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An axisymmetric incompressible lattice BGK model for
simulation of the pulsatile �ow in a circular pipe
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SUMMARY

Applying the idea of Halliday et al., through inserting the ‘source’ term into the two-dimensional lattice
Boltzmann equation to recover the incompressible Navier–Stokes equation in the cylindrical coordinates,
an axisymmetric incompressible Lattice-BGK D2Q9 model was proposed here to simulate the pulsatile
�ows in a circular pipe. The pulsatile �ows in a circular pipe with 1¡Re¡2000 (Reynolds number is
based on pipe’s diameter), Womersley number 1¡�¡25 were investigated and compared with the exact
analytical solutions. The excellent agreements between numerical and the analytical solution validate
our model. The e�ect of schemes to implement pressure gradient and the model’s spatial accuracy were
also discussed. To show the performance of the proposed model, the same problems were also simu-
lated by Halliday’s axisymmetric model which derived from standard LBM and the three-dimensional
incompressible LBGK model. It is observed that the present model reduces the compressibility e�ect
in Halliday’s model and is much more e�cient than the LBGK D3Q19 model for an axisymmetric
pulsatile �ow problem. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The lattice Boltzmann method (LBM) has been proposed as an alternative numerical scheme
for solving the incompressible Navier–Stokes (NS) equations [1, 2]. Among di�erent lattice
Boltzmann equation (LBE) models in application, the lattice Bhatnagar–Gross–Krook (LBGK)
model is the simplest one because it only involves one scalar relaxation parameter and a simple
equilibrium momentum distribution function [3]. If the density �uctuation can be neglected, the
incompressible Navier–Stokes equation can be recovered from a LBE through the Chapman–
Enskog procedure [4]. However, in LBM, the density may �uctuate to a great extent in �ows
with large pressure gradient because the pressure and density variations satisfy the equation of
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states of an isothermal gas given by �p= c2s�� [4], where c
2
s is a constant. In many previous

studies [4–6], the compressibility e�ect of standard LBGK model has been highlighted.
Some incompressible models were proposed to eliminate the compressibility e�ect of the

standard LBGK model [6, 7]. One of the most successful incompressible LBGK model was
proposed by He and Luo in 1997 [6]. The incompressible LBGK model was validated by
steady plane poiseuille �ow and the unsteady 2D Womersley �ow. In their model, the com-
pressibility e�ect of the order o(M 2) is explicitly eliminated [6].
In the past, besides the above study [6] on 2D Womersley �ow, Cosgrove et al. [8] also

simulated the 2D Womersley �ow with 400¡Re�¡1000 and 1¡�¡31. Artoli et al. [9]
studied the accuracy of 2D Womersley �ow using 2D 9-velocity (D2Q9) model with di�erent
boundary conditions.
Since we are interested in studying blood �ow in large arteries, we would like to simulate

the 3D oscillatory �ow in pipes. However, when it comes to the problems of 3D axisymmetric
Womersley �ow [5] or 3D steady �ows [10] in tube, most of previous studies [5, 10] still
recourse to the 3D LBGK model and using the 3D cubic lattices with proper curvature wall
boundary treatment directly. That means a large mesh size and it is not so e�cient to simulate
such an axisymmetric problem in that way.
To simulate the axisymmetric �ow more e�ciently, in 2001, Halliday et al. [3] proposed

an axisymmetric D2Q9 model for the steady 3D axisymmetric �ow problems and it seems
very successful for steady tube �ow. Later Niu et al. [11] further derived an axisymmetric
model for simulation of the Taylor–Couette �ows. The main idea of the model is inserting
several spatial and velocity-dependent ‘source’ terms into the adjusted evaluation equation
for the lattice �uid’s momentum distribution [3], which is similar to the conventional CFD
methods.
However, the axisymmetric D2Q9 model proposed by Halliday et al. [3] and Niu et al. [11]

is derived from the standard D2Q9 model. When we simulate the 2D Womersley �ow with
the standard D2Q9 model, the solution involves signi�cant compressibility e�ect [6]. Similar
circumstances may appear when using the axisymmetric model proposed by Halliday et al. [3].
Till today, simulation of the pulsatile �ow in circular pipe using incompressible axisym-

metric D2Q9 model has not been reported. In this paper an axisymmetric incompressible D2Q9
model is proposed. To validate and evaluate the performance of the model, 3D Womersley
�ow simulations were performed. The 3D Womersley �ow (pulsatile �ow in axisymmetric
pipe) is driven by periodic pressure gradient at the inlet of the pipe. Since a typical Reynolds
number in the abdominal aorta is 1250 and a typical Womersley number �=8 [5], the
parameters of most cases in this paper are close to these two values.
For 3D Womersley �ow simulations, two di�erent schemes were adopted to implement the

oscillatory pressure gradient. One is applying an equivalent body force in the post-collision
step, the other is specifying the oscillatory or �xed pressure at ends of the pipe directly. Most
of the previous studies [3, 8] adopt the �rst scheme. That may introduce the in�uence of the
body force and since there are di�erent �ow conditions at the outlet of arteries this scheme
may be unreal for the vascular �ow simulation [5].
The e�ects of di�erent schemes to implement the oscillatory pressure gradient and the

model’s spatial accuracy were also discussed here. To show the performance of the proposed
model, the same problem was also simulated by the incompressible LBGK 3D 19-velocity
(D3Q19) model. Detailed comparison of CPU time and accuracy of numerical results between
our model and 3D model is given. The comparison demonstrates that the present axisymmetric
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model is much more e�cient than the LBGK D3Q19 model for an axisymmetric pulsatile
�ow problem in terms of CPU time and memory.

2. NUMERICAL METHODS

For the incompressible internal �ow in a circular pipe if we assume that the �ow is axisym-
metric, the azimuthal velocity u� and � coordinate derivatives vanish from the incompressible
continuity and Navier–Stokes equations.
Hence the continuity equation is

@ux
@x
+
@ur
@r
= − ur

r
(1)

The axial and radial velocities ux; ur satisfying two momentum equations in the two spatial
coordinates x and r are

Dux
Dt

= − 1
�0
@p
@x
+ �∇2ux +

�
r
@ux
@r

(2)

Dur
Dt

= − 1
�0
@p
@r
+ �∇2ur +

�
r

(
@ur
@r

− ur
r

)
(3)

2.1. Axisymmetric incompressible LBGK model

Here, in our study, the incompressible LBGK D2Q9 model [6] was employed to further de-
rive our axisymmetric incompressible model. Theoretically the LBE simulated the compressible
Navier–Stokes equation instead of the incompressible one, because the spatial density variation
is not zero in LBE simulations. In order to correctly simulate incompressible Navier–Stokes
equation in practice, one must ensure that the Mach number is low and the density �uctua-
tion (��) is of order o(M 2) [6]. The derivation procedure and additional limit Lx=(csT )� 1
is illustrated in Appendix A. From the derivation, Equations (1)–(3) can be recovered.
For our present axisymmetric incompressible D2Q9 model, the nine discrete velocities are

as follows:

ei=

⎧⎨
⎩
(0; 0); i=0
(cos[(i − 1)�=2]; sin[(i − 1)�=2])c; i=1; 2; 3; 4√
2(cos[(i − 5)�=2 + �=4]; sin[(i − 5)�=2 + �=4])c; i=5; 6; 7; 8

(4)

where c= �x=�t , �x and �t are the lattice spacing and time step size. In this paper c=1. The
discrete velocities were also illustrated in Figure 1.
In our axisymmetric D2Q9 model, fi(x; r; t) is the distribution function for particles with

velocity ei at position (x; r) and time t. The macroscopic pressure p and momentum �0u are
de�ned as

8∑
i=0
fi=p=c2s ;

8∑
i=0
fiei�=�0u� (5)

where �0 is the density of �uid.
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Figure 1. The discrete velocity for axisymmetric D2Q9 model.

The two main steps of LBGK D2Q9 model are collision and streaming. In the collision
step, a group of calculations from (6a) to (6d) are implemented:

fnei = fi(x; r; t)− feqi (x; r; t) (6a)

h(1)i = −!i�0ur
r

(6b)

h(2)i = !i
3�
r
[@yp+ �0@xuxur + �0@rurur + �0(@rux − @xur)eix] (6c)

f+i (x; r; t) = feqi (x; r; t) +
(
1− 1

�

)
fnei + �th

(1)
i + �2t h

(2)
i (6d)

where feqi is the equilibrium momentum distribution function and fnei is the non-equilibrium
part of distribution function. h(1)i and h(2)i are the ‘source’ terms added into the collision step.
The derivation procedure of h(1)i and h(2)i was illustrated in Appendix A. In above expressions,
!0 = 4=9, !i=1=9, (i=1; 2; 3; 4), !i=1=36, (i=5; 6; 7; 8). f

eq
i can be obtained through the

following equation [6]:

feqi (x; r; t)=!i
p
c2s
+!i�0

[
ei · u
c2s

+
(ei · u)2
2c4s

− u2

2c2s

]
; i=0; 1; 2; : : : ; 8 (7)

It is noticed that the main di�erence between the above incompressible D2Q9 model and
the standard D2Q9 model is the form of Equation (7). In the above formulas (6c) and (6d),
the relaxation time constant � and the �uid viscosity satisfy equation �=(2�− 1)�x=6. In the
streaming step, the new distribution function value obtained from (6d) would propagate to the
neighbouring eight lattices. That can be implemented by the following Equation (8), which
would be applied on all uniform lattices:

fi(x + eix�t ; r + eir�t ; t + �t)=f+i (x; r; t) (8)

Here, in this paper �t = �x=1.
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For the velocity derivations in above Equation (6c), the terms @rux + @xur , @xux and @rur
can be obtained through Equation (9) with �= x; �= r; �=�= x; �=�= r, respectively:

�0�(@�u� + @�u�)= −
(
1− 1

2�

)
8∑
i=0
f(1)i ei�ei�= −

(
1− 1

2�

)
8∑
i=0
fnei ei�ei� + o(	

2) (9)

For the term @rux−@xur in Equation (6c), it is equal to (@rux+@xur)−2@xur . Since (@rux+@xur)
can be easily obtained by Equation (9), only the value of @xur is left unknown to determine
@rux − @xur . Here we recourse to �nite di�erence method to obtain @xur at lattice node (i; j),
which can be calculated by Equation (10):

(@xur)i; j=((ur)i+1; j − (ur)i−1; j)=(2�x) (10)

The values of @rux + @xur , @xux, @rur , and @xur for the lattice nodes which are just on the
wall boundary can also be calculated from Equations (9) and (10). Obtaining these values
for lattice nodes on the periodic boundary is also easy. However, to obtain these values for
the nodes on the inlet=outlet pressure-speci�ed boundary, these values are extrapolated from
those of the inner nodes.

2.2. Boundary condition

To implement the oscillatory pressure gradient, two schemes can be applied. One is applying
an equivalent oscillatory body force [8] the other is simply specifying oscillatory pressure at
the inlet boundary and �xing the outlet pressure [6].
To apply an equivalent body force, the periodic boundary conditions are imposed at the

open ends of the pipe and in the collision step, after step (6d) was implemented, a further
post-collision step is necessary:

f+i (x; r; t)=f
+
i (x; r; t) +!iF�ei�=c

2
s ; i=1; 2; : : : ; 8 (11)

where F=(p∗ cos(!t); 0) is the body force and p∗ is the maximum amplitude of the oscilla-
tory pressure gradient. In this paper, if it is not mentioned explicitly, the oscillatory pressure
gradient was implemented in this way.
On the other hand, in our study, the inlet=outlet pressure boundary condition was also

applied because the pressure gradient cannot always be replaced by an external force in
LBGK computations. Some pressure boundary condition treatments have been proposed in
previous LBM studies [12, 13]. Here the method proposed by Guo et al. [12] was adopted
for its simplicity. If specifying oscillatory pressure at inlet boundary condition and �xing the
outlet pressure, the corresponding velocity value in these boundaries was extrapolated from the
next inner nodes. Hence, the equilibrium part of distribution function can be determined from
the above Equation (7) and the non-equilibrium part of distribution function can be obtained
through extrapolation [12]. So, the collision step for boundary nodes can be implemented
normally as inner nodes.
For wall boundary conditions, it is well known that the most commonly applied in LBM

is bounce back model [5]. However, for the 3D circular pipe �ow problem, to treat the
curvature wall boundary in uniform cubic lattices, original bounce back model is not accurate
enough for curvature boundary [5]. For direct 3D simulation, in this study, the non-equilibrium
distribution function extrapolation method [14] was applied for curvature wall boundary. In

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:99–116



104 T. S. LEE, H. HUANG AND C. SHU

the method, the velocity on ‘wall nodes’ (lattice nodes outside and most near to physical
boundary) is obtained from extrapolation and p-value obtained from the nearest ‘�uid node’
(lattice nodes inside physical boundary), hence the equilibrium distribution function for ‘wall
nodes’ can be obtained through Equation (7). With corresponding non-equilibrium distribution
function extrapolated from the ‘�uid nodes’, the collision step on ‘wall nodes’ can be ful�lled.
This treatment is proved to be second order in space [14].
When our 2D axisymmetric incompressible model was applied to study the axisymmet-

ric pipe �ows, the non-equilibrium distribution function extrapolation method [14] for wall
boundary was also adopted. To apply this wall boundary treatment, an additional layer outside
the wall boundary is included.

3. RESULTS AND DISCUSSION

The 3D Womersley �ow (pulsatile �ow in axisymmetric pipe) is driven by periodic pressure
gradient at the inlet of the pipe. In the followings, p∗ is the maximum amplitude of the
sinusoidally varying pressure gradient.

@p
@x
= − p∗ei!t (12)

R is de�ned as the radius of the circular pipe. ! is the angular frequency and � is the kinetic
viscosity of �uid. The Reynolds number is de�ned as Re=2UcR=�, Uc is the characteristic
velocity de�ned as

Uc=
p∗�2

4!�
=
p∗R2

4��
(13)

which is the velocity that would be observed at the centre of the tube if a constant forcing
term p∗ was applied in the limit of � → 0. The Womersley number is de�ned as �=R

√
!=�.

The Strouhal number is de�ned as St=R=(UcT ), where T is the sampling period.
The analytical solution for axisymmetric pipe pulsatile �ow [5] is

u(r; t)=Re

{
p∗

i!�0

[
1−

J0[ 1√2 (−�+ i�)(r=R)]
J0[ 1√2 (−�+ i�)]

]
ei!t

}
(14)

where J0 is the zeroth-order Bessel function of the �rst type.
All the simulations in this paper began with an initial condition of zero velocity every

where, and an initial run of 10T steps.
It should be noticed that the maximum velocity Umax appeared in tube axis during a sam-

pling period would be less than the character velocity Uc for case �¿0. For case �� 1, the
maximum velocity Umax would be much less than Uc. This is illustrated in Figure 2, which
shows the normalized maximum velocity in tube axis Umax=Uc, and the phase lag of the
velocity �eld, 
 (normalized by �), as function of �. In the �gure, the numerical results agree
well with the analytical solution. It seems that when oscillatory pressure gradient changes
very fast it is impossible for velocity �eld to reach the fully developed velocity pro�le with
maximum value Uc.
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Figure 2. Maximum velocity in the axis of tube and the phase lag as function of Womersley number.

3.1. Converge criterion and spatial accuracy

To evaluate the error between the numerical and analytical solution, we introduce a velocity
error formula which is illustrated in (15). At each time step the error can be de�ned as

�=
∑

i |u(ri)− ua(ri)|∑
i |ua(ri)|

(15)

where u(ri) is the numerical solution, ua(ri) is the analytical velocity at ri in middle pipe.
The overall average error 〈�〉 is averaged over the period T. For all the cases in this paper,
the convergence criterion was set as follows:∑

x |u(x; t + T )− u(x; t)|∑
x |u(x; t + T )|

6 10−6 (16)

where t was usually chosen as t=1+ nT in this paper.
Here in all cases, the pipe length was chosen as 2Nr [8], where Nr is the number of lattice

nodes in the diameter (usually Nr excludes the upper and lower extra layers outside the wall
boundary). The global errors behaviour for �=7:927 and 3:171 is illustrated in Figure 3. For a
certain �, as Nr was increased � was kept constant by varying the period T accordingly within
the range T¿103. For the above �, the corresponding � was kept 0:6 and 1:0. In Figure 3, the
solid lines represent the linear �ts, and the slope of the lines are −1:89 (�=7:927) and −2:02
(�=3:171). The �gure demonstrates that current LBGK model incorporating the extrapolation
wall boundary condition and the forcing term is second order in space.
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Figure 3. The global error 〈�〉 as a function of the pipe diameter Nr for �=7:927 and �=3:171.

3.2. E�ect of Womersley number on �ow pattern

As a typical Reynolds number in the abdominal aorta is about 1250 and a typical Womersley
number �=8 [5], in our simulation, �rstly the case of Re=1200, �=7:927, T =1200, �=0:6
was performed, Nr =41 and the corresponding Uc=1:0. The exact analytical solutions of
Equation (14) were compared to numerically evaluated velocity pro�les along the diameter
in Figures 4(a) and (b). The velocity is normalized by Uc. The r-axis is non-dimensionalized
by dividing by the radius of the tube as indicated in Figure 4. Although in this case Uc=1:0,
the Umax observed in whole oscillatory period is only about 0:063, M =0:063

√
3 ≈ 0:109� 1,

which is consistent with the limit of LBM.
In this case, parameters T =1200, �=0:6, Uc=1:0 were chosen to avoid numerical stability

and save computational time because if Uc=0:1, to �x the parameter Re and � and the same
mesh system, the � should be 1=300, and then � is 0.51, which is very close to 0.5, numerical
instability may appear. On the other hand, the corresponding T value should be 12 000 while
not just 1200. Hence much more CPU time is required. Anyway, Uc=1:0 in this case is
correct because M � 1.
Here, in the above case, the overall numerical average error is about 1.23%. While Artoli

et al. [5] mentioned that the overall average error for almost the same 3D case is around
7% using the curve boundary condition proposed by Bouzidi et al. [15]. The present better
performance may be due to our axisymmetric incompressible D2Q9 model eliminating the
compressibility e�ect while the D3Q19 model applied by Artoli et al. [5] involves the e�ect
and our second-order extrapolation wall boundary treatments may also account for the better
performance.
Figures 5(a) and (b) show the velocity evolution of an oscillation over half a period for

�=1:373 and 24:56, respectively. For the case illustrated in Figure 5(a), Re=1:2, �=1:5,
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(a) (b)

Figure 4. Pro�les of: (a) decreasing; and (b) increasing velocities along the diameter of a tube for
�=7:927, T =1200, Re=1200, �=0:6, at t= nT=16 (n=0; : : : ; 15) (Uc=1:0, actually Umax∼0:07).

(a) (b)

Figure 5. Velocity pro�le along the diameter over half a period: (a) �=1:373; and (b) �=24:560.

T =4000, Uc=0:01, Nr =41, which is a viscous-dominated system [8]. For case illustrated
in Figure 5(b), Re=1920, �=0:7, T =1000, Uc=0:8, Nr =161, which is a momentum-
dominated system in the laminar regime [8].
Since shear stress plays a crucial role in the progression of atherosclerosis. The shear stress

tensor computation is important. In our 3D axisymmetric problem, the shear stress tensor �xr
can be obtained conveniently from Equation (9). The calculation is usually implemented dur-
ing the collision process. It is convenient to get shear stress tensor in LBM. Here we give an
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Figure 6. Shear stress, Re=1200, �=0:6, �=7:927, T =1200 in a oscillatory tube �ow, the
measurements are taken at t= nT=16, n=0; 1; : : : ; 16.

Table I. The overall average error 〈�〉 comparison for two schemes
to implement the pressure gradient.

Scheme

Scheme of addition Scheme of specify pressure
Cases force term 〈�〉 on inlet=outlet BC 〈�〉
Re=12; p∗=10−5 7.65e-3 7.30e-3
Re=120; p∗=0:0001 7.02e-3 1.81e-2
Re=600; p∗=0:0005 6.92e-3 6.97e-2

example with �=7:927, T =1200, �=0:6, Re=1200, Nr =41. In Figure 6, the analytical solu-
tions were compared to numerically evaluated shear stress along the diameter at time t= nT=16,
n=1; : : : ; 16. The results of numerical solution and analytical solution agree very well.

3.3. Schemes to implement pressure gradient

All the above accurate results were achieved through adding force term into the post-collision
step. Here, we would also like to make further investigation on the two schemes to implement
pulsatile pressure gradient. In Table I, the performance of two schemes was compared. Here,
in all of the cases, �=3:963, mesh size Nx × Nr =41 × 41, T =4800 and the convergence
criterion is Equation (16).
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For the scheme of specifying inlet=outlet pressure, from the derivation in Appendix A, we
notice that the value Lx=(csT ) should be very small so as to neglect the compressibility e�ect
due to the time variation of pressure �eld [6]. In these cases, T =4800�Lx=cs = 40

√
3, which

satisfy the limit. The physical meaning is that in the range of the distance Lx, the time, T,
during which the �ow �eld undergoes a macroscopic change must be greater than the time,
Lx=cs [6].
From Table I, we can see that for the scheme of specifying pressure on inlet=outlet bound-

ary, the overall average error increase with �p between two ends or Reynolds number, which
is consistent with the conclusion in paper [6]. For the scheme of adding forcing term, the
overall average error decrease slightly with �p. They also agree with Artoli et al.’s [5] re-
sults. It seems that the scheme of applying additional forcing term has more advantages than
the scheme of speci�c pressure on inlet=outlet boundary for the 3D Womersley �ow, which
has uniform pressure gradient at any time.

3.4. Compressibility e�ect and comparison with Halliday’s model

Here, the compressibility e�ect was investigated in detail. The quantity that represents com-
pressibility is the mean variation of density. It is de�ned as

�=
1
�0

√∑
x; t
((�(x; t)− �0)2)=N

where the mean density is �0 and N is the total number of nodes. For cases of Re=1200,
�=7:927, the mean density �uctuation � was calculated for Mmax =0:218, 0:109, 0:055 and
0:022. The Mmax is the maximum Mach number in tube axis. In all simulations,
Nx × Nr =81× 81, the Re and � were kept through varying T, p∗ and � value. The scheme
of specifying inlet=outlet pressure was chosen to implement pressure gradient. The results of
density �uctuation were listed in Table II. The table shows that for both models of Halliday
and present,

�(Mmax =0:055) ≈ 1
4�(Mmax =0:109)

and

�(Mmax =0:022) ≈ 1
25�(Mmax =0:109)

These results agree with the known relationship [16] that � is proportional to M 2. Here we
also �nd that when Mmax¿0:10, the � of Halliday’s model is slightly larger than that of
present model.
It is also interesting to �nd some clues of compressibility e�ect through investigating the

velocity �eld error. Here to investigate the velocity �eld error, four cases with �=3:963,
Nx×Nr =41×41, T =4800 were simulated using both the present model and Halliday’s model.
The scheme of specifying inlet=outlet pressure was chosen to implement pressure gradient.
Table III shows the velocity �eld error measured by  and 〈〉.  at time t is de�ned as

=
∑

i (u(ri; t)− ua(ri; t))2∑
i u2a(ri; t)

(17)
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Table II. Mean density �uctuation.

Models

Cases Halliday’s model � (%) Present model � (%)

Mmax = 0:218; � = 0:9; p∗ = 0:002; T = 1200 6.807 6.651
Mmax = 0:109; � = 0:7; p∗ = 0:0005; T = 2400 1.658 1.642
Mmax = 0:055; � = 0:6; p∗ = 0:000125; T = 4800 0.412 0.412
Mmax = 0:022; � = 0:54; p∗ = 0:00002; T = 12000 0.0656 0.0656

Table III. The error of velocity �eld in 3D Womersley �ow.

Models

Halliday’s model Present model

Cases max 〈〉 (%) max 〈〉 (%)
1 Re = 120; p∗ = 0:0001 0.00534 0.054 0.00516 0.050
2 Re = 240; p∗ = 0:0002 0.0131 0.172 0.0130 0.153
3 Re = 600; p∗ = 0:0005 0.0942 0.923 0.0596 0.763
4 Re = 1200; p∗ = 0:001 0.453 3.39 0.213 2.56

where the summation is over the diameter in middle pipe and the overall average error 〈〉 is
averaged over the period T. The max means the maximum value of  in a sampling period. In
Table III, the Mmax in tube axis for cases 1–4 are 0:054, 0:108, 0:272 and 0:544, respectively.
Comparing the maximum particular velocity error and the overall numerical average errors

of two models in Table III, we observed that as Mmax in tube axis increases, the corresponding
errors of Halliday increases much faster than the present incompressible model. The observa-
tion is consistent with conclusion got for the standard and incompressible D2Q9 models [6].
Hence, comparing with Halliday’s model, the present model can eliminate the compressibility
e�ect.

3.5. Comparison with 3D LBGK

To show the performance of the proposed model, some cases were also simulated by the
3D incompressible LBGK model. The 3D simulation is based on the D3Q19 lattice velocity
model. The mesh size used for the axisymmetric model is Nx ×Nr =81× 41, while in the 3D
LBM simulation, the mesh size used is Nx×Ny ×Nz=81×41×41. Notice in 3D simulations
the curvature wall boundary treatment [14] was applied. In this comparison, we used two
cases with parameters of �=7:927, T =1200, �=0:6 as examples. Table IV listed the overall
numerical average error, period number to reach convergence criterion (16) and the CPU time
required by the present axisymmetric model and 3D LBM.
All the computations were carried out on a supercomputer (Compaq ES40: total performance

of 5300 M�ops) in the National University of Singapore. It can be observed from Table IV
that the periodic number of iteration required by 3D LBM is slightly less than or equal to that
of the axisymmetric model. However, the 3D LBM simulation takes about 110 times more
computing time to obtain solutions than the present axisymmetric model. Hence, our proposed
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Table IV. Comparison of CPU time and error between two LBGK model for 3D Womersley �ow.

To satisfy convergence criterion,
Cases Models total iterate period (T ) CPU (min) 〈�〉
Re = 1200 3D (D3Q19) 24 338 1.288e-002

2D (present model) 27 3.0 1.165e-002
Re = 120 3D (D3Q19) 24 281 1.193e-2

2D (present model) 24 2.7 1.170e-2

model is much more e�cient for such an axisymmetric pulsatile �ow problem. According to
the overall average error, the axisymmetric LBM result is slightly better than the 3D LBM
result. One possible reason is that the axisymmetric model did not involve the error in the
circumferential direction.

4. CONCLUSION

An axisymmetric incompressible LBGK model was derived in this paper by introducing an
additional source term to the incompressible LBGK model [6]. With limit of Mach number
M � 1 and Lx=(csT )� 1, this axisymmetric LBGK model successfully recovered the Navier–
Stokes equation in the cylindrical coordinates through Chapman Enskog expansion (refer to
Appendix A). For the additional source term in our model, most velocity gradient terms can
be obtained from high-order momentum of distribution function, which is consistent with
the philosophy of the LBM. The axisymmetric incompressible LBGK model was success-
fully applied to simulate the 3D pulsatile �ow in circular tube and the spatial accuracy of
the numerical solutions is about second order. Through the simulations with 1¡Re¡2000
(Reynolds number is based on pipe’s diameter), Womersley number 1¡�¡25, the axisym-
metric incompressible LBGK model gives out very accurate results for 3D Womersley �ow.
Our model is valid for unsteady axisymmetric �ows.
In our investigation, current LBGK model incorporating the extrapolation boundary condi-

tion and the forcing term is second order in space. Through comparison of the two schemes to
implement pulsatile pressure gradient, it seems that the scheme of applying additional forcing
term has advantages than the scheme of specify pressure on inlet=outlet boundary for the 3D
Womersley �ow, which has uniform pressure gradient at any time.
Through comparison with Halliday’s axisymmetric model, it is observed that the present

model can reduce the compressibility e�ect in Halliday’s model because present model derived
from the incompressible model [6]. Comparing with 3D LBGK model, present axisymmetric
LBGK model gives out slightly better results than the 3D LBM and it is much more e�cient
than the 3D LBM in terms of computational time and memory.

APPENDIX A: CHAPMAN–ENSKOG DERIVATION OF THE AXISYMMETRIC
INCOMPRESSIBLE D2Q9 MODEL

Here we show that the following continuity and Navier–Stokes equations may be obtained
from a lattice Boltzmann D2Q9 model:

@ux
@x
+
@ur
@r

= −ur
r

(A1)
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@u�
@t
+ u�

@u�
@x�

+
1
�0
@p
@x�

− �∇2u� =
�
r

(
@u�
@r

− ur
r
��r

)
(A2)

where � and � represent index x or r and x� means x or r.
In the following equations, fi(x; r; t) is the distribution functions of D2Q9 model, the source

term hi(x; r; t) was incorporated into an adjusted evaluation equation for the lattice �uid’s
momentum distribution (A3):

fi(x + eix�t ; r + eir�t ; t + �t)− fi(x; r; t)= 1� [f
(0)
i (x; r; t)− fi(x; r; t)] + hi(x; r; t) (A3)

Apply the Taylor expansion (A4) and expanding the time and space derivatives in terms of
the Knudson number 	 [17] in the following (A5):

fi(x + eix�t ; r + eir�t ; t + �t)=
∞∑
n=0

	n

n!
Dnfi(x; r; t) (A4)

fi = f(0)i + 	f(1)i + 	2f(2)i + · · ·
@t = 	@1t + 	2@2t + · · ·
@� = 	@1�

hi = 	h(1)i + 	2h(2)i + · · ·

(A5)

In (A5), there is no ‘equilibrium’ hi term, where 	= �t and � can represent x or r and
D ≡ (@t + e� · @�), we also notice that e� · @�= e� · @1�= eix@1x + eir@1r .
Incorporate (A4) and (A5) into (A3), in the zeroth, �rst and second orders of 	 are (A6),

(A7) and (A8), respectively:

E0i = (f0i − feqi )=��t (A6)

E1i = (@1t + ei�@1�)f
(0)
i +

1
��t
f(1)i − h(1)i

�t
(A7)

E2i = @2tf
(0)
i +

(
1− 1

2�

)
(@1t + ei�@1�)[−��t(@1t + ei�@1�)f(0)i + �h(1)i ]

+
1
��t
f(2)i − h(2)i

�t
(A8)

The equilibrium f(0)i is de�ned by (6) and the distribution function fi satis�ed the following
relationships:

8∑
i=0
f(0)i =

p
c2s
;

8∑
i=0
ei�f

(0)
i =�0u� (A9)

8∑
i=0
f(m)i = 0;

8∑
i=0
eif

(m)
i =0 for m¿0 (A10)
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A.1. Mass conservation and h(1)i
Summation of Equation (A7) over i leads to

1
c2s

@
@1t
p+ �0@�u�=

∑
i

h(1)i
�t

(A11)

By rewriting (A11) in a dimensionless form, for the �rst term to be negligible, Lx=(csT )� 1
should be satis�ed [6]. That is an additional limit of our derivation besides condition Mach
number M � 1.
Summation of Equation (A8) over i leads to

1
c2s

@
@2t
p=0 (A12)

and for simplicity, we assume

∑
i

(
�− 1

2

)
(@1t + ei�@1�)h

(1)
i − ∑

i

h(2)i
�t
=0 (A13)

Compare (A11) with (A1) and notice
∑

i !i=1, following the selection of h
(1)
i is reasonable.

h(1)i = − !i�0ur
r

�t (A14)

Hence, at the same time, due to our assumption (A13), we obtain the following equation
(A15):

∑
i

h(2)i
�t

=
(
�− 1

2

) ∑
i
(@1t + ei�@1�)h

(1)
i = �t

(
�− 1

2

) [
@1t

∑
i

(
−!i�0ur

r

)]

= �t

(
1
2

− �
) [
1
r
@1t�0ur

]
(A15)

Notice that to derive (A15), we used equation
∑
!iei�=0.

A.2. Momentum conservation and h(2)i
Multiple Equation (A7) with ei� and summation over i leads to

�0@1tu� + @1��0��=
∑
i

h(1)i
�t
ei�=0 (A16)

where �0��=
∑8

i= 0 ei�ei�f
(0)
i =�0u�u� + c2s����.

So,

�0@1tur = − @��0r�= − @�(c2s��r� + �0u�ur) (A17)

Incorporate (A17) into (A15), we can get

(VIP1)
∑ h(2)i

�t
= �t

(
�− 1

2

)
1
r
@�(c2s��r� + �0u�ur)=

3�
r
@�(c2s��r� + �0u�ur)
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Multiply Equation (A8) with ei� and summation over i lead to

�0@2tu� +
(
1− 1

2�

)
@1��

(1)
�� = −

(
�− 1

2

) (
@1t

∑
i
ei�h

(1)
i + @1�

∑
i
ei�ei�h

(1)
i

)
+

∑
i

h(2)i
�t
ei� (A18)

To further derive Equation (A18), �rstly we obtained (A19) and (A20):

�(1)�� =
∑
i
ei�ei�f

(1)
i = − ��t

∑
i
ei�ei�D1tf

(0)
i + �

∑
i
ei�ei�h

(1)
i

= −��t
[∑
i

@
@1t
�(0)�� + @k

(∑
i
ei�ei�eikf

(0)
i

)]
+ �

∑
i
ei�ei�h

(1)
i (A19)

@k

(∑
i
ei�ei�eikf

(0)
i

)
=�0c2s@k(�jk��� + �j���k + �j���k)uj=�0c

2
s

(
���@juj +

@u�
@x�

+
@u�
@x�

)
(A20)

In Equation (A18), the term (@=@1t)�0�� is of order M
2, (M is the Mach number), because

if we assume the velocity of order u0, length L, t0 =L=u0, then (@=@1t)�0��∼u20=t0, while the
term c2s (@u�=@x� + @u�=@x�) is of order c

2
su0=L, hence, compare with term in (A20),

@
@1t
�0��

/
term(A20)=O

(
u20
t0

/
c2su0
L

)
=O

(
u0
cs

)2
=O(M 2)

regarding the term (@=@1t)�0�� is very small, this term can be omitted.(
1− 1

2�

)
�(1)�� ≈ −��t

(
1− 1

2�

) [
�0c2s

(
���@juj +

@u�
@x�

+
@u�
@x�

)]

+c2s ��t

(
1− 1

2�

) (
−����0ur

r

)

= −�
[
�0

(
@u�
@x�

+
@u�
@x�

+ ���
(ur
r
+ @juj

))]

= −�
[
�0

(
@u�
@x�

+
@u�
@x�

)]
(A21)

in the above formula we used �
∑

i ei�ei�h
(1)
i = ��t

∑
i ei�ei�[−!i�0ur=r]= c2s ��t(−����0ur=r).

The RHS term in (A18) is

RHS= c2s�t

(
�− 1

2

)
@1�

(
����0ur
r

)
+

∑
i

h(2)i
�t
ei� (A22)

Hence incorporate (A16), (A18), (A21) and (A22), we can obtain that

�0
@u�
@t
+ �0u�

@u�
@x�

+
@p
@x�

− �0�@�
(
@u�
@x�

+
@u�
@x�

)
= �@1�

(
����0ur
r

)
+

∑
i

h(2)i
�t
ei� (A23)

Compare momentum equation (A23) with Equation (A2), to recover the Navier–Stokes
momentum equation (VIP2) should be established:

(VIP2) �@1�
(�0ur
r

)
+

∑
i

h2i
�t
ei�=

�
r

(
@r�0u� − 1

r
�0ur�r�

)
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Solving equation system (VIP1) and (VIP2), we can obtain the expression of h(2)i as follows:

h(2)i = �t!i
3�
r
[@�(c2s��r� + �0u�ur)] + �t!i

3�
r
(@r�0u� − @��0ur)ei�

= !i�t
3�
r

[
@r

(
1
3
�
)
+ �0@xuxur + �0@rurur + �0(@rux − @xur)eix

]
(A24)

In the above derivation, we used Equation (A24):

@�
(�0ur
r

)
= ��r@r

(�0ur
r

)
= − ��r

(�0ur
r2

)
+
��r
r
@r�0ur (A25)

We successfully derived the expression of h(1)i (A14), h(2)i (A24) and recovered the continuity
equation (A1) and Navier–Stokes equation (A2).

APPENDIX B: NOMENCLATURE

c= �x=�t the ratio between lattice size and time step
cs = c=

√
3 the speed of sound

ei the particle velocity vector along direction i
fi the particle distribution function
hi the source terms
M Mach number
Nr number of lattice nodes in diameter
p �uid pressure
p∗ the maximum amplitude of the oscillatory pressure gradient
Re Reynolds number
R the radius of the circular pipe
St Strouhal number of Womersley �ow
t time
T sampling period
Umax the maximum velocity appear in tube axis during a sampling period
Mmax Umax=cs
Uc the characteristic velocity, which is equal to (� → 0) or much larger than

(�� 1) Umax
u �uid velocity vector
ux x component of the velocity
ur r component of the velocity
u� � component of the velocity, � can represent x or r
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Greek letters

�x lattice size
�t time step
� the dimensionless relaxation time constant
�0 �uid density
� the kinetic viscosity of �uid
� Womersley number
! angular frequency of Womersley
!i weight coe�cients for the equilibrium distribution function
� velocity error de�ned by Equation (15)
〈�〉 overall � averaged over a sampling period
 velocity error de�ned by Equation (17)
〈〉 overall  averaged over a sampling period
� shear stress
� the mean density �uctuation
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