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SUMMARY

In this paper, the Shan–Chen-type (SC) multiphase lattice Boltzmann model was used to study the viscous
coupling effects for immiscible two-phase flow in porous media. In the model, any typical equation of
state can be incorporated and different contact angles of the gas–liquid interface at a solid wall can be
obtained easily through adjusting the ‘density of wall’ (Benzi et al., Phys. Rev. E 2006; 74(2):021509).
The viscous coupling effects due to capillary number, the viscosity ratio and the wetting angle were
investigated. The two-phase flows with density ratio as high as 56 in porous media were simulated. For
different viscosity ratios and wettability, two-phase flow patterns and relative-permeability curves as a
function of wetting saturation were obtained. It is observed that when the wetting phase is less viscous
and covers the solid surface, the relative permeability of the non-wetting phase may be greater than unity.
Here, the SC model is demonstrated as a suitable tool to study the immiscible two-phase flow in porous
media because it is simple, easy to get the desired contact angle and able to simulate immiscible phase
flow with high-density ratio. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Lattice Boltzmann for multiphase flow

The lattice Boltzmann method (LBM), which is based on mesoscopic kinetic equations, has become
a promising numerically robust technique for simulating multi-phase fluids [1–5]. Compared with
conventional methods for multiphase flows, LBM does not track interfaces while sharp interfaces
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can be maintained automatically [3]. LBM has been successfully applied to study wetting and
spreading phenomena [6–11], bubble collision and bubble rising phenomena [3, 4], displacement
of immiscible fluids in porous media [2, 12–16], etc.

There are several popular multiphase models in LBM. The first type is the color-gradient-based
LBM proposed by Gunstensen et al. [17], which is based on the Rothman–Keller lattice gas
model [18]. The second type is the original Shan–Chen (SC) model [1]. The third type is free-
energy-based LBM [19]. The multiphase model proposed by He et al. [20], which uses the idea
of level set, is also very popular.

Although LBM has made great progress in multiphase flow modeling, all the above LBMs are
limited to small density ratios less than 10 because numerical instability may appear in cases of
large density ratio. Inamuro et al. [3] and Lee and Lin [21] achieve a high-density ratio through
improving Swift’s free-energy model [19] and the model of He et al. [20] respectively. However,
both of their models uses two sets of particle distribution functions (PDF) that undermine the
simplicity of the LBM or increase computational loads. Recently, it has been found that through
using just one set of PDF, different equations of state (EOS) can be incorporated into the SC LBM
so as to achieve high-density ratio [22]. The surface tension for different EOS in SC LBM can be
determined analytically [8, 23].

Yiotis et al. applied the multiphase model of He et al. [20] to study the immiscible two-phase
flow in porous media and obtained some results [14]. However, in the model of He et al. [20], the
surface tension has to be obtained through finite difference method, a special treatment may be
necessary to handle the solid walls. Besides this inconvenience, two sets of PDF used in simulations
will increase computational loads and high-density-ratio two-phase flow is very difficult to realize.
Pan et al. [12] and Li et al. [13] applied SC two-component multiphase LBM to study the two-
component flow in porous media. However, when using the SC two-component multiphase LBM,
the viscosity ratio M is around 1 due to numerical instability and the maximum M in their study
is only about 3.

As mentioned above, the revised single-component multiphase SC LBM [22] can incorporate
different EOS into the model and high-density-ratio two-phase flow can be achieved. On the other
hand, the wettability at solid–fluid interfaces about this model was fully studied by Benzi et al. [8]
and different contact angles of the fluid–fluid interface at a solid wall can be obtained by adjusting
the ‘density of wall’ conveniently [8]. Here, we will focus on the SC LBM exclusively.

In this paper, the single-component multiphase SC LBM would be applied to study the high-
density-ratio two-phase flow in porous media, so as to test this model’s performance on this topic.
At the same time, the viscous coupling effects due to capillary number, the viscosity ratio and the
wetting angle would be investigated in detail.

1.2. Two-phase flow in porous media

It is well known that the isotropic flow of a Newtonian fluid through a porous medium can be
described by Darcy’s law u=−k�p/�l, where u is the average velocity of the fluid at inlet or
outlet boundary, �p/l is the pressure gradient, � is the viscosity of the fluid, k is the permeability
which only depends on the geometry of the porous media.

For multiphase flows in porous media, a typical situation is that the wetting phase covers the
solid surface and moves along the surface, while the non-wetting phase flows in the center of
the pores, surrounded by the wetting fluid. Hence, there is strong viscous coupling between the
wetting and non-wetting fluids [14].
Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2008)
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To account for momentum transfer across fluid–fluid interfaces and viscous coupling effects,
through defining an apparent relative permeability kr,i which is a function of Sw, Ca and M , Darcy’s
law may be modified as [14] ui =−kkr,i (Sw,Ca,M,�pi)�pi/�l , where i indicates ‘wetting’
or ‘non-wetting’ phase, Sw is the wetting saturation, Ca=uw�w/� is the capillary number and
M=�nw/�w is the viscosity ratio.
In this paper, we first briefly review the SC single-component multiphase LBM. Then SC LBM

code was validated by verifying the velocity profile for two-phase flow through a 2D channel.
After that the multiphase flow in porous media with different viscosity ratios, capillary number,
wettability were simulated. Finally, the flow patterns and relative permeabilities of two phases
were investigated.

2. METHOD

2.1. Shan-and-Chen-type single-component multiphase LBM

Here we implement the SC LBM [1] in two dimensions for a single-component multiphase system.
In the model, one distribution function is introduced for the fluid. The distribution function satisfies
the following lattice Boltzmann equation:

fa(x+ea�t, t+�t)= fa(x, t)− �t

�
( fa(x, t)− f eqa (x, t)) (1)

where fa(x, t) is the density distribution function in the ath velocity direction and � is a relaxation
time that is related to the kinematic viscosity as �=c2s (�−0.5�t). In the SC LBM, the effect
of body force is incorporated through adding an acceleration into velocity field. The equilibrium
distribution function f eqa (x, t) can be calculated as

f eqa (x, t)=wa�

[
1+ ea ·ueq

c2s
+ (ea ·ueq)2

2c4s
− (ueq)2

2c2s

]
(2)

In Equations (1) and (2), the eas are the discrete velocities. For the D2Q9 model, they are
given by

[e0,e1,e2,e3,e4,e5,e6,e7,e8]=c ·
[
0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

]

In Equation (2), for the D2Q9 model, wa = 4
9 (a=0), wa = 1

9 , (a=1,2,3,4), wa = 1
36 , (a=

5,6,7,8), cs =c/
√
3, where c=�x/�t is the ratio of lattice spacing �x and time step �t . Here,

we define 1 lattice unit (�x) as 1 lu. In Equation (2), � is the density of the fluid, which can be
obtained from �=∑

a fa .
The macroscopic velocity ueq is given by

ueq=u′+ �F
�

(3)

where u′ is the velocity defined as

u′=
∑

a faea
�

(4)
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In Equation (3), F=Fint+Fads+Fext is the force acting on the fluid, here including the inter-
particle force Fint, adhesion force between liquid/gas phase and solid phase and external force Fext.
In this study Fext is a uniform steady body force. The whole fluid velocity u is defined as:

u=u′+ F
2�

(5)

The inter-particle force is defined as [2],
Fint(x, t)=−g�(x, t)

∑
a

wa�(x+ea�t, t)ea (6)

where g is a parameter that controls the strength of the inter-particle force. For the EOS proposed
by Shan and Chen [1],

�(�)=�0[1−exp(−�/�0)] (7)

where �0 is a constant.
Through Taylor expanding as described in AppendixA in Reference [23] and−� j p+�i (c2s�)=Fi ,

we can obtain [23]:

p=c2s�+ c2s g

2
�2 (8)

According to the Yuan and Schaefer [22], if the EOS of p= p(�) is already known, we can use
following formula:

�=
√
2(p−c2s�)

c2s g
(9)

to incorporate different EOS into the SC LBM.
The typical EOS are the van der Waals, Redlich-Kwong, Redlich-Kwong Soave, Peng-Robinson

and Carnahan-Starling equation. They are given out in detail in Reference [22]. The surface tension
was calculated through Laplace Law after the equilibrium state was obtained in LBM simulations.
Analytical solutions of surface tension for these EOS can also be conveniently obtained through
solving equations in Reference [23].

The desired contact angle can also be obtained conveniently through change in parameter
�w [8]. The adhesion force between gas/liquid phase and solid walls is calculated by the following
equation, where we assume the density of solid phase is �w, i.e. �(�(xw))=�(�w),

Fads(x, t)=−g�(�(x, t))
∑
a

wa�(�w)s(x+ea�t, t)ea (10)

Here s(x+ea�t, t) is an indicator function that is equal to 1 or 0 for a solid or a fluid domain
node, respectively. �w is not really relevant to the ‘true’ density of solid phase, it is a free parameter
used here to tune different wall properties [8].

In our simulations, any lattice node in the computational domain represents either a solid node
or a fluid node. For the solid node, before streaming step, the bounce-back algorithm and not the
collision step is implemented to mimic non-slip wall boundary condition.

Figure 1 demonstrates that different contact angles can be obtained through adjusting �w. In these
simulations, the computational domain is 200×100, the upper and lower boundary is solid walls

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2008)
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Figure 1. Different contact angles obtained through adjusting the parameter �w. R-K
EOS was used in the simulations.

and the east and west boundary is periodic. The EOS used in the LB simulation is Edlich-Kwong
(R−K ) EOS:

p= �RT

1−b�
− a�2√

T (1+b�)
(11)

with a= 2
49 , b= 2

21 , Tc=0.1961 and T =0.85Tc. The liquid phase density is �l=6.06 and gas
phase density is �g=0.5. When the parameter �w varies between �l and �g, the contact angle
varies between 0 and 180◦. The surface tension can be obtained analytically [23] and the value of
surface tension is adjustable through change parameter b in the EOS.

3. RESULTS AND DISCUSSION

3.1. Viscous coupling in co-current flow in a 2D channel

For immiscible two-phase flows in porous media, a typical situation is that the wetting fluid attaches
and moves along the solid surface, while the non-wetting phase flows in the center of the pores.
The velocity of the non-wetting phase is relevant to the viscosity ratio of the non-wetting and
wetting fluids, i.e. M=�nw/�w.

Here we studied the immiscible two-phase co-current flow through two parallel plates. In the
simulation, the periodic boundary condition was applied in the inlet/outlet boundary. Non-slip
(bounce-back) boundary conditions were applied in the upper and lower plates. The kinematic
viscosity for non-wetting and wetting fluid are �nw=�w=c2s (�−0.5), Hence M=�nw/�w.

In the simulation, as illustrated in Figure 2, the wetting phase flows in the region a<|y|<b, and
the non-wetting phase flows in the central region 0<|y|<a. Obviously, the saturation of wetting
fluid in this study is Sw=1−a/b, and Snw=a/b. Assuming a Poiseuille-type flow in the channel,
the analytical solution for the velocity profile between the parallel plates is [14]

u(y)= �p

2l�w
(b2− y2)= �F

2�w
(b2− y2) (12)
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Figure 2. Co-current immiscible two-phase flow in a 2D channel, the wetting phase flows along the upper
and lower plate while non-wetting phase flows in the center region.

in the wetting region, a<|y|<b, and

u(y)= �F

2�w
(b2−a2)+ �F

2�nw
(a2− y2) (13)

in the non-wetting fluid region, 0<|y|<a.
In above equations, the pressure gradient in the direction of the flow is taken equal to �F . The

�F can be directly incorporated into the force F in the Equation (3).
Using Equations (12) and (13), the relative permeability of each phase as a function of the

wetting saturation can be obtained as [14]
kr,w = 1

2 S
2
w(3−Sw)

kr,nw = Snw[32M+S2nw(1− 3
2M)]

(14)

From Equation (14), we can see that the kr,w∈[0,1] when Sw∈[0,1], while the kr,nw may be
higher than 1 when Sw∈[0,1] because kr,nw is not only a function of Sw but also M .

For the cases M<1, Figure 3 shows the velocity profile for M=0.0833 and Sw=0.333. The
velocity profile calculated from LBM agrees with the analytical one. Figure 5 illustrates the kr,nw
and kr,w as a function of the Sw when M<1. Again, the LBM results agree well with the analytical
curves. As expected in Equation (14), relative permeabilities of both phases are smaller than 1.

For the cases M>1, Figure 4 shows the velocity profile for M=12 and Sw=0.75. Overall the
velocity profile obtained from LBM also agrees well with the analytical one. The non-wetting-
phase velocity obtained from LBM is slightly higher than that of analytical one and in the vicinity
of interface there is a small velocity jump. That may due to the interface force between the two
phases. Figure 6 illustrates the kr,nw and kr,w as a function of the Sw when M>1. The LBM
result is very consistent with the analytical solution. From the figure, we can see that the kr,nw is
greater than unity for most Sw values. That means the non-wetting phase flow flux is larger than
100%-non-wetting-saturated case when 0<Sw<0.925. This is due to the ‘lubricating’ effect of the
wetting fluid.

3.2. Two-phase flow through porous media

In this section, two-phase flow in a porous medium was simulated. Porous media structure gener-
ations are not a topic of concern here. The porous medium in our simulations is the same as that
in Reference [14], which is represented by 2D pore networks of 202 lu2 (lattice unit) square solid

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2008)
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Figure 3. Velocity profile ux in the middle of the 2D channel, the wetting phase is more viscous,
�F=1.5×10−8, �=0.1667, M=0.0833.

Figure 4. Velocity profile ux in the middle of the 2D channel, the wetting phase is less
viscous, �F=1.5×10−8, �=0.1667, M=12.

and void (pore space) blocks. The porosity of the network is �=0.77. The size of whole network
is 400×400 lu2.

Initially, the wetting phase and non-wetting phase were distributed randomly in the pores, i.e.
wetting or non-wetting phase in each void blocks such that the desired wetting saturation was
obtained.

In the simulations, periodic boundary conditions were applied in all directions. Co-current flow
was simulated by adding body forces G for both phases along the flow direction because adding
body phase is simple and is able to avoid capillary pressure gradients and thus saturating gradients
along the flow direction [13]. The wetting and non-wetting phase flow fluxes were calculated at
inlet and outlet during the simulations. If the relative flow flux difference between 1000 steps is
less than 0.1%, it is assumed that the final steady state is reached.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2008)
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Figure 5. Relative permeabilities for the wetting phase (kr,w) and non-wetting phase (kr,nw) as a function
of wetting saturation for co-current flow in a 2D channel. M=0.0833.

Figure 6. Relative permeabilities for the wetting phase (kr,w) and non-wetting phase (kr,nw) as a function
of wetting saturation for co-current flow in a 2D channel. M=12.

It is well known that three non-dimensional parameters are important for the immiscible two-
phase flow through porous media. These parameters are viscosity ratio M , Reynolds number
Re=ud/� and capillary number Ca=u�/�.
In all of our simulations, the kinematic viscosity is �=1/3(�−0.5)=0.1667. The maximum

gas velocity in our simulations was u=0.2 (lu/ts) in the porosity 2D pore networks in 100%-gas-
saturated flow. The maximum Reynolds number in our simulations was Re=u×20/�=24. Here
we assumed the Darcy’s law is valid in all of the cases we studied.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2008)
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Figure 7. Steady-state two-phase distribution patterns in the cases of Sw=0.2, Sw=0.5 and Sw=0.8
when Ca=6.25×10−5, M=12, 	=180◦. In the LBM simulation, R-K EOS was used, �=0.16.
The wetting phase is shown in light gray. The non-wetting phase is shown in dark gray and the solid

surface is black: (a) Sw=0.2; (b) Sw=0.5; and (c) Sw=0.8.

Ca can be regarded as the ratio of the body forces to the interfacial forces [14]. In the following
simulations, we used R-K EOS, M=12 and the applied body force in our simulations was G=10−5

or G=10−4. The corresponding capillary numbers are Ca=G/�=10−5/0.16=6.25×10−5 and
0.000625, respectively. These are relatively high values of Ca, where the movement of the interface
is controlled by viscous forces.

Figure 7 shows the steady two-phase distribution patterns in the cases of Sw=0.2, Sw=0.5 and
Sw=0.8 when Ca=6.25×10−5. It is a strong wetting case when �w=0.5 and 	=180◦. In the
figure, the wetting phase is shown in light gray. The non-wetting phase is shown in dark gray and
the solid surface is shown in black.

Figure 7(a) shows when Sw=0.2, the wetting phase is discontinuous and covers the solid surface,
while the non-wetting phase is continuous and flows through the porous media. The wetting phase
is practically immobile and kr,w=0. The relative permeability of non-wetting phase is about 1.3
because the non-wetting phase flows among the wetting phase films and takes the advantage of
the lubricating effect.

Figure 7(b) shows that the phase distribution pattern of the case Sw=0.5. The non-wetting
phase is continuous and wetting phase is disconnected by the non-wetting phase.

For the case of Sw=0.8, as demonstrated in Figure 7(c), the non-wetting phase forms several
large blobs and is discontinuous. These blobs are trapped in big pores due to the resistance of the
capillary force and are immobile.

The relative permeabilities kr,nw and kr,w as a function of Sw is shown in Figure 8. Owing to the
lubricating effect, the kr,nw is larger than unity when 0<Sw<0.4 for cases of Ca=6.25×10−5. It
is also found that the curves of relative permeabilities are not smooth. One of the possible reasons
is that due to the randomness of structure, the specified phase randomization at the initial state may
slightly affect the final steady phase distribution and hence the value of relative permeabilities. The
spurious velocity [22] near the interface area may also affect the accuracy of flow flux calculation
in the inlet and outlet boundary. How to reduce such fluctuation or estimate the fluctuation’s value
is a research topic in a following paper.

3.2.1. Effect of capillary number. The influence of Ca on the conventional relative permeabil-
ities is shown in Figure 8. Relative-permeability curves for two Ca’s Ca=6.25×10−5 and

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2008)
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Figure 8. Relative permeabilities for the wetting phase (kr,w) and non-wetting phase (kr,nw) as a
function of wetting saturation for co-current two-phase flow in a 2D porous. M=12, 	=180◦. R-K

EOS was applied in the LB simulation, �=0.16.

Ca=6.25×10−4 were compared. It is found that both the relative permeabilities for the two
phases are increasing functions of Ca for the fluid system when M=12 and 	=180◦. This trend
was also observed by Li et al. [13] numerically although in their study M=1.

3.2.2. Effect of wettability. In this section, the dependence of the relative permeability on wetta-
bility was studied. Neutrally wet cases were also discussed in this subsection. For the neutrally
wet media, the �w=2.0, the contact angle for the more viscous phase is 148.8◦. The capillary
number is Ca=6.25×10−5.

In the neutrally wet porous media, steady-state two-phase distribution patterns for different Sw
are illustrated in Figure 9. Comparing Figure 7(c) and Figure 9(c), it is observed that for Sw=0.8,
the non-wetting phase has a smaller specific interfacial area with the solid phase, which means
smaller resistance to flow, in the strongly wet media than in the neutrally wet media. For the other
given Sw, the mechanism is also valid [13]. This mechanism seems dominant because in Figure 10,
there are higher kr,nw in the strongly wet media than in the neutrally wet system.

In Figure 10, there are very small differences for neutrally wet and strongly wet systems in
terms of kr,w. As we know, at a given saturation level, non-wetting phase tends to occupy larger
pores in a strongly wet media, so the wetting phase tends to occupy smaller pore space in the
strongly wet media . This mechanism may make the kr,w lower in strongly wet media than in the
neutrally wet media. On the other hand, the wetting phase seems more connected in strongly wet
media, which may make the kr,w higher in strongly wet media [13]. While Figure 10 demonstrates
that the net effect of these two off-setting mechanisms is a relatively small difference in kr,w as a
function of Sw. The above results are consistent with the results of Li et al. [13].

When �w=4.0, contact angle of more viscous phase is 49.6◦. In these cases, the more viscous
phase is wetting phase and M=0.0833. The body forces applied to the two phases are 10−5 and
Ca=6.25×10−5. Steady-state two-phase-distribution patterns in the porous media for Snw=0.2,
Snw=0.5 and Snw=0.8 are illustrated in Figure 11.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2008)
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Figure 9. Steady-state two-phase distribution patterns in the cases of Sw=0.2, Sw=0.5 and Sw=0.8 when
Ca=6.25×10−5. M=12, R-K EOS was applied in the LB simulation, �=0.16, �w=2.0, 	=148.8◦.
The less viscous phase (wetting) is shown in light gray. The more viscous phase (non-wetting) is shown

in dark gray and the solid surface is shown in black: (a) Sw=0.2; (b) Sw=0.5; and (c) Sw=0.8.

Figure 10. Relative permeabilities for the wetting phase (kr,w) and the non-wetting phase (kr,nw)
as a function of wetting saturation for co-current two-phase flow in a 2D porous. M=12, R-K
EOS was applied in the LB simulation, �=0.16. For strongly wet cases, �w=0.5, 	=180◦;

for neutrally wet cases, �w=2.0 and 	=148.8◦.

In the figure, for Snw=0.2 the wetting phase covers most of the solid walls and non-wetting
phase forms three big blobs in the large pore area. For the case of Snw=0.5 and Snw=0.8, due to
the solid wall’s neutral-wetting property, both two phases are in contact with the solid wall. When
Snw=0.5, it seems that the viscous wetting phase covers more solid surface. In this case, more
big pores are filled by blobs compared with non-wetting phase in case Snw=0.2. When Snw=0.8,
the non-wetting phase becomes continuous and the wetting phase is disconnected.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2008)
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Figure 11. Steady-state two-phase distribution patterns in the cases of Snw=0.2, Snw=0.5 and
Snw=0.8 when Ca=6.25×10−5. M=0.0833, R-K EOS was applied in the LB simulation,
�=0.16, �w=4.0, 	=49.6◦. The more viscous phase (wetting) is shown in dark gray. The
less viscous phase (non-wetting) is shown in light gray and the solid surface is shown in

black: (a) Snw=0.2; (b) Snw=0.5; and (c) Snw=0.8.

Figure 12. Relative permeabilities for the wetting phase (kr,w) and non-wetting phase (kr,nw) as a function
of wetting saturation for co-current two-phase flow in a 2D porous. R-K EOS was applied in the LB

simulation, M=0.0833, �=0.16, �w=4.0, 	=49.6◦.

Figure 12 shows the relative permeabilities as a function of Sw for M=0.0833 and 	=49.6◦.
As expected, both the kr,w and kr,nw are less than 1 in whole Sw range.

3.2.3. Effect of viscosity ratio. Here we focus on the topic about how relative permeabilities
depend on the viscosity ratio M of two phases.

To achieve higher density ratio, here in our LB simulations, the EOS used is Carnahan–
Starling (C–S) EOS: p=�RT (1+b�/4+(b�/4)2−(b�/4)3)/(1−b�/4)3−a�2 with a=1, b=4,

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2008)
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Figure 13. Relative permeabilities for the wetting phase (kr,w) and non-wetting phase (kr,nw) as a function of
wetting saturation for co-current two-phase flow in a 2D porous. The C-S EOS was used in the simulations,

�liquid=0.359,�gas=0.00645,�=0.0145, M=56, Ca=6.25×10−5, G=9.06×10−7, 	=180◦.

Tc=0.0943 and T =0.7Tc, the liquid phase density is �l=0.359 and gas phase density is �g=
0.00645. When the parameter �w varies between �l and �g, the contact angle varies between 0
and 180◦.

Figure 13 shows the relative permeabilities as a function of Sw for M=56. Compared with
Figure 8, it is found that although Ca is same, increase of M makes kr,nw increase significantly,
especially when the Sw is in the intermediate range. That is due to the ‘lubricating’ effect of the
wetting phase film that attaches the wall. It also demonstrates that the greater the viscosity ratio
M , the larger the ‘lubricating’ effect.
It is found that in cases of a higher M , there is more connected non-wetting phase pathway

[13, 24], which may also contribute to the trend of kr,nw increasing with M .
On the other hand, the kr,w is not so sensitive to M . This can be observed clearly in Figures 8

and 13.

4. CONCLUSIONS

In this paper, the immiscible single-component two-phase flow in porous media was studied using
Shan–Chen-type (SC) multiphase lattice Boltzmann model. Two-phase distribution patterns and
relative permeability curves as a function of wetting saturation for different viscosity ratios and
wettability were obtained. When M>1, the relative permeability of non-wetting phase may be
greater than unity due to the lubricating effect. While when M<1, the kr,nw and kr,w are always
less than 1.

Our study demonstrates that SC single-component multiphase LBM is a very good tool to study
the immiscible two-phase flow in porous media due to its simplicity, capability of investigating
wettability effect and achieving high-density-ratio two-phase flow.
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