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Energetic benefit and enhanced performance are considered among the most
fascinating achievements of collective behaviours, e.g. fish schools and flying
formations. The collective locomotion of two self-propelled flapping plates initially in
a side-by-side arrangement is investigated numerically. Both in-phase and antiphase
oscillations for the two plates are considered. It is found that the plates will
spontaneously form some stable configurations as a result of the flow-mediated
interaction, specifically, the staggered-following (SF) mode and the alternate-leading
(AL) mode for the in-phase scenario and the moving abreast (MA) mode and the
AL mode for the antiphase scenario. In the SF mode, the rear plate follows the front
one with a staggered configuration. In the AL mode, the plates chase each other
side-by-side alternately. In terms of propulsive speed and efficiency, the performance
of the plates in the SF mode with small lateral spacing H is found to be better
than those in the tandem following case (H = 0) and the side-by-side case (i.e. the
AL mode). To achieve higher propulsive efficiency, no matter in-phase or antiphase
oscillations, the two plates with moderate bending stiffness, e.g. K ≈ O(1), are
preferred and they should be close enough in the lateral direction. For the side-by-side
configuration, the performance of each plate in the antiphase and in-phase scenarios
is enhanced and weakened in comparison with that of the isolated plate, respectively.
Besides the pressure and vorticity contours, the normal force and thrust acting on the
plates are also analysed. It is revealed that the thrust is mainly contributed by the
normal force at moderate bending stiffness. The normal force and thrust are critical
to the propulsive speed and efficiency. For two self-propelled plates, in view of
hydrodynamics, to achieve higher performance the in-phase SF mode and antiphase
flappings in the side-by-side configuration are preferred.

Key words: biological fluid dynamics, propulsion, swimming/flying

1. Introduction

Collective motion is ubiquitous in the biological and natural systems. When the
collections of bodies move in a fluid, the motion of each is influenced by others
through the flow-mediated interactions among them. The collective fluid–structure

† Email address for correspondence: xlu@ustc.edu.cn
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interactions, leading to the complex flow and the motion of individuals, may be
further categorized into two subsets: passively moving bodies and actively moving
bodies in a fluid. Typical flow problems for the former category are sedimentations
of particles and fibres (Guazzelli & Hinch 2011), in which bodies passively respond
to external forcing. On the other hand, for the latter category the interactions among
actively moving bodies in a fluid are more complicated. The previous studies have
largely focused on the low Reynolds number collective systems, such as swimming
micro-organisms and micro-particles (e.g. Saintillan & Shelley 2008; Zhang et al.
2010; Peruani et al. 2012). The most fascinating examples for higher Reynolds
number collective systems are bird flocks and fish schools, in which both structure
and behaviour are similar (Major & Dill 1978). The individuals derive many benefits
from the collective behaviour in many perspectives such as foraging, reproduction and
defence from predators (Partridge 1982; Parrish & Edelstein-Keshet 1999; Sumpter
2006; Bajec & Heppner 2009). It is also plausible that the individuals in group save
on the energetic cost of locomotion through the flow-mediated interactions in view
of hydrodynamics. For example, the V formation maybe improves efficiency of flying
birds by favourable interactions with the up- and down-wash of leading neighbours,
particularly over long migratory routes (Lissaman & Shollenberger 1970; Hummel
1983). Similarly, fish in schools are supposed to obtain a hydrodynamic advantage,
thus reducing the cost of locomotion, by taking advantage of the wakes shed by
neighbours within the school (Weihs 1973, 1975; Hemelrijk et al. 2015).

Although the invaluable insight into the social traits of collective locomotion,
such as schooling and flocking, has been provided by investigations based on
experiments and models (Couzin et al. 2002, 2005; Viscido, Parrish & Grünbaum
2005), several issues about the role of hydrodynamics in collective locomotion are
still open questions (Weihs 1973; Partridge & Pitcher 1979; Daghooghi & Borazjani
2015). One important and intriguing issue is the hydrodynamic advantage. The
theoretical research on this issue was firstly conducted by Weihs (1973, 1975),
who suggested that schooling fish could greatly enhance their thrust production
in a diamond configuration using an inviscid potential flow model. Moreover, the
swimmer could hydrodynamically gain benefit from its neighbours due to two
physical mechanisms: vortex hypothesis and channelling effect (Weihs 1975; Dong
& Lu 2007; Daghooghi & Borazjani 2015). However, little biological evidence of
hydrodynamic advantage in the diamond pattern has been found (Partridge & Pitcher
1979). Abrahams & Colgan (1987) pointed out the controversy may be derived from
ignoring the potential trade-offs involved in school functions. Due to the difficulty
of experimental measurement on the energetic savings of schooling and flocking,
only limited experimental evidence (Killen et al. 2012; Portugal et al. 2014; Ashraf
et al. 2017) has showed that the individuals can obtain an aero- or hydrodynamic
advantage from the collective locomotion. The other issue is the role of flows on
the emergence of the collective pattern. To investigate this issue, individuals may be
modelled as vortex dipoles (Gazzola et al. 2016). In addition, if swimmers are able
to optimize their motions in response to nonlinearly varying hydrodynamic loads, a
stable geometrical formation can be maintained (Gazzola et al. 2016). However, the
hydrodynamics is not fully resolved in the model of vortex dipoles. To assess the
role of aero- or hydrodynamics in collective swimming and flying, more quantitative
information is needed.

As the simplest model of the basic element for schooling and flocking, the grouping
unit, consisting of two individuals in a tandem or side-by-side configuration in
uniform flow, has been studied by experiments and simulations. This approach
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provided a promising means toward better understanding the basic principle how aero-
or hydrodynamic coupling between closely packed neighbours influences propulsive
performance. Dong & Lu (2007) have numerically investigated the flow over travelling
wavy foils in a side-by-side arrangement. It is revealed that the lateral interference
is of benefit to saving the swimming power in the in-phase case and enhancing the
forces in the antiphase case. More recently, Dewey et al. (2014) and Boschitsch,
Dewey & Smits (2014) have presented their experimental results on the propulsive
performance of two identical bio-inspired hydrofoils arranged in side-by-side and
in-line configuration as they undergo prescribed pitching motions over a wide range
of phase lags and spacings between the foils. It is found that when the foils are
arranged in a side-by-side configuration, their propulsive efficiencies are enhanced at
the cost of a reduction in thrust for in-phase oscillations, which is consistent with
the observations by Dong & Lu (2007); while for antiphase oscillations, each foil’s
thrust is enhanced and the propulsive efficiency almost remains unchanged. When
the foils are arranged in an in-line configuration (Boschitsch et al. 2014), the thrust
production and propulsive efficiency of the upstream foil differs from those of an
isolated one only for relatively closely spaced foils. In contrast, the performance of
the downstream foil depends strongly on the streamwise spacing and phase differential
between the foils. Similar studies on the performance of two flapping foils have also
been conducted (Warkentin & DeLaurier 2007; Broering, Lian & Henshaw 2012).

However, in the studies above, the swimmers were held fixed in an oncoming flow
and could not propel themselves freely. The collective configuration of swimmers is
predefined and not affected by the hydrodynamic interactions between them. On the
other hand, the self-propelled swimmers or flyers in collective locomotion are free
to select their speed and relative position through flow-mediated interactions among
them. It is essential to capture this trait in order to understand the role of aero- or
hydrodynamic interactions on the emergence of a collective pattern.

Recent studies turn their attention to the emergence of collective locomotion
dynamics in a two-body self-propelled system. Becker et al. (2015) studied experimen-
tally the flapping wings swimming in rotational orbits to mimic an infinite array
of locomotors in which the inter-wing spacing is fixed. The self-propelled wings
choose one of fast and slow modes which correspond to constructive and destructive
wing–wake interactions. Inspired by Becker et al. (2015), Ramananarivo et al. (2016)
further carried out an experiment based on a similar system composed of tandem
wings flapping in synchrony. The difference is that inter-wing spacing is no longer
fixed but dynamically selected as a result of flow-mediated coupling between the
wings. Thus it is possible to understand the emergent locomotion dynamics and
assess the role of flow-mediated interactions in the collective locomotion. The
experiment showed that multiple stable configurations of tandem swimmers can
emerge spontaneously, which offers experimental support for the Lighthill conjecture
(Lighthill 1975; Ramananarivo et al. 2016).

Compared with the experimental studies, numerical simulations can provide more
quantitative information, especially regarding thrust and power, which are crucial
to investigate collective advantages such as energetic savings and performance
enhancement. A single flexible flapping plate moving freely in a stationary fluid was
used as a model of self-propulsion for swimming and flying in previous studies (Hua,
Zhu & Lu 2013; Zhu, He & Zhang 2014b). However, few numerical investigations
are performed that focus on the flow-mediated interactions among two or more
self-propelled bodies. As far as we know, the only study was conducted by Zhu, He &
Zhang (2014a). Their two self-propelled flapping filaments in a tandem configuration
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showed that multiple stable configurations can be spontaneously formed with the help
of the vortex street behind the leader. The follower can enjoy energetic benefits for the
cases with 2S wakes. The energetic advantage of the leader was found in the compact
in-line configuration, but not the loose in-line configuration. Zhu et al. (2014a) mainly
considered the long-range interaction in a tandem pair of swimmers. The flow picture
seems to be analogous to that of a swimmer in vortex-street wakes (Alben 2010).

These experimental and numerical results above show that flow-mediated interactions
alone are sufficient to generate tandem formation and lead to collective advantages,
which reflect the longitudinal influence of the flows between the leader and the
follower. Our study differs from previous studies in several important ways. First
and foremost, we take a step toward seeking the possibilities of more general stable
configurations by introducing lateral spacing between two bodies, and examining
its influence. Second, we mainly focus on the tight and compact configurations in
which the short-range flow interaction instead of the long-range interaction (Zhu
et al. 2014a; Becker et al. 2015; Ramananarivo et al. 2016) dominates the collective
dynamics. It should be noted that the compact configurations have been proven
to be remarkably common and representative in natural schools and flocks by the
experimental measurements (Graves 1977; Major & Dill 1978; Partridge & Pitcher
1979; Partridge et al. 1980; Ashraf et al. 2016, 2017). Specifically, we consider
a grouping unit consisting of two flexible plates placed in an initial side-by-side
configuration with the lateral and longitudinal spacings. The self-propulsion is
induced by the prescribed heave motion at the leading edge of each plate but whose
longitudinal swimming is free. Due to fluid mediation, several stable configurations
are expected to form. Corresponding propulsive properties, unsteady dynamics and
flow structures around the plates are systematically investigated.

The remainder of this paper is organized as follows. The physical problem and
mathematical formulation are presented in § 2. The numerical method and validation
are described in § 3. Detailed results are discussed in § 4 and concluding remarks are
addressed in § 5.

2. Physical problem and mathematical formulation
As shown in figure 1, two plates are placed initially in a side-by-side configuration.

The plates are immersed in a stationary viscous incompressible fluid. The leading
edges of the two plates are forced to heave sinusoidally with identical amplitude A
and frequency f in the lateral direction. The forced motions of the leading edges are
prescribed by

y1(t)= A cos(2πft)+H/2, (2.1)
y2(t)= A cos(2πft+ φ)−H/2, (2.2)

where the subscripts 1 and 2 denote the upper and lower plate, respectively; H is the
lateral spacing between the equilibrium positions of the two plates, which is fixed in
all simulations; and φ is the phase difference between the flapping plates. Here, two
typical phase differences φ= 0 and π are considered which can be described as the in-
phase and antiphase scenarios, respectively. In addition, the plates are unconstrained in
the horizontal direction and thus the longitudinal spacing D(t) is dynamically selected
as a result of flow-mediated coupling between the two plates. In all simulations, if
not specified, usually the initial longitudinal distance D0 = D(t = 0) = 0. The active
pitching angle is zero in this model which means that only the leading edges of the
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X

Y

Plate 1

Plate 2

FIGURE 1. (Colour online) Sketch of a model for the collective locomotion of two
flapping plates which are initially placed in a side-by-side configuration. The lateral
and longitudinal distances between them are H and D, respectively. They have been
normalized by the dimensional length of the plate L. When the leading edges are forced to
heave vertically and sinusoidally, the plates deform passively and move in the horizontal
direction freely. Here yi(t) (i= 1 or 2) denotes the lateral position of the leading edge of
plate i, and y1 =H/2 and y2 =−H/2 are the equilibrium positions of the leading edges.

plates are restricted with the prescribed vertical motion and the remainder of each
plate can move freely in the entire fluid domain.

To investigate the system of the fluid flow and the flapping plates, the incompressible
Navier–Stokes equations are used to simulate the fluid flow,

∂v

∂t
+ v · ∇v =−

1
ρ
∇p+

µ

ρ
∇

2v + f b, (2.3)

∇ · v = 0, (2.4)

where v is the velocity, p the pressure, ρ the density of the fluid, µ the dynamic
viscosity and f b the Eulerian momentum force acting on the surrounding fluid due to
the immersed boundary, as constrained by the no-slip boundary condition.

The structural equation is employed to describe the deformation and motion of the
plates (Connell & Yue 2007; Hua et al. 2013),

ρl
∂2X
∂t2
−
∂

∂s

[
Eh

(
1−

∣∣∣∣∂X
∂s

∣∣∣∣−1
)
∂X
∂s

]
+ EI

∂4X
∂4s
=Fs, (2.5)

where s is the Lagrangian coordinate along the plate, X(s, t) = (X(s, t), Y(s, t)) is
the position vector of the plates, Fs is the Lagrangian force exerted on the plates by
the surrounding fluid, ρl is the structural linear mass density. Eh and EI denote the
structural stretching rigidity and bending rigidity, respectively. At the leading edges of
the plates, the clamped boundary condition are adopted, i.e.

− Eh

(
1−

∣∣∣∣∂X
∂s

∣∣∣∣−1
)
∂X
∂s
+ EI

∂3X
∂3s
= 0, Y(t)= y(t),

∂X
∂s
= (1, 0). (2.6a−c)
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At the free ends of the plates, the boundary conditions are expressed as

− Eh

(
1−

∣∣∣∣∂X
∂s

∣∣∣∣−1
)
∂X
∂s
+ EI

∂3X
∂3s
= 0,

∂2X
∂s2
= 0. (2.7a,b)

Moreover, X(s, 0)= (s, yi(0)), ∂X/∂t(s, 0)= (0, 0) is the initial condition for plate i.
The characteristic quantities ρ, L and Uref are chosen to normalize the above

equations. Here L is the dimensional length of the plates, Uref is the maximum
flapping velocity of the plunging motion, i.e. Uref = 2πAf . Here, the characteristic
time is Tref = L/Uref . The dimensionless governing parameters are described as
follows: the heaving amplitude A, the Reynolds number Re= ρUref L/µ, the stretching
stiffness S = Eh/ρU2

ref L, the bending stiffness K = EI/ρU2
ref L

3, the mass ratio of the
plates and the fluid M= ρl/ρL, the phase difference φ, the lateral spacing H and the
initial longitudinal spacing D0.

3. Numerical method and validation

The governing equations of the fluid–plates problem are solved numerically by
the lattice Boltzmann method (LBM) for the fluid flow and a finite element method
for the deformation of the flexible plates. The immersed boundary (IB) method is
applied to treat flow–structure interaction (Peskin 2002; Mittal & Iaccarino 2005).
The body force term f b in (2.3) represents an interaction force between the fluid
and the immersed boundary to enforce the no-slip velocity boundary condition. The
lattice Boltzmann equation with the body force model (Chen & Doolen 1998) is
employed to solve the viscous fluid flow. Equation (2.5) for the plate is discretized
by a finite element method and deformations with a large displacement of the plate
are handled by the corotational scheme (Doyle 2001). A detailed description of the
numerical method can be found in our previous papers (Hua et al. 2013; Hua, Zhu
& Lu 2014).

Based on our convergence studies with different computational domains, the
computational domain for fluid flow is chosen as [−20, 30] × [−20, 20] in the x
and y directions, which is large enough so that the blocking effects of the boundaries
are not significant. Following the scheme in Zou & He (1997), a constant pressure
with v= 0 is imposed at all boundaries except for the outlet. ∂v/∂x= 0 with constant
pressure is imposed in the outlet (Zou & He 1997). At the initial time, the fluid
velocity field is zero in the entire computational domain. In the x and y directions the
mesh is uniform with spacing 1x=1y= 0.01L. The time step is 1t= T/10 000 for
the simulations of fluid flow and plate deformation, with T = 1/f being the flapping
period. Moreover, a finite moving computational domain (Hua et al. 2013) is used
in the x direction to allow the plates to move for a sufficiently long time. As the
plate travel one lattice in the x direction, the computational domain is shifted, i.e.
one layer being added at the inlet and another layer being removed at the outlet
(Hua et al. 2013).

To validate the present numerical method, two cases with different initial distances
for two self-propelled plates in a tandem configuration are simulated. Figure 2 shows
the time-dependent streamwise velocity of the leading edge in two cases. It is seen
that the present results agree well with those of Zhu et al. (2014a).

The grid independence and time step independence studies were also performed.
The results are shown in figure 3. It is seen that 1x/L= 0.01 and 1t/T = 0.0001 are
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1

2

3

10 2 3 4

Leading, present
Leading, Zhu et al. (2014a)
Following, present
Following, Zhu et al. (2014a)

5 6

1

2

3

10 2 3 4 5 6

U

(a) (b)

FIGURE 2. (Colour online) Validation for the case of two self-propelled plates in a tandem
configuration with the dimensionless governing parameters Re= 200, H= 0, A= 0.5, M=
0.2, K = 0.8, S= 1000 and φ = 0. (a) D0 = 8.0 and (b) D0 = 9.0 (Zhu et al. 2014a).

1.3

1.6

1.9

2.2

4.0 5.04.5 5.5 6.0
1.3

1.6

1.9

2.2

4.0 5.04.5 5.5 6.0

U

(a) (b)

FIGURE 3. (Colour online) The grid independence (a) and time step independence (b)
studies for the case with M = 0.2, A = 0.5, D0 = 9.0, H = 0, K = 0.8, S = 1000, Re =
200 and φ = 0. The streamwise velocities of the leading edges as a function of time are
presented.

sufficient to achieve accurate results. Hence, in all of our simulations, 1x/L = 0.01
and 1t/T = 0.0001 were adopted.

In addition, the numerical strategy used in this study has been validated and
successfully applied to a wide range of flows, such as the dynamics of fluid flow
over a circular flexible plate (Hua et al. 2014), the locomotion of a flapping flexible
plate (Hua et al. 2013) and the vorticity dynamics of fluid flow over a flapping
plate (Li & Lu 2012).

4. Results and discussion
We here present some typical results on the collective behaviours of two flapping

plates due to the flow-mediated interactions. The settings of all governing parameters
are shown in table 1. It is seen that Re, A, M and S are fixed in our simulation but the
following four parameters are variable: the lateral spacing (H), the initial longitudinal
spacing (D0), the bending stiffness (K) and the phase difference (φ). In addition, the
propulsive behaviours of an isolated plate are also simulated for comparison. The
results of in-phase cases are presented in §§ 4.1–4.5. The results of antiphase cases
are presented in § 4.6.
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Collective locomotion of two self-propelled flapping plates 1075

Reynolds number Re= 200
Heaving amplitude A= 0.5
Mass ratio M = 0.2
Stretching stiffness S= 1000
Bending stiffness 0.1 6 K 6 10
Lateral spacing 0.2 6 H 6 6
Initial longitudinal spacing 0 6 D0 6 2
Phase difference φ = 0,π

TABLE 1. The parameters in the simulations.

4.1. Emergent dynamics and configurations
In our numerical settings, the in-phase flapping scenario (φ= 0) was first investigated.
The bending stiffness K = 1 is chosen at first because it lies in the optimal range
of stiffness for the largest propulsive speed for the isolated plate. The side-by-side
initial configurations with D0 = 0 and H ∈ (0.2, 6) are examined. Four typical
states of collective pattern are identified. They are formed spontaneously by the
two-plate system, i.e. the staggered-following (SF) mode, alternate-leading (AL)
mode, non-periodic (NP) mode and non-interfering (NI) mode.

Figure 4(a–d) shows the vorticity contours at four typical phases in one flapping
cycle for the case with H= 0.3 and K = 1, corresponding to the SF mode. In the SF
state, the following plate moves forward following the leading plate with a staggered
configuration. The two plates behave like one single and longer plate and the vortex
street is behind the follower. The time histories of the longitudinal spacing D(t)
and relative propulsive speed Ur(t) = u1(t) − u2(t) for the SF mode are shown in
figure 5(a,b), where u1(t) and u2(t) are the instantaneous horizontal velocity of plate
1 and 2, respectively. It is seen that D(t) and Ur(t) evolve to periodic states with
D≈ 1.3 and Ur = 0 after a few flapping periods, where D and Ur are average values
over one flapping period.

Figure 4(e, f,g,h) shows the vorticity contours in the AL mode. The reversed Kármán
vortex street is clearly shown in the wake. The shedding vortex pattern is different
from that in the SF mode. In the AL mode (H= 0.9), D(t) changes periodically with
D= 0 (see figure 5c,d), indicating that during the propulsion, the two plates leapfrog
or move forward in an alternate-leading way. When the plates become harder, the non-
periodic (NP) mode appears. Figure 5(e, f ) shows that in the NP mode, D(t) and Ur(t)
vary non-periodically with time. It is noted that the lateral flow interactions between
the two plates are negligible when the lateral distance is large enough, e.g. H = 4.0,
which is referred to as the non-interfering state.

The time-averaged longitudinal spacing D and peak-to-peak value Dpp as functions
of H for K = 1 are shown in figure 6. It is seen that the collective pattern of the
two-plate system switches from the SF mode to the AL mode as H at Hc≈ 0.6. It is
worth noting that the peak-to-peak value of D, i.e. Dpp, is significant in the SF and AL
modes, implying dynamic adjustment in the horizontal direction between individuals
due to the flow-mediated interactions. Additionally, Dpp tends to be zero due to the
lateral interference vanishing as H > 4.

To further examine whether the motion state can be maintained when the system
is perturbed, the initial configurations are adjusted by varying the initial longitudinal
spacing D0. Figure 6 also shows the results for D0 = 0.5, 1.0 and 2.0. It is seen that
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FIGURE 4. (Colour online) Instantaneous vorticity contours at t= (0/4)T , T/4, T/2 and
(3/4)T from top to bottom. Panels (a–d) and (e–h) are the SF state (H= 0.3, K = 1 and
φ = 0) and the AL state (H = 0.9, K = 1 and φ = 0), respectively. Blue and red colours
denote negative (clockwise) and positive (anticlockwise) vorticity, respectively.

the ultimate stable configurations are mainly determined by H but independent of D0
when the horizontal disturbance is small (D0 6 2.0). Hence, the formed configurations
due to the fluid mediation are stable.

Passive flexibility of flapping plates, which is closely associated with their
propulsive performance and wake properties (Hua et al. 2013; Zhu et al. 2014b),
may play a key role in collective locomotion through the flow interactions between
individuals. Thus, we further examine the effect of the flexibility on the two-plate
system. In our numerical setting, K ranges from 0.1 (very flexible) to 10 (very hard).
In the simulations, the side-by-side initial configurations are adopted, i.e. D0 = 0 and
H ∈ (0.2, 6).

Our results indicate that the occurrence of the locomotion states of the plates
depends mainly on the bending stiffness K and the lateral spacing H. The phase
diagram for the four modes in the H–K plane is shown in figure 7. Each point in
the figure represents a case we simulated. We do not intend to provide accurate
borders between the modes, therefore it is only a schematic diagram. It is seen that
the SF state occurs mainly in the region with small H. Both the AL and NP states
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FIGURE 5. (Colour online) The longitudinal spacing D (a,c,e) and the relative propulsive
speed Ur of the two plates (b,d, f ) as a function of time. Panels (a,b), (c,d), and (e, f )
correspond to the cases of the SF, AL and NP states, respectively. The key parameters H
and K are labelled in (a,c,e).
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FIGURE 6. (Colour online) Time-averaged longitudinal spacing D (a) and the peak-to-peak
value Dpp (b) as functions of H for the in-phase flapping. The effect of D0 is also given.

mainly appear at moderate H but the NP state covers the region with larger K (say
K > 2.0). When H is large enough (say H > 4.0), only the NI state occurs because
the flow-mediated interactions between the two plates are negligible.
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FIGURE 7. (Colour online) Phase diagram for the four motion states (φ= 0). SymbolsA,
E,D and6 represent the SF, AL, NP and NI states, respectively.

4.2. Plate performances in the SF state and the AL state
According to our simulations, stable configurations can be spontaneously formed. The
propulsive properties of the plates in the SF and AL modes are further investigated. To
quantify the propulsive performance of the plates, three important indicators, namely,
the mean propulsive speed, input work and propulsive efficiency (Hua et al. 2013; Zhu
et al. 2014a) are defined.

The mean propulsive speed U is defined as the time-averaged forward speed at the
equilibrium state, i.e.

U =
1
T

∫ t′+T

t′
u(t) dt=−

1
T

∫ t′+T

t′

(
∂X
∂t

∣∣∣∣
s=0

)
dt, (4.1)

where T is the flapping period. The input work W is required to maintain the self-
propulsion of the flapping plates. It is computed as a time integral of the power P
performed by the surface of the body on the surrounding fluid over one flapping
period, i.e.

W =
∫ t′+T

t′
P(t) dt=

∫ t′+T

t′

[∫ 1

0
Fr(s, t) ·

∂X(s, t)
∂t

ds
]

dt, (4.2)

where Fr represents the force on the surrounding fluid by the plates. To quantify the
propulsive efficiency of a self-propulsive body, the ratio of the kinetic energy of the
body and the input work has been employed. Therefore the propulsive efficiency is

η= 1
2 MU2/W. (4.3)

The propulsive properties of the plates for the in-phase (φ = 0) scenario are
presented in figure 8. It is seen that there are three propulsion modes (the NI, AL
and SF states, respectively) as H decreases from 6.0 to 0.2 for K < 2.0. Figure 8(a)
shows the mean propulsive speed U versus H at the typical bending stiffness K = 1,
which is an optimal K for an isolated flapping plate. The mean propulsive speed of
an isolated plate with K = 1 is also shown by the dot-dashed line for comparison.
When H > 4.0 (the NI state), the mean propulsive speed U is very close to that of
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FIGURE 8. (Colour online) Propulsive speed U (a), input work W (b) and propulsive
efficiency η (c) as functions of H for K= 1 and φ= 0. The green, grey and white regions
represent the SF, AL and NI states, respectively.

the isolated plate. In the AL mode, U decreases with H monotonically and reaches
the lowest point at H≈ 0.6. As H decreases further, the plates switch to the SF state,
and U becomes significantly larger than that of the isolated plate.

Further, the input work and the propulsive efficiency as a function of H are shown
in figure 8(b,c). In the AL mode, the input work W and propulsive efficiency η

of the plates are lower than those of the isolated one, while they jump to higher
level in the region of the SF mode. It suggested that the flow-mediated interactions
between the plates may be very different for the AL and SF states. Moreover, in the
SF state, the plates have identical propulsive speed. Compared with the leading plate,
the following one uses less input work (see figure 8b) and therefore achieves higher
propulsive efficiency (see figure 8c). Hence, the SF configuration achieves better
propulsive performance, and the follower can take advantage of the vortex shedding
from the leading one in this compact configuration.

The effect of K on the performance is shown in figure 9. The average values of
input work and propulsive efficiency of the two plates are calculated to evaluate the
performance of the two-plate system, i.e. (W1 +W2)/2 and (1/2)M(U2

1 +U2
2)/(W1 +

W2), respectively. It is seen that, compared to the isolated plate (H = ∞), the
propulsive performance of the plates is significantly improved as K increases when
K > 0.6 for H = 0.2 and 0.5. However, for H = 0.7 and 1.5, the propulsive speed
and efficiency of the plates decrease with K when K > 0.3. It is also noted that
when K > 2.0, the mode switches to the non-periodic mode and it is not possible
to calculate the average values of U, W and η according to their definitions. Hence,
there are no data for K > 2.0.
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FIGURE 9. (Colour online) Propulsive speed U (a), average input work (W1 +W2)/2 (b)
and average propulsive efficiency (1/2)M(U2

1 +U2
2)/(W1 +W2) (c) as functions of K for

different H (φ = 0).

4.3. Plate performance in the SF mode and the tandem case
For the two in-phase flappings, in this section we will discuss whether the
performance in the staggered following is better than the simple tandem case (H= 0).
In the simulations of the simple tandem case, H = 0 is considered. For the staggered
cases, five cases with H = 0.1–0.5 are simulated. In the cases of H = 0, 0.1 and 0.2,
the initial longitudinal spacing D0 = 1.1 is adopted to avoid collisions. As mentioned
above, in all of the simulations, the ultimate longitudinal spacing D is independent
of D0 (see figure 6). For the five cases with H ∈ [0.1, 0.5], the plates adopt the
staggered-following mode with the specified lateral distance H. Figure 10(a,b) shows
the propulsive speed U and efficiency of the plate η for the tandem case (H= 0) and
staggered cases (H ∈ [0.1, 0.5]). It is seen from figure 10(a) that the propulsive speed
in the case of H = 0.1, as well as that in the case of H = 0.2, is somewhat higher
than that of the simple tandem case.

Figure 10(b) shows that at H ≈ 0.2 the two plates achieve the optimal overall
efficiency, which is better than that of the tandem case. It is also seen that in the
tandem case (H = 0), the efficiency of the leading plate is higher than that of the
following one. In this situation it seems that the leading plate can take advantage
of the front–rear flow-mediated interaction. However, for the staggered cases with
H = 0.2, 0.3, 0.4, 0.5, the following plate can take more advantage than the leading
one from the flow-mediated interaction. It is noted that there is an intermediate
situation, i.e. at H = 0.1, the efficiencies of the two plates are almost identical.

For cases with multiple swimmers, e.g. four fish in Ashraf et al. (2017), it seems
that the swimmers adopt the SF mode rather than the tandem configuration. The
possible reason is that in view of hydrodynamics, the overall efficiency is optimized
at the compact staggered configuration, e.g. the case of H= 0.2. The follower energy
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FIGURE 10. (Colour online) Propulsive speed (a) and efficiency (b) of the plates for the
simple tandem configuration (H = 0) and staggered configurations (H = 0.1–0.5).

saving due to the flow-mediated interaction in the SF mode also matches well with
the actual observation about follower’s egoism (Landa 1998). In summary, for the
in-phase flapping, the compact staggered configuration with a small lateral spacing is
preferred for the propulsive performance in comparison with the tandem case.

4.4. Forces and powers
In the following, the forces experienced by the plates and the produced power
are analysed to reveal the propulsion mechanism. It is noticed that, although the
plates experience the net drag or thrust in the x-direction due to the fluid–structure
interactions at a specific time, the time-averaged force over the cycle is zero. Previous
studies (Thiria & Godoy-Diana 2010; Ramananarivo, Godoy-Diana & Thiria 2011)
on the flapping flexible wing and plate have indicated that the flexible deformation
plays an important role in the thrust and drag as a ‘shape factor’ that redistributes
the contribution of the aero- or hydrodynamic forces in the direction of forward
motion. Here we will explore quantitatively the flexible deformation influence on the
distribution of thrust and drag and the role of the flow-mediated interactions in the
collective motions.

The jump in the fluid force across the plate at a certain Lagrangian point, i.e. Fs
can be decomposed into two parts: one is the normal force Fn in which the pressure
component dominates, the other is the tangential force Fτ which comes from the
viscous effects. These forces are defined as

Fs = [−pI + T ] · n=Fn
+Fτ , (4.4)

Fn
= (Fs · n)n= (Fn

x , Fn
y ), (4.5)

Fτ
= (Fs · τ )τ = (Fτ

x , Fτ
y ), (4.6)

where I is the unit tensor, T the viscous stress tensor, τ the unit tangential vector
toward the trailing edge, n the unit normal vector as shown in figure 11(a) in the
schematic and [ ] denotes the jump in a quantity across the immersed boundary. The
power P can also be decomposed into the two parts: Pn and Pτ , which are contributed
by Fn and Fτ , respectively, i.e.

P=Fs · u= Pn
+ Pτ , (4.7)

Pn
=Fn

· u= Pn
x + Pn

y, (4.8)
Pτ =Fτ

· u= Pτx + Pτy , (4.9)
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FIGURE 11. (Colour online) Schematic diagram for (a) force decomposition, (b) thrust
generation, (c) phase difference between ξ =Fs · n and tan θ . Black curved lines represent
the plate. τ and n denote the local tangential and normal vectors, respectively.

where Pn
x = Fn

x · u, Pn
y = Fn

y · v, Pτx = Fτ
x · u and Pτy = Fτ

y · v. It is noted that to maintain
the heaving motion at the leading edge of the plate, input power done by an external
force is required to sustain the propulsion system. Suppose the input power is Pin, we
have Pin + Pn

x + Pn
y + Pτx + Pτy = 0.

Figure 11(a) shows a schematic diagram of the force decomposition as mentioned
above (see (4.4)–(4.6)). It is shown that the bending deformation of the flexible plate
greatly influences the generation and distribution of Fn

x due to different local geometry
along the plate (Thiria & Godoy-Diana 2010; Ramananarivo et al. 2011). Actually, the
normal force contribution to the thrust or drag depends on the phase relation between
the normal force and the local slope of the flexible plate (Mysa & Venkatraman 2016).
A schematic diagram to illustrate this point is shown in figure 11(b,c). In figure 11(b),
it is seen that when the normal force and local slope at a certain point of the plate are
simultaneously positive (ξ = Fs · n> 0 and θ > 0) or negative (ξ < 0 and θ < 0), the
normal force contributes to a thrust; otherwise, the normal force contributes to a drag.
Moreover, figure 11(c) shows the curves of ξ and tan(θ) for a segment on the plate in
two periods. From the periodic curves, the phase difference between them (Ψ ) can be
estimated to characterize the phase relation between the normal force and the local
slope. When Ψ = 0, they vary synchronously and the normal force contributes to a
thrust force throughout the cycle. When Ψ =π, the normal force contributes to a drag
instead of the thrust throughout the cycle. When Ψ ∈ (0,π), as shown in figure 11(c),
the normal force contributes to a drag in the grey region and a thrust in the white
region throughout the cycle.

For the in-phase (φ = 0) scenario, the deformation and thrust in the isolated case,
the SF mode and the AL mode are compared in the follows. The phase difference,
normal force and local slope along the flexible plates are presented in figure 12(a–c),
respectively. Similar to the situation in the isolated case, Fn

x contributes to the thrust
for the SF and AL states in figure 12(d).

For the SF mode, figure 12(a) shows that the phase difference is closer to zero than
that of the isolated case. Compared to the isolated case, it is seen that |Fn

| along
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FIGURE 12. (Colour online) Phase difference, normal force and local slope along the
flexible plates for the in-phase (φ=0) scenario. (a) Phase difference between normal force
and slope, (b) time-averaged absolute normal force, (c) time-averaged absolute slope and
(d) time-averaged Fn

x . The forces are normalized by Fref = (1/2)ρU2
ref L.

the plate is slightly enhanced (see figure 12b) and the local bending deformation
increases significantly (see figure 12c). All these features result in a larger thrust
contributed by the normal force in the SF state. Compared to the leading plate,
although the following plate experiences smaller |Fn

| in the anterior part, a larger
bending deformation in the posterior part leads to a larger Fn

x in the posterior part.
The overall Fn

x of the following plate is larger than that of the leading one.
For the AL state (H= 0.9,K= 1.0), it is seen from figure 12 that, compared to the

isolated case, the phase difference of the plate in the AL state (Ψ ) is far from zero
and the bending deformation (|tan(θ)|) as well as the normal force (|Fn

|) are slightly
smaller. They all lead to a lower contribution of the normal force to the thrust in the
AL state.

Integrating the total work along the whole plate, we obtain the total work of the
following, leading and the isolated plates, which are 4.35, 4.75 and 4.12, respectively.
While the work done by Fn

x (the useful work) is approximately 1.80, 1.66, 1.01,
respectively. It is seen that more useful work is achieved for each plate in the SF
mode compared to the isolated case. Hence, the propulsive efficiency of the plates in
the SF state is higher than that of the isolated plate in figure 8(c).

4.5. Flow structure and the unsteady dynamics
To better understand the mechanisms underlying the propulsive performance, the
vortical structures around the plates and pressure distributions on the surfaces are
investigated in the following.

First, the instantaneous vorticity and pressure in the SF mode are analysed to
understand how the flow-mediated interactions improve the propulsive performance.
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FIGURE 13. (Colour online) Instantaneous pressure contours at (a) t = (0/4)T , (b) T/4,
(c) (2/4)T and (d) (3/4)T for the SF mode (H= 0.3, K= 1 and φ= 0). Solid and dashed
lines denote the positive and negative normalized pressure contours, respectively.

Figure 13 shows the pressure contours at typical instants of one flapping cycle.
The two plates are propelled forward with a compact staggered configuration.
From figure 13(a), it is seen that at the beginning of the down stroke, the thrust
contributed by the normal force is negligible for the following plate because the
pressure difference across the plate is small. The horizontal force in the SF mode is
shown in figure 14. At t= 0, the forces Fx of the two plates are almost identical.

At t=T/4, figure 13(b) shows that the pressure difference across the following plate
is approximately equal to that of the leading one. Therefore their thrusts contributed
by the normal force are almost identical. On the other hand, the positive vortex shed
from the leading plate extends to the lower surface of the following plate. Due to the
vortex inducing effect, there are negative pressure contours ahead the following plate
(Vandenberghe, Zhang & Childress 2004), which also contribute to a thrust (Fx < 0).
Hence, the overall thrust of the following plate is larger than that of the leading plate
(see figure 14a).

Figure 13(c) shows that the pressure difference across each plate and the
deformation of each plate are small at t = T/2. The pressure difference between
the head and tail of each plate induces the drag force. From figure 14(a), we can
see that both plates experience drag forces (Fx > 0) at this moment. At t = (3/4)T ,
it is seen from figure 13(d) that there are more positive pressure contours ahead of
the following plate than that ahead of the leading plate, which result in a larger drag
force. Although the pressure difference across each plate produces thrust, the overall
horizontal force for the leading (following) plates is the thrust (drag) force, as shown
in figure 14(a). The power of each plate is shown in figure 14(b). It is seen that
the total work done by the leading plate is slightly larger than that of the following
one during one period. On the other hand, the plates move with an identical mean
propulsive velocity. Hence, the following flapping plate achieves better efficiency and
takes advantage of the wake of the leading one.
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FIGURE 14. (Colour online) Horizontal force experienced by the plates (a,c) and power
of the plates (b,d) as functions of time in one period. Panels (a,b) and (c,d) represent
the SF mode and the AL mode, respectively. The integration of the force in one period
is zero. The forces and powers are normalized by Fref = (1/2)ρU2

ref L and Pref = ρU3
ref L,

respectively.

The instantaneous vorticity and pressure in the AL mode are analysed here. From
figure 4, it is seen that in the AL mode, the leading-edge vortex is generated and
convected downstream along the plates per half-cycle, which is similar to that of an
isolated swimming plate. At t = (0/4)T , the leading edges of the plates reach their
maximum vertical positions, the upper and lower surfaces of the plates induce positive
and negative vorticity in figure 4(e), respectively. There is a low pressure area near the
vortices region in figure 15(a). Meanwhile, the leading edges of the plates are subject
to a considerable drag due to the presence of the local high pressure region ahead of
the plates. At this moment, both plates experience a net drag (see figure 14c). As the
plates start to stroke down (t= T/4), i.e. figure 15(b), because the normal force due
to the pressure difference acting on the lower plate is larger, the thrust of the lower
plate is larger than that of the upper plate (see figure 14c). Due to the larger thrust,
the laggard lower plate begins to chase the upper leading one.

When the plates stroke up, they experience the reverse procedure of the down
stroke. In this way, the two plates would chase each other and achieve identical mean
propulsive speed and efficiency over one flapping cycle. In the AL mode, compared
to the isolated case, the normal force acting on each plate, and therefore the thrust,
are reduced. Hence, the propulsive performance of each plate is poorer than that
of the isolated case. The power of each plate is shown in figure 14(d). It is seen
that the overall power is significantly smaller than that in the SF mode. The above
mechanism is also simplified in § 4.6.2.
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FIGURE 15. (Colour online) Instantaneous pressure contours at (a) t = (0/4)T , (b) T/4,
(c) (2/4)T and (d) (3/4)T for H= 0.9, K= 1 and φ= 0 (the AL state). Solid and dashed
lines denote the positive and negative normalized pressure contours, respectively.

4.6. Antiphase (φ =π) scenario

The phase difference between the swimmers may play an important role in forming
the stable flow-mediated configurations and achieving collective advantages. For
example, Ashraf et al. (2017) studied experimentally synchronization of tail-beating
kinematics between neighbouring individuals within a group and found that fish
swimming together at their free-ranging speed shows no consistent phase relationship
between neighbours, which is consistent with the natural observations (Partridge &
Pitcher 1979). On the contrary, fish in schools sustaining high swimming gaits shows
strong synchronized dynamics, characterized by in-phase and out-of-phase (OP, or
antiphase) modes (Ashraf et al. 2017) and the OP mode is favoured with respect to
the in-phase state (Ashraf et al. 2016). Moreover, the antiphase undulating motions
are usually considered as one of the typical cases in schools and investigated in
the literature (e.g. Dong & Lu 2007; Boschitsch et al. 2014; Dewey et al. 2014).
In this section the effects of the phase difference on the emergent dynamics and
configurations are investigated.

In the current setting, the key parameters in our simulations are φ=π,D0= 0,H=
1.2–2 and K = 1–10. In the antiphase scenario, the minimum value of H is slightly
larger than 2A to avoid collision of two plates. Two motion modes are identified
based on our numerical results, i.e. the moving abreast (MA) mode and the AL mode.
The instantaneous vorticity and pressure contours at t = (0/4)T , T/4, (2/4)T and
(3/4)T are shown in figure 16. It is seen that in the MA mode, D(t) = 0 and the
propulsive velocities of the two plates are identical, i.e. the two plates move side-by-
side with an identical speed. Besides, the instantaneous snapshots of the flow field and
the geometries of the two plates at any time are symmetric about y= 0. For the AL
motion state, the two plates move forward in an alternate-leading way.
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FIGURE 16. (Colour online) Instantaneous vorticity (a–d) and pressure (e–h) contours at
(a,e) t= (0/4)T , (b, f ) T/4, (c,g) (2/4)T and (d,h) (3/4)T from the left column to right
for H = 1.5, K = 3.0 in the antiphase scenario. Blue and red colours denote negative
(clockwise) and positive (anticlockwise) vorticity, respectively. Solid and dashed lines for
pressure contours denote the positive and negative normalized pressure contours.
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FIGURE 17. (Colour online) Phase diagram for the MA (E) and AL (A) modes in the
H–K plane for φ =π.

4.6.1. Phase diagram and propulsive properties
The phase diagram for the two motion modes are shown in figure 17. It is seen that

in the H–K plane, the AL mode appears at the moderate bending stiffness K with a
small gap distance (H < 1.5). When the lateral distance H is larger than 1.5, the AL
mode disappears.

In the antiphase (φ=π) scenario, the mean propulsive speed U versus the bending
stiffness K for H ∈ (1.2, 2.0) is shown in figure 18(a). For each H, the speed U
increases rapidly with K first and reaches a plateau region with a maximum U, then
it decreases rapidly at a critical bending stiffness and finally approaches a constant.
The plateau region for the maximum U becomes narrower as H increases from 1.2 to
2.0. Note that for H=∞, i.e. the isolated plate case, the plateau region narrows into
a peak. Hence, short-range flow-mediated interactions (smaller H) between the plates
not only improve the propulsive speed, but also enlarge the range of optimal K.
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FIGURE 18. (Colour online) Mean propulsive speed U (a), input work W (b), propulsive
efficiency η (c) as functions of K for varying H (antiphase flappings).

Moreover, figure 18(b,c) shows the input work and the propulsive efficiency as
functions of K for H ∈ (1.2, 2.0). The input work increases with K first and decreases
rapidly to a constant at a critical K. For the propulsive efficiency, it increases to a
peak at K ≈ 0.4 and then decreases to a constant at the critical K. The decreasing
section can be understood in the following way. In the plateau region of propulsion
speed U (approximately K ∈ (1, 4)), the input work W increases continuously to peak
value. According to expression (4.3), it results in the decreasing propulsive efficiency.
As a whole, figure 18 shows that the propulsive performance can be much improved
when two closely spaced plates possess moderate flexibility.

4.6.2. Flow fields
Because the MA mode is able to achieve better propulsive performance, the vorticity

and pressure contours of a typical MA case (H = 1.5 and K = 3.0), that shown in
figure 16, will be analysed first. In the following description, plate 1 (the upper plate)
is taken as an example because the situation of plate 2 is symmetric to that of plate
1 about the line y= 0. From figure 16(a), it is seen that at the initial stage of down
stroke of plate 1, the bending deformation increases to a maximum. The leading-edge
positive vortex on the lower surface of plate 1 moves from the leading edge to the
trailing edge, and interacts with the trailing-edge vortex. At t = T/2 in figure 16(b),
all vortices are shed into the wake and the mutual induction among the vortices
prevents them leaving vertically, which is helpful for the generation of thrust and
improvement of propulsive efficiency (the detailed mechanism is shown in figure 19
and described in the next paragraph). Moreover, the high pressure region between
the two plates grows when they stroke toward each other in figure 16( f ), resulting
in the enhancing normal force across the plates and the larger bending deformation.
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FIGURE 19. (Colour online) Instantaneous vorticity contours for K = 3.0 (a) and K = 3.5
(b) in the antiphase scenario. The other parameters are H = 1.5 and φ = π. Blue and
red colours denote negative (clockwise) and positive (anticlockwise) vorticity, respectively.
Red (blue) vectors represent the velocities induced by the neighbouring red (blue) vortices.
Time-averaged jet in the wake for K = 3.0 (c) and K = 3.5 (d). The contours show the
magnitude of adjusted horizontal velocity u′ = u+U.

During the second half of the flapping cycle in figure 16(c,d,g,h), the vortices shed
from the trailing edges move along the x direction. The lower pressure region between
two plates grows up gradually, which also enhances the normal force acting on the
plate and the deformation of each plate, therefore the thrust increases. In the MA
mode, the flow-mediated interactions contribute to a better propulsive performance as
shown in figure 18.

The vorticity contours at an instant for K= 3.0 and K= 3.5 are shown in figure 19.
The induced velocity field around the vortices is also plotted in figure 19. It is seen
that because the vortex ‘D1’ in figure 19(a) is weaker than that in figure 19(b) and
the distance between vortices ‘U1’ and ‘D1’ in figure 19(a) is larger than that in
figure 19(b), according to the Biot–Savart law, the induced lateral velocity acting on
the ‘U1’ (the inclined vector) in the case of K= 3.0 is smaller than that of ‘U1’ in the
case of K= 3.5. Hence, the lateral movement of the vortices is slower in figure 19(a).
In this way, it is seen clearly that the mutual induction among the vortices prevents
them leaving vertically for the K= 3.0 case. The comparison of the time-averaged jet
in the wake for K = 3.0 and 3.5 is shown in figure 19(c,d). It is seen that the jet
inclination angle for the K = 3.5 case is approximately 15◦, which is larger than that
in the K= 3.0 case. This larger inclination angle is ‘a prognosticator of a further drop
in thrust’ (Dong, Mittal & Najjar 2006). Moreover, due to the small deformation of
the plates in the case of K = 3.5, the thrust contributed by the normal force reduces
significantly. Hence, the propulsive performance of K = 3.5 becomes poorer.

In summary, the propulsive performance of the side-by-side configuration due to the
in-phase and antiphase flappings can be understood in the following way. Figure 20(a)
shows that, as the plates flap in antiphase, when they are flapping close to each other,
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HPR

Enhanced
Weakened

HPR

HPR

LPR

(a) (b)

FIGURE 20. (Colour online) Schematic diagrams for the pressure contours in (a) the MA
(φ = π) and (b) AL (φ = 0) modes, respectively. Solid and dashed contours denote the
higher pressure region (HPR) and lower pressure region (LPR), respectively.

the pressure between them is enhanced significantly because the fluid between them is
squeezed. Hence, the pressure difference between the upper and lower surfaces of each
plate is larger than that in the isolated case. The larger pressure difference results in
a larger deformation and normal force, and therefore a larger thrust. Similarly, when
they are flapping apart from each other, the low pressure region between them also
enhances the normal force acting on each plate. Hence the propulsive performance of
each plate is enhanced compared to the isolated case. For the in-phase flapping (see
figure 20b), similar to the isolated plate, higher pressure or lower pressure is generated
below or above each plate as it flaps downward. Hence, in the region between them,
the higher pressure (HPR) generated by the flapping of plate 1 will interact with
the lower pressure (LPR) generated by the flapping of plate 2. The HPR and LPR
would weaken each other. Hence, the pressure difference between the upper and lower
surfaces of each plate is not so large as that in the isolated case. The smaller pressure
difference results in a smaller normal force, and therefore a smaller thrust. Then the
propulsive performance is weakened.

4.6.3. Rescaling propulsive speed and efficiency
As discussed in the above, at moderate bending stiffness and small H (e.g. H =

1.2), the thrust is mainly contributed by the normal force. Under this circumstance, the
propulsive speed is enhanced and a better propulsive efficiency is achieved as shown
in figure 18. It is also seen from figure 18(a,c) that for different H, there exists a
varying critical bending stiffness. When K is beyond the critical value, the propulsive
speed and efficiency of the plates decrease dramatically. For example, for H= 1.5 the
propulsive speed and efficiency decrease much as K increases from 3.0 to 3.5. The
possible reason is that the thrust contributed by the normal force is dominant in the
case H= 1.5 and K= 3.0. As K increases to 3.5, the contribution of the normal force
to the thrust reduces significantly due to the small deformation of the plates.

Generally speaking, the bending deformation of the flapping plate is dominated
by the fluid dynamic pressure on the surface, inertial force of the plate and elastic
restoring force due to the flexibility. Because the mass ratio M is fixed at 0.2 in our
simulation, the inertial force of the plate is very minor due to the small M. Hence,
the fluid force and the elastic restoring force should be estimated to determine the
deformation.

To examine the relative importance of the two forces, the ratio of the elastic force
to the fluid force is often used. Usually the ratio is quantified by the effective stiffness
K = EI/ρU2

ref L
3. However, here the fluid dynamic pressure, i.e. the normal force, is

more prominent. Hence, the normal force instead of ρU2
ref L is proposed to normalize
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FIGURE 21. (Colour online) Rescaled propulsive speed (a) and efficiency (b) of the
flapping plates as functions of rescaled bending stiffness for varying H. Legend is identical
to that in figure 18.

the elastic force EI/L2 directly, i.e. K∗=EI/|Fn
|L2, which is referred to as an effective

stiffness, where |Fn
| is the time-averaged absolute normal force of the plates over

one flapping period. Moreover, the characteristic velocity is proposed to be U∗ref =

(2|Fn
|/ρL)1/2, and thus the normalized propulsive speed is U∗ =U/U∗ref .

After the rescaling is performed, the propulsive speed U∗ and the efficiency η of the
antiphase flapping plates as functions of K∗ for different H are shown in figure 21(a,b).
From figure 21(a), it is seen that the plateaus with a maximum propulsive speed in
figure 18(a) narrow into an identical peak at a critical value of K∗≈0.25. Figure 21(b)
shows that the curves of the propulsive efficiency also collapse together when K∗ is
not too large. On the other hand, it is also noticed that the curves for different H tend
to deviate from each other slightly when K∗ is large. The possible reason is presented
in the following. As discussed in the above, the thrust is primarily provided by the
normal force for the plates with the moderate bending stiffness. While for the stiff
plates, the thrust contributed by the normal force is not so significant due to the tiny
deformation and the thrust is mainly induced by the leading-edge vortex. Therefore
the scaling law based on |Fn

| is not so valid when K∗ is large. Hence, the rescaling
works well only in the region of moderate K∗.

4.7. Comparison with results in the literature
In the above, we concluded that under the circumstance of in-phase (IP) flapping, the
SF mode is more efficient than the isolated case and the side-by-side case. However,
for the antiphase (out-of-phase (OP)) flapping, the side-by-side is more efficient and
there is no SF mode.

The optimal configurations for the two nearest neighbours in fish schooling are
listed in table 2. It is seen that the SF mode in Katz et al. (2011) qualitatively agrees
with our result about the SF mode. Besides, the SF cases have a very low distance
H < 0.5 (see figure 6) in terms of our simulation results. Movie S1 in Ashraf et al.
(2017) also shows that the distance is H ≈ 0.35, which is consistent with our results
for the SF mode. It is also seen that both side-by-side and staggered-following modes
are found in Partridge (1982) and when the side-by-side configuration appears, the OP
(out-of-phase) state is favoured (Ashraf et al. 2016). Hence, some of our conclusions
are basically consistent with the results in the literature.

It is also noticed that by using such a simple model it is impossible to fully
reveal all hydrodynamic mechanisms of the fish schooling. There may exist some
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Literature Summary

Inviscid theory (Weihs
1973, 1975)

The optimal configuration is found to be an array of
two-dimensional diamonds resulting in reduction of the
swimming effort of up to a factor of 5.

Living fish experiment
(Partridge & Pitcher
1979)

Fish maintained mean distances from lateral neighbours 2–3
times as great as expected (Weihs 1973), e.g. H ' 0.9L, and
swam far too close to pairs of fish in front of them, e.g.
D' 1–2L.

Living fish experiment
(Partridge 1982)

The nearest neighbour is most commonly at a distance of
approximately 1L. Although the preferred angle is close to
90◦, i.e. side-by-side, the situation occurs with very low
probability (approximately 14 %) with respect to all
circumstances. Each of the cases with 30◦, 50◦, 70◦, 110◦,
130◦ and 150◦ has a proportion larger than 11 %.

Living fish experiment
(Katz et al. 2011)

The neighbouring fish tends to be approximately 1.5–2L away,
i.e. D' 1.5–2L, and at a preferred angle of approximately
−60◦ to 60◦.

Living fish experiment
(Ashraf et al. 2016)

The pair side-by-side configuration with small shift (H ' 0.6,
D' 0.16) is observed, where the OP (out-of-phase) state is
favoured with respect to the IP (in-phase) state at high
swimming speed gaits.
The staggered configuration (basic subsystem of the ‘diamond
shape’) is also observed.

Living fish experiment
(Ashraf et al. 2017)

At lower swimming speed, the SF mode (or the
diamond-shaped (DS), T-shaped (TS) pattern) and side-by-side
configuration are observed. At high speed, only the
side-by-side configuration is observed and the pattern leads to
energy saving.

TABLE 2. Optimal configuration for two nearest neighbours. To quantify the orientation
between a given fish and its nearest neighbour, the angle between the connected line of
the two fish and the swimming direction is measured. Zero degrees is directly ahead of
the fish; 180◦ is directly behind.

discrepancies between our results and those in the literature for the fish experiments.
For example, the experimental study (Ashraf et al. 2017) showed that at the
more energy-demanding, higher-velocity regimes, almost all schooling occurs in
phalanx (side-by-side) formation. While in our simulations, not only the side-by-side
formation but also the staggered formation (the SF mode) are found in the more
energy-demanding, higher-velocity regimes. Another example is that Katz et al.
(2011) and Ashraf et al. (2017) did not mention that the staggered arrangement
leads to energy efficiency, while the SF mode in our study has higher efficiency.
The inconsistency may be attributed to the limitation of our present model and the
complexity of a natural fish school. As for the limitations of the present model, first
our model consisting of two self-propulsion plates with simple actuation is a highly
simplified model for a fish school. Second, it is only a two-dimensional study instead
of three-dimensional. Third, the Re is small with respect to the Re regime of fish
swimming.

It is worth mentioning that simulations/experiments from a limited number of bodies
and at low Re should be extended to a larger number and at high Re with caution.
In the present study, the wake interference of two self-propelled flapping plates at
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low Re may not break the vortical structures into small structures and some coherent
structures may still exist. At high Re, although the wake of a single fish/object still
shows coherent structures, wakes of many fish/object may become disorganized and
the coherent structures may break down because of the interference of the wakes at
high Re (Daghooghi & Borazjani 2015).

5. Conclusions

The self-propulsion of two closely spaced flapping plates initially placed in a side-
by-side configuration was investigated numerically. For the in-phase scenario, the four
typical locomotion states of the plates have been identified according to their kinetic
characteristics, i.e. the NI, AL, SF and NP states. The phase diagram for the states
was presented. It is found that only in the SF state, the propulsive performance is
enhanced compared to the case of isolated plate. The performance of the plates in the
compact SF mode (small H) is better than that in the tandem configuration (H = 0).
Moreover, compared to the isolated case, both the plates in the SF mode swim much
faster and have a higher efficiency although they consume more work W. Furthermore,
the following plate has a higher propulsive efficiency than the leading one, indicating
that the following one takes advantage of the flow-mediated interaction. Force analysis
shows that three factors are important to determine the thrust force, i.e. the normal
force, the local slope of deformed plate and their phase difference. In the SF state,
the flow-mediated interactions optimize the three factors and enhance the thrust and
propulsive performance. In the AL mode, compared to the isolated case, the normal
force acting on each plate is smaller than that of the isolated one. They lead to a
poorer performance.

For the antiphase scenario, the MA and AL modes are observed. The MA mode
is more common while the AL mode occurs only at moderate bending stiffness
and small H (H < 1.5). Investigations show that, provided H is small, no matter
in the AL or MA mode, the pressure difference across the plate and the bending
deformation of each plate are enhanced, resulting in a larger thrust and improved
propulsive performance at moderate stiffness. The normal force contributes much
to the enhancement of performance. In summary, the higher efficiencies in the SF
and MA modes relevant to the free swimming one is due to both the changes in
kinematics and hydrodynamic interactions.

It is found there are plateau regions for the propulsive speed and the efficiency as
functions of K; when K exceeds a critical value, the propulsive performance decreases
dramatically. The propulsive speed and efficiency for antiphase flapping is rescaled
using the time-averaged normal force as the characteristic parameter. The rescaling
works well for the region with moderate bending stiffness, in which the normal force
plays a critical role.

For two self-propelled plates, in view of hydrodynamics, to achieve higher
performance the compact in-phase staggered-following mode and antiphase flappings
in the side-by-side configuration are preferred. This study may shed some light on
understanding coordinated collective behaviours in biological and natural systems.
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