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In this paper, a recent curved non-slip wall boundary treatment for isothermal Lattice
Boltzmann equation (LBE) [Z. Guo, C. Zheng and B. Shi, Phys. Fluids 14(6) (2002)] is
extended to handle the thermal curved wall boundary for a double-population thermal
lattice Boltzmann equation (TLBE). The unknown distribution population at a wall
node which is necessary to fulfill streaming step is decomposed into its equilibrium
and non-equilibrium parts. The equilibrium part is evaluated according to Dirichlet
and Neumann boundary constraints, and the non-equilibrium part is obtained using a
first-order extrapolation from fluid lattices. To validate the thermal boundary condition
treatment, we carry out numerical simulations of Couette flow between two circular
cylinders, the natural convection in a square cavity, and the natural convection in a
concentric annulus between an outer square cylinder and an inner circular cylinder. The
results agree very well with analytical solution or available data in the literature. Our
numerical results also demonstrate that the TLBE together with the present boundary
scheme is of second-order accuracy.
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1. Introduction

The lattice Boltzmann method (LBM) has been proposed as an alternative nu-

merical scheme for solving the incompressible Navier–Stokes (NS) equations.1–4 In

LBM, the boundary conditions treatments are important for obtaining accurate

results. There are many non-slip wall boundary treatments for isothermal flows,

for example, the bounce-back scheme,5 the half-way bounce-back scheme,6 the

hydrodynamic approach,7 the non-equilibrium bounce-back scheme8 and the ex-

trapolation scheme,9 and so on. To handle curved wall boundary conditions more

accurately, Fillipova and Hänel,10 and later Mei et al.
11 improved the bounce-back

rule for curved boundary. Later, a much simple and accurate boundary treatment

combining bounce-back scheme and interpolation was proposed by Bouzidi et al.
12

Guo et al.
13 also proposed non-equilibrium distribution extrapolation method for
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non-slip curved wall boundary condition. Using the above boundary condition treat-

ments for isothermal fluid flow problem is very successful.12,13

On the other hand, to simulate heat transfer phenomena, effort of establish-

ing a satisfactory thermal LBE models is ongoing.14–16 In general, the present

thermal lattice Boltzmann models can be classified into three categories: the

multispeed approach,14 the passive-scalar approach, and the double-population

approach. In the multispeed approach,14 the internal energy term is incorpo-

rated with a density distribution function so that only the density distribution

function is needed, however, these multi-speed models suffer severe numerical

instability, and the temperature variation is limited to a narrow range.16 To

enhance numerical stability, a separate distribution function which is indepen-

dent of the density distribution is proposed in the passive-scalar thermal LBE

model.15 However, the viscous heat dissipation and compression work done by

the pressure cannot be taken into account.16 In the third approach,16 the tem-

perature field is obtained through an independent internal energy density dis-

tribution function. The model has better numerical stability and the viscous

heat dissipation and compression work done by the pressure can be solved

fundamentally.

At the same time, constructing stable thermal boundary treatment for TLBE

models is also in progress.16–20 He et al.
16 applied the bounce-back rule of the

non-equilibrium distribution to the thermal boundary distribution. Tang et al.17

adopt local thermal equilibrium distribution functions on wall nodes for unknown

populations. D’ Orazio et al.
18 applied a “counter-slip” approach19 to handle the

thermal boundary condition. Although the scheme of assuming a counter slip ther-

mal energy density achieved high accuracy,18 the counter-temperature assumption

may cast doubt on its convenient applicability to arbitrary boundary conditions or

complicated geometries.3,9

Here, based on the idea of Guo et al.,13 for uniform regular lattices, we introduce

a thermal curved boundary condition for the doubled-population TLBE model. The

distribution at a wall node was decomposed into two parts, i.e., the equilibrium part

and the non-equilibrium one. The nonequilibrium part is approximated by that of

the neighboring fluid node along the link, and the equilibrium part is determined

by a fictitious equilibrium distribution where the boundary condition is enforced.13

The outline of this paper is as follows: In Sec. 2, a brief description of the double-

population approach TLBE16 is given. In Sec. 3, the thermal boundary conditions

for arbitrary curved wall were derived. In Sec. 4, some numerical solutions valid the

boundary treatment and finally we conclude the paper.

2. Thermal LBE Model

In our study, a double-population TLBE derived by He et al.
16 is used. The two

discrete evolution equations in the TLBE are Eqs. (1) and (2),
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fi(x + eiδt, t+ δt) − fi(x, t)

= − δt

τf + 0.5δt
[fi(x, t) − f eq

i (x, t)] +
τf δt

τf + 0.5δt
Fi , (1)

gi(x + eiδt, t+ δt) − gi(x, t)

= − δt

τg + 0.5δt
[gi(x, t) − geq

i (x, t)] − τgδt

τg + 0.5δt
fi(x, t)qi . (2)

Where, the new variables f̄ and ḡ are defined as

fi = fi +
0.5δt

τf
(fi − f eq

i ) − δt

2
Fi , (3)

gi = gi +
0.5δt

τg
(gi − geq

i ) +
δt

2
fiqi , (4)

Fi =
G(ei − u)

RT
f eq

i , (5)

qi = (ei − u)

[

∂u

∂t
+ (ei · ∇)u

]

. (6)

where f(x, t) and g(x, t) are the density distribution function and the thermal

energy density distribution function in position x at time t respectively. τf and τg
are the momentum and internal energy relax time, respectively. In Eq. (5), G are

the external forces acting on unit mass. ei is the lattice velocity and i denotes the

velocity direction. δx, δt and are the lattice spacing and time step size. Equation (6)

represents the effect of viscous heating and it can be expressed as19

qi = (ei − u)
[u(x + eiδt, t+ δt) − u(x, t)]

δt
. (7)

For D2Q9 model, the 9 discrete velocities are as following, the direction can also

refer to Fig. 1,

ei =























(0, 0) i = 0
(

cos
[

(i− 1)
π

2

]

, sin
[

(i− 1)
π

2

])

c i = 1, 2, 3, 4

√
2
(

cos
[

(i− 5)
π

2
+
π

4

]

, sin
[

(i− 5)
π

2
+
π

4

])

c i = 5, 6, 7, 8

. (8)

In above expression, c = δx/δt =
√

3RT0, T0 is the average temperature. In this

paper c = 1 and δt = δx = 1.

In above Eqs. (1)–(5), f eq
i , geq

i are the equilibrium density distribution functions

and equilibrium internal energy distribution functions respectively. They are defined

as,16

f eq
i (x, t) = ωiρ

[

1 +
ei · u
c2s

+
(ei · u)2

2c4s
− u2

2c2s

]

, i = 0, 1, 2, . . . , 8 , (9)
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Fig. 1. Curved boundary and lattice nodes (open circle is wall nodes, open square is fluid nodes,
filled circle is the physical boundary nodes in the link of fluid node and wall node).

geq
0 (x, t) = ωiρe

(

−3u2

2c2

)

, (10)

geq
i (x, t) = ωiρe

[

3

2
+

3(ei · u)

2c2
+

9(ei · u)2

2c4
− 3u2

2c2

]

, i = 1, 2, 3, 4 , (11)

geq
i (x, t) = ωiρe

[

3 +
6(ei · u)

c2
+

9(ei · u)2

2c4
− 3u2

2c2

]

, i = 5, 6, 7, 8 , (12)

where cs = c/
√

3, ω0 = 4/9, ωi = 1/9, (i = 1, 2, 3, 4), ωi = 1/36, (i = 5, 6, 7, 8).

The internal energy density is ρe = ρRT for two-dimensional problems.

Finally, the macroscopic density ρ and momentum ρu, internal energy per unit

mass e, heat flux q, which is a vector different from qi in Eq. (6) or (7), kinetic

viscosity ν and thermal diffusivity α are obtained by16,19

ρ =

8
∑

i=0

fi , ρu =

8
∑

i=0

fiei +
ρGδt

2
, (13)

ρe =

8
∑

i=0

gi −
δt

2

∑

i

fiqi , (14)

q =

(

8
∑

i=0

eigi − ρeu− δt

2

8
∑

i=0

eifiqi

)

τg
τg + 0.5δt

, (15)

ν = τfRT0 and α = 2τgRT0 . (16)
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3. Boundary Condition

The curved non-slip wall boundary treatment13 is applied for velocity boundary

conditions in this paper and now, the treatment is extended to handle the thermal

curved wall boundary for a double-population thermal lattice Boltzmann equation

(TLBE). Basically, to evaluate internal energy density distribution functions, the

two main steps of TLBE model are collision and streaming. In the collision step,

the post-collision distribution function obtained by

gi
+(x, t) = (1 − ωg)gi(x, t) + ωgg

eq
i (x, t) − ωgτgfiqi , (17)

where ωg = δt/(τg +0.5δt). In the streaming step, the distribution functions of new

time level is

gi(x + eiδt, t+ δt) = gi
+(x, t) . (18)

However, to fulfill the streaming step, some unknown internal energy density

distribution functions should be determined. For example, in Fig. 1, it is obvious

that to fulfill the streaming step, some unknown gi
+(xw , t) (i = 3, 7) in wall nodes

xw need to be specified. To specify gi
+(xw, t), In Eq. (17) the term gi(xw, t) can

be decomposed into two parts,13

gi(xw, t) = geq
i (xw, t) + gne

i (xw , t) (19)

where geq
i (xw, t) and gne

i (xw, t) are the equilibrium and nonequilibrium part of

gi(xw , t).

Firstly, we discuss how to determine the equilibrium part geq
i (xw, t). Equa-

tions (10)–(12) illustrated that once ρ(xw), T (xw), u(xw) is known, then geq
i (xw , t)

can be determined. Here, for simplicity, ρw, Tw, uw are used to denote ρ(xw), T (xw),

u(xw), the macro variables in other lattice nodes are written in this way. Here, ρw

is specified as ρw = ρ(xw +ei) = ρf . Tw is determined by linear extrapolation using

either Tw1 = (Tb +(∆−1)Tf )/∆ or Tw2 = (2Tb +(∆−1)Tff )/(1+∆). Where ∆ is

the fraction of the intersected link in the fluid region ∆ = |xf −xb|/|xf −xw|, which

is illustrated in Fig. 1. Usually, Tw1 can be used as a good approximation for Tw for

∆ > 0.75, However, if ∆ is small, using Tw1 to evaluate Tw may cause instability.

Alternative, for ∆ < 0.75 we used Tw = ∆Tw1 + (1 − ∆)Tw2. The extrapolation

scheme is the same as Ref. 13.

Next, to determine the gne
i (xw , t), extrapolation method is also used. gne

i (xw , t)

is evaluated as gne
i (xw, t) = ∆gne

i (xf , t) + (1 − ∆)gne
i (xff , t). From the Chapman-

Enskog analysis,16 gne
i (xw , t) can be expressed as gne

i = g
(1)
i δx, where g

(1)
i is of the

same order as geq
i . Since g

(1)
i (xw , t)− g

(1)
i (xf , t) = O(δx), gne

i (xw, t)− gne
i (xf , t) =

O(δx2). For lattice node xff , the accuracy analysis is the same as above. That

means the approximation gne
i (xw , t) is of second order in space which is in consistent

with TLBE.

Finally, the thermal curved boundary treatment to specify gi
+(xw , t) is

gi
+(xw, t) = geq

i (xw , t) + (1 − ωg)g
ne
i (xw, t) − ωgτgfiqi . (20)
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Since the Neumann curved wall boundary can be transferred into Dirichlet

boundary condition, then the above Dirichlet curved wall boundary treatment can

also be applied to Neumann curved wall boundary. As an example, we consider

the same wall node “w” in the Fig. 1. Once the heat flux (temperature gradient

(∂T/∂n) at “b” is given, n is the unit vector normal to the local wall and pointing to

fluid region. (∂T/∂n)i is used to represent the temperature gradient in ei direction.

That is (∂T/∂n)i = (∂T/∂n)ein/|ei|. Using Taylor series expansion, with second

order accuracy in space, the temperature on node “w” can be approximated by:

Tw =
1

3

(

4Tf − Tff − 2

(

∂T

∂n

)

i

|ei|δt
)

. (21)

Hence, after the equilibrium part is evaluated according to Dirichlet and Neu-

mann boundary constraints, and the non-equilibrium part is obtained using a first-

order extrapolation from fluid lattices, gi
+(xw , t) is obtained to fulfill the streaming

step.

4. Results and Discussion

4.1. Couette flow between two circular cylinders

To demonstrate the capability of the present thermal curved wall boundary treat-

ment and investigate its spatial accuracy, the Couette flow between two circular

cylinders is simulated. In this flow, the inner cylinder with radius r1 rotates with

a constant tangent velocity u0 (u0 = ωr1, ω is the angular velocity) and the outer

cylinder with radius r2 is kept stationary. The temperature of inner cylinder is kept

as T1 and that of outer cylinder is kept T2. This Couette flow has the following

analytical solution,

uθ(r) = C

(

r2
r1

− r

r2

)

, (22)

Tθ(r) =
PrC2r22
r2

+
PrC2(1/η2 − 1) + (T1 − T2)

ln η
ln

(

r

r2

)

+ T2 + PrC2 , (23)

where C = u0η(1 − η2), η = r1/r2, the Prandtl number Pr = ν/α, ν is the kinetic

viscosity and α is the thermal diffusivity.

In simulations, a uniform square mesh is used to cover the flow domain. The

present thermal boundary treatment is applied to the surfaces of the outer and

inner cylinders. Firstly, cases of Re = (r2 − r1)u0/ν = 10 with different values of η

are conducted. In these cases τf = 0.1, τg = 0.1, r2 = 40, and r1 changes according

to r2 and η. The temperature profiles are plotted together with the analytical ones

in Fig. 2. The excellent agreement between the TLBM and the analytical solutions

demonstrates the reliability of the present boundary treatment.

Spatial accuracy of the treatment is also tested for cases of Re = 10 and 30. In

these cases, τf = 0.1, τg = 0.1 and η = 0.5. r1 changes from 8 to 64, and r2 changes

according to η and r1. The relative global L2 norm errors in the temperature field
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Fig. 2. Temperature profiles of the Couette flow at Re = 10 with difference value of the radius
ratio.

Fig. 3. Temperature relative global errors versus the radius of the inner cylinder in the Couette
flow. (m is the slope of linear fitting line).

E2 are measured and shown in Fig. 3. In Fig. 3, the slopes of the linear fitting lines

for Re = 10 and 30 are −1.98 and −2.00 respectively. The slopes are all very close

to −2, which confirmed the thermal curved wall treatment is second-order accuracy.
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Fig. 4. Boundary condition and geometry of natural convection in a square cavity (N = 13).

4.2. Natural convection in a square cavity

In order to further validate the thermal boundary treatment, a natural convection in

a two-dimensional square cavity is investigated. The temperature difference between

the left and right walls introduces a temperature gradient in the fluid, which induces

the natural convection in the cavity. The top and bottom walls are adiabatic. The

definition of ∆ and the boundary conditions are illustrated in Fig. 4. Here to test

the thermal boundary treatment, ∆ = 0.25, 0.5, 0.75 were studied. The actual size

of the cavity is L×L = (N − 3 + 2∆)× (N − 3 + 2∆). N is the total lattice nodes

in each spatial direction.

The Boussinesq approximation is applied to the buoyancy force term. This

means that the properties β and ν are considered as constants, and the buoy-

ancy term is assumed to depend linearly on the temperature, ρG = ρβg0(T −T0)j,

where β is the thermal expansion coefficient, g0 is the acceleration due to gravity,

T0 is the average temperature, here it is 1.0, and j is the vertical direction opposite

to that of gravity.

The dynamical similarity depends on two dimensionless parameters: the Prandtl

number Pr and the Rayleigh number Ra defined as

Pr =
ν

α
, (24)

Ra = βg0
(T1 − T2)L

3

να
. (25)

In our simulations, Pr = 0.7. The value of characteristic velocity Uc =
√

βg0(T1 − T2)L was chosen 0.1 for Ra ≤ 105 and 0.15 for Ra > 105. When Uc is
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determined, the kinetic viscosity ν and the thermal diffusivity α can be determined

by the two dimensionless numbers Pr and Ra through Eqs. (24) and (25). And then

by Eq. (16), two relaxation times τf , τg, are determined. Another characteristic

velocity U∞ = α/L is also used to normalize velocity and stream functions.

The Nusselt number is one of the most important dimensionless parameters in

describing the convective heat transport. The average Nusselt number in the whole

flow domain is defined by

Nua =
L

α(T1 − T2)

∫ L

0

∫ L

0

qx(x, y)dxdy , (26)

where qx is the heat flux in x direction.

Firstly, the grid-dependence study listed in Table 1, the data taken from cases of

∆ = 0, Ra = 104. The grid size is taken as N×N , where N is the total lattice nodes

in each spatial direction. Table 1 shows the numerical results of normalized umax on

the vertical midplane of the cavity and corresponding position y, normalized vmax

on the horizontal midplane and corresponding position x, and Nua. When grid size

becomes larger, our results are more close to the benchmark solutions in Ref. 21.

Grid size 103×103 is fine enough to obtain accurate results. Hence in the studies of

other cases, the grid size used is 103× 103.

Table 2 shows the numerical results of cases with ∆ = 0.5 (actual size of the

cavity is 101×101) for a wide range of Rayleigh numbers. The benchmark numerical

solution using the differential quadrature (DQ) method21 are also listed for com-

parison. It can be seen from Table 2 that, our numerical results agree very well with

Table 1. Grid-dependence study for the natural convection in a
square cavity at Ra = 104, ∆ = 0.

Mesh 53 × 53 103 × 103 153 × 153 DQ21

umax 15.980 16.133 16.133 16.190

y 0.818 0.819 0.823 0.825

vmax 19.390 19.580 19.580 19.638

x 0.121 0.120 0.120 0.120

Nua 2.225 2.241 2.244 2.245

Table 2. Numerical results for cases with ∆ = 0.5, Ra = 103–106 .

103 104 105 106

Ra TLBE Ref. 21 TLBE Ref. 21 TLBE Ref. 21 TLBE Ref. 21

umax 3.652 3.649 16.197 16.190 34.844 34.736 64.872 64.775

y 0.817 0.815 0.827 0.825 0.856 0.855 0.847 0.850

vmax 3.705 3.698 19.613 19.638 68.582 68.640 219.18 220.64

x 0.173 0.180 0.124 0.120 0.064 0.065 0.035 0.035

Nua 1.118 1.118 2.243 2.245 4.512 4.523 8.729 8.762



May 19, 2006 16:23 WSPC/141-IJMPC 00905

640 H. Huang, T. S. Lee and C. Shu

0.05

0.15

0.25

0.45

0.65

0.
85

0
.9
5

1
.0

5
1
.1

5

Ra=103

0.50
1.00

1.50

2.00

2.
50

3.00

4
.0

0
4
.5

0

5.00

Ra=10
4

1.00
3.00

5.00
7.00

8.00

9.00

Ra=10
5

1.00

3.00

5.00
8.00

11.00
13.00

14.00
15.00

16.00

Ra=10
6

Fig. 5. Streamlines of natural convection at Ra = 103, 104, 105 , 106 for cases ∆ = 0.5.
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Table 3. Numerical results for Ra = 104 with mesh size
103 × 103 and different ∆.

Mesh ∆ = 0 ∆ = 0.25 ∆ = 0.5 ∆ = 0.75 DQ21

umax 16.133 16.218 16.197 16.173 16.190

y 0.819 0.828 0.827 0.825 0.825

vmax 19.580 19.652 19.613 19.600 19.638

x 0.120 0.122 0.124 0.116 0.120

Nua 2.241 2.240 2.243 2.239 2.245

that of Ref. 21. With the increase of the Rayleigh number, due to the enhancement

of natural convection, normalized umax, normalized vmax, Nua are increased greatly,

and the position of maximum vertical velocity on the horizontal midplane moves

closer to the wall. Figure 5 and 6 show the contour of normalized stream function

and isotherms of Ra = 103, 104, 105, 106. These plots all agree well with Ref. 21.

To investigate the effect of different ∆, cases with ∆ = 0, 0.25, 0.5, 0.75 for

Ra = 104 were simulated. The results are illustrated in Table 3. It can be seen from

Table 3 that for different ∆, TLBE with present thermal boundary treatment can

all give out very accurate results.

4.3. Natural convection in a concentric annulus between an outer

square cylinder and an inner circular cylinder

The natural convection in a concentric annulus between an outer square cylinder

and an inner circular cylinder were investigated for Rayleigh numbers 104, 5× 104

and 105. The geometry ratio between the square cylinder and circular cylinder is

defined as η = 2ri/L and is fixed at 0.4 in our simulation. The temperatures of inner

cylinder and outer square are fix as 2.5, 1.5 respectively. Here in our simulations the

grid size is 103× 103. The Prandtl number Pr = 0.71 and Uc =
√

βg0(T1 − T2)L =

0.1. Equations (24) and (25) are also used to determine the kinetic viscosity ν and

the thermal diffusivity α.

The non-dimensional stream function is defined as ψ = ψ∗/LU∞, ψ∗ is dimen-

sional stream function and U∞ = α/L, The contours of non-dimensional stream

functions in the annulus at Ra = 104, 5×104, 105 are shown in Fig. 7. The stream-

line of ψ = 0 is almost in the vertical midplane and the contours are symmetric

with respect to vertical midplane. The isotherms in the annulus are shown in Fig. 8,

the contours are also symmetric with respect to the vertical midplane. Figures 7

and 8. are all in good agreement with the plots shown in Refs. 22 and 23.

Since in the steady state, the Nusselt numbers along the inner and outer walls

are the same, there is no need to pay separate attentions to the average Nusselt

numbers for the outer and inner boundaries. The average Nusselt number on the

inner cylinder or outer square can be computed by below definition,

Nua =
1/2S

∮

Ω α∂T/∂n

α/S(T1 − T2)
(27)
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Table 4. The maximum stream function ψmax and the
average Nusselt number Nua.

ψmax Nua

Ra TLBE Ref. 22 TLBE Ref. 22

104 0.99 0.97 3.22 3.24
5 × 104 4.96 4.82 4.01 4.02
105 8.27 8.10 4.79 4.86

where T is the dimensional temperature, ∂T/∂n is the temperature gradient in the

direction normal to the boundary. Ω is the boundary of inner or outer surface. S

is the half length of corresponding boundary Ω. T1, T2 are the dimensional tem-

peratures on the inner and outer walls respectively, α is the thermal conductivity.

Here to avoid the difficulty of obtaining ∂T/∂n in the inner circular boundary, we

calculated the Nua from the outer square boundary.

The numerical results of the maximum stream function ψmax and the average

Nusselt number Nua are shown in Table 4. The benchmark results using the DQ

method22 are also included for comparison. Good agreement between present results

and the benchmark results further validates the thermal curved wall boundary

treatment.



May 19, 2006 16:23 WSPC/141-IJMPC 00905

Thermal Curved Boundary Treatment for the TLBE 643

5. Conclusion

In this paper, a curved non-slip wall boundary treatment for isothermal Lattice

Boltzmann equation (LBE)13 was successfully extended to handle the thermal

curved wall boundary for a double-population thermal lattice Boltzmann equation

(TLBE). The unknown distribution population at a wall node which is necessary

to fulfill streaming step is decomposed into its equilibrium and non-equilibrium

parts.13 The equilibrium part is evaluated according to Dirichlet and Neumann

boundary constraints, and the non-equilibrium part is obtained using a first-order

extrapolation from fluid lattices. The numerical simulation of Couette flow between

two circular cylinders confirmed the thermal curved wall treatment is second-order

accuracy. The results of natural convection in a square cavity, and the natural

convection in a concentric annulus between an outer square cylinder and an in-

ner circular cylinder all agree very well with available data in the literature. That

further validated the thermal curved wall boundary treatment. Although the prob-

lems simulated here are all two-dimensional, this thermal curved wall boundary

treatment can be applied to 3D thermal problems with complex geometry easily.
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