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a b s t r a c t

A free energy (FE) model, the Shan–Chen (S–C) model, and the Rothman and Keller (R–K)
model are studied numerically to evaluate their performance inmodeling two-dimensional
(2D) immiscible two-phase flow in porous media on the pore scale. The FEmodel is proved
to satisfy the Galilean invariance through a numerical test and the mass conservation of
each component in the simulations is exact. Two-phase layered flow in a channel with
different viscosity ratios was simulated. Comparing with analytical solutions, we see that
the FEmodel and the R–Kmodel can give very accurate results for flowswith large viscosity
ratios. In terms of accuracy and stability, the FE model and the R–K model are much
better than the S–C model. Co-current and countercurrent two-phase flows in complex
homogeneousmedia were simulated and the relative permeabilities were obtained. Again,
it is found that the FEmodel is as good as the R–Kmodel in terms of accuracy and efficiency.
The FEmodel is shown to be a good tool for the study of two-phase flowswith high viscosity
ratios in porous media.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The lattice Boltzmann model for multiphase flow

The lattice Boltzmann method (LBM) is based on mesoscopic kinetic equations [1]. Comparing with the conventional
methods formultiphase flows, the LBMdoes not track interfaces, while sharp interfaces can bemaintained automatically [2].
LBMhas also been successfully applied to studymultiphase phenomena, for example thewetting and spreading of two fluids
[3–9] and multiphase flow in porous media [10–12].

There are several popular multiphase LBM models. The first one is the color-gradient model proposed by Gunstensen
et al. [13]which is based on the Rothman–Keller (R–K) lattice gasmodel [14]. Grunau et al. [15]modified themodel to handle
binary fluids with different density and viscosity ratios. Recently, Ahrenholz et al. improved the R–K model [16] and used a
multiple-relaxation-time LB model to handle cases of higher viscosity ratios and lower capillary numbers. The advantage of
the R–K model is that the surface tension and the ratios of densities and viscosities can be adjusted independently [16].

The second one is the Shan–Chen (S–C) model [17]. The S–C single-component multiphase model works well with high
density ratios [18], but the surface tension and the ratios of densities and viscosities cannot be adjusted independently.
Some parameters have to be determined through numerical experiments [16]. Pan et al. [10] and Li et al. [11] applied the
S–C two-component model to study the two-component flow in porous media. The maximum viscosity ratio in their study
is about 3 due to numerical instability [11].
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The third one is the free energy (FE) LBM [19]. However, the original FE model [19] does not have Galilean invariance for
the viscous terms in the Navier–Stokes equation [1,19]. Inamuro et al. [2] achieved a high density ratio through improving
Swift’s free energy model [19], but using the model involves solving a Poisson equation, which decreased the simplicity of
the usual LBM. Zheng et al. proposed a Galilean invariant FE LB model [20]. This model is simpler than that of Inamuro et al.
Here we will evaluate the model as regards modeling multiphase flow in porous media.

There are some theoretical analyses [1,19] of these threemodels but very few studies are basedonnumerical analysis [21].
In Ref. [21], Hou et al. compared the S–C and the R–K models and focused on drop/bubble simulation. However, there are
no strict quantitative comparisons with other available analytical solutions.

Here we evaluate three models: the R–K model [13–15], the S–C model [17], and the FE model [19] and mainly focus on
the FE model. Some other multiphase LB models [22,23] are not evaluated here.

The density ratio between two componentsmay be concerned in some situations. The S–C single-componentmultiphase
model is able to mimic flows with large density ratio [18]. However, if the S–C multicomponent model is used, the density
ratio is around unity. The R–K model seems able to simulate flows with large density ratio [15,16]. However, we found
that for layered two-phase flow through a 2D channel, quantitative comparisons between the result obtained from the R–K
model and the analytical solution are not goodwhen the density ratio is not unity. If the density ratio is large, the discrepancy
between the R–K result and the analytical solution becomes large. For the FEmodel, Zheng et al. [20] claimed that themodel
is able to mimic flows with large density ratio. However, Fakhari and Rahimian [24] recently found that this is not true and
the model seems only suitable for a density-matched binary fluid.

Our numerical study is limited to two-dimensional (2D) simulations and the density ratio in all cases is around unity.
We first briefly review the three multiphase models. Then the accuracy of these models is examined by comparing the
numerical solution with the analytical solution for layered two-phase flow through a 2D channel. After that, multiphase
flow in homogeneous porous media with different wettabilities is simulated and analyzed.

1.2. Two-phase flow in porous media

The isotropic flow of a Newtonian fluid through a porous medium can be described by Darcy’s law u = −
kG
µ
, where u is

the average velocity of the fluid in the direction of a pressure gradient, G is the driving force per unit volume or the pressure
gradient, and µ is the viscosity of the fluid. k is the permeability in the direction of G. It measures the ability of a porous
medium to transmit fluids in a specified direction.

Formultiphase flows in porousmedia, momentum transfermay occur between the two fluids, which is called the viscous
coupling effect [25]. To account for the viscous coupling effects, usually four dimensionless relative-permeability parameters
kij are used to measure the effective permeability of two-phase flow in two dimensions. They are defined by modifying
Darcy’s law as in [26]: ui = −

∑2
j=1

kkijGj
µj

, where i, j indicate phase 1 or 2, and ui is the average velocity of fluid phase i. The
relative permeabilities kij are usually functions of the wetting saturation Sw , the capillary number Ca and the viscosity ratio
M . Sw means the volumetric fraction of the wetting phase contained in pores. Ca =

uwµw

σ
is the capillary number, where

uw is the average velocity of the wetting phase, and σ is the surface tension. M is defined as M =
µnw
µw

, which means the
dynamic viscosity ratio between the nonwetting and the wetting fluids.

To determine kij, two numerical simulations can be carried out [12]. For one simulation, driving forces are applied in the
same direction, i.e., G1 = G2 (co-current flow), while for the other simulation, the driving forces are in opposite directions,
i.e., G1 = −G2 (countercurrent flow).

In this paperwe evaluate the performance of the three differentmodels in the study of two-phase flow in a homogeneous
porous medium. Although particular models have been applied to study oil–water displacement in porous media [10–12,
16,27,28], to the best of our knowledge, detailed numerical comparison of the efficiency and accuracy of the three models
has not been reported for two-phase flow in porous media. For simplicity, in all of our numerical simulations, the two fluids
may have different viscosities but have the same density.

2. Method

2.1. The FE model

The FE model improved by Zheng et al. [20] is introduced briefly in this section. In the model, two lattice Boltzmann
equations are used to solve the 2D Navier–Stokes equations and a Cahn–Hilliard equation, i.e., Eq. (1), which are used to
describe 2D immiscible two-phase flows [29–31]:

∂tφ + ∂β


φuβ


= θM∂β


∂βµφ


. (1)

The subscripts α, β, . . . will be used to represent Cartesian coordinates and ∂t , ∂α denote differentiation with respect to
t and xα , respectively. Summation over repeated indices is assumed. In the above equations, µφ is the chemical potential,
and θM is the mobility, which is a constant in our study. φ(x, t) = ρ1(x, t) − ρ2(x, t) is an order parameter and changes
between −1 and 1. ρ(x, t) = ρ1(x, t) + ρ2(x, t) is the density of the fluid at position (x, t).
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In this FEmodel [20,32], to solve the 2DNavier–Stokes equation, a common lattice Boltzmannequation (LBE) is employed:

fi (x + eiδt, t + δt) − fi (x, t) =
1
τρ


f eqi (x, t) − fi (x, t)


+ Si, (2)

where fi (x, t) is the density distribution function in the ith velocity direction. Si is a source term added into the LBE tomimic
the body force term that appears in the Navier–Stokes equation. To make the relaxation parameter change smoothly at the

interfaces between two fluids, the relaxation time τρ is chosen as τρ =


ν

ρ+φ
2ρ

1 ν
ρ−φ
2ρ

2 /c2s


δt + 0.5 [33], where ν1 and ν2 are

the kinematic viscosities of fluids 1 and 2, respectively.
In the above equation, the eis are the discrete velocities. For the D2Q9 model, they are given by

[e0, e1, e2, e3, e4, e5, e6, e7, e8] = c ·

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
,

where c =
δx
δt is the ratio of lattice spacing δx and time step δt . Here, we define one lattice unit (δx) as 1 lu and one time

step (δt) as 1 ts.
Here the body force term appearing in the above Navier–Stokes equation is Fα + µφ∂αφ, where µφ is the chemical

potential, can be derived from the free energy density function in the following section. The source term can take the
following form:

Si =
eiαωi

c2s


Fα + µφ∂αφ


. (3)

To recover the NS equations through Chapman–Enskog expansion, the equilibrium distribution functions f eqi are
constructed as follows [20]:

f eqi = ωiAi + ωiρ


eiαuα

c2s
+

eiαuαeiβuβ

2c4s
−

uαuα

2c2s


, (4)

where wi = 4/9 (i = 0), wi = 1/9 (i = 1, 2, 3, 4), wi = 1/36 (i = 5, 6, 7, 8), cs =
c

√
3
. The other coefficients are chosen

as [20]

A0 =
9
4
ρ −

15
4


φµφ + c2s ρ


,

Ai = 3

φµφ + c2s ρ


, i = 1, 2, . . . , 8.

(5)

The macrovariables can be obtained from ρ =
∑

i fi and ρu =
∑

i fiei.
The Cahn–Hilliard equation, i.e., the interface-capturing equation, can be solved by using a LBE with a set of D2Q5

distribution functions gi [32]. The D2Q5model is simpler than the D2Q9model and able to savememory used in simulations.
Here, the following slightly modified LBE is adopted [20,34]:

gi (x + eiδt, t + δt) − gi (x, t) = (1 − q) [gi (x + eiδt, t) − gi (x, t)] +
1
τφ


geq
i (x, t) − gi (x, t)


, (6)

where τφ is a dimensionless single relaxation time which is different from the parameter τρ , and q is a constant. If q is set
to 1, the above Eq. (6) is the conventional LBE. In the equation, the lattice velocities are e0 = c · (0, 0), e1 = c · (1, 0), e2 =

c · (0, 1), e3 = c · (−1, 0), e4 = c · (0, −1).
The macroscopic variables are evaluated using φ =

∑
i gi.

Applying the Chapman–Enskog expansion and the Taylor expansion [35] to Eq. (6) and retaining terms to O(δt2), we can
obtain the Cahn–Hilliard equation if the parameters q andmobility θM are chosen as q =

1
τφ+0.5 and θM = −

 q
2 − τφq2


δtΓ .

The equilibrium distribution function is taken as the following form [20]:

geq
i = Ai + Biφ + Ciφeiαuα. (7)

The coefficients can be chosen as B0 = 1, Bi = 0 (i ≠ 0), Ci =
1
2q , A0 = −3Γ µφ, Ai =

1
2Γ µφ , where Γ is used to control

the mobility. τφ is usually chosen as 0.7 in our simulations.
This FE model requires the following interface modeling. In the Navier–Stokes equations, the term ∂α(pαβ) is related to

the surface tension force. This term can be written as a potential term [30,36] ∂α(pαβ) = −φ∂αµφ − ∂αp0 , where p0 = ρc2s .
We adopt a free energy function in a closed volume with a mixture of two fluids in the form [30,37]

F =

∫
Ψ dV =

∫
dV

[
a

φ2

− φ∗22
+

ks
2

(∂αφ)2 +
ρ ln ρ

3

]
. (8)
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Here, V is a control volume, ks is a coefficient that is related to the surface tension and the thickness of the interface layer.
a is an amplitude parameter for controlling the energy of interaction between the two phases. This form will contribute to
two equilibrium states, φ∗ and −φ∗. The chemical potential is [30]

µφ = a

4φ3

− 4φ∗2φ

− ks∂2

αφ. (9)

The pressure tensor is [30]

pαβ = pδαβ − ks

(∂αφ)2 δαβ − ∂αφ∂βφ


, (10)

where p = a

3φ4

− 2φ∗2φ2
− φ∗4


− ksφ∂2

αφ +
ks
2 (∂αφ)2 +

ρ

3 .
It should be noted there are some first and second derivatives in the above equations and they can be evaluated through

finite difference schemes, i.e., ∂φ

∂xα
=

∑8
i=1

ωieiα ·φ(x+eiαδt)
c2s δt

, ∂2
αφ = 2 ·

∑8
i=1

ωi[φ(x+eiδt)−φ(x)]
c2s (δt)2

, where the ωi are defined later in
Eq. (4).

Following the same procedure as Refs. [29,30], we can obtain the order parameter profile along the normal direction of
the interface φ = φ∗ tanh(2ζ/W ), where ζ is the coordinate which is perpendicular to the interface, andW is the thickness
of the interface layer [30]:

W =

√
2ks/a
φ∗

. (11)

For a flat interface, the surface tension coefficient can be evaluated as [37] σ =

ks


∂φ

∂ζ

2
dζ . Hence, the surface tension

coefficient is

σ =
4aW
3

φ∗4, (12)

where in our simulations, φ∗
= 1 and the interface thickness is usually specified as larger than four lattice units [20]. The

surface tension σ should be specified in simulations and then the parameter a is fully determined through Eq. (12).

2.2. The S–C multicomponent model

Here we implement the 2D S–C model [17] for a multicomponent system. In the model, one distribution function is
introduced for each of the two fluid components. Each distribution function represents a fluid component and satisfies the
following lattice Boltzmann equation:

f σ
i (x + eiδt, t + δt) = f σ

i (x, t) −
δt
τσ


f σ
i (x, t) − f σ ,eq

i (x, t)

, (13)

where f σ
i (x, t) is the σ th-component density distribution function in the ith velocity direction and τσ is a relaxation time

which is related to the kinematic viscosity as νσ = c2s (τσ − 0.5δt). The equilibrium distribution function f σ ,eq
i (x, t) can be

calculated as

f σ ,eq
i (x, t) = wiρσ

[
1 +

ei · ueq
σ

c2s
+

(ei · ueq
σ )2

2c4s
−

(ueq
σ )2

2c2s

]
(14)

where ρσ is the density of the σ th component, which can be obtained from ρσ =
∑

i f
σ
i .

The macroscopic velocity ueq
σ is given by

ueq
σ = u′

+
τσFσ

ρσ

, (15)

where u′ is a velocity common to the various components defined as

u′
=

∑
σ

∑
i

f σi ei
τσ


∑

σ

ρσ

τσ

 . (16)

In Eq. (15), Fσ = Fc,σ + Fads,σ is the force acting on the σ th component, here including the fluid–fluid cohesion Fc,σ , and
fluid–solid adhesion Fads,σ .

Each node in the computational domain is occupied by every σ th component, though one is dominant under most
conditions as described below. The minor components can be thought of as dissolved within the dominant component.
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With the techniques used here, the overall density of fluid in the domain is approximately uniform because the densities
are complementary in the sense that

∑
σ ρσ = ρ (the constant initial density) in a two-fluid system.

The cohesive force acting on the σ th component is defined as [27]

Fc,σ (x, t) = −Gcρσ (x, t)
−

i

wiρσ̄ (x + eiδt, t)ei, (17)

where the σ and σ̄ denote two different fluid components and Gc is a parameter that controls the strength of the cohesion
force.

The surface force acting on the σ th component can be computed as follows [27]:

Fads,σ (x, t) = −Gads,σ ρσ (x, t)
−

i

wis(x + eiδt)ei. (18)

Here s(x + eiδt) is an indicator function that is equal to 1 or 0 for a solid or a fluid domain node, respectively. The
strength of interaction between each fluid and a wall can be adjusted using the parameters Gads,σ . Most previous literature
has suggested that Gads,σ should be positive for nonwetting fluid and negative for wetting fluid [5,10,27].

2.3. The R–K model

In the R–Kmodel, for convenience, three distribution functions are defined here: fi, f σ
i or f redi , f σ̄

i or f bluei , and fi = f σ
i +f σ̄

i .
Hence, the superscripts σ and σ̄ can also be referred to as indicating the ‘‘red’’ and ‘‘blue’’ components.

The post-collision distribution function f +

i is [8]

f +

i (x, t) = fi(x, t) + (Ωi)
1
+ (Ωi)

2, (19)

where there are two collision terms in the equation.
The first collision term is (Ωi)

1
= −

δt
τ


fi(x, t) − f eqi (x, t)


, and the second collision term is (Ωi)

2
= A|f|(2 ·cos2(λi)−1).

The f eqi have the same form as Eq. (14), but the ρσ should be replaced by ρ, which is ρ = ρσ +ρσ̄ . λi is the angle between
the color gradient f and the direction ei; hence cos(λi) =

ei·f
|ei|·|f|

[8].
The color gradient f(x, t) is calculated as [8]

f(x, t) =

−
i

ei
−

j

[f σ
j (x + eiδt, t) − f σ̄

j (x + eiδt, t)]. (20)

Then the recoloring step is implemented to achieve separation of the two fluids [8]:

f σ ,+
i =

ρσ

ρ
f +

i + β ·
ρσ ρσ̄

ρ2
f (eq)
i (ρ, 0) cos(λi). (21)

f σ̄ ,+
i =

ρσ̄

ρ
f +

i − β ·
ρσ ρσ̄

ρ2
f (eq)
i (ρ, 0) cos(λi). (22)

After f σ
i (x, t) and f σ̄

i (x, t) are updated, the streaming steps should be implemented for each component. That is,
f σ
i (x + eiδt, t + δt) = f σ ,+

i (x, t). Through iteration of the procedure illustrated above, two-phase flow can be simulated.
In the model, A, and β are the two most important parameters that adjust interface properties. The interface thickness

can be adjusted by using β and the surface tension is determined only by A [8]. To make the relaxation parameter change
smoothly at the interfaces between two fluids, we also adopt the scheme constructed by Grunau et al. [15].

3. Results and discussion

3.1. Galilean invariance and the contact angle

It is well known that the previous FEmodel had the deficiency that it lacked Galilean invariance [19]. The S–Cmodel [17]
and the R–K model [13–15] do not have such a deficiency. Here we will firstly demonstrate that the present FE model
is able to satisfy the Galilean invariance principle. A moving circular bubble was simulated as the cases in Ref. [38]. The
computational domain is 100 × 100 and the characteristic length is L = 100 (δx). A circular bubble with a radius of 25 (δx)
is put at the center of the domain and brought to the equilibrium state after 20,000 ts. Then the top and bottom boundary
begin to move with a constant velocity uw = 0.01 at t = 0. The periodic boundary condition is applied to the left and right
boundaries. The bubble shape and velocity vectors in the computational domain are shown in Fig. 1. From the figure, we
can see that the bubble becomes a circle again when the nondimensional time is tuw/L = 3.6. The simulation was run for
500,000 ts and the bubble is found to keep the circle shape after tuw/L = 3.6. Hence, Galilean invariance can be satisfied in
this FE model.
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a b

c d

Fig. 1. Velocity vectors and density contours of a moving bubble. The computational domain is 100 × 100 lu2 . The relaxation parameters for the blue
(gray) and white phases are τ1 = 0.6 and τ2 = 1.0, respectively. (a) tuw/L = 0.005; (b) tuw/L = 0.2; (c) tuw/L = 2.8; (d) tuw/L = 3.6. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The contact angle is an important issue when evaluating these multiphase models. In the S–C model, to specify a contact
angle for two equal-viscosity components, we can adjust the parameters Gads1 and Gads2 [7]. If the two components have
different viscosities, the contact angle can also approximately determined from (8) in Ref. [7].

In the R–K model, the contact angle can be adjusted by changing the total density ρ in the wall boundary [8].
To specify a contact angle in the FE model, a surface energy ϕ(φs) for solid nodes should be added into the free energy

calculation (i.e., Eq. (8)). The ϕ(φs) is assumed to be a simple linear function of the φ value for the solid nodes [39], i.e.,
ϕ(φs) = −ωφs. A natural boundary condition for the φ is [39]

n · (▽φ)s =
−ω

ks
, (23)

where n is the local normal direction of the wall pointing into the fluid and ω is a parameter related to the surface wetting
property.

The contact angle measured in fluid with φ = −1 is [39]

cos θ =
1
2

[
1 − ω̃

3
−


1 + ω̃

3
]

, (24)

where ω̃ = ω/
√

2ksa

. For a desired contact angle θ , the ω can be obtained according to Eq. (24). Hence, for the first-

order partial derivatives, one of the derivatives is known from Eq. (23) and the other one can be obtained through a central
difference scheme. For the ▽

2 φ used in the LBM, we can hybridize the biased and central difference schemes to calculate
the value [32].

Applying the above boundary condition, one can obtain different contact angles as illustrated in Fig. 2 through changing
the parameterω. In the simulations, the initial shapes of the ‘‘blue’’ (or ‘‘gray’’) phase (withφ = −1) are half-circles attached
the wall and the final steady states are shown in the figure. From the figure, we can see that the actual contact angles agree
well with the theoretical ones calculated from Eq. (24) with the parameters listed in the caption of the figure.

3.2. Layered two-phase flow in a 2D channel

Here we studied immiscible layered two-phase flow between two parallel plates. In the simulation, as illustrated in
Fig. 3, the periodic boundary condition was applied on the left and right boundaries while the non-slip (bounce-back)
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a b

c d

Fig. 2. Different contact angles obtained through adjusting the parameter ω in the FE model. The computational domain is 200 × 100 lu2 . The relaxation
parameters for the blue (gray) and white phases are τ1 = 0.6, τ2 = 1.0, respectively. The ω̃ and θ are (a) ω̃ = −0.4733, θ = 45°, (b) ω̃ = 0, θ = 90°,
(c) ω̃ = 0.4733, θ = 135°, (d) ω̃ = 0.68, θ = 176°. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

x

y

a

b

-a

-b

non-wetting (Fluid 1)

wetting (Fluid 2)

(0,0)

wetting

Fig. 3. Layered immiscible two-phase flow in a 2D channel. The wetting (fluid 2) phase flows along the upper and lower plate while the nonwetting phase
(fluid 1) flows in the center region.

a b

Fig. 4. Velocity profile comparison for a case of M = 5,G = 1.5 × 10−8, Sw = 0.5, τnw = 1.5, and τw = 0.7, when the body force G is only applied to
fluid 1 (a) and fluid 2 (b).

boundary condition was applied on the upper and lower plates. The kinematic viscosities for nonwetting and wetting fluid
are νnw = c2s (τnw − 0.5) and νw = c2s (τw − 0.5), respectively.

In the simulation, the nonwetting phase flows in the central region 0 < |y| < a, while the wetting phase flows in the
region a < |y| < b. Obviously, the saturation ofwetting fluid in this study is Sw = 1−

a
b , and Snw =

a
b . Assuming a Poiseuille-

type flow in the channel, the analytical solution for the velocity profile between the parallel plates can be obtained [18,40].
In our simulations, the computational domain is 10 × 100. Because the periodic boundary condition is used on the left

and right boundaries, the mesh used in the x direction can be much smaller.
Fig. 4 shows the velocity profile across a section of the channel at x = 5 forM = 5 and Sw = 0.5, which is obtained from

the FE model. In the figure, velocity profiles in (a) and (b) are obtained through applying the body force G = 1.5 × 10−8 to
fluid 1 and fluid 2, respectively. The numerical solutions agree well with the analytical solutions.

Fig. 5 shows the velocity profile for M = 1 and Sw = 0.5 that is obtained from the S–C model. The numerical result is
also good but there is a small jump across the interface which is also noted in Ref. [40].

To further evaluate the S–C, R–K, and FE models, the error between numerical and analytical solutions at the final steady
state is illustrated in Table 1. The error between numerical and analytical solutions is defined as Err(t) =

∑
i |u0(yi) −
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a b

Fig. 5. Velocity profile comparison for a case of M = 1,G = 1.5 × 10−8, Sw = 0.5, τ1 = 1.0, and τ2 = 1.0 when the body force G is applied only to fluid
1 (a) or fluid 2 (b). The numerical solution is obtained with the S–C model.

Table 1
S–C, R–K, FE model performance in the simulation of a layered two-phase flow with different viscosity ratios.

Case S–C R–K FE

M = 1 (G1 = 0,G2 ≠ 0) Error (%) 11.4 1.19 3.63
ts 80,000 90,000 90,000

M = 1 (G1 ≠ 0,G2 = 0) Error (%) 3.07 0.585 1.62
ts 90,000 100,000 80,000

M = 5 (G1 = 0,G2 ≠ 0) Error (%) 33.6 1.52 6.63
ts 80,000 170,000 150,000

M = 5 (G1 ≠ 0,G2 = 0) Error (%) 33.4 3.21 2.56
ts 80,000 170,000 160,000

M =
1
50 (G1 = 0,G2 ≠ 0) Error (%) – 1.78 2.64

ts – 750,000 750,000

M =
1
50 (G1 ≠ 0,G2 = 0) Error (%) – 15.58 11.13

ts – 630,000 670,000

u(yi, t)|, where the summation is over the lattice nodes yi in the slice x = 5, and u0 is the analytical solution. The convergence
criterion is

 Err(t)−Err(t−10 000)
Err(t−10 000)

 < 0.0001.

In the table, G1 and G2 mean the body forces applied to component 1 and 2, respectively. For the cases with M = 1, the
relaxation times are τ1 = 1 and τ2 = 1 in all models. For the cases with M = 5, the relaxation times are τ1 = 1.5 and
τ2 = 0.7 in the R–K model and FE model. For the S–C model, it is difficult to achieve a specified viscosity ratio. That will be
illustrated in detail in the following section. For the cases with M =

1
50 , the relaxation times are τ1 = 0.51 and τ2 = 1.0 in

the R–K model and the FE model, and the S–C two-component model does not work for these parameters. From the table
we can see that in some cases, the error of the S–C model is much larger than those of the R–K and the FE models, while the
errors of the R–K and FE models are small and of the same order.

The time steps required for the velocities to converge for cases ofM = 1,M = 5, andM =
1
50 are also listed in Table 1. It

is found for the time steps that there are very small discrepancies between the R–Kmodel and the FEmodel. Because the CPU
times per time step for the R–K model and the FE model are almost identical, the efficiency of the FE model is comparable
to that of the R–K model.

In the S–Cmodel, it is not easy to obtain an exact viscosity ratio other than unity because the kinematic viscosity ratio and
the density ratio cannot change independently in the model [16]. For a specific Gc and equal τ values for two components,
the ratio of the main fluid density to the dissolved density in the whole computational domain (except the interface area)
is a constant [7].

However, if the kinematic viscosities of the two components are different, the situation is different. We carried out a
series of 2D simulations where we placed a pure bubble of fluid 1 (ρ1 = 1.0, τ1 = 1.8) inside a 100 × 100 square of
fluid 2 (ρ1 = 0, τ2 = 0.825) with periodic boundaries; the two fluids had equal total masses (i.e., the number of pixels
occupied by fluid 1 was equal to that for fluid 2). The simulation series had initial densities of ρ = ρ1 + ρ2 = 1.0 in
the whole domain and the parameter Gc = 1.8. It is found that the equilibrium main fluid (component 1) density and
the dissolved (component 2) density inside the bubble are 1.259 and 0.009, respectively. Outside the bubble, the main fluid
(component 2) density and the dissolved (component 1) density are 0.910 and 0.153, respectively. Hence, the actual viscosity
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Fig. 6. Porous media and the initial phase distribution for the neutrally wetting case with Sw = 0.5 (a), and a fully wetting case Sw = 0.75 (b).

Table 2
Major parameters used in the S–C, R–K, FE models for simulation of a 160 × 160 porous medium.

Model S–C R–K FE

τ1 1.8 1.0 1.0

τ2 0.825 0.6 0.6

σ 0.153 0.00049 0.0005

Other parameters Gc = 1.8 A = 0.00001 Γ = 100
β = 0.5 τφ = 0.7

W = 4

Neutrally wetting case Gads1 = 0 ρ1w = 0 ω = 0
Gads2 = 0 ρ2w = 0

Fully wetting case Gads1 = 0.45 ρ1w = 0 ω = −σ ∗ 0.5105
(Phase 1 is nonwetting) Gads2 = −0.45 ρ2w = −1

ratio isM =
ρ1c2s (τ1−0.5)
ρ2c2s (τ2−0.5)

=
1.259×(1.8−0.5)/3

0.910×(0.825−0.5)/3 = 5.6 if the more viscous component is nonwetting. Thus in this paper, for the
M = 5 cases, the viscosity ratio in S–C model is actuallyM = 5.6 because getting the exactM = 5 is too difficult.

3.3. Two-phase flow in porous media

The relative permeability in porous media may be determined by the porous structure, initial wetting–saturation
distribution, wettability of the porous medium, and driving force (capillary number) [11]. To minimize the effect of the
porous structure, a homogeneous porous medium as shown in Fig. 6 is used for simulation. The size of the whole network
is 160 × 160 lu2. The porosity of the network is ϵ = 0.75. For all of the cases in this section, Ca =

G
σ(δx) = 10−3, where

G is the body force applied to a fluid. The initial phase distribution may affect the final distribution and hence the relative
permeabilities [11].

In this section we simulated a neutrally wetting case with Sw = 0.5 and a fully wetting case with Sw = 0.75. The initial
phase distributions for the neutrally wetting case and the fully wetting case are shown in Fig. 6(a) and (b), respectively.

Three nondimensional parameters are important for the immiscible two-phase flow through porous media. These
parameters are the Reynolds number Re = ud/ν, viscosity ratio M , and capillary number Ca. d is the width of the smallest
channel in a porous medium. The maximum velocity in our simulations is 0.02 lu/ts; hence, the Reynolds number is kept
very small to satisfy Darcy’s law. In all of the simulations, the viscosity ratio of the two components is 5.

In the simulations, periodic boundary conditions were applied in all directions. The major parameters in our simulations
are listed in Table 2. In the table, ρ1w and ρ2w in the R–Kmodel mean the densities of components 1 and 2 at the wall nodes.
The spurious velocity magnitudes of these cases in the S–C, R–K, and FEmodels are 0.02, 0.0002, and 8×10−6, respectively.

The steady-state distributions of the two fluids in the porous medium of Fig. 6 obtained from the FE model and the R–K
model are shown in Fig. 7(a) and (b). The velocity vectors are also shown in the figure. In the figure, both the wetting and
nonwetting phases are continuous. The final distributions obtained from the FE model and the R–K model agree very well.
However, the spurious velocity near the interface in Fig. 7(b) is larger than that in Fig. 7(a). In terms of the spurious velocity,
the FE model is able to give a better result than the R–K model when Ca = 10−3.

In the fully wetting case, the contact angle of fluid 2 is 0° (wetting) and the contact angle of fluid 1 is 180°, which is
totally nonwetting. In these fully wetting cases, countercurrent steady-state distribution patterns obtained from the FE and
the R–Kmodels with Sw = 0.75 are illustrated in Fig. 8. In the figure, the FEmodel also demonstratesmuch smaller spurious
velocity when Ca = 10−3.

The wetting and nonwetting phase flow fluxes were also calculated at the bottom boundary during the simulations. A
typical co-current flow flux variation as a function of the time steps is illustrated in Fig. 9. In this neutrally wetting case, the
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Fig. 7. Countercurrent final steady-state two-fluid distribution pattern in the case of Sw = 0.5, where the less viscous fluid (fluid 2) is white and the solid
is black. In the LBM simulations, τ1 = 1.0, τ2 = 0.6, and Ca = 10−3; (a) obtained from the FE model; (b) obtained from the R–K model.

Fig. 8. The final steady-state two-fluid distribution pattern in a fully wetting countercurrent flow. The nonwetting fluid (fluid 1) is gray and the solid is
black. In the LBM simulations, τnw = 1.0, τw = 0.6, and Ca = 10−3; (a) obtained from the FE model; (b) obtained from the R–K model.

Fig. 9. A typical flow flux variation as a function of the time steps; neutrally wetting FE simulation.

FE model is used and the fluid component with φ = −1 is less viscous with τ = 0.6. From the figure we can see that the
initialization is not far from the final steady state, and that around 5× 105 time steps were required to converge to a steady
state.

The relative permeabilities can be obtained as

kw =
Qw

Qw0
, knw =

Qnw

Qnw0
, (25)

where Qw and Qnw mean the flow fluxes of the wetting phase and nonwetting phase in the two-phase flow, respectively.
Qw0 and Qnw0 mean the flow fluxes of wetting and nonwetting phases, respectively, when the channel is filled with only one
fluid.
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Table 3
Relative permeability of the co-current and countercurrent two-phase flow in a porous medium (neutrally wetting cases, Sw = 0.5).

Model Co-current Countercurrent
k1 (more viscous) k2 k1 k2

S–C 0.119 0.140 −0.171 0.134
R–K 0.324 0.251 −0.253 0.191
FE 0.313 0.219 −0.273 0.221

Table 4
Relative permeability of the co-current and countercurrent two-phase flow in a porous medium (Sw = 0.75).

Model Co-current Countercurrent
k1 (more viscous) k2 k1 k2

S–C 0.213 0.455 −0.186 0.462
R–K 0.252 0.683 −0.247 0.688
FE 0.290 0.740 −0.273 0.722

a b

Fig. 10. The lattice nodes occupied by φ < 0 component in the domain when the FE model is used. (a) A neutrally wetting countercurrent flow. In the
simulation, τnw = 1.0, τw = 0.6, and Ca = 10−3 . (b) The Galilean invariance test.

For single-phase flow, the permeability of the porousmedium is slightly dependent on τ when the BGKmodel is used for
the collision term [11]. For example, when τ = 0.6, 0.8, 1.0, and 1.8, the permeabilities of the porousmedium are k = 16.51,
17.30, 17.58, and 18.74 lu2, respectively. Hence Qnw0 and Qw0 can be calculated at a specific τ and G.

In Tables 3 and 4, the relative permeabilities for the co-current flow and countercurrent flow are listed. The relative
permeabilities were obtained by using Eq. (25), i.e., the nonwetting and wetting fluid flow are divided by the corresponding
Qnw0 and Qw0. From Tables 3 and 4, we can see that the results from the FE model and the R–K model agree well. The
performance of the FE model seems as good as that of the R–K model. We also found that there is a large discrepancy
between the results from the S–C model and the other models.

We also compared the CPU time for 10,000 time steps when the S–C, the R–K, and the FE models were used to simulate
the flow in the 160 × 160 porous medium. The CPU times for 10,000 time steps in the S–C, R–K, and FE models are 546 s,
692 s, and 606 s, respectively. Because the numbers of time steps required for convergence are similar for the R–K and FE
models, we can see that the efficiency of the FE model is as good as that of the R–K model.

There is also an important concern about the mass conservation property of the FE model. Fig. 10 illustrates the lattice
nodes occupied by the φ < 0 component as a function of time. In the case of a neutrally wetting countercurrent flow
(subfigure (a)), simulated for 900 thousand time steps, the mass of the φ < 0 component almost becomes a constant. We
can also see that there is a very small change from the initial value. In the subfigure (b), we can see that after 100 thousand
time steps, the mass of the φ < 0 component (mass inside the bubble) appears to be oscillating around a constant with
small amplitude. From the figure, we can see that the FE model’s mass conservation property is very good.

4. Conclusions

Here amultiphase lattice Boltzmannmethodbased on the free energywas evaluated and comparedwith the performance
of the S–C and R–K models. This FE model is found to satisfy the Galilean invariance through a numerical test. It is able to
simulate multiphase flows with large viscosity ratio accurately—it is comparable to the R–K model. In terms of efficiency,
the FE model is also as good as the R–K model. The FE model is found able to mimic multiphase flow in the model porous
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medium with very small spurious velocity as compared with the main velocity of the fluids at Ca = 10−3. The FE model is
expected to be applicable for investigating 3D multiphase flow in complex heterogeneous porous media in future study.
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