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ABSTRACT

This study explores contact angle hysteresis (CAH) in non-uniform patterned microchannels through lattice Boltzmann method simulations.
A novel hybrid-effect-dominated-hysteresis (HDH) mode, integrating individual-effect-dominated hysteresis (IDH) and collective-effect-
dominated hysteresis (CDH), is identified, caused uniquely from non-uniform heterogeneity. The contact line jumping process is modeled as
a mass-spring-damper system, offering a clear force-balance framework for explaining and predicting CAH. A graphical force-balance
approach proposes the Ec-Cc criterion and constructs a phase diagram framework that classifies CAH modes into IDH, CDH, and HDH.
This framework provides a unified methodology for analyzing CAH across two-dimensional and three-dimensional microchannel geome-
tries, enabling accurate predictions for diverse designs. This work provides key insight into contact line dynamics and practical tools for con-

trolling the motion of the contact line in heterogeneous systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0288009

I. INTRODUCTION

Wetting and spreading phenomena play a vital role across a
diverse range of fields, including industrial processes," agricultural
applications,” and engineering practices.” When another fluid displaces
one, the motion of the contact line (MCL) occurs,” which is intricately
influenced by physicochemical interactions between the fluid and the
solid surface. If the surface has physical roughness or chemical hetero-
geneity, contact angle hysteresis (CAH) and associated complex MCL
will result.” In other words, modifying the chemical heterogeneity of
the surface can tailor specific wetting properties and MCL.” In the pre-
vious study, advancements in surface engineering have introduced
innovative methods to achieve precise control over wetting behavior,
notably through developing patterned surfaces that exhibit inherent
heterogeneity.” For instance, Jung and Bhushan® fabricated micro- and
nanopatterned surfaces that mimic natural roughness-induced hydro-
phobicity. The MCL on physical roughness or chemical heterogeneity
surfaces has attracted substantial interest within academic and indus-
trial communities because it contributes to achieving precise control
over fluid on solid surfaces.

Significant research has been dedicated to understanding the
MCL on physical roughness or chemical heterogeneity surfaces in
two-dimensional (2D) systems where the contact line is straight or

maintains constant curvature due to axisymmetry. Examples include
chemically striped surfaces,”'” sinusoidal surfaces,'' '” and surfaces
featuring posts,''” investigated through analytical and numerical
methods. After the extension of this analysis to three-dimensional
(3D) systems, researchers have explored striped patterns,'® regular lat-
tices of posts,'” ' and chemical patches.”” The physical roughness and
chemical heterogeneity of patterned surfaces introduce complex
MCL,**** often characterized by slip-stick”*° and slip-jump
motions.”’ Stick-slip behavior occurs when the contact line becomes
pinned near strong surface defects, ” with the magnitude and position
of the contact line jumps being highly sensitive to the surface pattern-
ing. These dynamics can vary significantly in different directions of the
patterned surfaces, further underscoring the intricate interplay
between surface structure and wetting behavior.”’

In addition to the complex MCL, contact angle hysteresis (CAH),
as a common phenomenon in wetting processes, is defined by the dis-
continuity between the receding and advancing contact angles.”” Tt is
widely acknowledged that substrate heterogeneity, including chemical
heterogeneity, is the primary cause of CAH.'>”>" This conclusion
makes CAH a critical factor in optimizing and controlling wetting pro-
cesses.”' For instance, CAH in microchannels can highlight wettability
effects on pore-filling events.’* Various methods have been developed
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to research CAH, including capillary rise techniques,”” *” moving tape
methods,” ® and direct measurement and control of CAH in electri-
fied ionic liquids, which guides future experimental validation.”” In
these research works, sessile droplet system are widely used, where a
drop is quasi-statically inflated or deflated using, for example, a micro-
pipette.”’ *° Here, the deformation of the gas-liquid interface (GLI)
depends not only on the solid surface properties but also on the droplet
volume,"” often resulting in irregular oscillatory curves that complicate
the statistical analysis of CAH.'” To address these challenges, research-
ers have applied chemically heterogeneous channels to study
CAH."™”""*% These studies used the scaling law based on the
mechanical balance between capillary forces exerted by surface defects
and the elastic restoring forces acting on the contact line, which was
proposed by Joanny and De Gennes.”’ For instance, Chang et al.*’
extended it to account for two new distinct types: individual-effect-
dominated hysteresis (IDH) and collective-effect-dominated hysteresis
(CDH). Despite these advancements, researchers like Chang et al. did
not give a strict mathematical proof that Joanny and de Gennes’ model
applies to CAH in heterogeneous microchannels with equal-width pat-
terns nor did they explore CAH modes or scaling laws in the non-
equal-width or non-uniform situations, which are more general. As a
result, this area of research remains underexplored, and there is a criti-
cal need for a comprehensive model that accounts for the influence of
heterogeneity parameters on CAH.

This study addresses the above-mentioned unresolved issues by
integrating numerical simulations and theoretical modeling to investi-
gate the complex MCL and CAH in heterogeneous microchannels. We
derived the prerequisite conditions for contact line jumps using force
balance principles and classical mechanical models. In addition, we
identified a new CAH mode distinct from the previously defined IDH
and CDH. To differentiate these three modes effectively, we developed
the criteria that map the modes onto the four quadrants of a phase dia-
gram. Furthermore, a formula was proposed to quantitatively describe
the relationship between microchannel heterogeneity parameters and
CAH, offering greater accuracy and predictive capability. The conclu-
sion is mainly based on the 2D system, and then we expand it to make
the conclusion applicable to the 3D system.

The remainder of this paper is organized as follows. The problem
statement and mathematical formulation are presented in Sec. II. The
research methodology is described in Sec. I1I. Detailed results for 2D
and 3D cases are discussed in Secs. IV and V, respectively. Finally, con-
clusions are presented in Sec. V1.

Il. PROBLEM STATEMENT
A. Physical problem

All the physical problems examined in this study are based on the
evaporation and condensation occurring within patterned heteroge-
neous microchannels, which are symmetrical along the dashed line
from left to right (Fig. 1). The microchannel has a width b, with rigid,
flat, and smooth surfaces. The inner surfaces of the channel exhibit
chemical patterned heterogeneity achieved by the alternating arrange-
ment of defects and background. The defects on the upper and lower
boundaries are identical. The spatial feature length of surface heteroge-
neity is denoted as f5. In other words, up to one complete defect can be
contained within f8. The width of defects within each feature length is
determined by 4,, and n is a positive integer. In the 3D case, the defects
are modeled as rectangular regions with /, and 4, in the x- and y-
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FIG. 1. Schematic diagrams of a droplet in a microchannel with a chemically het-
erogeneous substrate. (a) Diagram illustrating the non-uniform two-dimensional
(2D) case. The black and gray dotted lines, respectively, represent the left-right and
up-down symmetries of the domain. (b) Representation of substrate defects in
three-dimensional (3D) non-uniform situations. (c) Depiction of a droplet interacting
with the substrate in 3D (the lower part).

directions, respectively. The range of /1, is constrained to
0 < 4, < 0.5f, and we suppose the width of defects in the y-direction
is constant with space. When 4, = f3, the 3D case simplifies to a 2D
scenario. For 4, = const = 0.5f3, the defect width in the x-direction
equals that of the background, corresponding to equal-width patterned
heterogeneity. Conversely, for 4, = const and 0 < 4, < 0.5f, the
width difference between the defect and the background is disrupted,
leading to the non-equal-width situation. More generally, when 4,
# const and 0 < A, < 0.5f are satisfied, it is defined as a non-
uniform situation that characterizes the complex patterned heteroge-
neity. The non-uniform situation is the focus of our research.

As illustrated in Fig. 2(a), the wettability of defects and the
background is defined by the intrinsic contact angle 0;. The rela-
tionship between the solid-liquid, solid-gas, and liquid-gas sur-
face tensions (7, 7, and 7) is governed by the Young equation as
follows:

(b)

ln
A l>]
) S H +— -+ =-cos(d)
5 .
I >
= R
[ O3, 1

FIG. 2. Schematic diagram of (a) the intrinsic contact angle defined by the Young
equation and (b) mesa defects.
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cos; = Tg T . (1)
7

The wettability is characterized by a position-dependent variation
in the solid-liquid tensions 7 and solid-gas tensions 7,,, while interfa-
cial tensions y remain constant. The defects are modeled as sharp-
edged structures (mesa), where the change in wettability from the
background to the defects occurs discontinuously. Consequently, the
wettability of the background and the stripes are given by cos(0)
+¢/2 and cos(6y) — ¢/2, respectively, as shown in Fig. 2(b). Here, ¢
and 0 represent the strength of the heterogeneity and the reference
contact angle, respectively. The droplet is initially positioned at the
center of the microchannel to maintain symmetry (both left-right and
top-bottom). In the 2D cases, the base radius R is defined as the dis-
tance from the contact line to the center. The maximum value of R is
half the microchannel length, denoted R;,. Suppose there are a total of
N defects in the microchannel, then add an extra area of length 2,
and the R, = (N + 2)f. The apparent contact angle of the droplet is
defined as 0,. The volume of droplets is controlled through evapora-
tion and condensation. During evaporation, the contact line recedes

with the diminishing volume, and it advances during condensation.

B. Mathematical formulation

After defining the physical problem and establishing the coordi-
nate system, we make several reasonable assumptions to describe the
droplet’s state quantitatively. At the initial moment, the system is
assumed to be in a state of stationarity. During the simulation, no
external volume forces, including gravity, keep the system isothermal.
The MCL is driven solely by density differences and is relatively slow,
so the system remains in a quasi-steady state, except during droplet
jumps. In the 2-D cases, the GLI is approximated as a standard menis-
cus, allowing the droplet volume to be expressed as follows:

20, — + sin(ZOQ)} @

V(R) = 2Rb + 2b*
(R) + { 8 cos?0,

The free energy E analysis can demonstrate the system’s stability.
For a fixed droplet volume, the free energy, per unit length of the con-
tact line and up to a constant, can be calculated by”'

E(R) = b (” — 29“) 4y

cos b,

R
[ cos [0;(r)]dr. 3)
Jo

Minimize the free energy with a fixed droplet volume V to obtain
the equilibrium configurations: the apparent contact angle 0, equals
the inherent contact angle 0; defined by the Young equation, i.e.,

cos[0,(R)] = cos[0;(R)]. (4)

We introduce the diffuse interface model, which considers the
GLI to have a certain thickness, defined as the interfacial thickness ¢.
In this model, for surfaces containing chemical heterogeneity defects,
the local Cassie-Baxter (LCB) equation needs to be introduced to per-
form more accurate calculations of the apparent contact angle when
the interface is located at the junction of the background and defect.”’
The LCB equation is as follows:

cos 0, = ~[ly cos O4; + Ig cos O], (5)

e | =

pubs.aip.org/aip/pof

where 04; and 0p; are the intrinsic contact angles of background and
defects, respectively. I4 and I are the thicknesses of the diffused inter-
face occupied by background and defects, respectively. I, and Ip satisfy
Iy + Ig = &. Equation (5) equivalent to Eq. (4) when the contact line is
far from the intersection of defects (Iy = ¢ or Iy = ¢&).

This paper defines the following dimensionless variables:
Reynolds number Re = U.f/v?, Peclet number Pe = U.f}/D,
Capillary number Ca = p°v°U,/y, and Cahn number Cn = £/f.
Here, U, and & are characteristic velocity and interfacial thickness,
respectively. In this study, the spatial feature length of surface hetero-
geneity /5 and other parameters are chosen as characteristic quantities
to normalize the physical quantities as follows:

b = %, (6a)
R = % , (6b)
Ve = ﬁl’z (6¢)
E = % (6d)

It is noted that V* = V /B for 3D cases. For simplicity, we will drop
the asterisk notation in the remainder of the paper.

lll. RESEARCH METHOD

The multicomponent multiphase pseudopotential lattice
Boltzmann method (MCMP-LBM), proposed by Shan and Chen,”’
is applied to simulate in 2D and 3D in this paper. This method has
been validated through complex multiphase flow modeling.”" Tt
simulates the fluid by calculating the distribution functions of each
component f7(x, t) (distinguished using superscript ¢ and o). All
component distribution functions follow the following evolution
equation:

F7(x+ eAt, t + At) = f7(x,t) — % frx,t) — (%, 0)], @)

where ¢; (i=0, 1, ..., 8 for 2D cases and i=0, 1, ..., 18 for 3D cases)
are the discrete velocities.”” The relaxation time 77 is a parameter
related to the kinematic viscosity of the fluid. Ax and At are grid spac-
ing and time step. In MCMP-LBM, an equilibrium distribution func-
tion £, is calculated by

2 o\ 2
7.9 R e-u’  (e-u’)” (u”)
A t) = w; 1 -

£ (xt) ip’ |1+ 2 +-= a 2@

S

®)

The density p? and macroscopic velocity u® of each component
fluid are

P’ = Zf{ﬁ ©)

T°F°

P

uw =v+ (10)

Here, F’ is the volume force acting on each component
fluid and v is the overall velocity of the fluid system, which is
defined as”’
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fei
V:z:az;)ﬂf"_ (11)

-
The mixture density p, velocity u, force F’, and interparticle
potential y/° (x, t) are respectively calculated by

p=>_0 (12)

F(x,t) = =Gy’ (x,t) Z o’ (x + eAt, t)e;, (13)

1 1
u= ; (; Zf,‘”ei + E; FGAf) ) (14)
VO (x,1) = po[1 = e IR, (15)

The lattice Boltzmann equation can reproduce the Navier-Stokes
equations for fluid dynamics by applying the Chapman-Enskog
expansion.”

The volume change of the droplet is driven by the density gradi-
ent with constant ambient pressure, which can be described by the
unsteady diffusion equation (Fick’s second law). Assuming that the
density distribution is non-uniform mainly in the R direction and
changes linearly according to the parameter 6, solving the ordinary dif-
ferential equation gives"’

20> — DS

(V—=Vo)(2bR, — V — V) = — Iz

(16)

In this mechanism, the mass change rate of the droplet is domi-
nated by the diffusion of the droplet into the surrounding environ-
ment, driven by the concentration or density gradient of the droplet’s
components in the surrounding fluid. The parameter 6 plays a crucial
role in determining both the direction and speed of the MCL.
Specifically, when 6 > 0, the droplet undergoes evaporation and the
contact line advances; when 0 < 0, it condenses and the contact line
recedes. To accurately simulate these processes driven by density gra-
dients, we employ the above MCMP-LBM-based model introduced by
Hessling et al,”” which has been validated against Fick’s law. This
model was also utilized by Chang et al.*’ to simulate droplet evapora-
tion and condensation within a microchannel. The density initializa-
tion scheme used in the model is detailed in Table I.

At the outlet boundary (R = R;), constant density and pressure
are imposed, with the distribution function calculated using Eq. (8).
Treating the upper (z = b) and lower (z = 0) boundaries requires
careful consideration, as these boundaries must satisfy both no-slip
and specific wetting conditions. The halfway bounce-back scheme,
proposed by Ziegler,”® enforces no-slip boundary conditions. This
approach has been widely adopted in LBM simulations because it can

TABIZ!E I. Density setting in MCMP-LBM according to Hessling et al.”” and Chang
etal

Gas Liquid
p(r pmm pma]
p(T pma] pmm

pubs.aip.org/aip/pof

accurately simulate no-slip conditions while ensuring strict mass con-
servation.” More basic introductions and validation for the wettability
conditions are described in Appendix B.

The apparent contact angle 0, is determined by directly measur-
ing the gas-liquid interface (GLI). In this study, we define the curve
(for 2D cases) or surface (for 3D cases) satisfying ¢’ (x) = 0.5 as the
GLI, where the order parameter ¢?(x) is calculated based on the den-
sity as follows:
prx) —pm

pmaj _ pmin : 17)

7 (x) =
Table II presents the key physical parameters used in the simula-
tions. For a specific flow problem, simulation parameters can be deter-
mined by specified dimensionless parameters according to Chang
et al.”” The mesh spacing in the x, y, and z directions is set to 1 lattice
unit (lu), while the time step in the LBM simulations is set to 1 time
step (ts). The grid resolution is controlled by the parameter f3, which
represents the number of lattice cells across a characteristic
length, which is illustrated in Fig. 1. We have tested a series of resolu-
tions in Appendix A, proving that /=50 is suitable for our
simulations.

IV. TWO-DIMENSIONAL RESULTS AND DISCUSSION

In this section, we first present the contact line behavior in typical
cases. Since the jump plays a critical role, we then analyze the jump
mode to identify when the jump occurs. During this analysis, we pro-
pose a model to explain and understand the criteria for jump initiation.
Finally, we discuss CAH using the graphical construction of the force
balance and propose criteria to distinguish between IDH, CDH, and
HDH.

A. Overview of MCL

We conducted a series of non-uniform simulations by modifying
parameters (b, &, A,, and ). In these cases, 4, varies linearly with
space as follows:

TABIZ;E II. Density setting in MCMP-LBM according to Hessling ef al.°” and Chang
etal.

Parameter/(unit) Value
Re 0.003
Ca 0.000 025
Pe 0.004 2
Cn 0.108
G 3.6
D 0.12”7
B/(1w) 50
Ry/(lu) 500
o™ /(mu/lu’) 0.7
p™in /(mu/lu?) 0.036
po/ (mu/lu) 1

¢/ (lu/ts) 1/V3
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Condensation

FIG. 3. The non-uniform heterogeneity generated from Eq. (18) with N = 10. Due to the symmetry of the structure, only the lower right part of the 2D computing domain is pre-
sented. The black and gray dotted lines respectively represent the left-right and up-down symmetries of the domain.

~0.35(n—1)
T ON-1

which constructs the non-uniform heterogeneity in Fig. 3. Through
base radius R, and apparent contact angle 0,, we examined the
MCL and the deformation of the GLI. The horizontal coordinates are
V/b to eliminate the influence of different widths b on the length of
curves.

Figure 4 presents the MCMP-LBM simulation results, with the
arrangement of defects and background are shown in Fig. 3. They illus-
trating the relationships among the base radius R, and apparent con-
tact angle 6, as functions of V/b. The arrows indicate the temporal
evolution of these variables. Evaporation and condensation indirectly
drive the MCL by influencing the droplet volume. During condensa-
tion, the contact line advances (liquid displaces gas on the surface),
while during evaporation, it recedes. The advancing and receding tra-
jectories shown in Fig. 4 reveal distinct modes of MCL, including slip,
stick, and jump modes. A specific set of points in Figs. 4(e) and 4(f)
has been selected to illustrate these fundamental modes of MCL within
the heterogeneous microchannel.

Jon +0.15, n=1,2,....N, (18)

e Slip. Here, R change linearly with V, while 0, remains constant.
The contact line moves forward at a uniform rate. Examples of
slipping during condensation are represented by I — II — Ill¢
and IV — V, while slipping during evaporation corresponds to
V—-IV—HgandII — L

e Stick. At specific points, R remains nearly constant despite
changes in V. During this phase, 0, transitions gradually between
the wettabilities of the background and defects, indicating that
the contact line remains nearly stationary. Volume changes pri-
marily manifest as deformation of the gas-liquid interface (GLI).
The sticking behavior during condensation and evaporation is
represented by V < VI

* Jump. During this mode, V remains almost unchanged (implying
a very brief time interval). At the same time, R rapidly increases
(during condensation) or decreases (during evaporation), and 6,
transitions abruptly between 0; of the background and defects.
The asymmetry of jump positions causes a divergence between
the evaporation and condensation trajectories. Examples of
condensation-related ~ jumps include IIIc — IV, while
evaporation-related jumps are represented by Il — IL

Figure 5 illustrate the MCL during evaporation and condensa-
tion for the cases of A, = 0.46 (a, b) and 4, = 0.27 (¢, d). The
observed MCL is a combination of the above-mentioned funda-
mental modes. For 4, =0.46 [corresponding to Figs. 4(e) and
4(f)], the MCL consistently cycles through the sequence of slip-
jump-slip-stick, irrespective of whether condensation or evapora-
tion occurs. This finding aligns with the results reported by Pradas
etal."* and Chang et al.”’

However, our study reveals an additional detail: in certain cases,
the MCL exhibits asymmetric behavior, where the modes differ
between evaporation and condensation. For instance, as shown in Figs.
5(c) and 5(d) [corresponding to Figs. 4(c) and 4(d)], the MCL during
condensation follows a slip-jump-slip-stick sequence, whereas, during
evaporation, it follows a slip-jump-stick sequence. The asymmetry of
the MCL during evaporation and condensation leads to an asymmetric
CAH cycle, as shown in Fig. 6, which is a partial magnification of the
hysteresis portion within one cycle in Figs. 4(d) and 4(f). This phe-
nomenon, which has not been reported previously, represents a novel
observation. Sections IV B and IV C explore the underlying mecha-
nisms driving this phenomenon and its implications for CAH.

Figure 4 clearly illustrate the non-periodicity of 6, in the non-
uniform situation, a behavior different from earlier studies.’”””°°
Inspired by Chang et al.,"” we define CAH as follows:

H = (cosOr) — (cos04), (19)

where 0r and 0,4 are the receding and advancing apparent contact
angles, and the CAH in the defect located in n < R<n+1,n
=1,2,..., N can be calculated by

(cos[0u(V)]) = ﬁLV cos [04(V)]dV
1 2b(n+1)
- Lh cos [04(V)] dV, (202)
(cos[0x(V)]) = ﬁ "AV cos [0x(V)] dV
1 2b(n+1)
=),  coslOa(V)IdV. (20b)

If the evaporation and condensation curves fully overlap through-
out the entire process, no CAH is observed. However, due to heteroge-
neity, the contact line jump causes the curves to diverge.
Consequently, the following analysis of the jump behavior is essential
for understanding the mechanisms behind CAH.

B. The investigation of the jump mode

The contact line jump has been extensively studied as a physical
phenomenon closely linked to CAH. MCL can be classified into two
types: slip-jump-slip-stick and slip-jump-stick. To ensure the general-
ity of the results, this paper does not distinguish between these two
cases when analyzing the jump mode.

The Young equation [Eq. (1)] is reconstructed, and the dimen-
sionless heterogeneity force f, and elastic restoring force f, are defined
as

Phys. Fluids 37, 093364 (2025); doi: 10.1063/5.0288009
Published under an exclusive license by AIP Publishing

37, 093364-5

6€:8€°0} 520 1890100 ¥ |


pubs.aip.org/aip/phf

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

6 T 11
@l) — Analysis (a2)
—Condense(LBM)
5 H—Evaporate(LBM) 10}

r\— — A
L — —

4 6 8 10 12 14 16 18 20 22

© 4 ' ' - (@ 1

V/b V/b

FIG. 4. The MCL simulated by MCMP-LBM and the comparison with the analytical method. The value of 6y, ¢, N, and b are 90°, 0.5, 10, and 4.0, respectively. (a1), (a2), and (b) show
the basic radius curves and contact angle curves. (c) and (d) and (e) and (f) are the zoomed-in views of (a) and (b) within the range of V /b < [3.0,7.0] and V/b € [17.4,21.4].
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(a) (b) AR = R — R,. Here, R; is the base radius of the undeformed, flat GLI
Liquid Gas Liquid Gas of equal droplet volume.
8 cos>0)
K — cos>0, (23)

blr — 20, —sin(20,)]

Following Hatipogullari et al,” the spring constant approxima-
tion k ~ k, is valid when the heterogeneity strength is small, ie.,
¢/2 < cos(By), such that 6, ~ 6,. Within the parameter range con-
(©) (d sidered in this work, the resulting relative error does not exceed 15%

[Fig. 7(a)], and the stability criterion remains consistent. Beyond this
range (e.g., ¢/2 > 0.6), the approximation will lose further accuracy
[see Fig. 7(a)]. k can be calculated as follows:

slip ' jump °*slip $tickK “slipt  jump'  slip Stick' slip

Liquid Gas Liquid Gas k= 8 cos 390 ~k (24)
o 5 b[r — 20, —sin(20)] ~ "
slip  Stick slip  jump slip stick jump *  slip
To better illustrate the conditions and process of the jump mode,
FIG. 5. Schematic diagrams illustrating MCL and the deformation and movement of this paper compares the jumping contact line to a mass-spring-damper
the GLI for 4, = 0.46 (a) and (b) and 4, = 0.27 (c) and (d). (a) and (c) represent model in an overdamped state [Fig. 7(a)]. The overdamped state is an
the condensation process, while (b) and (d) depict the evaporation process. observed outcome. As shown in Fig. 4, neither the contact line nor the

Additionally, (a)—(c) corresponds to the slip-jump-slip-stick cycle, whereas (d) illus-

A . interface exhibits oscillations after a jump, indicating the absence of an
trates the slip-jump-stick cycle.

underdamped response. This arises because the droplet is quasi-static
prior to a jump, with the contact line motion driven solely by evapora-

f. = u7 fr = cos(0,). (21) tion/condensation. Consequently, no significant kinetic energy is pre-
v sent at the onset. Therefore, inertial effects are always negligible,
The droplet elastic restoring force is calculated as follows:”"*"* precluding an underdamped response.
In this analogy, the heterogeneity force represents the external
fe = kaAR, (22) force acting on the system, the elastic restoring force corresponds to

the spring force, and fluid viscosity serves as the damping force. Our
focus is on the instant when the contact line begins to jump and the
moment when it completes its jump and stabilizes. The analogy is
established from the perspectives of force balance and energy conser-
vation: when the Yang equation holds, the contact line remains stable
(a) (b) (sliding or pinning) with elastic energy stored as interfacial deforma-
tion, whereas a sharp wettability change disrupts equilibrium, leading
to a jump where stored energy is released as fluid kinetic energy before
being dissipated by viscosity. Based on this analogy, the contact line’s
stability criterion can be concluded that

where k, is the accurate Hookean spring constant (spring constant)
and AR represents the deformation of the GLI and is defined as

k > dcos[0,(R)]/dR, Stability,

k = dcos[0,(R)]/dR, Criticality, (25)
0 k < dcos[0,(R)]/dR, Jump.
a
(@) 30 : (®)
25 1
~ 1
V/b £ |
3" ' 4,
| —>
= 10 1
1
s ]
o 1
0 0.2 0.4 0.6 0.8
FIG. 6. Schematic diagrams of (a) asymmetric and (b) symmetric CAH loops. In /2
(a), corresponding to Fig. 4(b) within the range V /b € [3.0,5.0], the red line repre-
sents evaporation and the blue line represents condensation, illustrating an asym- FIG. 7. (a) is the evaluation of the accuracy of approximation. (b) is the schematic
metric loop. In (b), corresponding to Fig. 4(f) within the range V/b € [17.4,19.4], diagram for the mass-spring-damper model, which is the analogue of contact line
the red and blue lines form a symmetric loop. jump.
Phys. Fluids 37, 093364 (2025); doi: 10.1063/5.0288009 37, 093364-7

Published under an exclusive license by AIP Publishing

6€:8€°0} 520 1890100 ¥ |


pubs.aip.org/aip/phf

Physics of Fluids

cosf

FIG. 8. The comparison diagram of inherent contact angle 0; and apparent contact
angle 0, when using the LCB Eg. (5) to handle 0, in the transition region with width
Cn.

The detailed derivation and validation of the stability criterion
are presented in Appendix C. In the following, we further clarify the
calculation of the heterogeneity force gradient for mesa defects. In our
analytical solutions, the apparent contact angle 0, of the mesa defect is
determined using the LCB equation [Eq. (5); see Fig. 8]. It is important
to note that within the transition region of mesa defects,
0.(R) # 0;(R). The width of this transition region is given by Cn, and
within this region, the heterogeneity force gradient is =*e&/Cn.
Therefore, the analytical expression for heterogeneity force gradient is

dcos(0,
i%%lzgxnmfw+um+ﬂfnmfnn,nez
(26a)
) = {S/Cl’l |x] < Cn/2, (26b)
0 |x| > Cn/2.

The combination of Eqs. (26b) and (24) reveals the parameters
that affect the contact line jump in the microchannel with mesa
defects: reference contact angle 0y, microchannel width b, heterogene-
ity strength ¢, and Cahn number Cn. By setting the parameters prop-
erly, all cases in this paper meet min(e/Cn) > max(k), which ensures
the occurrence of contact line jump.

C. Discussion of CAH

This section focuses on deriving the relationship between CAH,
H, and energy dissipation, W, in a microchannel with heterogeneity
defects. This formula is the foundation of the CAH model proposed in
this study. To accomplish this, we extend and adapt the model devel-
oped by Joanny and de Gennes, making it applicable to a broader
range of scenarios and ensuring its relevance to more general cases.

Building on the previous analysis, the behavior of the contact line
is primarily governed by the interplay between the heterogeneity force
and the elastic restoring force. Figure 9 provides a graphical represen-
tation of this force balance to illustrate their influence on MCL. In this
construction, the comparison between the gradient of the heterogene-
ity force, d cos[0,(R)]/dR, and the spring constant k is reduced to a
comparison of the slopes of a straight line (representing the elastic
restoring force, f.) and the tangent to a curve (representing the hetero-
geneity force, f,). At points a and e, the contact line can return to a

ARTICLE pubs.aip.org/aip/pof

~ y

e

FIG. 9. Graphical representation of force balance during contact line jumps. The
blue and red lines depict the contact line trajectories during condensation and evap-
oration, respectively. The dashed line represents the elastic restoring force (f),
while the solid black line represents the heterogeneity force (f;). Points b and d indi-
cate the tangency points between the elastic restoring force and heterogeneity force
curves.

stable state after a small disturbance. However, at point ¢, the contact
line cannot maintain stability. The critical points b and d correspond
to the bifurcation points in Figs. 4(e) and 4(f). When the contact line
reaches these points, it jumps to the next stable state, transitioning to
d' or b/ depending on the direction of motion.

This graphical construction clearly outlines the trajectory and
behavior of the contact line. For instance, starting from point a and
moving to the right through the defect (representing droplet condensa-
tion), the contact line follows the path a — d' — b — b’ — e. This
trajectory corresponds to the condensation curve in Fig. 4, with
changes in the heterogeneity force aligning with the advancing contact
angle, 0. Conversely, starting from point e and moving left through
the defect (representing droplet evaporation), the path is
e — bV — d— d — a. This trajectory corresponds to the evapora-
tion curve, with changes in the heterogeneity force representing the
receding contact angle, 0.

The contact line jump creates distinct, non-overlapping trajecto-
ries during evaporation and condensation, leading to CAH: H # 0. In
addition, the viscosity can cause energy dissipation W during jumping.
In Appendix D, we have theoretically derived and proven the relation-
ship between H and W based on energy conservation. In this process,
jump leads the stored energy to be released as fluid kinetic energy
before being dissipated by viscosity. The result is as follows:

H=W. (27)

In Appendix D, it was established that H represents the area of
the shaded region in Fig. 9. This forms the foundation for the CAH
model proposed in this study, which calculates CAH directly through
a graphical representation of force balance. Before delving into this
model, it is essential to analyze the CAH modes.

In Chang et al’s" pioneering study on CAH in microchannels,
two CAH modes were identified: Individual-Effect-Dominated
Hysteresis (IDH) and Collective-Effect-Dominated Hysteresis (CDH).
As shown in Figs. 10(a) and 10(c), CDH occurs when the contact line
transitions directly between defects without intermediate slipping,
meaning individual defects have minimal impact, and collective defects
dominate the contact line behavior. Conversely, IDH is characterized

Phys. Fluids 37, 093364 (2025); doi: 10.1063/5.0288009
Published under an exclusive license by AIP Publishing

37, 093364-8

6€:8€°0} 520 1890100 ¥ |


pubs.aip.org/aip/phf

Physics of Fluids

@/ b/

ARTICLE pubs.aip.org/aip/pof

©f,

/ /

=Y

/

/

=V
=Y

FIG. 10. Schematic diagram of CAH modes with mesa. The blue line represents the trajectory of the contact line jump during condensation, and the red line represents the tra-
jectory during evaporation. Among them, (a) is the IDH mode, (b) is the HDH mode, and (c) is the CDH mode.

by a slip—jump-slip-stick cycle, where individual defects significantly
influence the contact line.

In the original study, the CAH mode was symmetric, with identi-
cal contact line jumping behavior during evaporation and condensa-
tion, attributed to their specific cases with 4= 0.5 (equal-width
patterned heterogeneity). This paper explores a novel asymmetrical
CAH mode with 1 # 0.5 (non-equal-width patterned heterogeneity).
Figure 10(b) shows that the contact line exhibits distinct jumping
behaviors during evaporation and condensation. This new mode,
termed hybrid-effect-dominated-hysteresis (HDH), has been validated
through MCMP-LBM simulations (Fig. 4).

The criteria for the type of CAH consist of two parts: the jumping
behavior and the symmetry/asymmetry of the contact line. For exam-
ple, in a microchannel with specific heterogeneity, if the contact line
can stop in the background or the defect, after jumping during evapo-
ration and condensation, we define that the CAH in this case is sym-
metrical and refer to it as IDH, referring to Fig. 10(a). The definition of
CDH is similar, meaning that during evaporation and condensation,
the contact line can stop in the transition area between the background
and the defect after jumping, referring to Fig. 10(c). HDH is a newly
discovered particular case. In this situation, CAH is not symmetrical.
For instance, the contact line can jump to the transition area during
evaporation. Still, it can only jump to the defect or the background
during condensation, referring to Fig. 10(b). This asymmetric behavior
cannot be classified by existing IDH/CDH criteria,”” which only

0.7,

B IDH ! \Y

0.6 9 HDH I Y v
VY CDH |
QO.S - |
= I
D041 ‘ :
QEL 0.3 ‘ 1
s § I
02t B I
1] 1
0.1F :

0 L I L
0 0.5 1 1.5

2eb/g(6o)

FIG. 11. The classification of contact angle hysteresis (CAH) modes based on the-
ory from Chang et al.,*” while 2¢b/g(6q) = 1 presents the criterion for distinguish-
ing between modes IDH and CDH.

capture symmetric processes (Fig. 11). We, therefore, regard HDH as a
distinct mode.

The CAH mode can be identified using the graphical force
method by analyzing the intersection of the contact line jump trajec-
tory with the heterogeneity force curve in Fig. 12. In the non-equal
width case (4, < 0.5), the background is significantly wider than the
defect. Thus, during condensation, the contact line may lack sufficient
capability to cross the wide background and becomes arrested in a sta-
ble region, while during evaporation, it can readily jump across the
much narrower defect, landing in the transition zone. These processes
are illustrated in Fig. 12(b). Based on the above-mentioned analysis,
we construct the criteria including “Evaporation criterion” (Ec) and
“Condensation criterion” (Cc) to predict the symmetry of MCL in
each defect, respectively. This asymmetry is quantified by the Ec and
Cc parameters: Ec (evaporation) and Cc (condensation) measure how
strongly the background and defect widths constrain the jump posi-
tion. As summarized in Fig. 12, their signs provide a unified criterion
distinguishing IDH (Ec < 0, Cc < 0), CDH (Ec > 0,Cc > 0), and
HDH (Ec > 0,Cc < 0). Appendix E presents a detailed derivation of
this approach, and the result is

be
Ec=——— 1, 28
“= g0 5
_be
Cc :m - (1 — }..n), (28b)
g(6p) = ——<°° il (28¢)

7 — 20y — sin(20,)

In this criteria, the signs of (Ec) and (Cc) reflect the modes of
droplet during evaporation and condensation: when Ec > 0, the drop-
let undergoes CDH; when Ec < 0, the droplet undergoes IDH. The
same goes for Cc. The consistency of signs reflects the symmetry of
CAH modes. Through the combination of criteria, we can distinguish
the CAH modes in microchannels with mesas:

* Ec < 0and Cc < 0: IDH.
* Ec > 0and Cc > 0: CDH.
e Ec > 0 and Cc < 0: HDH.

The Ec — Cc framework serves as a mapping from the parameters
of a heterogeneous microchannel (e.g., b, ¢, and 4,) to the correspond-
ing CAH mode. We keep the arrangement of 4, using Eq. (18) and cal-
culate each CAH during evaporation and condensation. By plotting Ec
on the horizontal axis and Cc on the vertical axis, the CAH mode can
be identified based on the quadrant in which the case falls, as illustrated
in Fig. 13. Furthermore, using the definitions of Ec and Cc, along with
the H — W relationship described in Eq. (28b), we derive an equation
for predicting CAH in microchannels containing mesa defects
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e / / /' FIG. 12. Schematic diagram of Ec and Cc
> > > in different CAH modes with mesa.
/ R ," R Among them, (a) is the IDH mode, (b) is
J < the HDH mode, and (c) is the CDH mode.
- o _# l— L F--- —
Ec Ec
ACe deformation. When 0 < 4, < 1, this deformation can lead to devia-
tions in CAH from the predictions of Eq. (29b). Consequently, simula-
) tions of the 3D cases are conducted to refine and enhance the CAH
Inexistence CDH model for heterogeneous microchannels.
In the 3D cases, the local apparent contact angle depends on the
> spatial variation along the y-direction for a given contact line shape,
Ec represented as 6, = 6,(y). The spatially averaged apparent contact
angle is expressed as

IDH HDH 1
e = | 0,000, (30)

0

1
Rave = | R(y)dy. 31
FIG. 13. The phase diagram used to determine the CAH modes. e Jo )dy (31)

:bsz g

2 2
H o 2% [h(Ec)EE + h(Ce)Cé?], (29a)
1, x>0,
h(x) = { (29b)
0, x<0.

The detailed derivation process is provided in Appendix F.
Verification using MCMP-LBM simulations is presented in Fig. 14. As
shown, all data points corresponding to different modes are correctly
positioned in their respective quadrants in panel (a) and collapse onto
a single curve in panel (b), aligning well with the theoretical
predictions.

V. THREE-DIMENSIONAL RESULTS AND DISCUSSION
A. Setting

The physical description of the 3D cases is provided in Sec. IT A.
Compared to the 2D scenarios, the 3D cases introduce an additional

parameter, A,, which controls the lateral heterogeneity. The physical
significance of /, lies in influencing the contact line’s lateral

B. Result

The MCMP-LBM simulation results are shown in Fig. 15.
Consistent with the 2D simulation, the results exhibit a typical cycle of
MCL: (a)-(c) and (e) and (f) represent the stick phase, (c) and (d) rep-
resents slip, and (d) and (e) represents jump. When the contact line is
in the background, it remains straight, similar to the 2D case.
However, when the contact line encounters defects, it becomes dis-
torted, leading to wrinkling and deformation of the GLI near the wall
surface. The effect of this deformation on contact line behavior is
shown in Figs. 15(g) and 15(h). The contact line deformation causes a
significant discrepancy between the actual average contact angle and
the wettability of the defect when the contact line is positioned on the
defect. Therefore, relying solely on parameters 0y and ¢ is insufficient
to characterize heterogeneous microchannels’ wettability fully.
Additional parameters related to the arrangement of 3D defects, such
as A, must also be considered. This highlights a key difference between
the 3D and 2D cases. As a result, conclusions drawn from 2D models
must be adjusted to account for the complexities of 3D cases.

(@) ) . . () 1
:IDH
HDH
04
W/ CDH 0.8
v
02 v =
v v 20.6
3 \% o
o 0 ] 63 E
S04
02 a" ¢ ¢ )
m g
04 mg®, "m s 0.2
uy .,
0.6 B 0
0.6  -04 02 02 04 0 02

0.4 0.6 0.8 1

FIG. 14. Verification of (a) the Ec — Cc
criterion and (b) theoretical CAH using
MCMP-LBM simulations. Each point rep-
resents @ CAH process in the non-uniform
patterned  heterogeneity microchannel.
The CAH mode is determined directly
from the evaporation/condensation curve
(Fig. 4), and the coordinates of the points
are calculated using Eqg. (28h).
Hwcmp—tem and Hreory are obtained from
Egs. (19) and (290), respectively.
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FIG. 15. Evolution of the GLI of the drop-
let during condensation with parameters
b=2 2,=05 4, =05 0, =90
and ¢ = 1. Only the right side of the lower
half of the droplet in the microchannel is
shown (with the left side representing the
liquid phase). (g) and (h) display the
behavior of the contact line. The dotted
and dashed lines indicate the reference
contact angles, background wettability,
and defect wettability.
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C. Analysis
By capturing the maximum and minimum deformations of the 0.6 v ‘ ’

GLI, we can assess the impact of contact line deformation on the GLL
As shown in Fig. 16, the deformation caused by the contact line is
localized (close to the wall), with the GLI remaining wrinkle-free away
from the upper and lower walls, which aligns with findings from simi-
lar research by Chang et al.”” The average contact angle when the

/ly 0 0.25 0.5 0.8 1
| == ||
FIG. 16. Side view along the y-direction showing the maximum and minimum GLI

deformations when the contact line is located on defects under different 4, condi-
tions. The image is a close-up of the area near the solid wall.
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FIG. 17. The linear relationship between 04 and 4, after being normalized.
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contact line is located on a defect, denoted as 04, and its variation trend
is presented in Fig. 17, demonstrating the independence of 0, from b.
Furthermore, a quantitative relationship between 0, and other param-
eters was derived through linear fitting as follows:

1
. [cos(04) — cos(0p)] = 4y — 0.5. (32)
Therefore, based on the definitions of 0, and & we have

redefined the modified heterogeneity strength ¢’ and reference contact
angle 06,

¢ =cosly +¢/2 — cos 04, (33a)

cos Oy +¢/2 + cos 04

5 ; (33b)

/ p—
cos Oy =

(a) ' (b

ARTICLE pubs.aip.org/aip/pof

cos g = cos Oy — &(4, — 0.5). (33¢)

The linear relationship in Eq. (33¢) is semi-empirical, obtained
from observations of interfacial deformation. The modified parame-
ters, calculated from 0, and ¢, can be directly substituted into analytical
or theoretical calculations, effectively transforming the 3D problem
into a simpler 2D one. As discussed earlier, we use analytical methods
to validate the contact line trajectory obtained from MCMP-LBM sim-
ulations. Figure 18 shows good agreement between the simulation and
analytical predictions, except during the sticking phase, where the
defect’s spanwise characteristics cause a deviation. As shown in Fig. 15,
when the contact line approaches the defect, part of it behaves like the
2-D case, sticking at the junction, while the rest moves without hetero-
geneous force variation. This inconsistency causes deformation and
leads to spanwise non-uniformity in 0, and R during the slip process.
Even after averaging [as defined in Egs. (30) and (31)], the parameters

— Analysis
= Condensation(LBM)
3 | ==Evaporation(LBM)

e(we (O

55
Vb 6 2 3 z; 5 6
V/b
(©) (d)
35 95
oy
FIG. 18. The behavior of the contact line
simulated by MCMP-LBM, compared with
the analytical results. The parameter val-
ues are Oy = 90°, e =1.0, b =2, and
/n = 0.5. Panels (a) and (b) correspond
to the case with 4, = 0.25, (c) and (d)
with 4, =0.5, and (e) and (f) with
Ay =08.
R
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FIG. 19. Verification of the (a) Ec — Cc
criterion and (b) theoretical CAH based on
MCMP-LBM simulation for 3D cases.
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reflecting contact line behavior still show significant differences com-
pared to the 2D case. Jump remains the only mode that causes curve
bifurcation in the 3D cases. Similar to the 2D simulation, we keep the
arrangement of A, using 4, € [0.3,0.4,0.5] and calculate each CAH
during evaporation and condensation. Our LBM simulation results
align closely with the predictions of the proposed Ec — Cc criterion
[see Fig. 19(a)]. The average contact angle 0,y., used to calculate H, is
compared with the theoretical predictions in Fig. 19(b), showing excel-
lent agreement between the two. This consistency verifies that, by rede-
fining the modified heterogeneity strength ¢ and reference contact
angle 06, the theoretical framework developed for 2D cases (IV) can be
effectively extended to 3D scenarios.

VI. CONCLUSIONS

This study provides a comprehensive simulation of evaporation
and condensation in heterogeneous microchannels, develops a physi-
cal model for contact line jumping, and establishes criteria and calcula-
tion formulas for CAH applicable to 2-D and 3-D cases.

Using the MCMP-LBM framework, we accurately simulated con-
tact line behavior and validated the results against analytical predic-
tions. Consistent with prior studies, contact line behavior exhibits a
cyclic pattern of three fundamental modes: slip, jump, and stick.
Jumping introduces bifurcations in evaporation and condensation
curves, leading to CAH. By drawing an analogy between the contact
line jumping process and a mass-spring-damper system, we derived
macroscopic conditions for contact line jumping based on force bal-
ance. The graphical construction of this balance further revealed that
CAH is fundamentally equivalent to energy dissipation during the
jumping process.

For the representative case of mesa defects, we proposed the Ec —
Cc criterion, which accurately identifies three types of CAH, including
hybrid-effect-dominated-hysteresis (HDH) resulting from non-equal-
width, as discovered in this study. Moreover, our analysis demonstrates
that with minor adjustments, the proposed model can be effectively
extended to analyze and compute 3-D scenarios, offering a unified
framework for understanding CAH in heterogeneous microchannels.

Despite the valuable insight provided by our research, several lim-
itations should be acknowledged: (a) Quasi-steady state assumption.
We assume droplet volume changes are driven solely by density differ-
ences without external forces, which excludes scenarios with moving
droplets driven by kinetic energy or external work. (b) Rectangular
heterogeneous patches. 3D simulations model heterogeneities as rect-
angular patches. Non-rectangular shapes cannot be directly

0.4 0.6 0.8 1
HTheory

characterized using the parameters 4, and /ly, so the current extension
methodology may not apply.

In the final part of our work, we provide suggestions for future
research. Our study differ fundamentally from the sessile droplet con-
figurations widely used in existing CAH experiments. Consequently,
relevant experimental data are currently unavailable. We suggest that
future studies carefully address challenges, mainly are maintaining
strict substrate symmetry and avoiding external perturbations. Our
results indicate that droplets in such systems are extremely sensitive:
even slight asymmetry or disturbance can induce irreversible lateral
motion, complicating experimental measurement.
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APPENDIX A: GRID INDEPENDENCE STUDY

To ensure numerical consistency, grid resolution is controlled
by the parameter f, which represents the number of lattice cells
across a characteristic length. The definition of f is shown in Fig. 1.
The relevant dimensionless groups [Eq. (Al)] and normalized
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physical quantities [Eq. (A2)] are preserved across grid refinements
as follows:

Re = v (Ala)
Pe = %ﬂ, (A1b)
@:ﬁéﬂ, (Alo)
Cn = g, (A1d)

b* = %, (A2a)

R = %, (A2b)
V= ﬂ—VZ, (A2¢)
Ef = % (A2d)

We tested three resolutions: ff =20, =40, and f = 50.
Convergence was assessed by monitoring droplet jumping behavior
(changes in the base radius R and volume V).

2D (D2Q9): Results (Fig. 20) show that f =40 and ff =50
produce nearly identical behaviors, while § = 20 exhibits nonphysi-
cal effects (e.g., spurious volume loss), confirming that finer grids
yield stable results.

3D (D3Q19): A similar trend is observed (Fig. 21); nonphysical
artifacts diminish as f§ increases, and convergence is reached for
B > 40.

These results demonstrate that our simulations are grid-
independent at f§ = 40 or higher, ensuring both accuracy and reli-
ability of the reported findings.

APPENDIX B: WETTABILITY CONDITIONS AND
VALIDATION

To simulate the conditions accurately, we implemented the
surface energy method developed by Fakhari and Bolster”' and

@, ®)

4.6

s 4.4

4.2

pubs.aip.org/aip/pof

further refined by Chang et al.*” This method is easy to implement
and can accurately simulate the contact angle under a quasi-steady
state.

Figure 22 illustrates the wetting condition setup. As an initial
step, the order parameter ¢”(x) is calculated based on the density
as follows:

G(X) _ pmin

¢°(x) =2

pmaj _ pmin . (Bl)

Using the finite difference method to discretize the derivative,
then the wetting condition is expressed as

w =- %®90“(XW)[1 — o ()l

(B2)

n,  Vo°|, =

The order parameter at wall point x,, can be obtained through

_ ho”(x) + 597 (%)

(x,,) = . B3
@7 (xy) oy (B3)
Substituting Eq. (B3) into (B2), we have
ﬂ{1+mf\/(1+m)274m o (xf)
2hm ¢\
’ s) — S g o
TI= ), 0; 7 90°,
@7 (xy), 0; = 90°,
(B4)

where m = —(4h/&)®. O = cos(0;) for component ¢ and O
= cos(n — 0;) for component . To ensure compatibility with the
halfway bounce-back scheme, we set h = s = 0.5. Consequently, the
heterogeneity of the microchannel is fully defined once the arrange-
ment of the inherent contact angle 0; on the surface is specified.

To further demonstrate the reliability of our numerical
method, we have added validation cases. According to both our
study and previous work,"” the interface shape in two dimensions
can be well approximated by a standard meniscus, meaning that the
interface can be accurately characterized by these two parameters:
radius R and central radius R., which are shown in Fig. 23(a).
Specifically, we suppressed phase change by initializing droplets
under equilibrium density conditions and varied substrate wettabil-
ity to compare base radius R and central radius R, with analytical

FIG. 20. Grid independence test for 2D
(D2Q9) simulations at three resolutions
(p = 20,40,50). (a) Condensation and
(b) evaporation cases. Results show con-
vergence between =40 and 5 = 50,
while 5 =20 exhibits spurious artifacts
(e.g., volume loss). In the cases, b = 4,
¢=05and 1 =0.5.
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FIG. 21. Grid independence test for 3D
(D3Q19) simulations at three resolutions
(B = 20,40,50). (a) Condensation and
(b) evaporation cases. Similar to the 2D
results, convergence is reached for
p > 40, while coarse grids produce non-
physical behavior. In the cases, b =4,
£=051, =05and A1 =05.

(a) 2.7 r
261
251
~
241
=20
23 - =40
= —B=50
22 : : : : . . :
45 46 47 48 49 5 47 48

predictions. Based on the mass (volume) conservation of the drop-
let, we derived the relationships between the parameters R, and R
and the apparent contact angles 0,. As shown in Fig. 23, the numer-
ical results are in excellent agreement with analytical solutions in
the following, reinforcing the accuracy of our method. This valida-
tion is based on quasi-static rather than dynamic conditions.

\% 20, — 7 + sin(20,)

26 8cos2(0,) ’
1 — cos(n/2 — 0,)

2 sin(n/2 — 0,)

R =
(B5)
R.=R—-b

APPENDIX C: THE CONTACT LINE’S STABILITY
CRITERION

At a specific position R, the heterogeneity force and the elastic
restoring force on the contact line are balanced, such that
fu(R) — fe(R) = 0. When a small perturbation occurs, it causes the
contact line to shift by a small displacement R, (0 < R, < 1), while
the droplet volume remains constant. To return to its original state
after the disturbance, the contact line must satisfy the following
conditions:

] [ [
an
X,

—1 {11 {
X h

O O O—
X S

-9 * o—

Solid

FIG. 22. Schematic diagram for the implementation of wetting condition.

4.9 5 5.1 52

fiR+R)—fi(R+R)<0 and fi(R—R.)—f.(R—R.) > 0.
(92))

Substituting the equilibrium condition, Eq. (C1) is equivalent
to

Ju(RER) — fu(R) _ fo(RER.) — fe(R)
+R. *R,

<0. (C2)

Since the volume of the droplet does not change during the distur-
bance, R remains constant. Therefore, [f,(R£R.) — f.(R)]/=R. = k.
Let R, — 0 and use the definition of the derivative to obtain the stabil-
ity criterion for contact line as follows:

k > dcos[0,(R)]/dR,  Stability,
k = dcos[0,(R)]/dR, Criticality, (C3)
k < dcos[0,(R)]/dR, Jump.

To compare the spring constant k with the heterogeneity force
gradient dcos[0,(R)]/dR, one can determine the jump. If there
exists a region where k < dcos[0,(R)]/dR is satisfied, then the con-
tact line will jump from the critical points.

The microchannel’s wettability is constructed using the hyper-
bolic tangent function to verify the proposed contact line jump cri-
terion’s accuracy. The heterogeneity force and its gradient are as
follows:

cos[0;(R)] = cos(0y) + gtanh[Ao(R - R, (C4a)
d(cos 0;) e 2
T EAO{l — [cos(6))/e)*}, (C4b)

where A is a parameter that controls the maximum value of the
heterogeneity gradient in the transition region and R,, is the loca-
tion of the maximum value. It should be noted that the Eq. (C4a)
can be used to model the mesa defects’ property shown in Fig. 2.
The hyperbolic tangent function in Eq. (C4a) effectively controls
the gradient of heterogeneity in the transition region, thereby facili-
tating the study of contact line jumps.

1 J~R+5/2

cos 0,(R) =~ [cos 0;(r)]dr. (C5)

R-¢/2

To illustrate how the relative sizes of k and A, affect the behav-
ior of the contact line within the microchannel, we present an
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FIG. 23. (a)—(c) Schematic droplet config-

()] 12 T T . urations inside the microchannel at appar-
O LBM resultsf| 0-4 ent contact angles 6, = 60°, 90°, and
Q — Analysis 120°. (d) Comparison between analytical
102 solutions and numerical results for the
L1p T s base radius R and central radius R;
~ across different 0,. The strong agreement
= 10 % confirms the reliability of the proposed
S 1F o] numerical method in predicting droplet
(et 1.02 | geometry inside microchannels.
&
091 1-0.4
1-0.6
0.8 ' g . '
40 60 80 100 120 140

0a (%)

example. Calculate 0,(R) using Eq. (C5), a variant of LCB equation
[Eq. (5)]. Set By = 90°, k = 0.5, and ¢ = 0.7. The results are shown
in Fig. 24. In Figs. 24(a)-24(c), the condition k < d cos[0,(R)]/dR
is not satisfied, keeping the contact line in a stable or critical state,
and no curve divergence caused by jumps occurs under this condi-
tion. In contrast, Figs. 24(d)-24(i) show a different scenario where

jumps occur, with the jump locations coinciding with the critical
points (i.e., the intersection of the solid and dashed lines). The
misalignment of these critical points leads to curve bifurcation
and, ultimately, the emergence of CAH. The simulated results
from the MCMP-LBM method confirm the predictions made by
Eq. (C4b).

(a) 6 — Analysis (b)lZO (C) 05
—Evaporation(LBM) 04
|— Condensation| -
4 Condensation(LBM) 100 % 0
& ] =
2 A/} 80 3 02
0.1} —»
—
0 60 0
0 2 4 6 8 10 5 10 0 2 4 6
(d)s (e)120 ®
4 100 5 FIG. 24. The contact line jump simulated
= Q 3 by MCMP-LBM and the comparison with
, = % & the analytical method. Cases for (a)—(c)
~ Ay = 0.5, (d)-(f) Ao =1.0, and (g)—(i)
Ay = 1.5. Dashed lines represent k.
0 60
0 2 4 6 8 10 5 10
(g)6 (h)120 @A) 1s
4 100 51
a < 5
< g
2 80 S0sfp=-====--A--=---~-
0 60 0
0 2 4 6 8 10 5 10 0 2 4 6
V/b V/b R
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APPENDIX D: DERIVATION OF H - W

In the equivalent model discussed earlier (Fig. 7), the behavior
of a contact line jump is analogous to the system’s response after
being perturbed at a critical point. In the absence of damping, the
mass-spring system would oscillate indefinitely with constant
amplitude, maintaining a constant level of mechanical energy.
However, with damping present, the system’s mechanical energy is
irreversibly converted into thermal energy by the damper, ulti-
mately bringing the system to a new stable state beyond the critical
point.

This study applies a similar perspective to analyze CAH.
During the transition from a critical point to a stable state, the work
done by the resultant force generates kinetic energy. As the contact
line reaches stability, all this kinetic energy is gradually dissipated
due to the effects of viscosity. By leveraging energy conservation
principles, the energy dissipation W can be calculated indirectly as
the work done by the resultant force during the contact line jump as
follows:

v d
W:J (f;,ffe)dRJrJ (fe — fu)dR. (D1)
b @

This indicates that W equals the enclosed area (already marked
in gray) surrounded by bb'dd’ in Fig. 9. This conclusion can signifi-
cantly reduce the computational complexity for some special
arrangements of heterogeneity defects (such as mesa).

Substitute Eq. (20) into (19) and determine the lower limit of
integration Vi (Ry) to get

1 [Vo+2b
H = (cosOr) — (cos04) = EJ [cos(0r) — cos(04)] dV.
Vo
(D2)
Using Eq. (2), we can derive that
dV = 2bdR + 2bdf, (D3)

where f = b{[20,(R) — 7 + sin 20,(R)]/8 cos 20,(R) }. Replace the
variable V and the corresponding integration limits in Eq. (D2) with
(D3) to obtain

Ro+1
H= J (cos Or — cos 04)dR+ (D4)
Ry
f (Ro+1)
J (cos g — cos 04)df . (D5)
f(Ro)

Due to the special arrangement of heterogeneity defects, for
any area of unit length, there are only two situations: it contains a
complete defect, or it contains two incomplete defects. In either
case, f(R) = f(R+ 1) is satisfied. The integration limits on both
sides of the second term on the right side of the Eq. (D5) are the
same, causing that term to cancel out as follows:

Ro+1
H = j (cos Or — cos 04)dR. (D6)
Ry

Equation (D6) also calculates the area of the gray area in Fig. 9,
which is entirely consistent with the derivation result of energy

pubs.aip.org/aip/pof

dissipation W. Therefore, in microchannels containing heterogene-
ity spots, the contact angle hysteresis H and energy dissipation W
satisfy the following relationship:

H=W. (D7)

Equation (27) is derived without distinguishing the specific
types of heterogeneity defects. Thus, it has considerable applicabil-
ity. This paper only conducts validation based on mesa.

APPENDIX E: Ec — Cc DERIVATION

Determining the CAH pattern involves two steps: (1)
Analyzing the contact line’s jumping behavior during evaporation
and condensation and (2) Determining whether the CAH exhibits
symmetry.

We use a graphical construction of the force balance to analyze
the contact line jumping behavior in a heterogeneous microchannel
containing mesa defects, as illustrated in Fig. 25. By comparing the
elastic recovery coefficient k with two characteristic slopes (denoted
as k; and k,), we can determine the mode of CAH. Given our defi-
nition of defects (0 < 4, < 0.5), the condition k, < k; is always sat-
isfied. Comparing k and k; provides insight into the contact line’s
behavior during evaporation: When k > k;, the contact line jumps
to the defect during evaporation; when k < ki, the contact line
jumps to the transition region. The relationship between the magni-
tudes of k and k; can be defined as the sign of Ec,

k>k —b/g(0y) < AnJe — Ec =be/g(0y) — Ay <0, (Ela)
k <k —b/g(0y) > An/e — Ec = be/g(6y) — 2y > 0.  (E1b)

A similar analysis can be conducted for the contact line jump-
ing behavior during condensation, resulting in the definition of Cc

k>ky, — b/g(0y) < (1 —2y)/e — Cc=be/g(0y) — 1+ 4, <O,
(E2a)

k<k,—0b/g(0p) > (1—1,)/e = Cc=be/g(0y) — 1+ 4, > 0.
(E2b)

2. The signs of Ec and Cc indicate the contact line’s jumping
behavior during evaporation and condensation, respectively. By
plotting these two parameters on a phase diagram, we can identify
the CAH mode based on the quadrant, as illustrated in Fig. 13. The
absence of data in the second quadrant, labeled “Inexistence,” arises
because, under the defect definition wused in this study
(0 </, <0.5), no scenarios exist where Ec < 0 and Cc > 0. In
essence, the Ec — Cc criterion provides a framework to map the
parameters characterizing the heterogeneous microchannel (e.g., b,
Ans> Og, etc.) to the corresponding CAH mode.

APPENDIX F: H DERIVATION

We have already demonstrated the relationship
between CAH and viscous dissipation (H = W). Therefore, by
calculating the area of a specific region in Fig. 26, we can
directly determine the H in heterogeneous microchannels with
mesa defects. The following will analyze the H for the three
CAH modes:
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@ A z 14 ) A ©f FIG. 25. The graphical construction of the
k / / { / force balance with mesa defects. The defi-
e k ,' /' } // ,’ ,;'/ nition of characteristic slopes are ky =
; A > G o > i o > ¢/2n and kp = ¢/(1 — 2n). (a), (b), and
/ Ak R /1 4 R i/ 4, R (c) represent three different contact line
,.' 4 1’ 4 il / jumping modes and their corresponding
Uy ; I | i | CAH.
A 1-4 . .
(@) /4 (b)/4 a, @/, a -» FIG. 26. The graphical construction of the
) af b, b, / b, “b, force balance with mesa defects. Among
P by them, (a) is IDH mode, (b) is HDH mode,
> > e > and (c) is CDH mode, with the dashed
R / R '," R line being the extended line of the trajec-
1% ,' tory. All points of intersection are labeled
Uy I | ) b, | G b, | with letters.
1. IDH. In Fig. 26(a), H is equivalent to the area S, 4,55, 0f the par- REFERENCES

allelogram formed by points a,, a,, b, and b,

be?
Hipy = Sajarbib, = larh & = 200 (F1)
2. HDH. In Fig. 26(b), H is equivalent to the difference between the
area S, q,b,5, Of the parallelogram and the area of left triangle

Su2a3a4:
bt g(0)[ be . 1?
H = — — | . F2
o= g~ 30 [0~ 2
Substituting the definition of Ec (E1b) into Eq. (F2), it simplifies
to

be* g(bh) B2,

g(0o) 20

3. CDH. In Fig. 26(c), H is equivalent to the difference between the
area Sy, a,5,, Of the parallelogram, the left triangle S,, 4,4, and the
right triangle Sp, 4.5,

o=y o+ S o2

(F4)

Hupy = (F3)

Substituting the definition of Ec (E1b) and Cc (E2b) into Eq.
(F4), it simplifies to

bt g(6y)

_ o ve 2
Hepy = 2(00) 2b [E¢ + C?l. (F5)

By introducing Heaviside function h(x), Egs. (F1), (F3), and
(F5) can be combined into

be? g 2 2
H ="~ 2 [n(Ec)EC + h(Cc)C], (F6a)
g 2b
1, x>0,
h(x) = (Feb)
0, x<0.
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