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S1 Phase-Field Lattice-Boltzmann Simulation Method6

The present numerical results on the coalescence of two droplets were obtained by using a phase-field-based7

hybrid lattice-Boltzmann finite-difference method [7]. The interface dynamics is described by the Cahn-Hilliard8

equation (CHE) which is solved by the finite-difference method, and the hydrodynamics is simulated by the9

lattice-Boltzmann method (LBM) [2, 10]. Some basic components of the method are given below.10

∗Corresponding author. E-mail: jjhuang1980@gmail.com; jjhuang@cqu.edu.cn.
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The free energy functional F for binary fluids is,

F(φ,∇φ) =

∫

V

(

Ψ(φ) +
1

2
κ|∇φ|2

)

dV, (S1.1)

where Ψ(φ) = a(φ2 − 1)2 is the bulk free energy density and 1

2
κ|∇φ|2 is the interfacial energy density. The two

constants a and κ are computed from the interfacial tension σ and interface thickness W as,

a =
3σ

4W
, κ =

3σW

8
. (S1.2)

The order parameter φ varies between 1 in the liquid and −1 in the gas. The chemical potential µ is,

µ =
δF
δφ

=
dΨ(φ)

dφ
− κ∇2φ = 4aφ(φ2 − 1)− κ∇2φ. (S1.3)

The CHE with convection and a constant mobility M can be written as [8],

∂φ

∂t
+ u ·∇φ = M∇2µ, (S1.4)

where u is the fluid velocity. The phase-field equations, (S1.3) and (S1.4), are discretized in space by the11

2nd−order finite-difference method and integrated in time by the 4th−order Runge-Kutta method [6]. The12

grid size is δx and time step is δt. For two-phase flows, the force due to interfacial tension may be written as13

F s = µ∇φ.14

When the single-relaxation-time collision model is used, the lattice-Boltzmann equations (LBEs) for hydrody-

namics read [10],

fi(x+ eiδt, t+ δt)− fi(x, t) = − 1

τf
(fi − feq

i ) +

(

1− 1

2τf

)

(ei − u) · [∇ρc2s(Γi − Γi(0)) + F sΓi], (S1.5)

where fi and feq
i are the distribution functions (DFs) and equilibrium DFs along the direction of the lattice

velocity ei (i = 0, 1, · · · , b), cs is the lattice sound speed (the lattice velocity c = δx/δt =
√
3cs for the D3Q19

velocity model used here), and τf is the relaxation parameter. For D3Q19, the lattice velocity (vector) ei reads,

ei = (eix, eiy, eiz) =























(0, 0, 0) for i = 0

(±1, 0, 0)c; (0,±1, 0)c; (0, 0,±1)c; for i = 1− 6

(±1,±1, 0)c; (±1, 0,±1)c; (0,±1,±1)c; for i = 7− 10; 11− 14; 15− 18

. (S1.6)

S2



The density ρ and kinematic viscosity ν of the fluid depends on the order parameter φ as,

ρ(φ) =
φ+ 1

2
ρL +

1− φ

2
ρG,

1

ν(φ)
=

φ+ 1

2

1

νL
+

1− φ

2

1

νG
, (S1.7)

where ρL and ρG are the densities of the liquid and gas, and νL and νG are their kinematic viscosities. The

dynamic viscosity is η(φ) = ρ(φ)ν(φ). The dynamic viscosities of the liquid and gas are ηL = ρLνL and

ηG = ρGνG. The relaxation parameter τf is determined from ν as ν = c2s(τf − 0.5)δt. The equilibrium DFs are

given by,

feq
i = wi

[

p+ ρc2s

(

1

c2s
eiαuα +

1

2c4s
(eiαeiβ − c2sδαβ)uαuβ

)]

, (S1.8)

where wi is the weight for the direction along ei and p is the hydrodynamic pressure. For D3Q19 wi is,

wi =























1

3
for i = 0

1

18
for i = 1− 6

1

36
for i = 7− 18

. (S1.9)

Γi in Eq. (S1.5) is given by Γi(u) = wi[1 +
1

c2s
eiαuα + 1

2c4s
(eiαeiβ − c2sδαβ)uαuβ ] and Γi(0) = wi. The pressure

and fluid momentum are computed from,

p =
∑

i

fi +
1

2
δt(u ·∇ρc2s), (S1.10)

ρu =
1

c2s

∑

i

fiei +
1

2
δtF s, (S1.11)

and the fluid velocity is found from Eq. (S1.11) once the density ρ(φ) is known from φ. Through the Chapman-

Enskog analysis, it can be found that the LBEs, Eq. (S1.5), approximate the following equations at the

macroscopic level [11],

∂p

∂t
+ ρc2s∇ · u = 0, (S1.12)

ρ

(

∂u

∂t
+ u ·∇u

)

= −∇p+ F s +∇ ·Π, (S1.13)

where Π = η(φ)[∇u + (∇u)T ] is the viscous stress tensor for incompressible Newtonian fluids. To improve15

stability, we used the weighted multiple-relaxation-time (MRT) collision model [4] which contains further im-16

provement as compared with the original MRT model in [9].17
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S2 Numerical Results on Droplet Coalescence18

Initially, there are two stationary droplets having the same radius R on the x−axis. Their initial centers are19

located at (xd, yd, zd) = (±R, 0, 0). The problem is symmetric about the x−axis and the y−z plane. One eighth20

of the domain is used for all simulations (see fig. S1). On all boundaries, symmetric boundary conditions are21

applied. The liquid density ρL is taken as the reference density. The initial radius R is chosen as the reference22

length Lr. The domain size is Lx×Ly×Lz = 3×3×3. The capillary-inertial velocity Uci =
√

σ/(ρLR) is chosen23

as the reference velocity Ur. From Lr and Ur, a reference time is derived as Tr = Lr/Ur = R/Uci =
√

ρLR3/σ.24

All lengths, velocities and times are scaled by Lr, Ur and Tr respectively. In our simulations, the reference length25

Lr is discretized into NL uniform segments and the reference time Tr is discretized into Nt uniform intervals.26

The grid size and time step are δx = Lr/NL and δt = Tr/Nt. In phase-field simulations, there are two numerical27

parameters: the Cahn number Cn = W/Lr (the ratio of interface thickness over the reference length) and the28

Peclet number Pe = (UrL
2

r)/(Mσ) (the ratio of convection over diffusion in the CHE). In order to approach the29

sharp interface limit (SIL) [8, 22], one should make Cn(= W/Lr = (W/δx)/NL) as small as possible. With a30

given NL, a smaller W/δx is preferred. But when W/δx is too small, the profile of φ across an interface cannot31

be accurately resolved [8]. For a given W/δx, a larger NL is preferred, but the computation cost increases32

quickly as NL becomes larger. We chose W/δx = 4.0 to reconcile the above two contradicting requirements [7].33

Noted that the Cahn number defined in [22] Cn1 is related to the present one as Cn1 = Cn/(2
√
2).34

Figure S1: Initial setup for the coalescence of two droplets with the same radius. The box represents one
eighth of the whole domain with x > 0, y > 0 and z > 0.
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S2.1 Quantities of interest and numerical validation35

The following quantities were monitored during the simulation: the (half) lengths of the coalesced droplet on

the x−, y− and z−axes, Rx, Ry, and Rz, the kinetic energy of the droplet Ek and the total kinetic energy Ek,t,

the surface energy Es, the viscous dissipation rate Rv and the dissipation rate due to the diffusion in the CHE

Rd. The energies and dissipation rates are calculated as [13, 15, 19],

Ek =

∫

V

N(φ)
1

2
ρL(u

2 + v2 + w2)dxdydz, Ek,t =

∫

V

1

2
ρ(φ)(u2 + v2 + w2)dxdydz, (S2.1)

Es =

∫

V

[

a(φ2 − 1)2 +
1

2
κ|∇φ|2

]

dxdydz, (S2.2)

Rvis =

∫

V

2η(φ)

{(

∂u

∂x

)2

+

(

∂v

∂y

)2

+

(

∂w

∂z

)2

+
1

2

[(

∂u

∂y
+

∂v

∂x

)2

+

(

∂u

∂z
+

∂w

∂x

)2

+

(

∂v

∂z
+

∂w

∂y

)2]}

dxdydz,

(S2.3)

Rd =

∫

V

1

M

[(

∂µ

∂x

)2

+

(

∂µ

∂y

)2

+

(

∂µ

∂z

)2]

dxdydz, (S2.4)

where the integrations are carried out over the whole domain, u, v and w are the velocity components in the36

x−, y− and z−directions, and the function N(φ) is 1 when φ > 0 and 0 otherwise. The viscous dissipation37

Evis and the dissipation due to the CHE diffusion Ed can be found from Rv and Rd as Evis =
∫ t

0
Rvisdτ and38

Ed =
∫ t

0
Rddτ . The total energy is obtained as Etotal = Ek,t + Es + Evis + Ed.39

First, the convergence of the results is studied focusing on the evolution of Ry simulated by using different grid40

sizes and Cahn numbers. A typical case at Oh = 0.1 was computed with three sets of numerical parameters41

given in Table S1. It is noted that if one uses another reference velocity σ/ηL (derived from the surface tension42

and the dynamic viscosity of the liquid), all factors related to Oh in the third and fifth columns of Table S1 on43

Nt and Pe can be eliminated. For reference, the values of Cn1 are also given in Table S1. Figure S2 shows the44

evolutions of Ry obtained for the three sets. It is seen that the differences between the three sets are in general45

not large and the change in Ry as Cn is reduced from 0.1 to 0.0714 is smaller than that when Cn is reduced46

from 0.14286 to 0.1. Since the simulation is much more time consuming at Cn = 0.0714 than at Cn = 0.1,47

we used Cn = 0.1 in most simulations. Note that Nt was varied for different Oh to ensure that the relaxation48

parameter τf remains in a suitable range.49

Table S1: Numerical parameters for the simulation of a typical case of droplet coalescence.
Set No. NL Nt Cn (Cn1) Pe

1 28 280/Oh 0.14286 (0.051) 8000Oh
2 40 400/Oh 0.1 (0.035) 8000Oh
3 56 840/Oh 0.0714 (0.025) 8000Oh
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Figure S2: Evolution of the (half) length of the droplet on the y−axis Ry at Oh = 0.1 under three different
sets of numerical parameters. The inset shows the variation of Ry with

√
t for t ≤ 0.25.

Next, the evolutions of Rx and Ry are studied (Rz is not plotted as Rz = Ry throughout the simulations).50

Figure S3 shows their evolutions at Oh = 0.4, 0.1 and 0.037 obtained with Cn = 0.1. It is found that Rx and Ry51

show more oscillations at Oh = 0.037 because the capillary-inertial effect is more significant. In contrast, they52

vary more smoothly at Oh = 0.4 due to the large viscous effect. As Oh increases, the time to reach the pseudo53

equilibrium state is extended. It is also seen that for the three cases the time to reach the pseudo equilibrium54

state almost matches the time for Ry to reach its equilibrium value 2
1

3 ≈ 1.2599. Note that we determine the55

first pseudo equilibrium state as the moment when the length of the coalesced droplet in the x−direction is56

equal to those in the y− and z−directions. This criterion differs from that in [3] (they used the time when the57

neck radius reaches its equilibrium value 2
1

3 ). We found that the results by using these two criteria are close58

for most cases when Oh is not very small (the SI of [3] also supports this observation).59

To validate the present simulations the coalescence time was examined for droplets of different sizes. Follow-60

ing [1], we define the coalescence time tcoal to be the time when the neck radius of the coalesced droplet (Ry) is61

equal to the initial radius R. Figure S4 shows the variation of tcoal with R by the present simulations and also62

the data from the experiments in [1]. When the coalescence is dominated by CI effects, the coalescence time63

is predicted by τinv = 1

D2

0

√

ρLR3

σ
with the constant D0 varying between 1.39 and 1.62 whereas in the viscous64

regime it is predicted by τvis = RηL/σ [1]. The predictions by τinv and τvis are also given in fig. S4. It is seen65

that the present results follow τinv with D0 = 1.39 more closely and also agree with the measurements in [1].66

As the droplet radius decreases, the coalescence time seems to become larger than τinv more. Similar trend can67

be observed in the experiment data from [1].68

S6



0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5

2
1

3

t

Rx(Oh : 0.4)

Rx(0.1)

Rx(0.037)

Ry(0.4)

Ry(0.1)

Ry(0.037)
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and 0.037. The numerical parameters are from Set 2 in Table S1. The horizontal line shows the final equilibrium
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S2.2 Examination of various energies and forms of energy dissipation69

Finally, we examine how various energies change during the droplet coalescence process. Figure S5 shows the70

evolutions of Ek/Etotal, Ek,t/Etotal, Es/Etotal, Evis/Etotal, Ed/Etotal and Etotal/Etotal(0) at Oh = 0.4, 0.171

and 0.037. At the beginning, the total energy is equal to the surface energy, i.e., Etotal(0) = Es(0). From72

fig. S5, some common characteristics are observed for all three cases: (1) the total energy remains nearly73

constant during the simulation; (2) the total kinetic energy is almost equal to the droplet’s kinetic energy74

(attributable to the relatively large density and viscosity ratios); (3) in the pseudo equilibrium state the surface75

energy (scaled by Etotal ≈ Es(0)) reduces to its minimum value close to the theoretical one 2−
1

3 (when the76

coalesced droplet reaches static equilibrium). The reduction of surface energy is partly converted to the kinetic77

energy, largely dissipated by the viscous effects, and to some extent, dissipated by the phase-field diffusion.78

Ideally, the last part Ed should be zero, but it is difficult to completely eliminate the numerical artifacts in79

phase-field simulations using a finite interface thickness. Comparison with the results in [3] (obtained by using80

sharp interface simulations free from such artifacts) indicates that the calculation of energy dissipation can be81

improved by taking Ed into account (see fig. S6a). To better appreciate the dependence of the dissipation82

energy on the Oh number, it is helpful to examine the derivative of the energy dissipation with respect to Oh.83

Figure S6b compares the derivative for the two power law forms obtained by the present work with the two84

linear forms. It is seen that in contrast to the linear forms (which give constant derivative: 72π based on [18]85

and 3π according to [14]), the power law forms predict that the derivative decreases as Oh increases. That86

means, with the same increment in Oh, the dissipation energy (scaled by the reference energy σR2) increases87

more for low Oh (e.g., Oh increases from 0.01 to 0.02) than for high Oh (e.g., Oh increases from 0.1 to 0.11).88

On the contrary, the linear forms would predict that the increments of the (scaled) dissipation energy are the89

same for the above two changes at Oh = 0.01 and 0.1. The power law form may better reflect the effects of90

viscosity for different regimes of Oh.91

S3 Results on the Coalescence-Induced Droplet Jumping on a Non-92

wetting Surface93

The initial setup for the coalescence-induced droplet jumping on a nonwetting surface is similar to the above

for droplet coalescence except that the initial centers of the two droplets are at (±R, 0, R) and a nonwetting

wall is added at z = 0. The problem is symmetric about the y− z plane and the x− z plane. One fourth of the

domain is used for all simulations in this section. Stationary wall boundary conditions are applied on the back

and front boundaries (z = 0, Lz) whereas symmetric boundary conditions are applied on all other boundaries.
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Figure S5: Evolutions of the (scaled) energies for (a) Oh = 0.4 (b) Oh = 0.1 and (c) Oh = 0.037 obtained
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The reference quantities and numerical parameters are the same as those in the above section except that the

domain size is Lx × Ly × Lz = 3× 3× 5. The following Oh numbers were considered: Oh = 0.037, 0.05, 0.065,

0.08, 0.1, 0.119, 0.15, 0.2, 0.25, 0.3 and 0.4. In addition to those quantities monitored in Section S2, the mass

center velocity of the droplet and its translational kinetic energy along the z−direction, wcm and Ek,tr, were

also calculated,

wcm =

∫

V
N(φ)ρLwdxdydz

∫

V
N(φ)ρLdxdydz

, Ek,tr =
1

2
ρLw

2

cm

∫

V

N(φ)dxdydz. (S3.1)

S3.1 Results for typical cases94

Figure S7 shows several snapshots of the interfaces in the x − z plane at y = 0.5δx and in the y − z plane at95

x = 0.5δx for a typical case at Oh = 0.1. The time for droplet jumping tjump is extracted from the interfaces in96

the two planes. To take into account the diffuse nature of the interfaces in phase field simulations, we used the97

time when the lowest interface in stage (iii) is W/2 above the wall (other choices may cause small differences in98

the extracted results). Based on this criterion, tjump is estimated to be about 3.25 for this case at Oh = 0.1.99

Figure S8 shows the evolutions of the droplet velocity wcm for three typical cases at Oh = 0.037, 0.119 and 0.3.100

According to [5, 13], the evolution of wcm may be divided into four distinct stages characterized by the following101

events: (i) the liquid bridge grows; (ii) the coalesced droplet is accelerated toward its maximum velocity; (iii)102

the coalesced droplet jumps off the wall; (iv) the coalesced droplet velocity is reduced by the air viscosity. As103

seen in fig. S8, these four stages are easily observed for Oh = 0.037. But stages (iii) and (iv) are not easy to be104

differentiated as Oh increases. This is similar to that reported in [13].105
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Figure S7: Snapshots of the interfaces in the x − z plane at y = 0.5δx (a-f), in the y − z plane at x = 0.5δx
(g-l) and the corresponding 3-D views (m-r) for the coalescence-induced droplet jumping on a nonwetting wall
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S3.2 On the energy dissipation106

From the simulations of droplet coalescence near a nonwetting wall, we extracted the dissipation energy (con-107

taining both the parts related to the fluid viscosity and the CHE diffusion, Evis and Ed, as done for the droplet108

coalescence problem) at the time when the droplet jumps off the surface (tjump), denoted by Evis,jump (the109

Evis +Ed at teq1 in the droplet coalescence problem in Section S2 is now denoted by Evis,eq1). At Oh = 0.037,110

E∗

vis,jump is about 43.7% larger than E∗

vis,eq1 while at Oh = 0.4, E∗

vis,jump is only about 9% larger. Figure S9111

shows the evolutions of the dissipation energy at Oh = 0.037 and 0.3. It can be observed that at a low Oh112

the presence of the wall has little effect on the energy dissipation and E∗

vis,jump is larger than E∗

vis,eq1 due to113

the additional dissipation accumulated between teq1 and tjump. In contrast, at a high Oh, the effect of the wall114

(though nonwetting) is more noticeable after the initial coalescence stage. The wall seems to slow down the115

dissipation to some extent: at teq1 the dissipation when the wall is present is smaller than that without any116

wall (E∗

vis,eq1,nw < E∗

vis,eq1 , see fig. S9b). The reason could be that the wall suppresses the flow inside the117

droplet (after the coalesced droplet touches the wall) more significantly at a high Oh. But the dissipation at118

the jumping time E∗

vis,jump is still larger than E∗

vis,eq1, although the difference between them is reduced at large119

Oh.120
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Figure S9: Evolutions of the energy dissipation E∗

vis at (a) Oh = 0.037 and (b) Oh = 0.3 for the coalescence
of two droplets. The solid lines are for the droplet coalescence on a nonwetting wall and the dashed lines are
for the free droplet coalescence without any wall.

As mentioned in the main text, the fitting function f(Oh) for E∗

vis,jump is multiplied by an coefficient 1.015121

before it is used in the model to compensate for the inaccuracy due to numerical errors. The value 1.015 is122

slightly larger than unity and it is chosen such that the predicted critical Oh number Ohc is near 0.434. The123

reasons are as follows. It can be found that f(0.43) ≈ 5.110 and f(Oh → ∞) = 5.112, which is about 99% of124

the theoretically released surface energy ∆E∗

s ≈ 5.185. Although the difference is quite small, the model would125

predict that the droplet jumps off the nonwetting surface at all Oh numbers if the obtained formula f(Oh) for126

E∗

vis,jump is directly used in the model because the critical Oh number Ohc is obtained at f(Oh)/∆E∗

s = 1127
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which is not realizable by f(Oh). On the other hand, one may estimate Ohc based on the fitting function for128

E∗

vis,eq1. Since E∗

vis,jump becomes closer and closer to E∗

vis,eq1 as Oh increases, it is reasonable to assume that129

eventually they would become equal at Ohc. From the fitting function α1Ohβ1 for the present data on E∗

vis,eq1 ,130

one finds that Ohc ≈ 0.434. In our simulations, the droplet did not jump off the surface at Oh = 0.45 whereas131

droplet jumping occurred at Oh = 0.4 with a relatively small jumping velocity. Thus, the above estimation of132

Ohc is also consistent with our simulations.133

S3.3 On the portion of translational kinetic energy134

Besides the energy dissipation, we also extracted the values of 1/(n+ 1) (i.e., the portion of the translational135

kinetic energy in the total kinetic energy of the droplet Ek,tr/Ek = Ek,tr/(Ek,tr +Ek,os) = 1/(n+ 1)) at tjump136

when the coalesced droplet jumps off the surface for different Oh numbers. Figure S10 shows the evolutions of137

Ek,tr/Ek at three typical Oh numbers (0.037, 0.119 and 0.3). It is seen that for all three Oh numbers there138

exist two peaks for 1/(n+1) when t < 5 and the droplet jumping occurs in between them. As Oh increases, the139

ratio 1/(n+1) increases. Figure S11 shows the evolutions of the oscillatory kinetic energy at Oh = 0.037, 0.119140

and 0.3. It can be easily observed that E∗

k,os is much more quickly damped at Oh = 0.3 than at Oh = 0.037.141

When Oh is large enough, the droplet’s kinetic energy almost only consists of the translational part at tjump.142

Due to the inaccuracy in our data and fitting process, the fitting function for 1/(n + 1), g(Oh), may become143

marginally larger than unity for large Oh (e.g., g(Ohc) = g(0.434) ≈ 1.0006). But unlike the situation for144

energy dissipation, this small error would not cause significant deviations in the predicted jumping velocity,145

thus it is directly used in the model. The variation of g(Oh) with Oh can be explained as follows. As the146

dynamic viscosity ratio is large (rη = 58.8), viscous dissipation mainly occurs inside the droplet due to the147

droplet’s oscillatory motion. For small Oh, the problem is in the capillary-inertia regime and the oscillatory148

motion resulting from the coalescence and droplet-surface interaction persists with large amplitude for longer149

time because the viscous damping is relatively weak. For large Oh, the liquid viscosity damps the droplet’s150

oscillation faster whereas the translational motion is not as much affected.151

S3.4 Comparison between different models152

We have done some quantitative analyses for two sets of data (the experimental data in [3] and the simulation153

data in [20]) using the present model and the fitting function in [3]. Specifically, we calculated the average154

difference between the data on the jumping velocity (measured in experiments or simulation) and the prediction155

by the model or fitting function scaled by the maximum jumping velocity among the data, which can be156

written as ∆Ṽ ∗

j = 1

V ∗

j,max

√

1

nd

∑nd

i=1
(V ∗

j,i − V ∗

j,i,m(Ohi))2, where nd is the total number of data points, V ∗

j,max157
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is the maximum jumping velocity among the data set, V ∗

j,i and Ohi are the measured jumping velocity and158

Oh number for the i−th data point, and V ∗

j,i,m(Ohi) is the model prediction at Ohi. When compared with159

the experimental data in [3], the relative differences ∆Ṽ ∗

j for the present model and the fitting function in [3]160

are 14.3% and 13.8% respectively. Due to the significant scatting in the experiment data, both models have161

relatively large differences and they appear to have comparable prediction capability. When compared with162

the simulation data in [20], the relative differences ∆Ṽ ∗

j for the present model and the fitting function in [3]163

are 4.7% and 27.7% respectively. The much larger difference in the fitting function of [3] is due to that it was164

obtained by fitting simulation data for the small Oh regime (Oh < 0.12) while the data in [20] cover the large165

Oh regime.166

When compared with the fitting function in [3] which was based on direct fitting of their simulation data at167

Oh < 0.12, the present model involves more coefficients and looks more complicated and less straightforward168

to use. Nevertheless, the present model also has its own advantages. First, it employs simulation data at high169

Oh numbers and deals with the low and high Oh regimes separately. Thus, it can give better predictions for170

very small droplets with radii close to or smaller than 1µm. Second, the present model provides more physical171

insights and information on the energy dissipation and the different components of the droplet’s KE, making it172

easier to assess how different factors contribute to the reduction of energy conversion efficiency for a given case.173

S4 Modeling Coalescence-Induced Droplet Jumping on a Superhy-174

drophobic Surface175

S4.1 Three different states and the area and volume calculations176

Figure S12 shows the three states for the coalescence-induced droplet jumping on a superhydrophobic surface177

with an apparent contact angle θw. To simplify the illustration, the nanostructures (if any) are hidden and the178

surface appears to be flat and homogenous in fig. S12. In State 1 (the initial state before coalescence), the179

two droplets both assume a shape on the substrate corresponding to the equilibrium state for θw. In State 2180

(the intermediate state after coalescence), the coalesced droplet on the substrate assumes the equilibrium state181

for θw. In State 3 (the free state), the coalesced droplet assumes a spherical shape away from the surface. We182

use ϕi and rf,i to denote the fraction of the projected surface area wetted by the droplet and the roughness183

ratio of the wet area in State i. The areas in States 1 are Alg,1 = 2[πR2(2− 2 cos θw) + (1− ϕ1)(πR
2 sin2 θw)],184

Asl,1 = 2rf,1ϕ1(πR
2 sin2 θw). The areas in States 2 are Alg,2 = πR2

m(2 − 2 cos θw) + (1 − ϕ2)(πR
2

m sin2 θw),185

Asl,2 = rf,2ϕ2(πR
2

m sin2 θw) where Rm = 2
1

3R is the radius of the merged sessile droplet. The areas for State 3186

are Alg,3 = 4πR2

f(= Af ) and Asl,3 = 0 with Rf = [3V2/(4π)]
1

3 = [(2− 3 cos θw +cos3 θw)/2]
1

3R being the radius187
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of the final free spherical droplet. In State i, one has the surface energy Es,i = σAlg,i + σslAsl,i + σsgAsg,i =188

σAlg,i + (σsl − σsg)Asl,i + σsgAtot = σAlg,i − σ cos θY Asl,i + σsgAtot where Asg,i is the area between the189

solid and gas phases in State i, Young’s equation σsg = σsl + σ cos θY and Atot = Asl,i + Asg,i have been190

used. Substituting the expressions for various areas in States 1 and 2, one has [18] ∆Es,12 = πσR2[(2− 2
2

3 )(2−191

2 cos θw)−sin2 θw(2[Φ(ϕ)]1−2
2

3 [Φ(ϕ)]2)] where Φ(ϕ) = rfϕ cos θY +ϕ−1. Similarly, substituting the expressions192

for various areas in State 2 and 3, one gets ∆Es,23 = πσR2[2
2

3 (2−2 cos θw)−2
2

3 [Φ(ϕ)]2 sin
2 θw−4[(2−3 cosθw+193

cos3 θw)/2]
2

3 ] = 2
2

3πσR2[(2−2 cos θw)− [Φ(ϕ)]2 sin
2 θw−2

2

3 (2−3 cos θw+cos3 θw)
2

3 ]. The volume of one droplet194

in State 1 is found to be Ω0 = 1

3
πR3(2− 3 cos θw + cos3 θw), and that of the merged sessile droplet in State 2 is195

Ωdrop = 2Ω0.196

RR

θw

(a) State 1

Wall

θw

Rm
Vitm

(b) State 2

Wall

Rf

Vj

(c) State 3

Wall

Figure S12: Three states in the coalescence-induced droplet jumping from a superhydrophobic surface.

S4.2 On the work to overcome surface adhesion197

First a flat and homogeneous surface (θY = θw, ϕ = 1, rf = 1) is examined. The areas in State 2 are198

simplified as Alg,2 = 2
2

3πR2(2 − 2 cos θw), Asl,2 = 2
2

3πR2 sin2 θw. Let us consider an ”imaginary” state of the199

droplet with a flat bottom obtained by shifting the droplet in State 2 upwards from the wall without any shape200

changes (denoted as ”State 3i”, see fig. S13) and use Acap(= Alg,2 + Asl,2) to denote the surface area of the201

droplet in State 3i. The usual work to overcome the adhesion by the Young-Dupre equation W23 is actually202

calculated from the energy change between State 2 and State 3i [17], i.e., W23 = −∆Es,23i = −(E2 − E3i) =203

−σ[Alg,2 − (Alg,2 + Asl,2) − Asl,2 cos θw] = σ(1 + cos θw)Asl,2 = (σR2)2
2

3 π sin2 θw(1 + cos θw). For sufficiently204

hydrophobic surfaces (e.g., θw > 120◦), it can be found that ∆Es,23 ≈ −W23

2
(see fig. S14).205

Next, we examine surfaces with nanostructures for which the Young-Dupre equation gives W23 = σ(1 +206

cos θY )Asl,2 with Asl,2 = rfϕπ2
2

3R2 sin2 θw. As the three surface parameters satisfy rfϕ cos θY +ϕ−1 = cos θw,207

only two of them can vary independently for a given apparent contact angle θw. To assess their effects, we exam-208

ine the dependence of the ratio −∆Es,23/W23 on the fraction of the projected solid surface area wetted by the209

droplet ϕ for three different values of the roughness ratio rf . Note that −∆Es,23/(σR
2) is a positive constant210

for a given θw. Figure S15a shows how the ratio −∆Es,23/W23 varies with ϕ and fig. S15b shows how the211
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Es,3i = σAcap

= Es,2 + W23

≈ Es,3 +
W23

2

Wall

Figure S13: State 3i is an ”imaginary” state obtained by shifting the droplet in State 2 upwards from the surface
without any shape changes (as if it was a rigid body). The usual work to overcome surface adhesion is calculated

according to the Young-Dupre equation asW23 = Es,3i−Es,2 = σ(1+cos θw)Asl,2 = σ(1+cos θw)(2
2

3 πR2 sin2 θw)
(for a flat wall).
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intrinsic contact angle θY changes with ϕ (dictated by the equation rfϕ cos θY + ϕ − 1 = cos θw) at rf = 1.0,212

1.1 and 1.2 with θw = 155◦. It is seen that when rf = 1.0 the area fraction ϕ does not affect W23. In fact, when213

rf = 1.0, W23 = σ(1 + cos θY )rfϕπ2
2

3R2 sin2 θw = σ(1 + cos θw)π2
2

3R2 sin2 θw (i.e., same as that for a flat wall214

with θw). When rf > 1.0, W23 increases with ϕ (because −∆Es,23/W23 decreases with ϕ), and ϕ can affect215

W23 significantly especially when rf is large.216
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Figure S15: Variations of (a) the ratio −∆Es,23/W23 with the fraction of the projected solid surface area
wetted by the droplet ϕ (b) the intrinsic contact angle θY with ϕ at three different values of the roughness ratio
of the wet area rf at State 2 while the apparent contact angle is fixed at θw = 155◦.

In reality, when the droplet jumps off the surface, it is deformed due to the finite adhesion of the surface and217

deviates from a perfect sphere to some extent (e.g., see fig. 2 in [16]). Some analyses of the jumping stage (State218

2 to 3) were also given in [12] (see fig. 7 therein and related discussions). The droplet shape at the jumping time219

could be better approximated by a prolate spheroid than by a perfect sphere. This state is denoted as ”State220

3a” (see fig. S16). For a prolate spheroid having a polar radius Rc and an equatorial radius Ra (≤ Rc), its221

volume is given by Vps =
4

3
πR2

aRc and it surface area is given by Aps = 2πR2

a +2π
RaR

2

c√
R2

c−R2
a

arcsin

√
R2

c−R2
a

Rc
[21].222

From volume conservation, one has Vps = 4

3
πR2

aRc = 4

3
πR3

f . By defining the ratio of the polar radius over223

the equatorial radius kca = Rc/Ra, one has kca = (Rf/Ra)
3 and Aps = 2πR2

fk
−

2

3

ca (1 +
k2

ca√
k2
ca−1

arcsin

√
k2
ca−1

kca
).224

Figure S17a shows the variation of the surface area of the prolate spheroid Aps with the radius ratio kca when225

the wall contact angle is θw = 155◦. It can be found that as kca increases (the droplet is more stretched226

in the vertical direction), Aps increases (its minimum is achieved when kca = 1). Figure S17b plots the227

variation of the difference between the surface energy of the prolate spheroid and that of the sphere scaled by228

W23 (i.e., σ(Aps − Af )/W23) with the radius ratio kca at θw = 155◦ (for a wall with rf = 1.0 and W23 =229

σ(1 + cos θw)π2
2

3R2 sin2 θw). In fig. S17b, the intersection point gives the value of kca (≈ 1.115) at which the230

surface energy of the droplet in State 3a is equal to that at State 3i. As noted above, with the assumption that231

the droplet in State 3 is a perfect sphere, one finds that ∆Es,23 ≈ −W23

2
. When the droplet is stretched by the232

adhesion force during the jumping process to become a prolate spheroid with kca ≈ 1.115, its surface energy is233

about W23

2
higher than a perfect sphere and the surface energy change is ∆Es,23a ≈ −W23

2
− W23

2
= −W23. The234
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above gives a possible scenario that explains why the Young-Dupre equation (used for the jumping stage) can235

provide more accurate predictions.236

Ra

Rc

State 3a
Es,3a = Es,3i

Wall

Figure S16: State 3a is closer to the actual situation (than a perfect sphere assumed in State 3) with the
droplet stretched in the vertical direction by the adhesion force during the jumping stage and the droplet has
the same surface energy as State 3i (about W23/2 larger than the surface energy in State 3).

19.8

19.9

20

20.1

20.2

20.3

20.4

20.5

1 1.1 1.2 1.3 1.4 1.5

Af

(a)

kca

Aps

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 1.05 1.1 1.15 1.2

σ(Acap − Af)/W23

(b)

kca

σ(Aps −Af )/W23

Figure S17: Variations of (a) the surface area of the prolate spheroid Aps scaled by R2 (b) the difference
between the surface energy of the prolate spheroid and that of the sphere scaled by W23 with the radius ratio
kca = Rc/Ra. The wall contact angle is θw = 155◦. The horizontal dashed line in (a) indicates the surface area
of the perfect sphere Af . The horizontal dashed line in (b) indicates the difference between with σAcap and
σAf scaled by W23.

S4.3 On the model by Cha et al.237

To simplify the comparison, the wall is assumed to be flat and the required areas in different states are Alg,1 =

2πR2(2 − 2 cos θw), Asl,1 = 2πR2 sin2 θw, Asl,2 = π2
2

3R2 sin2 θw, and Alg,3 = 4πR2

f . Written in the present

symbols, the model in [1] gives the jumping velocity through the following equation,

1

2
ρLΩdropV

2

j = ηj [σ(Alg,1 −Alg,3) + σ(1 + cos θw)(Asl,2 −Asl,1)]− σ(1 + cos θw)Asl,2, (S4.1)

where ηj is the energy conversion efficiency on a nonwetting surface given by ηj = ηinv[e
−bOh−(1−e−bOh)e−bOhc ]238

for Oh ≤ Ohc (ηinv ≈ 0.064 is the maximum efficiency in the inviscid limit, Ohc ≈ 0.33 is their estimated critical239
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Oh number, and b = 10.165 is a fit parameter). More details may be found in eqs. (1-16) in [1] . The released240

surface energy in the first stage (the terms in the square brackets of eq. (S4.1)) is found to be, σ(Alg,1−Alg,3)+241

σ(1+cos θw)(Asl,2−Asl,1) = σR2π{4[(1− cos θw)− ((2−3 cos θw+cos3 θw)/2)
2

3 ]+ (1+cos θw) sin
2 θw(2

2

3 −2)}.242
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