those in [10]. The data of [10] were extracted from its figure 3 (obtained on the finest
grid). From figure 10, it can be seen that the present evolutions of α and Vc follow closely the
reference ones for most of the time. Some deviations are observed in the later stage. This could
be caused by the small thickness of the drop at the later stage. If fact, based on [10, figure 3(a)],
α becomes zero (due to zero thickness) at about t ′ = 20, but in the present simulation, this
occurred at about t ′ = 12 (see figure 10(a)). Small thickness means the top and bottom sides
of the drop (or the left and right sides under the present coordinate setting) on the axis are
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Figure 10. Comparison of the evolutions of (a) the aspect ratio α of the drop and (b) the centroid
velocity Vc of the drop by the present MRT-LB-FD method and the NS-FT-FD method [10] with
Eo = 144, Ohd = 0.0466 (Oho = 0.05), rρ = 1.15 and rη = 1. The numerical parameters are
Cn = 0.06, Pe = 1000, Nx = 50 and Nt = 2000.

very close to each other and it becomes difficult to resolve the details in that region. Because
of the intrinsic diffusion around the interfaces in the phase-field modeling, the two sides
tend to merge more easily than in the front-tracking method (for which topological changes
such as interface merging and breakup must be manually treated). This merging should also
depend on the interface thickness (or Cn). This work uses a uniform grid, whereas a stretched
grid was used in [10], allowing better resolution for the interfaces (thus delayed merging).
These factors may explain the early occurrence of zero α in figure 10. Besides, this work
employs the Boussinesq approximation, which may also contribute to the differences to some
degree.

Nevertheless, we would argue that despite the significant differences in the model, method
and numerical parameters, this work has shown quite good agreement with [10] (when
the resolution of the interface is enough, e.g., for 0 � t ′ � 12). This is also supported
by the well-captured drop shapes and flow fields at certain times. Figure 11 shows the
snapshots of the interfaces and the flow fields around the drop at three selected times
(t ′ = 3.87, 7.73, 11.60). These moments to take the snapshots are chosen to match [10,
figure 9]. Note that for easy comparison with [10], the plots have been rotated so that the
x-(z-)direction now points downward. Also note that the velocities in the x-(z-)direction are
relative to the drop (i.e. u − Vc) at each moment. In other words, the plots present what one
observes when moving with the drop at its centroid velocity Vc. It is seen from figure 11 that the
deformation of the drop increases gradually with time, from an intermediate degree at t ′ = 3.87
(see figure 11(a)) to a very high degree at t ′ = 11.60 (see figure 11(c)). Besides, in the
reference frame moving with the drop, the streamlines are deformed around the drop with
the configurations largely conforming to the instantaneous drop shape in the upstream,
and a circulation region exists on/near the drop with the streamlines passing through the
interface downstream (see figure 11(a)) or the whole drop (see figures 11(b) and (c))
(depending on the degree of drop deformation). All these observations, including the drop
shape and streamline pattern, are very similar to those reported in [10] (see figure 9
therein) although the second selected time differs very slightly (t ′ = 7.75 in [10] instead of
7.73 here).
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(a) t = 3.87 (b) t = 7.73

(c) t = 11.60

Figure 11. Snapshots of the interfaces (in thicker lines) and the flow fields around the drop
(displayed in streamlines with arrows indicating the flow directions) at three selected times with
Eo = 144, Ohd = 0.0466, rρ = 1.15 and rη = 1 (Oho = 0.05). The left vertical line is the axis.
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4. Concluding remarks

To summarize, a hybrid MRT lattice-Boltzmann finite-difference numerical method based on
the phase-field theory has been developed for axisymmetric binary fluids. It has been shown to
be able to simulate several axisymmetric drop problems, involving interactions with ambient
fluid and/or a solid wall, or involving motions under a constant body force. The obtained results
were compared favorably with analytical solutions or other solutions by directly solving the
NSEs with the phase-field or front-tracking methods to treat interfaces [18, 10]. Besides, for
the hydrodynamics simulated by the LBEs, the MRT collision model is much more stable than
SRT, and is thus preferred. Two formulations to apply the forcing, based on [11, 43] and [8],
respectively, were considered and implemented in the present hybrid MRT-LB-FD framework
and compared with each other. No significant differences were found between them and the
simpler one based on [11, 43] was chosen as the default. For the CHE that captures interface
motions, a comparison between the central second-order scheme and the isotropic scheme
based on the D2Q9 lattice velocity model shows that the latter is better. This hybrid method
is free from some issues concerning the previous LBM using double DFs and it preserves
the benefits of using the LBM for hydrodynamics. Thus, it may be a good alternative to the
existing LBM for the simulation of complex axisymmetric multiphase flows.
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