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We propose a method for approximating the adhesion parameters in the Shan and Chen multicomponent,
multiphase lattice Boltzmann model that leads to the desired fluid-solid contact angle. The method is a
straightforward application of Young’s equation with substitution of the Shan and Chen cohesion parameter
and a density factor for the fluid-fluid interfacial tension, and the adhesion parameters for the corresponding
fluid-solid interfacial tensions.
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I. INTRODUCTION

Wetting and spreading phenomena of fluids on solid
phases are important to many industrial and natural pro-
cesses �1�. When an immiscible droplet comes into contact
with a solid phase, there is a contact line between the wetting
and nonwetting fluids and the solid surface. The contact
angle between the fluids and the surface can be calculated
through Young’s equation provided the interfacial tensions
between the fluid components and between each component
and the solid surface are known �2,3�.

Numerical methods can be very instrumental in enhancing
understanding of fluid behavior in complex systems, such as
porous media. The lattice Boltzmann method �LBM�, which
is based on mesoscopic kinetic equations, is a popular and
numerically robust technique for simulating single and mul-
tiphase fluids in arbitrarily complex media �4–9�. Although
the fluid dynamical characteristics of the LBM are well un-
derstood analytically and the method has been successfully
applied in the study of wetting and spreading phenomena
involving interfacial dynamics �4–10�, there are still uncer-
tainties in the interactions between the lattice Boltzmann
fluid and the solid phase. Progress has been made for several
LBM model types. For example, Briant et al. �1� investigated
the wetting and spreading phenomena for single component
multi-phase fluids using the free-energy-based LBM. Latva-
Kokko and Rothman �11� derived an estimate of the contact
angle as a function of a wetting tendency of the wall when
using color-gradient-based LBM. However, the multicompo-
nent multiphase LBM proposed by Shan and Chen �SC� �4�
is a more popular multiphase model and is better defined in
terms of interparticle potential than the color-gradient based
LBM �12� and we will focus on it exclusively here.

There have been many studies on wetting and spreading
phenomena using the SC model. Martys and Chen �6� stud-
ied multicomponent fluids in complex three-dimensional ge-
ometries. In their simulations, the interaction force between a
fluid and a wall was introduced. They found that reasonably
well-defined contact angles could be obtained by adjusting
the interaction strength between each fluid and a surface such
that one of the fluids wets the surface. Using the SC LBM,
Schaap et al. �13� and Pan et al. �9� studied the displacement

of immiscible fluids in different porous media and estimated
adhesion parameters through empirical calibration methods.
In the above studies �6,9,13�, no explicit relationship be-
tween contact angle and adhesion parameter has been pro-
posed. Kang et al. �7,14� studied displacement of immiscible
droplets subject to gravitational forces in a two-dimensional
�2D� channel and a three-dimensional �3D� duct. In their
studies, the contact angles considered ranged from only 60°
to 120° and the relationship between adhesion parameters
and contact angles was estimated as linear.

Benzi et al. �15� presented a mesoscopic model for the
interaction between a solid wall and a single component mul-
tiphase fluid �e.g., �16��. They derived an analytical expres-
sion for the contact angle that covers the range of contact
angles from 0° to 180° but depends on prior knowledge of
the � profiles, and hence is not useful as a predictive tool.
Our focus here is on the multicomponent multiphase SC
model.

To the best of our knowledge, all previous work on deter-
mining contact angles from adhesion parameters in the SC
multicomponent, multiphase lattice Boltzmann model is
strictly empirical and limited to a relatively small range of
contact angles. The details of the methods used to measure
contact angles were not provided in previous work. In this
paper, we present an algorithm for contact angle measure-
ment that allows systematic, consistent measurements. Then
we use measurements of simulated drops to develop and em-
pirically verify an expression based on Young’s equation for
determining adhesion parameters that lead to the desired
fluid-solid contact angle in the SC LBM.

II. METHOD

A. Shan-and-Chen-type multicomponent multiphase LBM

Here we implement the SC LBM �4� in two and three
dimensions for a multicomponent multiphase system. In the
model, one distribution function is introduced for each of the
two fluid components. Each distribution function represents
a fluid component and satisfies the following lattice Boltz-
mann equation:
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In Eqs. �1� and �2�, the ea’s are the discrete velocities. For the
D2Q9 model, they are given by

�e0,e1,e2,e3,e4,e5,e6,e7,e8� = c�0 1 0 − 1 0 1 − 1 − 1 1

0 0 1 0 − 1 1 1 − 1 − 1
� .

For the D3Q19 model, the discrete velocities are given by

�e0,e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15e16,e17,e18�

= c�0 1 − 1 0 0 0 0 1 1 − 1 − 1 1 − 1 1 − 1 0 0 0 0

0 0 0 1 − 1 0 0 1 − 1 1 − 1 0 0 0 0 1 1 − 1 − 1

0 0 0 0 0 1 − 1 0 0 0 0 1 1 − 1 − 1 1 − 1 1 − 1
� .

In Eq. �2�, for the D2Q9 model, wa=4 /9 �a=0�, wa

=1 /9 �a=1,2 ,3 ,4�, wa=1 /36 �a=5,6 ,7 ,8�, and for the
D3Q19 model, wa=1 /3 �a=0�, wa=1 /18 �a=1,2 , . . . ,6�,
wa=1 /36 �a=7,8 , . . . ,18�, cs=c /	3, where c=�x /�t is the
ratio of lattice spacing �x and time step �t. Here, we define
one lattice unit ��x� as 1 l.u. In Eq. �2�, �� is the density of
the �th component, which can be obtained from ��=
afa

�.
The macroscopic velocity u�

eq is given by

u�
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��F�

��

, �3�

where u� is a velocity common to the various components
defined as
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In Eq. �3�, F�=Fc,�+Fads,� is the force acting on the �th
component, here including fluid-fluid cohesion Fc,� and
fluid-solid adhesion Fads,�.

Each node in the computational domain is occupied by
every � component though one is dominant under most con-
ditions as described below. The minor components can be
thought of as dissolved within the dominant component.
With the techniques used here, the overall density of fluid in
the domain is approximately uniform because the densities
are complementary in the sense that 
���=�i �the constant
initial density� or �1+�2=�i in a two-fluid system.

B. Fluid-fluid cohesion and fluid-solid adhesion

The cohesive force acting on the �th component is de-
fined as �6�

Fc,��x,t� = − Gc���x,t�

a

wa��̄�x + ea�t,t�ea, �5�

where the � and �̄ denote two different fluid components and
Gc is a parameter that controls the strength of the cohesion
force.

The surface force acting on the �th component can be
computed as follows �6�:

Fads,��x,t� = − Gads,����x,t�

a

was�x + ea�t�ea. �6�

Here s�x+ea�t� is an indicator function that is equal to 1 or
0 for a solid or a fluid domain node, respectively. The inter-
action strength between each fluid and a wall can be adjusted
by the parameters Gads,�. Most previous literature has sug-
gested that Gads,� should be positive for nonwetting fluid and
negative for wetting fluid �6,7,9�.

C. Young’s equation

Young’s equation for computing the contact angle con-
tains interfacial tension values between the two fluids ��12�
and between each fluid and the surface ��S1 and �S2�:

cos �1 =
�S2 − �S1

�12
. �7�

This equation determines the contact angle �1 measured in
fluid 1 �Fig. 1� �17�.

D. Application of Young’s equation to multicomponent
multiphase LBM

Here we propose a straightforward application of Young’s
equation with substitution of the LBM cohesion parameter
and a density factor Gc���1−�2� /2� for the fluid-fluid inter-
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facial tension, and the adhesion parameters Gads,1, Gads,2
from Eq. �6� for the corresponding fluid-solid interfacial ten-
sions:

cos �1 =
Gads,2 − Gads,1

Gc
�1 − �2

2

. �8�

Equation �8� is simple and able to determine the contact
angle using only the parameters Gc, the equilibrium main
density �1, and the associated dissolved density �2, which
can be determined as discussed in the following section, and
Gads,1 and Gads,2. Equation �8� is similar to an equation pro-
posed in �16� but is significantly improved since it gives
more accurate predictions.

E. Determining Gc and the surface tension

In the SC model the parameter Gc controls the fluid-fluid
interfacial tension and there is a threshold value Gc,crit
=1 / ��1+�2� for Gc �6� beyond which an initially uniform
mixed system of two immiscible fluids will yield a stable
separation. �1 and �2 are the main and dissolved densities of
fluid 1 and fluid 2, respectively. The critical value Gc,crit
=1.0 for �1+�2=1. To verify this we carried out two series of
2D simulations where we placed a pure bubble of fluid 1 ��1�
inside a 100�100 square of fluid 2 ��2� with periodic
boundaries; both fluids had equal total masses �i.e., the num-
ber of pixels occupied by fluid 1 was equal to that of fluid 2�.
The two simulation series had initial densities of �i=2 and 8
�where �i=�1+�2� and the parameter Gc was varied from
zero until numerical instabilities occurred. Figure 2 shows
the density of fluid 1 ��1� and a smaller dissolved density of
fluid 2 ��2� inside the bubble, scaled according to initial den-

sity. From the figure, we can see that for 0	Gc�i	1.0 the
scaled densities are 0.5 for each component because the two
fluids diffuse until a homogeneous solution is present at
equilibrium. When Gc�i
1.0, the bubble filled with fluid 1
becomes increasingly “pure” with the density of fluid 1 even-
tually exceeding 1 for Gc�i
1.8 due to the compressibility
of the fluid. For a various Gc�i values, the equilibrium �1 and
associated dissolved �2 can be determined from Fig. 2.

The pressure at position x can be determined from the
densities as p�x�= ��1�x�+�2�x�� /3+Gc�1�x��2�x� /3 �7,18�.
By measuring the component densities inside and outside a
drop or bubble, the interfacial tension � can be determined
through Laplace’s law p�xinside�− p�xoutside�=� /R, where R is
the radius of the bubble. The scaled surface tension as a
function of Gc�i is also illustrated in Fig. 2. The relationship
between � and Gc�i is approximately linear when 1.0
�Gc�i�2.0.

Gc should be chosen carefully. Larger Gc is preferable for
multiphase simulations because it increases the interface

TABLE I. Adhesion parameters and contact angles �degrees� for
fluid 1 �Gc=0.9 and Gads,1=−Gads,2�.

Case Gads,2

Contact angle
computed from

Eq. �8�

Contact angle
measured from

Fig. 3

a −0.4 156.4 158.3

b −0.3 133.4 135.1

c −0.2 117.3 117.0

d −0.1 103.2 103.2

e 0.1 76.8 75.3

f 0.2 62.7 59.5

g 0.3 46.6 40.6

h 0.4 23.6 18.9

FIG. 3. �Color online� Simulations of different contact angles
for multicomponent fluids interacting with a surface �parameters
Gc, Gads,1, Gads,2 and measured contact angles for each case are
listed in Table I�. The density of the first substance is shown in dark
gray. Simulation domain is 200�100 l.u.2. Images represent 24 000
time steps from an initial condition of a 41�20 l.u.2 rectangle of
the first substance surrounded by the second substance. In each
region, the substances have density 2 and dissolved density 0.06.
�=1 time step for both fluids.

fluid 1

fluid 2

θ1

FIG. 1. Contact angle.

FIG. 2. �Color online� Scaled component densities �left-hand y
axis� and scaled lattice surface tension �right-hand y axis� as a func-
tion of the scaled cohesion parameter, Gc�i. The simulations were
carried out for two initial densities. The vertical line depicts the
Gc�i value used in the rest of the study. Gc,crit�i depicts the critical
Gc�i value above which stable phase separation is possible �see
text�.
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sharpness and limits the “solubility” of the fluids within each
other. On the other hand, smaller Gc is preferable because
that alleviates some numerical difficulties and can reduce the
compressibility of LBM fluids �13�. From Fig. 2, we found
that 1.6�Gc�i�2.0 is an appropriate compromise. Here we
chose Gc�i=1.8.

Although the determination of equilibrium densities in
Fig. 2 is obtained from cases where both fluids have equal
masses and the domains have periodic boundary conditions,
Fig. 2 is also valid for cases where the two fluids have dif-
ferent initial masses and for the presence of a solid boundary.

To demonstrate this, we prepared the following example.
We initialize a small rectangular area �e.g., 4% of the whole
200�100 domain� near a wall with substance 1 surrounded
by substance 2, and in each region, the substances have den-

sity 2.0 and dissolved density 0.6 �this dissolved density is
arbitrary and an order of magnitude larger than the expected
equilibrium dissolved density for “main” density of 2�. In
the simulation we set Gc�i=1.8, where �i=2.0+0.6=2.6,
Gc=0.6923, Gads1=−0.318, and Gads2=0.318.

We observe that in all regions �except the interface area�,
the equilibrium main fluid density is 2.565 and dissolved
density is 0.086, which agrees well with Fig. 2 because for
Gc�i=1.8, �main /�dissolved=2.565 /0.086 is about 1 /0.03.

We also simulated other cases with different initial
masses, Gads1, and Gads2. In the equilibrium state, the ratio of
the main fluid density and dissolved density all agree well
with the data in Fig. 2.

Finally, we considered cases with densities far from the
expected equilibrium condition. If the main substances in all
regions have for example, initial density 8.0 and dissolved
density 0.00, then the equilibrium area of substance 1 will be
smaller than its initialized area, but the contact angle can still
be well-predicted provided we use the equilibrium density
values.

As an example, we initialized all regions with main den-
sity 8 and dissolved density 0.0, with Gc=0.225. After
90 000 time steps, the equilibrium �main /�dissolved
=7.80 /0.24 agrees well with Fig. 2.

These simulations confirm that Fig. 2 can be directly used
in Eq. �8� to give a desired contact angle a priori.

III. RESULTS

A. Contact angle measurement

Contact angles can be computed from measurements of
the base and height of drops on a surface. If the base and
height of a droplet are L and H, respectively, the radius of the
droplet can by calculated from R= �4H2+L2� /8H. Then, the

FIG. 4. �Color online� Contact angles for two fluids interacting
with a surface vs the value of the adhesion parameter, Gads,2

�Gads,1=−Gads,2�. Simulation domain is 200�100 l.u.2. Results rep-
resent 24 000 time steps from an initial condition of a 41
�20 l.u.2 �“measured 1”� and a 41�40 l.u.2 �“measured 2”� rect-
angle of the first substance surrounded by the second substance.
�Left subfigure: In each region, the substances have density 2 and
dissolved density 0.06. Right subfigure: In each region, the sub-
stances have density 8 and dissolved density 0.24.� �=1 time step
for both fluids.
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measured contact angle can be obtained through the formula
tan �1=L /2 / �R−H�. The measurement of base and height
involves some ambiguities that require resolution or at least a
consistent approach.

The main difficulties in measuring drop base and height is
how to define a precise location of the interface between the
drop and the ambient fluid, since the simulated interface is
actually several lattice units thick. Here we chose a cutoff
density value as �cut=0.5�A, where �A is the density of the
fluid that forms the drop. It is obvious that choosing �cut too
close to �A or its associated dissolved density should be
avoided since those values occur far from the center of the
interface. Using linear interpolation method, we determined
the drop base width and the height of drop. Then we used the
preceding formulas to determine the contact angle in a simu-
lation.

B. Verification of proposed equation

To verify the proposed method for determining the con-
tact angles, some 2D and 3D numerical simulations were
carried out and 2D and 3D results from the literature �13,14�
were reevaluated. First, multicomponent fluids interacting
with a surface were studied. A sampling of parameters Gads,1
and Gads,2 that we used to compute different contact angles
with Eq. �8� is listed in Table I. The results are illustrated in
Fig. 3. The density of the first substance is shown in dark
gray. Images represent 24 000 time steps from an initial con-
dition of a 41�20 l.u.2 rectangle of the first substance sur-
rounded by the second substance. In each region, the sub-
stances have density 2 and dissolved density 0.06, which can
be obtained from Fig. 2.

Figure 4 shows the measured contact angles as a function
of Gads,2 when Gads,1=−Gads,2. The contact angles that are
obtained from Eq. �8� are also shown for comparison. The
contact angles calculated with Eq. �8� agree well with the
measured ones over most of the range.

These results suggest that the prediction of Eq. �8� be-
comes somewhat less accurate at low contact angle. This
prompted us to investigate the range of applicability of Eq.
�8�. Figure 5 shows that there are large ranges of the param-
eters Gads,1 and Gads,2 where there is only a small difference
between the contact angle computed using Eq. �8� and con-
tact angle measured using the algorithm described previ-
ously. In particular, the difference is less than 2° in the white
area of Fig. 5. Due to force imbalances, it is not surprising

that the differences in predicted and observed contact angles
become large where the difference in the magnitudes of the
Gads is large; for example, Gads,1=−0.7 and Gads,2=0 or
Gads,1=0 and Gads,2=−0.8. Despite this, the best parameter
sets do not appear to fall along the line Gads,2=−Gads,1 but
rather along Gads,2�−Gads,1+0.1. The reasons for this appar-
ent asymmetry are unclear and deserve further investigation,
but the results provide good guidance for the selection of
reliable parameter sets. It is interesting to note that, in accor-
dance with Eq. �8�, it is the difference in the Gads values
rather than their signs that determines the contact angle. For
example, for both parameter sets Gads,1=0.1 and Gads,2=
−0.2, and Gads,1=0.4 and Gads,2=0.1, the contact angle is
110.

Next, results from the literature were revaluated in terms
of our proposed expression �Eq. �8��. Schaap et al. �13� stud-
ied the contact angles of multicomponent fluids in 3D. The
computational domain for the 3D capillary geometry �13� is
a duct of length 78 l.u. and square cross section ranging from
8�8 to 38�38 l.u.2. The nonwetting fluid was placed in the
middle of the capillary with wetting fluid on top and bottom,
and the total masses of wetting �first fluid� and nonwetting
�second fluid� were equal.

In the study, Gads,2 was varied between 0 and 0.02 with
Gc=0.025 and Gads,1=−Gads,2. It should be noted that the
definition of cohesion force in �13� is different from that in
the present work. When Gc is defined on the basis of Eq. �5�,
the Gc of �13� would be 0.9 and both Gads,2 and Gads,1 would
also 36 times larger than they are in �13�. The simulations
were run to 100 000 time steps when equilibrium was nearly
attained. The images in Fig. 6 represent vertical slices
through the center of a 3D duct of size 38�38�78 l.u.3.
These results show that the contact angle of the nonwetting
drop changed from 90° at Gads,2=0 to 180° at Gads,2
0.012. At larger values of Gads,2, the nonwetting fluid de-
taches from the wall and an increasingly thicker film of wet-
ting fluid forms between the wall and the nonwetting fluid
drop �13�.

Figure 7 shows the contact angle as a function of Gads,2 in
the 3D simulations of �13� for various duct sizes. Although
there are small discrepancies between Schaap’s LBM results
and our formula, the trend of the numerical results is highly
consistent with the curve �Eq. �8��. There appears to be a
slight dependence of the contact angle on the duct size with
the results for larger ducts approaching Eq. �8� more closely.
We attribute this to the difficulties of accurately determining
contact angle in small systems.

FIG. 6. �Color online� Simulations of wetting �dark gray, fluid 1� and nonwetting �light gray, fluid 2� fluids in a 38�38�78 l.u.3 duct
�13�. The interface curvature becomes more intense and the contact angle for a nonwetting drop increases from 90° to 180° as Gads,2

increases from 0.0 to 0.020 as indicated in the figure. Gc=0.025.
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Kang et al. �7� also carried out a study that empirically
examined the dependency of the contact angle �1 on the in-
teraction parameter Gads,2 for 2D multicomponent fluids in-
teracting with a surface. Although the contact angles in their
study are limited to the range of 60° to 120°, these data are
also useful to verify our method. The numerical results
shown in Fig. 8 were digitized from �7�. We find that the
numerical results agree very well with our simple formula
again with only minor deviations �Fig. 8�. It should be noted
that, according to our definition of cohesive force �i.e., Eq.
�5��, Gc equals 9 times the Gc defined by Kang et al. �7�.
Hence, according to our definition, here Gc=1.8.

IV. CONCLUSION

In this paper, a method for determining the adhesion pa-
rameters that lead to an a priori fluid-solid contact angle in

the Shan and Chen multicomponent, multiphase lattice Bolt-
zmann model is proposed. To test the method, multicompo-
nent fluids interacting with a surface were simulated. Our
numerical results are consistent with the proposed formula
based on Young’s equation and given by Eq. �8�. We evalu-
ated the magnitude of deviation from Eq. �8� via a series of
simulations and demonstrated a broad range of Gads,1 and
Gads,2 parameter sets where the error is less than 2°. Our
method was further verified by reevaluation of the previous
numerical results of �13,7�.
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FIG. 7. �Color online� Contact angles of wetting fluid �fluid 1�
in 3D capillaries versus the value of the adhesion parameter, Gads,2,
for different duct sizes �in Schaap’s paper �13�, Gc=0.025 and
Gads,2 between 0.0 and 0.020. Notice that, according to our defini-
tion in Eq. �5�, Gc=0.9�.

FIG. 8. �Color online� Dependence of the contact angle of the
droplet �1, on the adhesion parameter Gads,2 based on Kang et al.
�7�. Other parameters are Gc=0.2 �in their paper, while according to
our definition of cohesive force, here Gc=1.8�, and Gads,1=−Gads,2.
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