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In this paper an accurate axisymmetric lattice Boltzmann D2Q9 model is proposed to
simulate the steady and pulsatile flows in circular pipes. Present model is derived from an
incompressible D2Q9 model and some errors in a previous model [Halliday et al., Phys.

Rev. E 64, 011208 (2001)] are revised. In the previous model, some terms relative to the
radial velocity are missing and would lead to large error for constricted or expanded pipe
flows. Present model is validated by cases of laminar steady flow through constricted
tubes and 3D Womersley flow. Comparing with the previous model, our model is much
more accurate for steady flow in constricted circular pipes. For 3D Womersley flow, it
is also observed that the present model can reduce the compressibility effect in previous
model.

Keywords: Lattice Boltzmann method; axisymmetric; incompressible Navier–Stokes
equation; pipe.

1. Introduction

The lattice Boltzmann method (LBM) has been proposed as an alternative nu-

merical scheme for solving the incompressible Navier–Stokes (NS) equations.1,2

Among different lattice Boltzmann equation (LBE) models in application, the Lat-

tice Bhatnagar-Gross-Krook (LBGK) model is the simplest one because it only has

one scalar relaxation parameter and a simple equilibrium momentum distribution

function.3 Here our axisymmetric LBM is derived from LBGK D2Q9 model.

It is sure that 3D LBM can directly handle the axisymmetric flow problems.4–6

For the problems of 3D steady axisymmetric flows5,6 or 3D axisymmetric unsteady

flow4 in straight tube, most of previous studies4–6 recourse to the 3D LBGK model

and using the 3D cubic lattices with proper curvature wall boundary treatment

directly. That means a large mesh size and it is not so efficient to simulate an

axisymmetric flow problem in that way. To simulate the aixsymmetric flows more

efficiently, in 2001, Halliday et al.
3 proposed an axisymmetric D2Q9 model for the
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3D axisymmetric flow problems and it seems very successful for simulation steady

flow in straight tube. The main idea of the model is inserting several spatial and

velocity dependent “source” terms into the microscopic evaluation equation for

the lattice fluid’s momentum distribution.7 Halliday et al.
3 claimed the adjusted

microscopic evaluation equation can recover the cylindrical polar coordinate form

of the continuity and Navier–Stokes equations.

However, we found that some important terms relative to the radial velocity are

missing in the axisymmetric D2Q9 model of Halliday et al.
3 Although the terms

would have very small effect on simulation the flows in straight pipe, missing the

terms would lead to large error for simulation the constricted or expanded pipe

flows.

On the other hand, as we all know, through the Chapman-Enskog procedure,8

a LBE can recover the incompressible Navier–Stokes equation successfully if the

density fluctuation can be neglected. However, the density may fluctuate to a great

extent in flows with large pressure gradient because the pressure and density vari-

ations satisfy the equation of states of an isothermal gas given by ∆p = c2
s∆ρ,8

where c2
s is a constant. In many previous studies,4,8–10 the compressibility effect of

standard LBGK model has been highlighted.

Since Halliday et al.
3 derived the axisymmetric model from standard LBGK

D2Q9 model, the model’s compressibility effect would inherit from the standard

LBGK D2Q9 model. To derive a more accurate axisymmetric model, our derivation

would begin from the incompressible LBGK D2Q9 model proposed by He and Luo.9

The incompressible LBGK model was validated by steady plane Poiseuille flow and

the unsteady 2D Womersley flow. In their model, the compressibility effect of the

order O(M2) is explicitly eliminated.9

To validate and evaluate the performance of our present model, steady flows

in axisymmetric constricted tubes are simulated. To investigate its compressibility

effect, 3D Womersley flow is also simulated. The 3D Womersley flow (pulsatile flow

in aixsymmetric pipe) is driven by periodic pressure gradient at the inlet of the

pipe.

In this paper, at the next part, derivation of our accurate axisymmetric model

is illustrated in detail. In the third part, the general implementation of the model

and boundary conditions are discussed. In the final part, we focus on two particular

problems. One is steady flows through constricted axisymmetric tubes. The other is

the pulsatile flows in a circular pipe with 120 < Re < 1200 (Reynolds number is

based on pipe’s diameter), Womersley number 3 < α < 9. The results are all

compared with the exact analytical solutions or that of Finite Volume Method.

The excellent agreements validate our model.

2. An Accurate Axisymmetric D2Q9 Model

We consider the problems of the laminar internal flow of an incompressible, isotropic

liquid in circular pipe with an axis in x direction. For the axisymmetric flow, the
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azimuthal velocity uφ and φ coordinate derivatives vanish from the incompressible

continuity and Navier–Stokes equations.11 The continuity equation (1) and Navier–

Stokes momentum equations (2) in the pseudo-Cartesian coordinates (x, r) are:11

∂uβ

∂xβ

= −ur

r
, (1)

∂uα

∂t
+

∂uβuα

∂xβ

+
uαur

r
+

1

ρ0

∂p

∂xα

− ν
∂2uα

∂x2
β

=
ν

r

∂uα

∂r
− ur

r
δαr , (2)

where uβ (β = x, r) is the two components of velocity. uα is the velocity ux or ur.

xα, xβ means x or r.

Here we would show how above equations can be recovered from our axisym-

metric D2Q9 model. To recover above equations, the Chapman-Enskog Expansion

is applied. Here an incompressible D2Q9 model is used to derive our axisymmetric

model. The 9 discrete velocities of D2Q9 model are as following,

ei =
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(
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[
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]
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])

c i = 1, 2, 3, 4

√
2

(

cos

[

(i − 5)π

2
+

π

4

]

, sin

[

(i − 5)π

2
+

π

4

])

c i = 5, 6, 7, 8

, (3)

where c = δx/δt, and in our studies c = 1. δx and δt are the lattice spacing and time

step size. The evaluation equation describing 2D flow in (x, r) pseudo-Cartesian

coordinates is illustrated as Eq. (4):

fi(x + ceixδt, r + ceirδt, t + δt) − fi(x, r, t) =
1

τ
[f eq

i (x, r, t) − fi(x, r, t)] + hi(x, r, t)

(4)

where fi(x, r, t) is the distribution functions for particles with velocity ei at position

(x, r) and time t. τ is the relax time constant. The relax time constant τ and the

fluid viscosity ν satisfies equation ν = (2τ − 1)δx/6. Equation (4) is similar to

the evaluation equation for D2Q9 model in 2D (x, y) Cartesian coordinates. The

difference is that a source term hi (x, r, t) was incorporated into the microscopic

evaluation equation. In Eq. (4), the equilibrium distribution f eq
i of incompressible

D2Q9 model9 is defined by Eq. (5):

f eq
i (x, r, t) = ωi

p

c2
s

+ ωiρ0

[

ei · u
c2
s

+
(ei · u)2

2c4
s

− u2

2c2
s

]

i = 0, 1, 2, . . . , 8 , (5)

where cs = c/
√

3, p is the pressure and ρ0 is the density of fluid. In Eq. (5), for

D2Q9 model, ω0 = 4/9, ωi = 1/9, (i = 1, 2, 3, 4), ωi = 1/36, (i = 5, 6, 7, 8). It

is noticed that the main difference between above incompressible D2Q9 model and

the standard D2Q9 model is the form of Eq. (5).
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To derive our axisymmetric model, here we introduce the following expansions,9

fi(x + eix, r + eir, t + 1) =

∞
∑

n=0

εn

n!
Dnfi(x, r, t) , (6)



























fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + · · ·

∂t = ε∂1t + ε2∂2t + · · ·
∂β = ε∂1β

hi = εh
(1)
i + ε2h

(2)
i + · · ·

, (7)

where ε = δt and D ≡ (∂t + eiβ∂β), β = x, r and xα, xβ means x or r. It is noticed

that in Eq. (7), there is no “equilibrium” hi term.

Retaining terms up to O(ε2) in Eqs. (6) and (7) and substituting into Eq. (4)

results in:

{

[(ε∂1t + ε2∂2t) + eiβε∂1β] +
1

2
[(ε∂1t + ε2∂2t)

2

+ 2(ε∂1t + ε2∂2t)eiβε∂1β + (eiβε∂1β)2]

}

(f
(0)
i + εf

(1)
i + ε2f

(2)
i )

= −1

τ
(f

(0)
i − f eq

i + εf
(1)
i + ε2f

(2)
i ) + εh

(1)
i + ε2h

(2)
i . (8)

We can rewrite Eq. (8) in the consecutive order of the parameter ε as following

Eqs. (9), (10) and (11) respectively.

O(ε0) :
(f

(0)
i − f eq

i )

τ
= 0 ,

(9)

O(ε1) : (∂1t + eiβ∂1β)f
(0)
i +

1

τ
f

(1)
i − h

(1)
i = 0 ,

(10)

O(ε2) : ∂2tf
(0)
i + (∂1t + eiβ∂1β)f

(1)
i +

1

2
(∂1t + eiβ∂1β)2f

(0)
i +

1

τ
f

(2)
i − h

(2)
i = 0 .

(11)

The distribution function fi is constrained by the following relationships:9

8
∑

i=0

f
(0)
i =

p

c2
s

,

8
∑

i=0

eiαf
(0)
i = ρ0uα ,

8
∑

i=0

f
(m)
i = 0 ,

8
∑

i=0

eif
(m)
i = 0 for m > 0 .

(12)
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Note that E(2n+1) = 0 for n = 0, 1, . . . , where E(n) are the tensors defined as

E(n) =
∑

α eα1eα2 · · · eαn and

4
∑

i=1

eiαeiβ = 2δαβ ,

8
∑

i=5

eiαeiβ = 4δαβ ,

4
∑

i=1

eiαeiβeiγeiζ = 2δαβγζ ,

8
∑

i=5

eiαeiβeiγeiζ = 4∆αβγζ − 8δαβγζ ,

(13)

where δαβ and δαβγζ are the Kronecker tensors, and

∆αβγζ = δαβδγζ + δαγδβζ + δαζδβγ . (14)

With above properties of the tensor E(n), we have:

8
∑

i=0

eiαeiβf
(0)
i = ρ0uαuβ + pδαβ , (15)

∑

i

eiαeiβeikf
(0)
i = ρ0c

2
s(δjkδβα + δjαδβk + δjβδαk)uj . (16)

2.1. Mass Conservation and h
(1)
i

Summing on i in Eq. (10), we obtain at O(ε)

∂1t

(

p

c2
s

)

+ ρ0∂βuβ =
∑

i

h
(1)
i , (17)

which motivates the following selection of h
(1)
i when comparing with the target

dynamics [of Eqs. (1) and (2)]. Rewriting Eq. (17) in a dimensionless form, we

can see that a condition of Lx/(csT ) � 1 should be satisfied to neglect the term

∂1t(p/c2
s),

9 where Lx is the character length in x direction, T is the character time of

unsteady flow. That’s an additional limit of our derivation besides condition mach

number M � 1.

To recover the continuity Eq. (1), because
∑

i ωi = 1, the following selection of

h
(1)
i is reasonable.3

h
(1)
i = −ωiρ0ur

r
. (18)

Then we proceed to O(ε2) now. Summing on i in Eq. (11) gives
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∂2t

(

p

c2
s

)

+
∑

i

1

2
(∂1t + eiβ∂1β)h

(1)
i −

∑

i

h
(2)
i = 0 . (19)

Since9 ∂2t(p/c2
s) = 0 and with our target dynamics in view, the remaining terms

in Eq. (19) should vanish. Hence, we obtain

∑

i

h
(2)
i =

1

2

∑

i

(∂1t + eiβ∂1β)h
(1)
i

=
1

2

[

∂1t

∑

i

(−ωiρ0ur

r

)

]

= −1

2

[

∂1t

(ρ0ur

r

)]

. (20)

In the above process, we have used the results of
∑

ωieiβ = 0.

2.2. Momentum Conservation and h
(2)
i

Multiplying Eq. (10) by eiα and summing on i, gives

ρ0∂1tuα + ∂1βΠ0
αβ =

∑

i

h
(1)
i eiα = 0 , (21)

where, Π0
αβ =

∑8
i=0 eiαeiβf

(0)
i is the zeroth-order momentum flux tensor. With

Π0
αβ given by Eq. (15), using Eq. (21) gives

ρ0∂1tur = −∂βΠ0
rβ = −∂β(pδrβ + ρ0uβur) . (22)

Substituting Eq. (22) into Eq. (20), we have a condition on the h
(2)
i .

∑

i

h
(2)
i =

1

2r
∂β(pδrβ + ρ0uβur) . (23)

The error in previous model of Halliday et al.
3 partly lies in their opinion about

Eq. (21). It seems Halliday et al. simply regarded that terms ρ0∂1tuα+∂1β(ρ0uαuβ)

as the terms Dtuα = ∂tuα+∂β(uβuα)+uαur/r. Unfortunately, that’s not true. The

term uxur/r which did not consider in the model of Halliday et al.
3 plays important

role in simulation constricted pipe flows.

Multiplying Eq. (11) with eiα and summing over i gives,

ρ0∂2tuα +

(

1 − 1

2τ

)

∂1βΠ
(1)
αβ

= −1

2

(

∂1t

∑

i

eiαh
(1)
i + ∂1β

∑

i

eiαeiβh
(1)
i

)

+
∑

i

h
(2)
i eiα , (24)

where, Π
(1)
αβ =

∑

i eiαeiβf
(1)
i is the first-order momentum flux tensor. With the aid

of Eqs. (10) and (16), we have:



May 19, 2006 16:32 WSPC/141-IJMPC 00892

An Axisymmetric Incompressible Lattice Boltzmann Model for Pipe Flow 651

Π
(1)
αβ =

∑

i

eiαeiβf
(1)
i = −τ

∑

i

eiαeiβD1tf
(0)
i + τ

∑

i

eiαeiβh
(1)
i

= −τ

[

∑

i

∂1tΠ
(0)
αβ + ∂k

(

∑

i

eiαeiβeikf
(0)
i

)]

+ τ
∑

i

eiαeiβh
(1)
i

= −τ

[

∑

i

∂1tΠ
(0)
αβ + ρ0c

2
s

(

δαβ∂juj +
∂uα

∂xβ

+
∂uβ

∂xα

)

]

+ τ
∑

i

eiαeiβh
(1)
i . (25)

For the first term in Eq. (25), using Eqs. (17) and (21) and the additional

condition Lx/(csT ) � 1, it can also be rewritten as:

∑

i

∂1tΠ
(0)
αβ = ∂1t(pδαβ + ρ0uαuβ) = δαβ∂1tp + uβρ0∂1tuα + uαρ0∂1tuβ

= −uβ∂k(ρ0uαuk + pδkα) − uα∂k(ρ0uβuk + pδkβ) . (26)

In above Eq. (26), since
∑

i ∂1tΠ
(0)
αβ are of O(u3), it can be neglected.9 Hence, using

Eqs. (17) and (18), the second term in LHS of Eq. (24) can be written as:

(

1 − 1

2τ

)

∂1βΠ
(1)
αβ

= −τ

(

1 − 1

2τ

)

ρ0c
2
s

[

∂1β

(

δαβ∂juj +
∂uα

∂xβ

+
∂uβ

∂xα

)

+ ∂1β

(

δαβur

r

)]

= −νρ0∂1β(∂βuα + ∂αuβ) . (27)

Substituting Eq. (27) into Eq. (24), we move the term −ρ0ν∂α(∂βuβ) to the RHS

of Eq. (24). Rearranging the RHS of Eq. (24) and using results
∑

ωieiβ = 0 and
∑

ωieiαeiβ = c2
sδαβ and Eq. (17), gives

RHS =
1

2
c2
s∂1β

(

δαβρ0ur

r

)

+ ρ0ν∂α(∂βuβ) +
∑

i

h
(2)
i eiα

= c2
s(1 − τ)∂α

(ρ0ur

r

)

+
∑

i

h
(2)
i eiα . (28)

Hence, incorporating the Eqs. (21), (24) , (27) and (28), we get:

ρ0

(

∂uα

∂t
+

∂uβuα

∂xβ

+
∂p

ρ0∂xα

− ν
∂2uα

∂x2
β

)

= c2
s(1 − τ)∂α

(ρ0ur

r

)

+
∑

i

h
(2)
i eiα . (29)

Comparing momentum Eq. (29) with Eq. (2), to recover the Navier–Stokes

momentum equations, Eq. (30) should be satisfied:

c2
s(1 − τ)∂α

(ρ0ur

r

)

+
∑

i

h
(2)
i eiα =

ν

r

(

∂rρ0uα − 1

r
ρ0urδrα

)

− ρ0uαur

r
. (30)
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Solving equation system of Eqs. (23) and (30), we can obtain the expression of

h
(2)
i as following:

h
(2)
i =

(ωi

2r

)

[∂β(pδrβ + ρ0uβur)]

+ 3ωi

[

(ν

r

)

(

∂rρ0uβ − 1

r
ρ0urδrβ

)

eiβ −
(ρ0uβureiβ

r

)

]

−ωi(1 − τ)∂1β

(ρ0ur

r

)

eiβ . (31)

It can also be rewritten as:

h
(2)
i

ρ0
=

ωi

2r

(

∂r

p

ρ0
+ ∂xuxur + ∂rurur

)

+
3ωiν

r
(∂rux + ∂rur)eix − 3ωiν

r2
ureir

− 3ωi

(uxur

r
eix +

urur

r
eir

)

− ωi(1 − τ)

(

1

r
∂xureix − ur

r2
eir +

∂rur

r
eir

)

.

(32)

The expression of h
(1)
i (Eq. (18)), h

(2)
i (Eq. (32)) are successfully derived and

the continuity equation (1) and Navier–Stokes equation (2) can be fully recovered.

In the model of Halliday et al.,3 the mainly missing terms are relative to ur.

Although these terms may only slightly affect results of straight pipe flow, without

these terms, the flows in constricted pipes can’t be simulated correctly.

3. Implementation of the Model and Boundary Condition

3.1. Implementation of the model

In numerical simulations, one must ensure that the Mach number is low and the

density fluctuation (δρ) is of order O(M 2).9 The additional limit Lx/(csT ) � 1 is

illustrated in above derivation. In this part, we mainly discuss the how to perform

numerical simulation with such a model.

In our aixsymmetric D2Q9 model, fi(x, r, t) is the distribution function. The

macroscopic pressure p and momentum ρ0u are defined as:

8
∑

i=0

fi =
p

c2
s

,
8
∑

i=0

fieiα = ρ0uα . (33)

The two main steps of Lattice BGK model are collision and streaming. In the

collision step, a group of calculations (34) and (35) are implemented:

fne
i = fi(x, r, t) − f eq

i (x, r, t) , (34)

f+
i (x, r, t) = f eq

i (x, r, t) +

(

1 − 1

τ

)

fne
i + δth

(1)
i + δ2

t h
(2)
i , (35)

where f eq
i is the equilibrium momentum distribution function which can be obtained

through Eq. (5). fne
i is the non-equilibrium part of distribution function. h

(1)
i and
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h
(2)
i are the “source” terms added into the collision step, which can calculated

through Eqs. (18) and (32) respectively. For simplicity, in our study, δt = δx. f+
i is

the post-collision distribution function.

In the streaming step, the new distribution function value obtained from (35)

would propagate to neighbour 8 lattices. That procedure can be represented by the

following Eq. (36).

fi(x + eixδt, r + eirδt, t + δt) = f+
i (x, r, t) . (36)

For the velocity derivations in Eq. (32), the terms ∂rux + ∂xur, ∂xux and ∂rur

can all be obtained through Eq. (37) with α = x, β = r; α = β = x; α = β = r

respectively:

ρ0ν(∂βuα + ∂αuβ) = −
(

1 − 1

2τ

) 8
∑

i=0

f
(1)
i eiαeiβ

= −
(

1 − 1

2τ

) 8
∑

i=0

fne
i eiαeiβ + O(ε2) . (37)

For the term ∂rux in Eq. (32), it equal to (∂rux + ∂xur) − ∂xur. Since (∂rux +

∂xur) can be easily obtained by Eq. (37), only value of ∂xur is left unknown to

determine ∂rux. Here we recourse to finite difference method to obtain ∂xur at

lattice node (i, j), which can be calculated by Eq. (38):

(∂xur)i,j =
((ur)i+1,j − (ur)i−1,j)

(2δx)
. (38)

The values of ∂rux+∂xur, ∂xux, ∂rur, ∂rux and ∂xur for the lattice nodes which

just on the wall boundary can also be calculated from Eqs. (37) and (38). Obtaining

these values for lattice nodes on the periodic boundary is also easy. However, to

obtain these values for the nodes on the inlet/outlet pressure-specified boundary,

these values are extrapolated from those of the inner nodes.

3.2. Boundary condition

For wall boundary condition, it is well known that the most commonly applied

in LBM is bounce back model.4 However, to treat the curvature wall boundary

in uniform suqare lattices, original bounce back model is not accurate enough for

curvature boundary. Here, the non-equilibrium distribution function extrapolation

method12 was applied for curvature wall boundary. In the method, the velocity on

“wall nodes” (lattice nodes outside and most near to physical boundary) is obtained

from extrapolation and p value obtained from the nearest “fluid node”( lattice

nodes inside physical boundary), hence the equilibrium distribution function for

“wall nodes” can be obtained through Eq. (5). With corresponding non-equilibrium

distribution function extrapolated from the “fluid nodes”, the collision step on “wall

nodes” can be fulfilled. This treatment is proved to be second order in space.12
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For the inlet/outlet boundary conditions, the pressure or velocity boundary

condition treatments have been proposed by previous LBM studies.13,14 Here the

scheme proposed by Guo, et al.
13 was adopt for its simplicity. To specify pressure

at inlet/outlet boundary, the corresponding velocity value in these boundaries was

extrapolated from the next inner nodes. Hence, the equilibrium part of distribution

function can be determined through above Eq. (5) and the non-equilibrium part

of distribution function can be obtained through extrapolation.13 So, the collision

step for boundary nodes can be implemented normally as inner nodes. Specifying

the velocity boundary condition is similar.

For 3D Womersley flow simulation, another scheme can implement the uniform

oscillatory pressure gradient except scheme of inlet/outlet pressure specify. That is

applying an equivalent oscillatory body force.15 To apply an equivalent body force,

the periodic boundary conditions are imposed at the open ends of the pipe and in

the collision step, after step (35) was implemented, a further post collision step is

necessary:

f+
i (x, r, t) = f+

i (x, r, t) + ωiFα

eiα

c2
s

, i = 1, 2, . . . , 8 . (39)

Where F = (p∗ cos(ωt), 0) is the body force. p∗ is the maximum amplitude of

the oscillatory pressure gradient.

4. Results and Discussion

4.1. Steady flow through constricted pipes

In our study, geometry of the constrictions is described by Cosine curve. The ge-

ometry of two stenoses is shown in Fig. 1. If r0 is the radius of the nonstenotic part

of the pipe, radius of the first stenose r(x) is given in function below.

r(x) = r0 −
βr0{1 + cos[πx/S0]}

2
(−S0 < x < S0) . (40)

Where r0 = D/2, β = 50 is severity of stenose and the axial length of the stenose

is 2S0. To make flow fully developed and save grid nodes, length between the right

end and the stenose is S2 = 8D and S1 = 3D as illustrated in Fig. 1. In this part,

the steady flows through constricted tubes are studied.

x

D

r

S S

S S

0 0

1 2

(0,0)

Fig. 1. Geometry of constricted tubes.
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In our simulations, the zero velocities are initialized everywhere. At the inlet

boundary, a fully developed parabolic velocity profile is specified. In the outlet

boundary, the outlet pressure was specified and ∂u/∂x = 0 was also imposed. In

our study, for defining steady state, our criterion is:

∑

i,j

‖
√

[ux(xi, rj , t + 1) − ux(xi, rj , t)]2 + [ur(xi, rj , t + 1) − ur(xi, rj , t)]2‖
‖
√

[ux(xi, rj , t + 1)]2 + [ur(xi, rj , t + 1)]2‖

< 10−6 , (41)

where i, j are the lattice nodes index.

Firstly we simulated the case of S0 = D, Reynolds number defined as Re =

U0D/ν, where U0 is central value of the inlet parabolic velocity. We also notice

that to calculate Formula (32), there is a singularity (r = 0) for lattices located in

the axis. To avoid the singularity, the axis should be located off lattices. Hence, for

simplicity, the axis is located in middle of two center horizontal lattice rows. In the

simulation totally Nx × Nr = 441 × 42 lattices (area: 440δx × 42δx) was applied.

The diameter is D = 40δx, where δx = 1. To validate our results, the same case

was also simulated by Finite Volume method (FVM) with very fine meshes.

In Fig. 2, the velocity profiles in positions x = 0, 0.5D, D and 2D are all

compared with that of FVM. Both the axial and radial velocity components agree

well with that of FVM. That validates our derived formulas. Since the axis locate off

lattices and r = 20δx, the nonstenotic wall is also located off lattices. From Fig. 2 we

can see that although there are no lattices locate at position (x/D, r/D) = (0, 0.25),

the wall boundary condition can still ensure the zero velocity at that position.

A more serious constriction case are also studied, in the case S0 = D/2, Re = 10.

Comparison of the axial and radial velocity profiles in different position is illustrated

in Fig. 3. Our results are also in consistent with that of FVM. It seems that with

just 42 lattice represent nonstenotic diameter can also achieve accurate results.

Fig. 2. Velocity profiles in different position in case of S0 = D, Re = 10.
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Fig. 3. Velocity profiles in different position in case of S0 = D/2, Re = 10.

Fig. 4. Velocity profiles in different position in case of S0 = D, Re = 50.

In above case we obtained correct results using the method of avoiding singu-

larity. Through asymptotic analysis, we also observed that when the central lattice

nodes lie in the axis, using formulas below can also achieve correct results.

h
(1)
i,jcen = −ωiρ0(ur)jcen+1

rjcen+1
, h

(2)
i,jcen =

(h
(2)
i,jcen+1 + h

(2)
i,jcen−1)

2
. (42)

Appling the Eq. (42) we obtain the results for case S0 = D, Re = 50. The

velocity profile comparison is illustrated in Fig. 4. It seems the results are also very

good.

Because previous model of Halliday, et al.
3 missing some important terms rel-

ative to radial velocities, it is observed neither the axial nor the radial velocity

profiles are correct. Figure 5 illustrated that problem. Form the figure we can see

that even very fine lattices Nx ×Nr = 881× 83 was applied, the model of Halliday,

et al.
3 can only give out poor results comparing with results of FVM. However, in

the circumstances of straight tube, ur is so small that the missing terms are almost
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Fig. 5. Results obtained from model of Halliday et al.3 for case of S0 = D, Re = 10.

can be neglected. So Halliday, et al. also got valid result for straight circular tube.3

In the next part of our discussion, we can see the Halliday’s model can also give

out some accurate results for 3D Womersley flow which is unsteady flow through

straight tube.

4.2. Unsteady tube flow (3D Womersley flow)

The 3D Womersley Flow (pulsatile flow in aixsymmetric pipe) is driven by periodic

pressure gradient at the inlet of the pipe. In the following, p∗ is the maximum

amplitude of the sinusoidally varying pressure gradient.

∂p

∂x
= −p∗eiωt . (43)

R is defined as the radius of the circular pipe. ω is the angular frequency and ν

is the kinetic viscosity of fluid. The Reynolds number is defined as Re = 2UsR/ν,

Us is the velocity defined as:

Us =
p∗α2

4ωρ
=

p∗R2

4ρν
, (44)

which is the velocity that would be observed at the centre of the tube if a con-

stant forcing term p∗ were applied in the limit of α → 0 (steady flow). The

Womersley number is defined as α = R
√

ω/ν. The Strouhal number is defined

as St = R/(UsT ), where T is the sampling period.

The analytical solution for aixsymmetric pipe pulsatile flow4 is:

u(r, t) = Re

{

p∗

iωρ0

[

1 − J0[1/
√

2(−α + iα)r/R]

J0[1/
√

2(−α + iα)]

]

eiωt

}

, (45)

where J0 is the zeroth order Bessel function of the first type.

All the simulations in this part began with an initial condition of zero velocity

every where, and an initial run of 10T steps.
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Fig. 6. Profiles of increasing (left) and decreasing (right) velocities along the diameter of a
tube for α = 7.927, T = 1200, Re = 1200, τ = 0.6, at t = nT/16 (n = 0, . . . , 15) Us = 1.0,

U(max∼ 0.07).

It should be noticed that the maximum velocity Umax appearing in tube axis

during a sampling period would be less than character velocity Us for case α > 0.

For case α � 1, the Umax would be much less than Us. It seems when oscillatory

pressure gradient changes very fast and it is impossible for velocity field to reach

the fully developed velocity profile with maximum value Us.

A typical Reynolds number in the abdominal aorta is 1250 and a typical Wom-

ersley number α = 8,4 firstly simulation the case of Re = 1200, α = 7.93, T = 1200,

τ = 0.6 was performed. Nx×Nr = 81×41 and the corresponding Us = 1.0. The ex-

act analytical solutions of Eq. (43) were compared to numerically evaluated velocity

profiles along the diameter in Fig. 6. The velocity is normalized by Us. The r-axis

is nondimensionalized by dividing by the radius of the tube as indicated in Fig. 6.

Although in this case Us = 1.0, the Umax observed in whole oscillatory period is

only about 0.063, M = 0.063
√

3 ≈ 0.109 � 1, which is consistent with the limit of

LBM. In all our cases, the additional limit Lx/(csT ) � 1 was also satisfied.

Then we’d like to discuss the spatial accuracy of our model through evaluate

the error between the numerical and analytical solution. In this study and above

cases, the oscillatory pressure is implemented by adding equivalent oscillatory body

force. A velocity error formula is introduced as (46). At each time step the error

can be defined as:

ξ =

∑

i |u(ri) − ua(ri)|
∑

i |ua(ri)|
, (46)

Where u(ri) is the numerical solution, ua(ri) is the analytical velocity at ri in

middle pipe. The overall average error 〈ξ〉 is averaged over the period T . For all the
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Fig. 7. Global error 〈ξ〉 as a function of the pipe diameter Nr for α = 7.93 and α = 3.17.

cases in this part, the convergence criterion was set as following:
∑

x |u(x, t + T )− u(x, t)|
∑

x |u(x, t + T )| ≤ 10−6 (47)

where x is any lattice in computational domain. t usually chosen as t = 1 + nT .

Here in all of cases, the pipe length was chosen as 2Nr , where Nr is the number

of lattice nodes in the diameter (usually Nr excludes the up and lower extra layers

outside the wall boundary). The global errors behavior for α = 7.93 and α = 3.17

was illustrated in Fig. 7. For a certain α, as Nr was increased α was kept constant

by varying the period T accordingly within the range T > 103. For above α, the

corresponding τ was kept 0.6 and 1.0 respectively. In Fig. 7, the solid lines represent

the linear fits, and the slope of the lines are −1.89 (α = 7.93) and −2.02 (α = 3.17).

The figure demonstrates that, current LBGK model incorporating the extrapolation

wall boundary condition and the forcing term, is second order in space.

In last part we’d like to find some clues of compressibility effect through investi-

gating the velocity field error. Here to investigate the velocity field error, four cases

with α = 3.963, Nx × Nr = 41 × 41, T = 4800 were simulated using both present

model and the Halliday’s model. The scheme of specifying inlet/outlet pressure

was chosen to implement pressure gradient. Table 1 shows the velocity field error

measured by θ and 〈θ〉. θ at time t is defined as:

θ =

∑

i(u(ri, t) − ua(ri, t))
2

∑

i u2
a(ri, t)

, (48)

where the summation is over the diameter in middle pipe and the overall average

error 〈θ〉 is averaged over the period T . The θmax means the maximum value of θ
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Table 1. The error of velocity field in 3D Womersley flow.

Halliday’s model Present model

Cases Re p∗ Mmax θmax 〈θ〉 (%) θmax 〈θ〉 (%)

1 120 0.0001 0.054 0.00534 0.054 0.00481 0.042
2 240 0.0002 0.108 0.0131 0.172 0.0127 0.139
3 600 0.0005 0.272 0.0942 0.923 0.0557 0.730
4 1200 0.001 0.544 0.453 3.39 0.206 2.48

in a sampling period. In Table 1, the Mmax in tube axis for case 1 to 4 are 0.054,

0.108, 0.272 and 0.544, respectively.

Through comparison of the maximum particular velocity error and the overall

numerical average errors of two models in Table 1, we observed that as Mmax

in tube axis increase, the corresponding errors of Halliday’s increases faster than

present incompressible model. The observation is consistent with conclusion got for

the standard and incompressible D2Q9 models.9 Hence, comparing with Halliday’s

model, present model can eliminate the compressibility effect.

5. Conclusion

An accurate axisymmetric incompressible LBGK model was derived in this pa-

per by introducing an additional source term to an incompressible LBGK model.

With limit of mach number M � 1 and Lx/(csT ) � 1, this axisymmetric LBGK

model successfully recovered the Navier–Stokes equation in the cylindrical coordi-

nates through Chapman Enskog expansion. For the additional source term in our

model, most velocity gradient terms can be obtained from high order momentum

of distribution function, which is consistent with the philosophy of the LBM. The

axisymmetric incompressible LBGK model was successfully applied to simulate the

steady and unsteady axisymmetric flow in circular tubes.

For studies of steady flow through constricted tubes, because our model can

fully recover the continuity and Navier–Stokes equations, accurate results were ob-

tained. For studies of 3D Womersley flow, current LBGK model incorporating the

extrapolation boundary condition is of second order in space. Comparing with Hal-

liday’s axisymmetric model, it is observed that the present model can reduce the

compressibility effect.
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