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Abstract

Purpose – The aim of the present study is to evaluate the accuracy and efficiency of Lattice-BGK
(LBGK) method application in simulation of the 3D flow through complex geometry. On the other
hand, the steady flows through vascular tube with Reynolds number 10-150 and different constriction
spacing ratios are simulated.

Design/methodology/approach – The numerical method is based on the LGBK method with an
incompressible D3Q19 model. To treat the curved boundary, the “bounce back” scheme combined with
spatial interpolation of second order is applied.

Findings – The highly axisymmetric property in the direct 3D tube flow simulation is observed.
Solutions obtained from LBGK method are quite consistent with that of finite volume method (FVM).
The overall order of accuracy of these LBGK solutions is about 1.89. The LBGK incompressible D3Q19
model with the curved boundary treatment can handle the problems of 3D steady flow through
complex geometry.

Research limitations/implications – Investigating the flow in constricted vascular tubes with
different stenose shape and higher Reynolds number is left for future work.

Practical implications – Lattice BGK method is the very useful tool to investigate the steady
vascular flow.

Originality/value – Applying LBGK method with incompressible D3Q19 model to simulate the
steady flow through complex geometry. The accuracy and efficiency of the present LBGK solver are
examined.
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1. Introduction
The lattice Boltzmann method (LBM) has been proposed as an alternative numerical
scheme for solving the Navier-Stokes (NS) equations. Historically, the LBM was
developed from the method of Lattice-gas Automata. Since McNamara and Zanetti
(1988) used Boltzmann equation to simulate lattice-gas Automata, LBM has been
developed very rapidly (Higuera and Jimenez, 1989; Chen et al., 1992a, b; He et al., 1996;
Mei et al., 1999; Yu et al., 2003). Unlike traditional finite difference method and finite
volume method (FVM), LBM based on the microscopic kinetic equation for the particle
distribution function and from the function, the macroscopic quantities can be
obtained. The kinetic nature provides LBM some merits. Firstly, it is easy to program.
Since the simple collision step and streaming step can recover the non-linear
macroscopic advection, basically, only a loop of the two simple steps is implemented in
LBM programs. Secondly, the simple pressure density relationship matches well with
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current trends of parallel computing (Chen et al., 1996). Thirdly, LBM seeks for the
minimum set of velocities in phase space. Actually, only one or two speeds and a few
moving directions are used in LBM velocity model, for example, commonly used 3D
19-velocity model (D3Q19) has two speeds and 18 moving directions. For the
approaches in LBM, Lattice Bhatnagar-Gross-Krook (LBGK) scheme is the simplest
approach because it only has a scalar relaxation parameter t. For its simplicity, here
the LBGK method is employed to simulate the steady viscous flow in vascular tubes.

The flow in constricted tubes has been of great interest to biodynamicists because
localized arterial stenoses may occur in the cardiovascular system which due to
atherosclerosis. The stenoses may affect the cardiovascular system severely because
Young and Tsai (1973) found that when the internal diameter is reduced beyond about
50 per cent of the nominal value, the pressure losses may be significant. In the past,
there are many numerical studies on steady laminar flow in axisymmetric constricted
tubes. Lee (1990, 1994) applied the vorticity-stream function approach to study the
laminar flow through variable constrictions in vascular tube. Through study in
Reynolds numbers 5-200, Lee (1990, 1994) mainly addressed the effect of the different
constriction spacing ratios. Damodaran et al. (1996) studied the laminar flow through
tubes with multiple constrictions by FVM.

Recently, using LBM to investigation of 2D constricted channel flow or 3D tube flow
become more popular. For 2D channel flow, Luo (1997) deals with some flow in 2D
symmetric channel with expansion. Cosgrove et al. (2003) studied the transition of
oscillatory channel flow. For 3D flow in rigid straight tubes, Halliday et al. (2001)
simulated the axis-symmetric flow by using LBGK D2Q9 model and adding an extra
term into an adjusted evaluation equation for the lattice fluid’s momentum distribution.
However, the extra term added into the evaluation equation involves stress and high
order fluxes, the finite difference can not be avoid which may destroy the spirit of the
LBM.

Hence, many studies (Chen et al., 1992a, b; Maier et al., 1996; Mei et al., 2000; Artoli
et al., 2002) about the flows in circular tube still have to recourse to 3D LBM model.
Usually, three athermal 3D Lattice Boltzmann Equation (LBE) models (D3Q15, D3Q19,
and D3Q27) are available. Because the D3Q19 model provides a balance between
computational reliability and efficiency comparing with the D3Q15 model and the
D3Q27 model (Mei et al., 2000), we apply the D3Q19 velocity model in our simulation.

At beginning, Maier et al. (1996) simulated the poiseuille flow in a circular pipe by
D3Q19 model with the bounce back scheme. Without an accurate curved boundary
treatment, the boundaries must be represented by lattice nodes, hence the actual
boundaries become jagged and the discretization error can decrease only by increasing
lattice system.

Later, some more accurate curved boundary treatments were proposed and applied
in simulation 3D circular tube flow. Mei et al. (2000) proposed an accurate 3D curvature
boundary treatment and simulated 3D circular tube flow using the standard D3Q19
model. Artoli et al. (2002) using the standard D3Q19 model studied the 3D pulsatile
flow in a pipe with the boundary treatment proposed by Bouzidi et al. (2001). However,
Hou et al.(1995) and Maier et al. (1996) found that the calculations with pressure
gradient are subject to compressibility error, which is due to the compressibility effect
of standard D2Q9 and D3Q19 models. When using LBM, diminishing the
compressibility effect is important for study pulsatile flow or flow with large
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pressure gradient. Hence, He and Luo (1997) proposed an incompressible LBE model.
Using the incompressible D3Q19 model, a few 3D cases such as the flow in lid-driven
cavity (d’Humieres et al., 2002) or natural convection of air in a cubical enclosure (Peng
et al., 2004) were performed. However, the cases are all with very simple geometry and
not involve large pressure gradient.

Till today, studies of using incompressible D3Q19 model to simulate the flow
through complex geometry with large pressure gradient have not been reported. One
aim of our present study is to test LBGK method application in simulation of the 3D
flow through complex geometry. Hence, the accuracy of LBGK solutions is evaluated
and the efficiency of LBGK method is compared with that of FVM. On the other hand,
because we are particularly interested in flow through vascular tube, we would like
using LBGK method to investigate the effect of distance between two adjacent stenoses
on streamlines, shear stress, etc. as the flow passes through them.

1.1 Stenotic vessel geometry and lattices
Geometry of the constrictions may be described by different profiles, such as the
Gaussian distribution curve, Cosine curve, etc. Because the Cosine curve provides a
smooth constriction which can represents an arterial stenose, Cosine curve is used in
our study. The geometry of two stenoses is shown in Figure 1. If r0 is the radius of the
nonstenotic part of the tube, radius of the first stenose r(x) is given in below function:

rðxÞ ¼ r0 2 br0{1 þ cos½2pðx2 S1Þ=D�}=2 ðS1 2 D , x , S1 þ DÞ

where r0 ¼ D=2; b ¼ 50 per cent is severity of stenose and the axial length of each
stenose is 2D. For the geometry of the second same stenose, parameter S1 in above
geometry function should be replaced with S2. The distance of two stenoses is defined
as S ¼ S2 2 S1:

To make flow fully developed and save grid nodes, length between the right end
and the second stenose is 8D, as shown in Figure 1. The total length L ¼ 11D þ S:
In this paper, if not stated clearly, the lattices used are uniform with 43 lattices units in
y and z direction and ðL*40 þ 1Þ lattice units in x direction.

2. Numerical methods
2.1 Lattice-BGK (LBGK) method
It is well known that the standard LBGK D2Q9 and D3Q19 model involves the
compressibility effect (Hou et al., 1995; Artoli et al., 2002). To solve any problem, when
using LBM, the pressure changes are described by density variance. In our present

Figure 1.
Model of the double

constriction tube (case
S=D ¼ 3)
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study of viscous flow through constricted vascular tubes, the non-dimensional
pressure drop Dp=ðrU 2Þ is equal to c2

sDr=ðrU
2Þ; where c2

s ¼ 1=3 and U is the
characteristic velocity (usually the maximum value of the inlet fully developed
parabolic velocity profile). Hence, when using the standard D3Q19 model to simulate
the flow involve high pressure drop, only very small U can be used to diminish the
compressibility effects, which can be approximately evaluated by Dr=r: However, for
certain Reynolds number, reducing U would make t value very close to 0.5, which may
lead to numerical instability. To solve the problem, the technique of increasing the
mesh size is commonly used (He et al., 1996), which may result in a much larger mesh
system than conventional CFD methods such as FVM.

To overcome the above difficulties, He and Luo (1997) proposed an incompressible
D2Q9 model used for steady and unsteady flows. Using the incompressible D2Q9
model, characteristic velocity U , 0:15 is valid and not necessary to adopt very small
value.

In present study, we applied an incompressible D3Q19 model which is similar to the
incompressible D2Q9 model proposed by He and Luo (1997). In LBGK method, f iðx; tÞ
is the distribution function for particles with velocity ei at position x ¼ ðx; y; zÞ and
time t. u ¼ ðu; v;wÞ; u, v, w are x, y and z component velocities, respectively. The
macroscopic pressure p and momentum p0u are defined as:

X18

i¼0

f i ¼ p;
X18

i¼0

f iei ¼ p0u ð1Þ

where p0 is the average pressure. For 3D 19 velocity model, it is written as:

e0;e1;e2;e3;e4;e5;e6;e7;e8;e9;e10;e11;e12;e13;e14;e15e16;e17;e18

� �

¼

0 1 21 0 0 0 0 1 1 21 21 1 21 1 21 0 0 0 0

0 0 0 1 21 0 0 1 21 1 21 0 0 0 0 1 1 21 21

0 0 0 0 0 1 21 0 0 0 0 1 1 21 21 1 21 1 21

2
664

3
775

The velocity model is shown in Figure 2.
In Lattice BGK method, the two main steps implemented are collision and

streaming. In the collision step:

f ne
i ¼ f iðx; tÞ2 f eq

i ðx; tÞ ð2aÞ

f iðx; tÞ ¼ f eq
i ðx; tÞ þ ð1 2

1

t
Þf ne

i ð2bÞ

where f ne
i is the non-equilibrium term and the equilibrium function f eq

i ðx; tÞ is defined
as:

f eq
i ðx; tÞ ¼ aipþ aip0

e i ·u

c2
s

þ
ðei ·uÞ2

2c4
s

2
u2

2c2
s

� �
ð3Þ
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where i ¼ 0; 1; 2 . . . ; 18 with a0 ¼ 1=3; ai ¼ 1=18; ði ¼ 1; 2; . . .6Þ; ai ¼ 1=36; ði ¼
7; 8; . . .18Þ c2

s ¼ 1=3:
It is noticed that the main difference between above LBGK incompressible D3Q19

model and the standard D3Q19 model is the form of equilibrium distribution function
(He and Luo, 1997).

The relax time constant t and the fluid viscosity n satisfies equation n ¼
ð2t2 1Þdx=6; where dx ¼ 1 is the lattice space. In this paper, time step dt ¼ 1:

In the streaming step, as standard LBGK, equation (4) is implemented on all lattices:

f iðxþ e i; t þ 1Þ ¼ fþi ðx; tÞ ð4Þ

In the computation procedure, we would like to know the shear stress tensor since it is
important in vascular flow study. For Lattice-BGK (LBGK) method, the shear stress
sxy can be computed conveniently from equation (5):

sxy ¼ 2 1 2
1

2t

� �X18

i¼0

f ð1Þi eixeiy ¼ rn
›u

›y
þ

›v

›x

� �
ð5Þ

in lattice units, where:

X18

i¼0

f ð1Þi eixeiy ¼
X18

i¼0

ð f i 2 f eq
i Þeixeiy þ 0ð12Þ ð6Þ

Equation (5) is usually calculated after the collision step. Hence, actually, it is not
necessary to pay additional computational cost to estimate the shear stress through the
velocity field which is usually needed in other CFD method (Artoli et al., 2002). The
symbol o(1 2) means second order accuracy in space.

Figure 2.
Scheme of lattice model

(3D 19 velocity model)

Lattice-BGK
simulation of

steady flow

189



In our study, for defining steady state, our criterion is:

i;j

X k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½uði; j; t þ 1Þ2 uði; j; tÞ�2 þ ½vði; j; t þ 1Þ2 vði; j; tÞ�2

p
k

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½uði; j; t þ 1Þ�2 þ ½vði; j; t þ 1Þ�2

p
k

, 1024 ð7Þ

where i, j are the lattice nodes in z ¼ 0 plane and u(i, j, t), v(i, j, t) are x, y component
velocity at time t, respectively.

2.2 Boundary condition
In general, according to the study of Chen et al. (1992a, b), the accuracy of the LBM is of
second order in both time and space. However, Zou and He (1997) and He et al. (1997)
found the wall boundary treatment may affect the overall accuracy. For example, the
original bounce back scheme is only of first order in numerical accuracy. Later, some
other boundary treatments were also proposed, such as the half way bounce back
scheme (Ladd, 1994), the non-equilibrium bounce back scheme (Zou and He, 1997) and
the extrapolation scheme (Chen et al., 1996). They all can give out improved results.
However, these treatments are most suitable for flat walls.

In 1998, an accurate curved wall boundary treatment was proposed by Filippova
and Hanel (1998) and later improved by Mei et al. (1999). And later Mei et al. (2000)
extended the 2D curved wall boundary treatment to 3D cases. Guo et al. (2002a, b) also
proposed a curved wall boundary treatment based on the idea of Zou and He (1997).
However, the most successful one was the treatment proposed by Bouzidi et al. (2001).
It combined the “bounce back” scheme and spatial interpolation of second order. Mei
et al. (2002) and Lallemand and Luo (2003) also found the boundary condition is a
simple, robust, efficient and accurate scheme. In our study, this curved boundary
treatment was uniformly applied to all near wall nodes.

The concept of the Bouzidi’s curve boundary treatment is very simple. Here, we use
a 2D problem to illustrate the idea. In Figure 3, q is defined as the fraction of the
intersection link in the fluid region: q ¼ ðjxf 2 xbjÞ=ðjxf 2 xwjÞ; where xf, xb and xw

are positions of fluid node, boundary node and wall node, respectively. Because the
collision step is not applicable to the wall nodes, for the fluid nod e which is most near
to the wall nodes, the distribution functions in some direction are actually unknown for
streaming step. For example, in Figure 3, for fluid node “j”, distribution functions f3, f4,
f7 and f6 are unknown.

Bouzidi et al. (2001) used a scheme to determine these unknowns. Firstly, the half
way bounce-back boundary condition should be understood. In Figure 3, for case
q ¼ 1=2; the actual position of the wall is located at “b3”, which is about one-half grid
spacing beyond the last fluid node “j”. The distribution function f 3ðxj; t þ 1Þ can be
obtained from a formula f 3ðxj; t þ 1Þ ¼ fþ1 ðxj; tÞ; which means the particle with the
velocity e1, travelled one grid spacing for one time step.

With the picture for the simple bounce-back scheme in mind, it is easy to
understand the situation depicted for other cases. For case q , 1=2; at time t, the
distribution function of the particle with velocity e5 at the point “c”, which located at a
distance

ffiffiffi
2

p
ð1 2 2qÞdx away from the grid point “j” would end up at the grid point “j”

after bounce back collision. That is shown by the thick bent arrow in Figure 3. So, it is
easy to obtain f 7ðxj; t þ 1Þ if we know fþ5 ðxc; tÞ because f7(xj,t þ 1) ¼ fþ5 ðxc; tÞ:
Although xc is not a grid point, the value of fþ5 ðxc; tÞ at the point can be reconstructed
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by a quadratic interpolation involving values of fþ5 ðxj; tÞ; f
þ
5 ðxd; tÞ and fþ5 ðxe; tÞ: In a

similar manner, for the case of q . 1=2 shown in Figure 3, we can construct f4(xj,t þ 1)
by a quadratic interpolation involving f 4ðxa; t þ 1Þ; f 4ðxf; t þ 1Þ and f 4ðxg; t þ 1Þ;
where f4(xa,t þ 1) ¼ fþ2 ðxj; tÞ: In this way, extrapolations in the boundary conditions
are avoided for the sake of numerical stability. This leads to the following quadratic
interpolation formulas.

For the case of q , 1=2 :

f 7ðxj; t þ 1Þ ¼ qð1 þ 2qÞfþ5 ðxj; tÞ þ ð1 2 4q2Þfþ5 ðxd; tÞ2 qð1 2 2qÞfþ5 ðxe; tÞ ð8Þ

For case q . 1=2; to get f 4ðxj; t þ 1Þ;

f 4ðxj; tþ 1Þ ¼
1

qð1þ 2qÞ
fþ2 ðxj; tÞ þ

ð2q2 1Þ

q
f 4ðxf; tþ 1Þ2

ð2q2 1Þ

ð2qþ 1Þ
f 4ðxg; tþ 1Þ ð9Þ

Study of Lallemand and Luo (2003) provides more general formulas for moving and
stationary boundary.

For the inlet and outlet boundary conditions, the extrapolation method proposed
by Guo et al. (2002a, b) is applied. The fully developed Poiseuille parabolic velocity
profile in the inlet boundary is specified and the corresponding pressure of the fluid
is extrapolated from the next inner nodes. Then the equilibrium part of distribution
function can be determined through equation (3). The corresponding
non-equilibrium part of distribution function can be extrapolated from the next
inner nodes. So the collision step can be implemented. The characteristic velocity U
is chosen as 0.1 in our simulations. For the outlet boundary, the outlet pressure is

Figure 3.
Curved boundary

geometry and lattice
nodes
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specified and corresponding velocity is extrapolated from the inner nodes. The
equilibrium and non-equilibrium part of distribution functions determined in the
same way as inlet boundary condition.

2.3 Finite volume Navier-Stokes (NS) Solver
For comparison purposes, a pressure-based finite-volume NS solver, FLUENT
(a commercial software), is used in this study. When applying FLUENT, we set an
implicit solver, which is relatively efficient in obtaining steady-state solutions.

The 3D unstructured linear brick element mesh is generated for FLUENT
simulation. Also for comparison purposes, the number of the grid nodes is the same as
the number of uniform grid nodes for LBM solver.

On the other hand, the LBM is a time-accurate explicit solver. The time step allowed
is limited by stability constraint. Therefore, we should notice above difference between
the two solvers when we compare their efficiency. Actually, some other studies (Noble
et al., 1996) have found that the LBM is as efficient as conventional methods when
similar explicit time-marching schemes are used.

3. Results and discussion
In this part, viscous flows through constricted vascular tubes with different
Reynolds number are simulated. Firstly, to validate our 3D LBGK solver, results of
LBGK and FVM are presented and compared, and then followed by a detailed
comparison of accuracy and efficiency between the two solvers. In the end of this
part, the effect of distance between two adjacent stenoses on streamlines, shear
stress, vorticity and velocity distribution as the flow passes through them are also
discussed.

Firstly, we would like to validate our 3D LBGK solver. To investigate whether the
flow is axis-symmetric is very interesting for such 3D simulation. Here, we defined a
variable of state, x, to measure the asymmetry (Luo, 1997):

x ¼
X

x i;j[V
uðxi;jÞ2 uðx� i;jÞ
� �2

ð10Þ

where V is one of the eight planes is shown in Figure 4. Plane i can be described in
cylinder coordinate system by w ¼ ði2 1Þp=4; ð1 # i # 8Þ: x� ij is an axisymmetric
node of xi;j: It is obvious that when the flow pattern is axisymmetric, x ¼ 0: However,
the value of x, is not exactly zero when the system reaches its steady state, which
depends on the system size in the simulation. Here, to investigate value of x,
simulations of the case S=D ¼ 1 (one constriction) with Reynolds number 10, 50 and
150 are performed. Through observation made with two lattice system sizes, Nx £
Ny £ Nz ¼ 221 £ 21 £ 21 and 441 £ 41 £ 41; it is found that the values of x at the
steady state decays to zero as N23

x :
And then, we would like to present and compare the results of LBGK and FVM.

Appling the two solvers, simulations of the case S=D ¼ 1 (one constriction) with
Reynolds number 10, 50 and 100 are performed. For simplicity, in all of the velocity
profiles comparisons, due to axisymmetric velocity field, for results obtained from
FVM, we only show the data along a radius.

From Figure 5, we can see that both the normalized axial and radial velocity
component U, V profiles in different x positions of LBGK agree well with that of the
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Figure 4.
u velocities in the 8 planes

are investigated for
asymmetry

Figure 5.
Solutions of FVM and

LBM ðS=D ¼ 1;Re ¼ 10Þ
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FVM. From the small figure in lower left of Figure 1, we can see that the wall vorticity
of the LBGK solution has small discrepancy with that of the FVM. That is because in
LBGK, to get wall vorticity, the finite difference method has to be involved and there
are only 15 lattices in y, z direction. In Figure 5, the lower right is the pressure drop
along the axial line got from the LBGK and FVM solutions. The results agree very well.
Here, the pressure drop Dp=ðrU 2Þ of case Re ¼ 10 is higher than other cases with
higher Reynolds number and around the stenose ðx ¼ 0Þ; the pressure drop is very
steep. From this case, it is also found that although LBM based on the microscopic
kinetic equation, it still can give out accurate results with coarse lattices.

For case of S=D ¼ 1 with Reynolds number 50, results comparison is shown in
Figure 6. In Figure 6, we can see that both the normalized axial and radial velocity
component U, V profiles in different x positions obtained from LBGK and FVM agree
very well. In Figure 7, the axial Umax in axis and pressure along axis got from the two
methods also match in high accuracy.

In Figure 8, for Reynolds number 100, comparisons of the normalized axial and
radial component velocity at different axial position are performed. The results of
LBGK method agree well with that of FVM.

Figure 6.
Axial and radial
velocity profiles
ðS=D ¼ 1;Re ¼ 50Þ
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After some results of LBGK and FVM are presented and compared, we would like to
make a detailed comparison of accuracy and efficiency between the LBGK and FVM
solver. For that purpose, three uniform meshes with Nx £ Ny £ Nz ¼
111 £ 11 £ 11(coarse), 221 £ 21 £ 21(medium) and 441 £ 41 £ 41(fine) grid nodes are
used for LBGK solver to simulate case of S=D ¼ 1: Each finer mesh is obtained by
doubling the number of cells of the coarser mesh in each direction. Unstructured linear
brick element meshes with equivalent total grid nodes are generated for FVM solver.

The overall order of accuracy of a solution can be estimated using the following
formula (Ferziger and Peric, 1999):

n <
lg

P
f2h 2 f4hj j=N

� 	
2 lg

P
fh 2 f2hj j=N

� 	
lg 2

ð11Þ

where f represents a dependent variable; N is the total number of points compared;
and subscripts h, 2h, 4h stand for solutions on fine, medium, and coarse meshes with
grid spacing doubled each time. Here, the accuracy results are presented in terms of

Figure 7.
Axial velocity and

pressure along axis
ðS=D ¼ 1;Re ¼ 50Þ
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u-velocity component. With f ¼ u in equation (11), the order of accuracy for LBGK
solver estimated from the solutions with three meshes is 1.89. The average
discretization error of a simulation on mesh h can be estimated via the Richardson
extrapolation (Ferziger and Peric, 1999) as:

1 ¼
ErrorP

fhj j=N þ Error
where Error <

P
fh 2 f2hj j=N

2n 2 1
ð12Þ

In the above, the denominator in the first equation is the estimated average “exact”
solution and n in the second equation is the order of accuracy of the solver (Lai et al.,
2001). If equation (12) is used to estimate the average errors on the medium and fine
meshes for u velocity, it is found that LBGK solutions have discretizati on errors of
about 1.33 and 0.40 per cent.

The efficiency of each solver is evaluated by comparing the respective computing
times required. This comparison is not straightforward. To minimize the influence of

Figure 8.
Axial and radial velocity
profiles ðS=D ¼ 1;Re ¼
100Þ
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computers and convergence criterion, in this study, both the LBGK solver and
FLUENT are executed on a super computer (Compaq ES40: total performance of 5,300
Mflops) in the National University of Singapore. The initial conditions of the flow field
are also the same. The residual used to monitor the convergence is defined using the
u-momentum equation for two solvers, and they are defined as (Lai et al., 2001):

LBM :
X u2 u 0

dt
vol










 and

FLUENT :
X

u
›u

›x
þ v

›u

›y
þ w

›u

›z
2 n

›2u

›x 2
þ

›2u

›y2
þ

›2u

›z 2

� �
þ

›p

›x

� �
vol












Note that all the computations are carried out on a single-CPU of the computer Compaq
ES40, which does not take parallel advantage of the LBM. In Table I, it seems that the
lattice BGK simulation takes about 6-10 times more computing time to obtain the
steady-state solutions when compared with FVM (FLUENT).

In the end of this part, we would like to discuss the effect of distance between two
adjacent stenoses on streamlines, shear stress, vorticity and velocity distribution as the
flow passes through them.

Using LBGK method, we obtained a group of results for S=D ¼ 2; 3; 4 with
Reynolds number 10, 50 and 150 which is shown in Figures 9-11, respectively. To save
mesh points, for Re ¼ 10 cases, only 31 lattices in y, z direction are used.

In Figures 9-11, the streamlines are illustrated above the axis and the shear stress
contours are below the axis. The shear stress values labelled in figures are normalized
by rU 2, where U is the characteristic velocity. The maximum shear stress value for
Re ¼ 10; 50 and 150 case are about 3.59, 0.94 and 0.40, respectively. These streamlines
and shear stress distribution are quite consistent with results of FVM. From Figure 9,
we can see that at Reynolds number of 10, the streamlines and shear stress contours for
S=D ¼ 2; 3; 4 are similar (case of S=D ¼ 4 did not show here). The flow around each
constriction almost has no interference with other.

In Figure 10, cases of Reynolds number 50 illustrated. The streamlines and shear
stress contours for S=D ¼ 3 and 4 are similar. The shear stress contours demonstrated
that for case S=D ¼ 2; there are weak interference. The streamlines in cases of Re ¼ 50
indicated that flow separated and very small eddies formed behind the stenoses.

In Figure 11, we can see that when Reynolds number is 150, between the two
constrictions, there is a circulation zone which fills most part of the valley region. The
shear stress fields are altered and the recirculatory eddy from the upstream
constriction is spread downstream and affects the flow passing through the
downstream constriction. In case of S=D ¼ 2; there is a separation streamline that

Solver Coarse mesh Medium mesh Fine mesh

LBGK simulation 4.3 (3,600) 80.8 (8,947) 2.101 (21,240)
FVM(FLUENT) 0.5 (30) 6.2 (120) 323.2 (370)

Note: Comparison of CPU times in minutes to get 3 order of residual reduction for steady flow through
constricted tube ðS=D ¼ 1;Re ¼ 10Þ (number in parentheses is the number of steps) Table I.
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divides the flow into two parts: the recirculating flow field between two constrictions
and the main flow field near the centre of the tube with relatively straight and parallel
streamlines.

The variations of the axial velocity and wall vorticity due to the influence of the
constriction spacing ratios and Reynolds number is shown in Figures 12 and 13,

Figure 9.
Streamlines and shear
stress contours ðRe ¼ 10Þ

Figure 10.
Streamlines and shear
stress contours ðRe ¼ 50Þ
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respectively. In Figure 12, it is obvious that the maximum centreline axial velocity does
not occur at the throat because at that point, the fluid is still in acceleration and
actually the maximum axial velocity occurs slightly downstream of each of the
constrictions. When Reynolds number is 150 and S=D ¼ 2; 3; the maximum velocity
value near the second constriction is also slightly higher than the maximum value at
the first constriction because the flow interference between the double constrictions
exists. For Re ¼ 150; S=D ¼ 4 case and all of Re ¼ 50 or 10 cases, the flow interference
is very weak and the maximum velocity values near the two constrictions are almost
same.

For the wall vorticity, the magnitude of the wall vorticity value increase rapidly
when the flow approaches the constriction and reaches a peak value slightly before the
throat position. At a location downstream of the peak value the wall vorticity decrease
rapidly and will reverse to negative value when the separation begins at the wall of the
tube. It is also obvious that the peak wall vorticity value increases with increasing
Reynolds number. When Re ¼ 150; S=D ¼ 2 or 3, the flow interference exists. In those
cases, the second peak wall vorticity values are always lower than the first ones.
However, for other cases, the flow interference is very weak and the two peak values
are almost the same.

Figure 11.
Streamlines and shear

stress contours ðRe ¼ 150Þ
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4. Conclusion
In this paper, fully 3D simulations of flow through tubes with double constrictions are
performed through applying a LBGK incompressible D3Q19 model. The numerical
results are obtained for a Reynolds number 10-150 with constriction spacing ratios of 2,
3, 4 and 1.

Firstly, we observed the highly axisymmetric property of the 3D flow in the
constricted vascular tube. Some solutions of LBGK and FVM are presented and
compared. The velocity profiles, central velocity and pressure drop, etc. obtained from
LBGK method are quite consistent with that of FVM.

Then the overall order of accuracy of the LBGK solution is evaluated as around 1.89.
In case of Re ¼ 10; the average discretization errors of LBGK solution (equation (12))
on the medium ð221 £ 21 £ 21Þ and fine ð441 £ 41 £ 41Þ meshes is found to be about
1.33 per cent and 0.40 per cent. The efficiency of LBGK solver is also compared with
that of FVM. It is found for above cases, the lattice BGK simulation takes about 6-10
times more computing time to obtain the steady-state solutions when compared with
FVM solver (FLUENT).

In our study, the 3D steady flows through vascular tubes with double constrictions
are investigated in detail. In cases of Reynolds number higher than 50, the maximum
velocity on axis shifts downstream, and the maximum value at the second constriction
is also higher than the maximum value at the first constriction. The local wall vorticity
reaches its highest value slightly upstream of each of the constrictions, and if the flow
interference between the two constrictions exists, the first peak wall vorticity value is

Figure 12.
Variation of axial velocity
on axis for different
constriction spacings

HFF
16,2

200



always higher than the second peak value. These conclusions are consistent with
results obtained by Lee (1994).

All the above results demonstrated that the incompressible D3Q19 model with the
curved boundary condition treatment proposed by Bouzidi et al. (2001) can handle the
problems of 3D steady flow through complex geometry. LBGK method is a useful tool
to investigate the steady flow in vascular tubes.

Further studies such as investigating the flow in vascular tube with higher
Reynolds number and applying advanced axisymmetric D2Q9 model to investigate the
axisymmetric flow are still needed.
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