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Originally, the color-gradient model proposed by Rothman and Keller (R�K) was unable to

simulate immiscible two-phase °ows with di®erent densities. Later, a revised version of the R�K

model was proposed by Grunau et al. [D. Grunau, S. Chen and K. Eggert, Phys. Fluids A: Fluid
Dyn. 5, 2557 (1993).] and claimed it was able to simulate two-phase °ows with high-density

contrast. Some studies investigate high-density contrast two-phase °ows using this revised R�K

model but they are mainly focused on the stationary spherical droplet and bubble cases.
Through theoretical analysis of the model, we found that in the recovered Navier�Stokes (N�S)

equations which are derived from the R�Kmodel, there are unwanted extra terms. These terms

disappear for simulations of two-phase °ows with identical densities, so the correct N�S

equations are fully recovered. Hence, the R�K model is able to give accurate results for °ows
with identical densities. However, the unwanted terms may a®ect the accuracy of simulations

signi¯cantly when the densities of the two °uids are di®erent. For the simulations of spherical

bubbles and droplets immersed in another °uid (where the densities of the two °uids are

di®erent), the extra terms may not be important and hence, in terms of surface tension, accurate
results can be obtained. However, generally speaking, the unwanted term may be signi¯cant in

many °ows and the R�K model is unable to obtain the correct results due to the e®ect of the

extra terms. Through numerical simulations of parallel two-phase °ows in a channel, we con¯rm
that the R�K model is not appropriate for general two-phase °ows with di®erent densities.

A scheme to eliminate the unwanted terms is also proposed and the scheme works well for cases

of density ratios less than 10.
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1. Introduction

Numerous macroscopic numerical methods have been developed for solving the

two-phase Navier�Stokes (N�S) equation,1 such as the front-tracking method,

the volume-of-°uid (VOF) method, the level set method, and so on. The former

three methods are the most popular ones. However, the front-tracking method is

usually not able to simulate interface coalescence or breakup.1,2 In the VOF and level

set methods, usually an interface reconstruction step or interface reinitialization

is required, which may be nonphysical or complex to implement.2 In addition,

numerical instability may appear when the VOF and level set methods are applied

to simulate surface-tension-dominated °ows in complex geometries.1

In the last 20 years, the Lattice Boltzmann method (LBM) has been developed

into a good tool to solve two-phase °ows.3�9 The LBM is a mesoscopic method and

easily handles complex wall geometries. The LBM is an explicit method, which makes

the code easy to parallelize. In the LBM, solving the Poisson equation is not required,

hence it is more e±cient than common macroscopic schemes.

There are many multiphase LBMs available in the literature, such as the

Shan-Chen model,10 free energy model,11 Rothman�Keller model (R�K),12 and so

on.9 The Shan-Chen multiphase model is the simplest one.3 However, quantitative

numerical study shows the model is not accurate13 due to the inaccurate forcing term

used in the model.14 Using the correct forcing term in the Shan-Chen model, it is able

to simulate two-phase °ows with maximum density contrast of several hundred.14

The ¯rst multicomponent lattice gas model was proposed by Rothman and

Keller.12 The model was further developed by Gunstensen et al.15 They introduced

an extra binary °uid collision (perturbation operator) into the Lattice Boltzmann

equation. Later, by introducing two free parameters in the rest equilibrium distri-

bution function (DF), Grunau et al.16 claimed the improved R�K model was able to

simulate °ows with di®erent densities. Latva-Kokko and Rothman17 improved the

recoloring step in the R�K model, which is able to reduce the lattice pinning e®ect

and decrease the spurious currents.2,18 Now the recoloring step is widely used in

applications of the R�K model.2,13,19 Recently, Reis and Phillips developed a two-

dimensional nine-velocity R�K model.20 In the model, a revised binary °uid collision

is proposed and is shown to be able to recover the term which accounts for surface

tension in the N�S equations.20 In some studies,21,22 the forcing term strategy is used

to introduce the surface tension instead of the perturbation operator. Here we still

adopt the perturbation operator because it is regarded as one of main characteristics

of the R�K model.

First we review the evidence in the literature that the R�K model is able to

handle high-density ratio two-phase °ows. In almost all validations,16,23,24 only cases

of stationary bubbles or droplets16,23,24 are simulated. Usually, the studies16,23,24 used

the Laplace law to calculate the surface tension and compared with the analytical

value. In Ref. 24, a density ratio between the °uids as high as 10 000 is simulated.

In addition to the cases of stationary droplet and bubble simulations, rising bubble
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cases2,23,25 are also used to perform validation of the R�K method to some extent.

However, usually only density ratios less than 4 are simulated.2,20,23,25

In the literature, it is more often that cases with identical densities were simulated

using the R�K model, such as droplet deformation and breakup in simple shear

°ow,2 two-phase °ow in porous media,4 high-viscosity ratio two-phase parallel °ow

in a channel.18,25 Note in the latter two °ows, only two °uids with identical densities

but di®erent kinematic viscosities are simulated.

Hence, it is uncertain that whether the R�K model is able to simulate two-phase

°ows with high-density ratios beyond the stationary droplet and bubble cases.

Rothman [personal communication], who invented the R�K model indicated that

\As for the case of di®erent densities, these models17,19 do not perform so well. You

may ¯nd some useful alternative algorithms (e.g. Shan and Chen)." Hence, according

to Rothman's opinion, for °ows with di®erent densities, usually the R�K model does

not perform as well as other multiphase LBMs.

Recently, some numerical studies also reported that the R�K model gave poor

results for two-phase parallel °ows with di®erent densities in a channel.26 Although

the thesis26 demonstrated the incorrect results, it is still unknown why the model is

unable to give correct results. In this paper, through analysis of the recovered

macroscopic equations, some extra terms are found in the recovered momentum

equation. These extra terms may a®ect the numerical results signi¯cantly. For

example, due to these terms, the tangential shear stress condition in the interface

vicinity is not satis¯ed properly. For the cases of stationary bubble or droplet, the

extra terms may be negligible and it does not a®ect the result much in terms of

surface tension.

The paper is arranged in the following way. The R�K model is introduced brie°y.

Through theoretical analysis, we show that usually the R�K model introduces

some extra unwanted terms in the recovered macroscopic momentum equation.

For two-phase °ows with di®erent densities, the terms are usually unable to be

eliminated. Through numerical study of two-phase parallel °ows in a channel, we

con¯rm that the R�K model for di®erent density ratios is usually incorrect except

for the stationary droplet and bubble cases. A scheme to eliminate the unwanted

terms is proposed and evaluated.

2. Method

2.1. R�K model

In the R�K model, the particle distribution function (PDF) for °uid k is de¯ned to

be f k
i . For two-phase °ows, two DFs are de¯ned, i.e. f b

i , and f r
i , where b and r denote

\blue" or \red" component. The total PDF at (x, t) is fiðx; tÞ ¼
P

k f
k
i ðx; tÞ.

Usually there are two steps implemented in the LBM, collision and streaming.

In the R�K model, there are three steps for each component: streaming, collision

and recoloring. Suppose an iteration begins from the streaming step. We illustrate
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how the three steps construct a loop. The streaming step is20

f k
i ðxþ ei�t; tþ �tÞ ¼ f kþ

i ðx; tÞ; ð1Þ
where f kþ

i is the PDF after the recoloring step. In the above equation, ei; i ¼
0; 1; . . . ; b are the discrete velocities of the velocity models. For the D2Q9 velocity

model (b ¼ 8), they are

½e0; e1; e2; e3; e4; e5; e6; e7; e8� ¼ c
0 1 0 �1 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1

� �
:

Here c is the lattice speed de¯ned to be c ¼ �x
�t . We use the lattice units of �x ¼

1l:u: and �t ¼ 1t:s: in our study. Mass unit is denoted with m:u:

The collision step can be written as17

f k�
i ðx; tÞ ¼ f k

i ðx; tÞ þ ð�k
i Þ1 þ ð�k

i Þ2; ð2Þ
where f k�

i ðx; tÞ is the post-collision state. There are two collision terms in the

equation, i.e. ð�k
i Þ1 and ð�k

i Þ2. Here, the lattice BGK scheme is adopted, the ¯rst

collision term is

ð�k
i Þ1 ¼ � �t

�
ðf k

i ðx; tÞ � f k;eq
i ðx; tÞÞ: ð3Þ

� is the relaxation time.

The equilibrium DF f k;eq
i ðx; tÞ can be calculated using20

f k;eq
i ðx; tÞ ¼ �k Ci þ wi

ei � u
c2s

þ ðei � uÞ2
2c4s

� ðuÞ2
2c2s

� �� �
; ð4Þ

where the density of the kth component is �k ¼
P

i f
k
i , and the total density is

� ¼ P
k �k. The momentum is �u ¼ P

k

P
i f

k
i ei. In the above formula, the coe±-

cients are20 C0 ¼ �k, Ci ¼ 1��k

5 ; i ¼ 1; 2; 3; 4 and Ci ¼ 1��k

20 ; i ¼ 5; 6; 7; 8, where �k is

a parameter that is assumed able to adjust the density of °uids.16,20 The density ratio

is16,20� ¼ �r
�b
¼ 1��b

1��r
. The other parameters are w0 ¼ 4

9, wi ¼ 1
9 ; i ¼ 1; 2; 3; 4 and

wi ¼ 1
36 ; i ¼ 5; 6; 7; 8.

When the relaxation time parameters for the two °uids are very di®erent, for

example, � r ¼ 0:501 and � b ¼ 1:0, �ðxÞ at the interface can be determined by a

simple way:  ðxÞ ¼ �rðxÞ��bðxÞ
�rðxÞþ�bðxÞ > 0, �ðxÞ ¼ �r and otherwise �ðxÞ ¼ � b. To make the

relaxation parameter (�ðxÞ) change smoothly at the interfaces between two °uids,

here we adopt the interpolation scheme constructed by Grunau et al.16,20

� ¼
� r  > �;

grð Þ � �  > 0;

grð Þ 0 �  � ��;
� b  < ��;

8>>><
>>>:

where grð Þ ¼ s1 þ s2 þ s3 
2, gbð Þ ¼ t1 þ t2 þ t3 

2, and s1 ¼ t1 ¼ 2 �r� b
�rþ� b ,

s2 ¼ 2 �r��
� , s3 ¼ � �

2�, t2 ¼ 2 ��� b
� and t3 ¼ �

2�. Here � � 1 is a free positive parameter.

The viscosity of each component is �k ¼ c2sð�k � 0:5Þ, where c2s ¼ 1
3 c

2.
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The second collision term is more complex and there are some di®erent forms

found in the literature.13,20 An example is13:

ð�k
i Þ2 ¼

Ak

2
jf jð2 � cos2ð	iÞ � 1Þ; ð5Þ

where 	i is the angle between the color gradient f and the direction ei, and we have

cosð	iÞ ¼ ei�f
jeij�jf j.

17

The color gradient fðx; tÞ is calculated as17:

fðx; tÞ ¼
X
i

ei
X
j

½f r
j ðxþ ei�t; tÞ � f b

j ðxþ ei�t; tÞ�: ð6Þ

However, according to the study of Reis and Phillips,20 the correct collision

operator should be

ð�k
i Þ2 ¼

Ak

2
jf j wi

ðei � fÞ2
jf j2 �Bi

� �
; ð7Þ

where B0 ¼ � 4
27, Bi ¼ 2

27 ; i ¼ 1; 2; 3; 4, Bi ¼ 5
108 ; i ¼ 5; 6; 7; 8. Using these parame-

ters, the correct term due to surface tension in the N�S equations can be recovered.20

Then the recoloring step is implemented to achieve separation of the two °uids,17

f r;þ
i ¼ �r

�
f �
i þ �

�r�b
�2

f
ðeqÞ
i ð�; 0Þ cosð	iÞ; ð8Þ

f b;þ
i ¼ �b

�
f �
i � �

�r�b
�2

f
ðeqÞ
i ð�; 0Þ cosð	iÞ; ð9Þ

where f �
i ¼ P

k f
k�
i and � usually takes any value between 0 and 1.17

After f r
i ðx; tÞ, and f b

i ðx; tÞ are updated, the streaming steps [i.e. Eq. (1)] should be

implemented for each component. Through iteration of the procedure illustrated

above, two-phase °ows can be simulated.

In the model, Ak, and � are the most important parameters that adjust interfacial

properties. The interfacial thickness can be adjusted by � but the surface tension is

independent of � and only determined by Ak and �r, � b.
17 The pressure in the °ow

¯eld can be obtained from the density via the equation of state p ¼ c2s�.

Note that when components with identical densities are considered, the corre-

sponding equilibrium DF is Eq. (4) with Ci ¼ wi. That is the common equilibrium

DF usually used in the LBM. Hence, when two components have identical densities,

the equilibrium DF has the same formula. It is not necessary to calculate both

collision steps Eqs. (3) and (7) separately for each component. The two collision steps

become,

ð�iÞ1 ¼ � �t

�
ðfiðx; tÞ � f eq

i ðx; tÞÞ; ð10Þ

and

ð�iÞ2 ¼ Ajf j wi

ðei � fÞ2
jf j2 �Bi

� �
; ð11Þ

where A ¼ P
k Ak=2 and fi ¼

P
k f

k
i .
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3. Results and Discussion

3.1. Theoretical analysis

Here, we show that incorporation of the freedom of the rest particle equilibrium dis-

tribution in a revised R�Kmodel16 generally fails to recover the correct N�S equations.

In the following derivatives, because the collision step ð�k
i Þ2 is not considered, the

surface tension does not appear. The derivation in the Ref. 20 demonstrates that the

term incorporating the surface tension in the recovered macroscopic momentum

equation is only introduced by ð�k
i Þ2. The collision step ð�k

i Þ2 does not a®ect the

other terms in the derived momentum equation [see Eq. (17)].20

The study of Liu et al.,2 included the derivation of the N�S equations in the

single-phase region. Now we focus on Eq. (A14) in Ref. 2, i.e. the ¯rst-order

momentum °ux tensor

�
k;ð1Þ
�� ¼

X
i

f
k;ð1Þ
i ei�ei� ¼ ��k

X
i

ei�ei�Dt0f
k;eq
i

¼ ��k @t0ð�ku�u� þ pk���Þ þ @

1

3
�kc

2ðu���
 þ u��
� þ u
���Þ
� �� �

; ð12Þ

where Dt0 � ð@t0Þ þ ei
@
 .

Then we substitute the following continuity equation [see Eq. (13)] and Euler

equation [see Eq. (14)], which was obtained from the Chapman�Enskog expansion,2

into the above equation [see Eq. (12)].

@t0�k ¼ �@
ð�ku
Þ; ð13Þ

@t0ð�ku�Þ ¼ �@�ð�ku�u� þ pk���Þ; ð14Þ
where pk ¼ ðcksÞ2�k and ðcksÞ2 ¼ 3

5 ð1� �kÞ.
If omitting the terms of Oðu3Þ, such as u�@
ð�ku�u
Þ and so on, we have,

�
k;ð1Þ
�� ¼ ��k u�@t0ð�ku�Þ þ u�@t0ð�ku�Þ � u�u�@t0�k þ ðcksÞ2ð@t0�k���Þ

�

þ @

1

3
�kc

2ðu���
 þ u��
� þ u
���Þ
� ��

¼ ��k �ðcksÞ2 u�@�ð�kÞ þ u�@�ð�kÞ þ @
ð�ku
Þ���
� ��

þ 1

3
c2 @�ð�ku�Þ þ @�ð�ku�Þ þ @
ð�ku
Þ���
� ��

: ð15Þ

At this step, Ref. 2 obtained,

�
k;ð1Þ
�� ¼ ��k

1

3
c2 � ðcksÞ2

� �
½u�@�ð�kÞ þ u�@�ð�kÞ þ @
ð�ku
Þ����

� �

� 1

3
c2�k�k @�u� þ @�u�

� �
: ð16Þ

H. Huang et al.
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Finally, the macroscopic momentum equation recovered from the R�K model is,

@tð�ku�Þ þ @�ð�ku�u�Þ

¼ �@�pþ �k�k@�ð@�u� þ @�u�Þ þ �k �
1

2

� �
@�

� 1

3
c2 � ðcksÞ2

� �
u�@�ð�kÞ þ u�@�ð�kÞ þ @
ð�ku
Þ���
� �� �

: ð17Þ

The term �k@�ð@�u� þ @�u�Þ is the viscosity term that appears in the N�S

equations and the recovered kinematic viscosity is �k ¼ c2sð�k � 0:5Þ. Compared to

the N�S equations, the last term in Eq. (17), i.e.

U k
� ¼ �k �

1

2

� �
1

3
c2 � ðcksÞ2

� �
@�f½u�@�ð�kÞ þ u�@�ð�kÞ þ @
ð�ku
Þ����; ð18Þ

is an unwanted extra term that appears in the momentum equations. In Ref. 2, it was

assumed that the term is of Oðu3Þ. In single-phase °ows, the density gradient is small

and the assumption may be true. However, for the two-phase °ows with di®erent

densities, 1
3 c

2 6¼ ðcksÞ2, and near the interface the density gradient u�@�ð�kÞ or u�@�
ð�kÞ may be signi¯cant. Hence, the last term in Eq. (17) may be important and

should not be neglected.

On the other hand, for the two-phase °ows with identical densities, usually Ci ¼ wi

(�k ¼ 4
9 ; k ¼ 1; 2) is adopted and 1

3 c
2 ¼ ðcksÞ2 is always valid. In this way, the undesired

term would disappear automatically. Hence, the N�S equation is correctly recovered

and the R�K model is always correct for two-phase °ows with identical densities.

Here we propose a scheme to eliminate the unwanted extra terms. The terms can

be regarded as forcing terms in the N�S equations. To eliminate the forcing terms in

recovered macroscopic equation, we can introduce a source term into the lattice

Boltzmann equation (LBE), i.e. Sk
i into Eq. (2).

Sk
i ¼ �wiU

k
�ei�

1

c2s
: ð19Þ

With
P

i S
k
i ¼ 0, and

P
i ei�S

k
i ¼ �U k

� , we know that when this source term is added

into LBE, the correct N�S equation for kth component is recovered. We also note

that the forcing term in Eq. (19) is calculated explicitly through the density and

velocity at last time step. Such a treatment cannot eliminate completely the error

term in Eq. (17) for an unsteady °ow problem.

To add the source term into LBE, one has to evaluate the density gradient and

relevant derivatives in the above Eq. (18). For example, to evaluate @y�r and @yðux

@y�rÞ at a lattice node, we adopt the central ¯nite di®erence method.

ð@y�rÞði;jÞ ¼
1

2�y
½ð�rÞði;jþ1Þ � ð�rÞði;j�1Þ�;

½@yðux@y�rÞ�ði;jÞ ¼
1

2�y
ðuxÞði;jþ1Þð@y�rÞði;jþ1Þ � ðuxÞði;j�1Þð@y�rÞði;j�1Þ
� �

;
ð20Þ

On Simulations of High-density Ratio Flows Using the R�K Model

1350021-7

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
3.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F 
C

H
IN

A
 o

n 
04

/1
8/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



where �y ¼ 1l:u: and the subscript ði; jÞ denotes the column and row indices of a

lattice node in the computational domain.

In the following, the cases of a droplet inside another °uid and parallel two-phase

°ows in a channel are simulated. We can see the extra terms is important; neglecting

it may lead to incorrect results.

3.2. Cases of a stationary droplet immersed in another °uid

In the following study, the lattice units are used. The units of some parameters

are listed in Table 1. Some other parameters, such as Ci, !i, �, � and A, are non-

dimensional parameters.

In this section, cases of a droplet immersed in another °uid are simulated.

In the simulations, we adopt � ¼ 0:99 and �r ¼ � b ¼ 1, which is identical as that

in the study of Leclaire24 and Ar ¼ Ab ¼ A ¼ 10�4. In cases of density ratio

� ¼ �r
�b
¼ 1��b

1��r
¼ 0:8

0:008 ¼ 100, �b ¼ 0:2 and �r ¼ 0:992. In cases of density ratio

� ¼ 1000, �b ¼ 0:2 and �r ¼ 0:9992. For � ¼ 1000, three cases with di®erent initial

radii of the droplet are simulated and the results is shown in Table 2. In the table, the

surface tension is calculated through the Laplace law: � ¼ ðpin � poutÞR, where R is

the ¯nal equilibrium radius of the droplet. The radius is measured from the center of

the droplet to the contour of �r ¼ 0:4 ¼ 0:8
2 . Here, we can see that the calculated

surface tensions are all consistent with the analytical ones, i.e. � ¼ 4
3 ð1þ 1

�Þ�
�r
2 � ¼ 1:07� 10�4 in Ref. 24.

The spurious currents near the interface for the case of � ¼ 100 are shown in

Fig. 1. The right lower quarter of the droplets are shown. The density contours

of �r ¼ 0:7; �r ¼ 0:4 and �r ¼ 0:1 are also shown in the ¯gure with thick black lines.

The result shows that the magnitude of the spurious velocity inside the density

contours is about 10�5 l:u:=t:s: Figure 1(b) shows that in the interface the spurious

velocity forms some small vorticities. It is di±cult to analyze why the R�K model

works well for the stationary droplet in terms of surface tension value. It may be

Table 1. Units of parameters.

Variables Unit Variables Unit

fi; � m:u:=ðl:u:Þ3 p ðm:u:=l:u:=ðt:s:Þ2Þ
u; cs l:u:=t:s: G; � m:u:=ðl:u:Þ2=ðt:s:Þ2
� t:s: � ðm:u:=ðt:s:Þ2Þ

Table 2. Simulations of stationary droplets with density ratio 1000
(A ¼ 10�4; � ¼ 0:99; �r ¼ � b ¼ 1, �b ¼ 0:2 and �r ¼ 0:9992).

Case Initial R Equilibrium R pin pout �

(a) 15 14.97 3.9089e-4 3.8350e-4 1.108e-4

(b) 20 19.92 3.888e-4 3.8334e-4 1.093e-4

(c) 25 24.95 3.8752e-4 3.8317e-4 1.085e-4

H. Huang et al.
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related to these vorticities in the interface. Due to these vorticities, the integral

e®ect of the unwanted term may be canceled in some extent. Then the recovered

momentum equation [see Eq. (17)] would be close to the N�S equations. We also

tried the case with density ratio � ¼ 10 000, the R�Kmodel works well as mentioned

in the Ref. 24.

Hence, our numerical results also demonstrate that the R�K model is able

to simulate the cases of stationary droplets with high-density ratios correctly in

terms of surface tension. This observation is highly consistent with the results in

the literature.16,20,23�25 However, it does not necessary mean the R�K is able to

handle general high-density contrast two-phase °ows correctly. In the following

section, we investigate the performance of the R�K model for parallel two-phase

°ows in a channel.

3.3. Layered two-phase °ow in a 2D channel

Here two-phase immiscible layered °ows between two parallel plates are simulated.

In the simulation, as illustrated in Fig. 2, periodic boundary conditions are applied

on the left and right boundaries. For the lattice nodes in upper and lower plates,

only simple bounce back is implemented and the collision steps are not implemented.

It is noted that when simple bounce back is used to mimic the nonslip boundary

condition, the wall is actually located halfway between a °ow node and a bounce-

back node.27

In this °ow, the vertical velocity uy is assumed to be zero everywhere inside the

computational domain. Due to periodic boundary condition in x-direction, the

0.002 l.u./t.s

(a)

0.002 l.u./t.s.

(b)

Fig. 1. (Color online) Spurious velocity ¯led in the vicinity of the interface (a quarter of the circular

droplet is shown), (a) density ratio � ¼ 100 (�r ¼ 1� �b ¼ 0:8 and �b ¼ 1� �r ¼ 0:008), (b) A zoom-in

view of sub¯gure (a), streamlines in the interface vicinity are shown. The reference vector and density

contours of �r ¼ 0:7; �r ¼ 0:4 and �r ¼ 0:1 (from the inside of the droplet to the outside) are also shown.
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derivatives in x-direction is zero, i.e. @xðÞ ¼ 0, where  denote density, velocity

and pressure. Hence, in the steady °ow, for k-component, the N�S equations [i.e.

Eq. (17)] can be simpli¯ed as

�k�k@
2
yux þGþ ð�k � 0:5Þ c2

3
� ðcksÞ2

� �
@yðux@y�kÞ ¼ 0; ð21Þ

where G denote the body force, which has identical unit as �@tux (refer to Table 1).

In our simulations, the nonwetting phase °ows in the central region 0 < jyj < a,

while the wetting phase °ows in the region a < jyj < b. Assuming the °ow in the

channel is Poiseuille-type, the analytical solution for the velocity pro¯le between the

parallel plates can be obtained.6,26

The computational domain is 10� 100. Because the periodic boundary condition is

used on the left and right boundaries, the number of mesh nodes used in x-direction can

be much smaller. The error between numerical and analytical solutions is de¯ned as

EðtÞ ¼

P
j

juðj; tÞ � u0ðjÞj
P
j

ju0ðjÞj
; ð22Þ

where the summation is over the lattice nodes j in the slice x ¼ 5, and u0 is the

analytical solution. The convergence criterion is j EðtÞ�Eðt�104�tÞ
Eðt�104�tÞ j < 10�4.

Figure 3 shows the velocity pro¯le across the middle vertical section of the channel

for di®erent kinematic viscosity ratios M ¼ �nw
�w

¼ �1
�2
, where �nw and �w are the kine-

matic viscosities of nonwetting and wetting °uids, respectively. In the ¯gure, velocity

pro¯les in (a) and (b) are obtained through applying a body force G ¼ 1:5� 10�8 to

both °uids. From Fig. 3, we can see that the numerical solutions agree well with the

analytical ones. Here, the kinematic viscosity of component \k" is calculated with

�k ¼ c2sð�k � 0:5Þ. Applying the R�K model,16,17 some studies of this °ow18,26 have

shown that the numerical error would increase with viscosity ratio contrast but still

agree well with the analytical solution. Here, we also observed this trend (not shown).

In Ref. 26, is was reported that, when the densities of the two °uids are di®erent,

the numerical results obtained through the R�K model for this °ow do not agree

with the analytical solution. Here we further con¯rmed this conclusion. Eight

simulations (a1) to (d2) that are listed in Table 3 were performed. In the cases (a1),

x

y

a

b

-a

-b

non-wetting (Fluid 1)

wetting (Fluid 2)

(0,0)

wetting

Fig. 2. Layered immiscible two-phase °ow in a 2D channel. The wetting (°uid 2) phase °ows along upper
and lower plates while the nonwetting phase (°uid 1) °ows in the center region.

H. Huang et al.

1350021-10

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
3.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F 
C

H
IN

A
 o

n 
04

/1
8/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



(b1), (c1) and (d1), � ¼ 0:5; in the cases (a2), (b2), (c2) and (d2), � ¼ 0:99. In these

tests, the kinematic viscosity ratios are kept at unity but the two °uids have di®erent

densities. The numerical and analytical solutions are shown in Fig. 4. Table 3 also

shows whether the source term [i.e. Eq. (19)] is added into LBE in the simulation to

cancel the unwanted terms. We can see that neither numerical solutions of �1�2 ¼ 0:5

[see Figs. 4(a) and 4(b)] nor those of �1
�2
¼ 2 [see Figs. 4(c) and 4(d)] are consistent

with the analytical solutions. The incorrect numerical result in Fig. 4(d) is also

similar to that obtained in Fig. 9 in Ref. 26. Our simulations further con¯rm that the

simulation in Ref. 26 is correct. In Fig. 4, we can see that the numerical velocities

jump near the interface vicinity and they are not continuous as the analytical

Table 3. Parameters for the R�K models simulations of parallel °ows with

di®erent densities (A ¼ 10�4, �1 ¼ �2 ¼ 1 and G0 ¼ 1:5� 10�8).

Case �1 �2
�1
�2
¼ 1��2

1��1
� G1 G2 Eliminate unwanted terms?

(a1) 0.2 0.6 0.5 0.5 0 G0 No

(b1) 0.2 0.6 0.5 0.5 G0 0 No
(c1) 0.6 0.2 2 0.5 0 G0 No

(d1) 0.6 0.2 2 0.5 G0 0 No

(a2) 0.2 0.6 0.5 0.99 0 G0 No
(b2) 0.2 0.6 0.5 0.99 G0 0 No

(c2) 0.6 0.2 2 0.99 0 G0 No

(d2) 0.6 0.2 2 0.99 G0 0 No

(a3) 0.2 0.6 0.5 0.99 0 G0 Yes

(b3) 0.2 0.6 0.5 0.99 G0 0 Yes

(c3) 0.6 0.2 2 0.99 0 G0 Yes
(d3) 0.6 0.2 2 0.99 G0 0 Yes

(e) 0.9 0.2 8 0.2 G0 G0 No

(f) 0.9 0.2 8 0.2 G0 G0 Yes
(g) 0.2 0.9 0.125 0.2 G0 G0 No

(h) 0.2 0.9 0.125 0.2 G0 G0 Yes

lattice unit

u

50 100
0

0.5

1

1.5

2

Analytical
LBMx10 -4

(a)

lattice units

u

50 100
0

2

4

6

8 x10
-5

(b)

Fig. 3. (Color online) Velocity pro¯les for cases with identical densities and G ¼ 1:5� 10�8, (a) M ¼ 1
5

and (b) M ¼ 500.
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solutions are. This is easy to understand because as mentioned above, the undesired

term ux@yð�1Þ is not negligible. It plays an important role in the signi¯cant velocity

jump near the interface in the simulations and is not physical.

In Fig. 4(a), we can see that there are very minor discrepancies between the results

obtained from cases (a1) and (a2), which have di®erent �. The discrepancies are only

limited in the interface vicinity. For case (a1) and (a2), the interface thickness are

approximately 6 l:u: and 4 l:u:, respectively. In Figs. 4(b)�4(d), we also see that the

parameter � only a®ects the interfacial thickness. Here, di®erent parameter � has

very minor e®ect on the whole numerical result. It is noted that for a higher density

ratio case, when the interface is too thin, the numerical instability may appear.

In the above, we mentioned that using the source term, i.e. Eq. (19), the un-

wanted terms in Eq. (17) may be eliminated and the correct N�S equations for each

component are recovered. To demonstrate our argument on the extra terms more

clearly, we would like to assess whether the numerical result is correct if the un-

wanted terms in Eq. (17) can be eliminated. In the cases (a3) to (d3), which are listed

in Table. 3, the source terms are added into the LBE. The results of (a3), (b3), (c3)

and (d3) are shown in Fig. 5. We can see that now the results agree well with

the analytical solutions except very small-velocity jumps in the interfacial region.

lattice unit

u

20 40 60 80 100
0

2

4

6

case (a1)
Analytical
case (a2)

x10-5

(a)

lattice unit

u

20 40 60 80 100
0

0.5

1

1.5

2

case (b1)
Analytical
case (b2)

x10-4

(b)

lattice unit

u

20 40 60 80 100
0

2

4

6

case (c1)
Analytical
case (c2)

x10-5

(c)

lattice unit

u

20 40 60 80 100
0

0.5

1

1.5

case (d1)
Analytical
case (d2)

x10
-4

(d)

Fig. 4. (Color online) Velocity pro¯les for cases with M ¼ 1, density ratio �1
�2
¼ 0:5 [(a) and (b)] and

�1
�2
¼ 2 [(c) and (d)]. The unit of the velocity is l:u:=t:s:

H. Huang et al.

1350021-12

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
3.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F 
C

H
IN

A
 o

n 
04

/1
8/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



The errors between the LBM result and the analytical one are 1.74%, 1.20%, 1.93%

and 1.89% for cases (a3), (b3), (c3) and (d3), respectively. For the velocity pro¯les of

case (c3) and (d3), we notice that there are small-amplitude oscillations in the center

region (°uid 1 region). Using a smaller �, which allows thicker interface would

eliminate the oscillation.

To illustrate the di®erence between the simulations with and without the source

term, here a residual is de¯ned. As we know, in the ¯nal steady state, the following

equation for this parallel two-phase °ow is expected to be satis¯ed on each lattice node,

�k�k@
2
yux þG ¼ 0: ð23Þ

However, usually there is a residual in numerical simulations, which means the right

hand side of the above equation may not be zero. Here the residual is de¯ned as

� ¼ �k�k@
2
yux þG. Numerically, the residual at a lattice node ði; jÞ can be evaluated

through �kði;jÞ ¼ �k�k
1
�y2 ½ðuxÞði;jþ1Þ þ ðuxÞði;j�1Þ � 2ðuxÞði;jÞ� þGði;jÞ after the numeri-

cal results are converged. It is noted that � has identical unit as G.

The residual of the two simulations for °uid 1 are shown in Fig. 6(a). The original

simulation denotes case (b1) and the revised one denotes the simulation with iden-

tical parameters as case (b1) but the source term [see Eq. (19)] is added. To illustrate

lattice unit

u

20 40 60 80 100
0

2

4

6 case (a3)
Analytical

x10-5

(a)

lattice unit

u

20 40 60 80 100
0

0.5

1

1.5

2
case (b3)
Analytical

x10-4

(b)

lattice unit

u

20 40 60 80 100
0

2

4

6

case (c3)
Analytical

x10-5

(c)

lattice unit

u

20 40 60 80 100
0

0.5

1

1.5

case (d3)
Analytical

x10
-4

(d)

Fig. 5. (Color online) Comparison of the velocity pro¯les obtained from cases (a3), (b3), (c3), (d3) and

the corresponding analytical solutions. Density ratio �1
�2
¼ 0:5 [(a) and (b)] and �1

�2
¼ 2 [(c) and (d)]. In this

simulations, �1 ¼ �2 ¼ 1 and the unwanted terms are eliminated. The unit of the velocity is l:u:=t:s:
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the interface vicinity clearly, the density pro¯les for the °uids 1 and 2 are shown in

Fig. 6(b). In the ¯gure, we can see that the residual of the original simulation in the

interfacial region is much larger than that of the revised one. On the other hand, from

Eq. (21), we know that due to the unwanted terms

U k
x ¼ ð�k � 0:5Þ c2

3
� ðcksÞ2

� �
@yðux@y�kÞ; ð24Þ

is involved in the original simulation, the residual of the original one is expected to be

larger than the revised one. Hence, Fig. 6(a) con¯rmed our analysis.

In the meantime, it is also noticed that for the revised simulation, in the interface

vicinity, the residual are still not exactly to be zero. This is attributed to the error

introduced by the ¯nite di®erence scheme.

We further simulated cases with higher density contrast (i.e. cases (e) to (h)). The

parameters of cases (e) to (h) are listed in Table 3. It is noted that in the simulations

of case (f) and (h), the unwanted terms are eliminated. Here � ¼ 0:2 is used because a

larger � (e.g. � ¼ 0:3) would lead to numerical instability. Comparisons between the

cases with and without the added source term are shown in Fig. 7. Results of cases (f)

lattice unit

re
si

d
u

al

0 20 40 60 80 100

-1.5E-07

-1E-07

-5E-08

0

5E-08

1E-07 revised
original

(a)

lattice unit

d
en

si
ty

(m
.u

./l
.u

.3 )

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

fluid 1
fluid 2

(b)

Fig. 6. (Color online) (a) Residual of °uid 1 for the original simulation (case (b1)), and the revised

simulation (case (b1) with the unwanted terms eliminated). (b) density pro¯les for case (b1).
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and (h) are more consistent with the analytical solutions. They are much better than

results of corresponding cases (e) and (g), which are simulated without adding the

source term. The errors [see Eq. (22)] in cases (f) and (h) are 4.09% and 14.05%,

respectively. Hence, if the unwanted terms can be canceled, the R�Kmodel is able to

simulate the cases with density di®erence signi¯cantly better.

In Fig. 8, the total residuals �ði;jÞ ¼
P

k �
k
ði;jÞ for the simulations of case (g) and (h)

are shown. In the simulation of case (h), the source term is added. We can see that

again, the residual of the original simulation (case (g)) is much larger than that of the

revised one (case (h)) in the interface vicinity. Hence, the e®ect of our source term is

signi¯cant.

It is also noted that error in cases of higher density contrast [e.g. 14.05% in cases

(h)] is larger than those of lower density ratio cases (refer to Fig. 5). Using a larger

computational domain is helpful to decrease the numerical error. For the case (h),

lattice unit

u

20 40 60 80 100
0

0.0002

0.0004

0.0006

0.0008

Analytical
R-KL BM

(a)

lattice unit

u

20 40 60 80 100
0

0.0002

0.0004

0.0006

0.0008

(b)

lattice unit

u

20 40 60 80 100
0

0.0002

0.0004

0.0006

0.0008

0.001

(c)

lattice unit

u

20 40 60 80 100
0

0.0002

0.0004

0.0006

0.0008

0.001

(d)

Fig. 7. (Color online) Velocity pro¯les for cases with di®erent densities and G ¼ 1:5� 10�8. (a)

�1 ¼ 0:9; �2 ¼ 0:2, �1�2 ¼ 0:8
0:1; (b) the source term [see Eq. (19)] is added in the simulation and parameters are

identical as those in (a); (c) �1 ¼ 0:2; �2 ¼ 0:9, �1�2 ¼ 0:1
0:8; (d) the source term [see Eq. (19)] is added in the

simulation and parameters are identical as those in (c).
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when the width of the channel is represented by 200 l:u:, 300 l:u: and 400 l:u:, the

numerical errors are 9.14%, 7.03% and 5.88%, respectively. Hence, the error

decreases with the grid re¯nement.

Theoretically, the source term should correct the error completely. For the lower

density contrast, from results of cases (a3)�(d3), we conclude that the source term

almost corrects the error completely because the numerical results are very accurate.

However, when the density contrast is high, the numerical error becomes larger. This

results from the ¯nite di®erence scheme we used. As we know, when the density

contrast increases, if the interface thickness is limited, the density gradient would

increase. Under the circumstances, when the gradient is evaluated, larger numerical

error seems unable to avoid.

To demonstrate the above opinion, simulations of cases with lower and higher

density contrast were performed and the results are listed in Table 4. Density ratio in

cases (i1), (i2) and (i3) are � ¼ 0:5. Density ratio in cases (i4), (i5) and (i6) are higher

(� ¼ 0:125). When � ¼ 0:3 (case (i6)), numerical instability appears and the result

is not evaluated. From the table, we can see that when � increases, the interface

becomes thinner and the magnitudes of unwanted terms and the residual also
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Fig. 8. (Color online) (a) Total residuals for °uid 1 and 2 in the original simulation (case (g)) and the

revised simulation (case (h)), (b) density pro¯les for case (g).
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increase. However, for cases with di®erent �, smaller residual does not necessary

mean smaller numerical error E. Here we can see that error E decreases with � in

both the cases of � ¼ 0:5 and � ¼ 0:125. Hence, to get a more accurate result with

smaller E, for a speci¯c case, a larger � is preferred if the numerical instability does

not appear.

Smaller �, which means thicker interface, may improve the accuracy of evaluation

on the source term when the ¯nite di®erence scheme is used. However, the numerical

error E does not decrease when the interface becomes thicker. A possible reason is

that physically, a thicker interface means di®usion between the two components

becomes more serious. In the R�K model, which is applied to simulate immiscible

two-phase °ows, serious di®usion would induce a large numerical error.

The distribution of the unwanted terms and residuals in cases (i2) and (i5) are

shown in Fig. 9. In cases (i2) and (i5), the interface thicknesses are almost identical in

the two cases. From Fig. 9 and Table 4, we can see that in the case with high-density

contrast [case (i5)], the maximum magnitudes of the unwanted terms and residual for

°uid 2 are much larger than those in the case of low density contrast. In a whole, the

case with high-density contrast shows a larger numerical error.

We conclude that, to get accurate results, a thinner interface is preferred. For

a thin interface, the numerical evaluation of the source term (including density

Table 4. Results for the R�Kmodels simulations of parallel °ows with di®erent densities (In all cases, the

computational domain is 10� 100 and the source term is added into LBE. A ¼ 10�4, �1 ¼ �2 ¼ 1,

G ¼ 1:5� 10�8, � is interface thickness, U k
x denotes unwanted terms for component k).

Case �1 �2
�1
�2
¼ 1��2

1��1
� � (l.u.) Error E jU 1

x jmax jU 2
x jmax j�1i;jjmax j�2i;jjmax

(i1) 0.04 0.52 0:48
0:96 ¼ 0:5 0.2 	 25 1.41% 5:0e�8 2:1e�8 0:15e�8 2:1e�8

(i2) 0.04 0.52 0.5 0.5 	 11 0.69% 2:5e�7 1:0e�7 0:3e�7 1:2e�7

(i3) 0.04 0.52 0.5 0.9 	 6 0.63% 6:0e�7 2:1e�7 1:3e�7 5:4e�7

(i4) 0.04 0.88 0:12
0:96 ¼ 0:125 0.05 	 30 26.7% 1:1e�8 9:1e�8 1:5e�8 3:7e�8

(i5) 0.04 0.88 0.125 0.2 	 12 15.3% 1:08e�7 9:3e�7 0:5e�7 6:7e�7

(i6) 0.04 0.88 0.125 0.3 ��� ��� ��� ��� ��� ���
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Fig. 9. (Color online) (a) Unwanted terms U k
x and (b) residual �ki;j for each component (°uid 1: k ¼ 1,

°uid 2: k ¼ 2) in the simulation of case (i2); (c) unwanted terms U k
x and (d) residual �ki;j for each

component (°uid 1: k ¼ 1, °uid 2: k ¼ 2) in the simulation of case (i5).
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gradient) for a case with higher density contrast is not as accurate as that in

a case with lower density contrast. Hence, for a case with higher density contrast,

the numerical error is larger than that in the case with lower density contrast.

4. Conclusion

In this paper, we clarify confusion in the LBM community about using the

R�K model for high-density-ratios. The analysis shows that the color-gradient

model16,20,23,25 introduces extra undesired terms into the recovered N�S equations.

Because the unwanted terms can be dropped for two components with identical

densities, the R�K model is accurate under those circumstances.

In the simulations of spherical bubbles and droplets, the unwanted terms seem

not important and the results are not a®ected much. However, in the simulations

of parallel two °uid °ows in a channel, the undesired terms in Eq. (16) a®ect the

numerical result signi¯cantly. If the unwanted terms in the recovered momentum

equation cannot be eliminated, the R�K model only gives poor numerical solution

for two-phase °ows with di®erent densities.

To eliminate the unwanted terms, the source terms including derivatives have to

be evaluated using ¯nite di®erence scheme. In the R�K model, to get more accurate

results, thinner interfaces are preferred. In the cases of lower density contrast, the

source term can be evaluated more accurately than cases with higher density con-

trast and hence the results would be better. Under the circumstance of high-density

contrast, if the interface is very thin (� is closer to unity), numerical instability may

appear. Our test shows that the scheme we proposed only works well for cases of low

density contrast.
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