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In this work, the motion of a two-dimensional drop on a surface with stepwise
wettability gradient (WG) is studied numerically by a hybrid lattice-Boltzmann finite-
difference method. We incorporate the geometric wetting boundary condition that
allows accurate implementation of a contact angle hysteresis (CAH) model. The
method is first validated through a series of tests that check different constituents of
the numerical model. Then, simulations of a drop on a wall with given stepwise WG
are performed under different conditions. The effects of the Reynolds number, the
viscosity ratio, the WG, as well as the CAH on the drop motion are investigated in
detail. It was discovered that the shape of the drop in steady motion may be fitted by
two arcs that give two apparent contact angles, which are related to the respective
contact line velocities and the relevant contact angles (that specify the WG and CAH)
through the relation derived by Cox [“The dynamics of the spreading of liquids on
a solid surface. Part 1. viscous flow,” J. Fluid Mech. 168, 169–194 (1986)] if the
slip length in simulation is defined according to Yue et al. [“Sharp-interface limit
of the Cahn-Hilliard model for moving contact lines,” J. Fluid Mech. 645, 279–294
(2010)]. It was also found that the steady capillary number of the drop is significantly
affected by the viscosity ratio, the magnitudes of the WG, and the CAH, whereas it
almost shows no dependence on the Reynolds number. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4880656]

I. INTRODUCTION

The motion of a drop is encountered in nature, in our daily life, and in many industries as well.
It may be caused by body forces such as gravity, by a difference in pressure, or by a difference in
surface forces (for example, the Marangoni effect due to surface tension gradient and a migrating
drop on a surface with wettability gradient (WG)). As the size of the drop decreases, the surface
forces become more important in determining the motion of the drop. To drive and control the
motion of discrete drops through modifications of surface wettability possesses many advantages
at small scales. Such problems have received more and more attention in recent years because of
their significance in digital microfluidics and the development of lab-on-a-chip as well as some
other technologies.1 For instance, recently, Lai, Hsu, and Yang2 employed a surface with WG to
accelerate a droplet before its collision with another one to enhance the mixing between them,
and Bardaweel et al.3 developed a micropump by using axisymmetric WG to drive droplets, which
has potential applications in some microelectromechanical systems. Besides, gradient surfaces or

a)Authors to whom correspondence should be addressed. Electronic addresses: jjhuang1980@gmail.com and
jjhuang@cqu.edu.cn.
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directional surfaces, including those having WG, have been found to be used for droplet transport
in many natural phenomena.4 Therefore, the study of drop motion caused by WG has important
implications in many areas. Due to the presence of either geometrical or chemical heterogeneities
(or both), the motion of an interface on solid substrates usually shows certain hysteresis, i.e., the
contact angle when the interface is moving forward (called the advancing contact angle, denoted as
θA) is larger than that when it is moving backward (called the receding contact angle, denoted as θR).
This phenomenon is known as contact angle hysteresis (CAH). It is characterized by the difference
between the two angles, θA − θR, and it may strongly affect a drop driven by WG especially at small
scales.

The study of drops under WG began more than two decades ago. Previous studies on this topic
include theoretical and numerical modelling, experimental investigations and the combination of
both. Brochard5 analyzed the motion of two-dimensional (2D) and three-dimensional (3D) droplets
on substrates with small gradient in wettability or temperature at different scales and obtained the
formula for the droplet velocity through the balance of driving and resistance forces under the quasi-
steady assumption as well as some other simplifying assumptions. By employing the wedge and
lubrication approximations respectively, Subramanian, Moumen, and McLaughlin6 derived two sets
of approximate results for a 3D drop driven by WG on the resistance acting on the drop and also on
the quasi-steady drop velocity. Pismen and Thiele7 developed an asymptotic theory for a WG-driven
2D droplet based on the lubrication analysis. The droplet’s shape and velocity were obtained as
functions of the WG and the volume of the droplet. Halverson et al.8 carried out molecular dynamics
(MD) study of the dynamics of a nanodroplet on a surface with different types of WG. Systems
of nanometer scale, including a Lennard-Jones system and water on a self-assembled monolayer,
were investigated and the observables reported by Halverson et al.8 included the shape, the center-
of-mass position, the velocity, the base length, and the advancing and receding angles of the droplet
during the motion. Reasonable agreement were obtained between the MD simulation and theoretical
prediction on the droplet velocity. Considerable focus was given by Halverson et al.8 to the CAH,
the inclusion of which improved the agreement. It is noted that the work by Halverson et al.8 may
be regarded as (virtual) experiment and there were no explicit CAH model because of the extremely
small size. Huang, Shu, and Chew9 performed 3D simulations using the lattice Boltzmann method
(LBM) of a droplet on substrates with different wettability distribution and temporal control (of the
wettability), and identified suitable spatiotemporal wettability control parameters for unidirectional
droplet transport. Recently, Shi, Hu, and Zhou10 employed LBM to simulate a 2D droplet on a
substrate with a step WG, which was set to follow the droplet’s motion to ensure a continually acting
driving force (to some extent, mimicking the situation of reactive wetting used in Ref. 11). Variations
of the droplet velocity and the dynamic contact angles were extracted from the simulations and were
shown to agree reasonably well with theoretical predictions when the WG was small. Das and Das12

employed the smoothed particle hydrodynamics technique based on the diffuse interface method to
study the dynamics of a 3D drop on an inclined surface with WG. The effects of the drop size, the
angle of surface inclination, and the strength of WG on the drop motion were investigated, and several
possible outcomes were reported, depending on these conditions. Das and Das12 presented some
results about CAH for the drop even though they did not introduce any surface heterogeneities or use
any explicit CAH model (thus we suspect that the reported CAH is actually due to some dynamic
effects or simply reflects the interaction between the gravity and WG, and is not like the CAH in other
studies). Xu and Qian13 presented systematically a phase-field-based thermohydrodynamic model
for one-component two-phase fluids with certain boundary conditions derived from various balance
equations, and employed it to numerically study the 2D droplet motion on substrates having given
WG with/without phase transition and substrate temperature change. They investigated the droplet’s
shape, migration velocity Vmig, the velocity profile at selected sections, and the distribution of slip
velocity. They obtained the relations between Vmig, the magnitude of WG (denoted by Swg = d

dx cos θ

where θ is the contact angle of the wall and x is the coordinate along the direction of WG) and the slip
length ls, which agree with previous theoretical predictions by Brochard.5 The effects of CAH were
not considered by Xu and Qian,13 which makes the Vmig − Swg line pass the origin (in the presence
of CAH, Vmig may remain to be zero before Swg reaches certain minimum value capable of driving
the droplet). Esmaili, Moosavi, and Mazloomi14 carried out LBM simulations of a 2D droplet inside
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a microchannel with a stepwise change in wettability, which differs from most of previous studies on
droplets under open geometry. The simulated evolutions of the droplet velocity were found to agree
well with analytical predictions developed by Esmaili, Moosavi, and Mazloomi.14 They focused on
the effects of the channel height, the ratios of fluid viscosity and density, the channel geometry (for
grooved channels), as well as the appearance of an obstacle inside the channel.

In addition to the above theoretical and numerical studies, there is also some experimental
work in this field, which motivated some of the above investigations. Ondarcuhu and Veyssie15 did
experimental studies about the dynamics of a 2D drop (liquid ridge) sitting across a wettability
discontinuity. The displacements and constant angles of the two contact lines of the drop were
measured and several stages of motion were identified, including a steady stage with constant
velocity and constant advancing and receding angles. Chaudhury and Whitesides16 demonstrated
the (continuous) WG-driven (water) drop in experiment even on a substrate tilted to the horizontal by
15◦, showing that the driving force caused by a strong chemical gradient can become large enough
to overcome both the gravity and the hydrodynamic resistance. They also pointed out that the effect
of CAH must be small; otherwise, the drop might not move. Santos and Ondarcuhu11 demonstrated
spontaneous droplet motion on a surface that is modified by some agents inside the droplet through
some reaction. A quite broad range of droplet velocities were reported, and the relations between
the droplet velocity and its size as well as the receding contact angle were obtained and compared
favorably with the theoretical ones. To guide the droplet’s motion, a track between two hydrophobic
regions was employed by Santos and Ondarcuhu.11 Moumen, Subramanian, and McLaughlin17

reported experiments for a 3D drop on a surface with spatially varying WG, and the respective
results were compared with the theoretical predictions presented in Ref. 6 assuming quasi-steady
state. The variations of the velocity of the drop with its position were obtained in the experiments.
The theoretical results were shown to agree reasonably well with the experimental ones when the
hysteresis effect was included, but larger discrepancy was seen if the hysteresis effect was not
considered in the theoretical ones. Mo, Liu, and Kwok18 employed reactive-wetting, which modifies
the wetting property once a drop covers the surface, to drive a 3D drop along a (tilted) surface, and
they reported the measured drop velocities at different angle of inclination. Besides, Mo, Liu, and
Kwok18 also performed computer simulations using LBM to visualize the drop motion, the flow, and
pressure fields. Hysteresis effect was reported to be negligible because of the specifically selected
and prepared gold substrates. Yamada and Tada19 demonstrated reversible droplet transport through
experiments that used dynamic bias voltage to adjust electrochemical reactions and ultimately to
generate WG. Varnik et al.20 did experimental studies on emulsion separation induced by an abrupt
change in wettability and also did LBM simulations of a 3D droplet on a surface with a step WG.
Enhanced separation was reported in confined geometry and it was also highlighted that smaller
droplets are more easily guided by the step WG. In their simulations, the substrates were assumed
to be ideally flat and the hysteresis effects did not come into play.

Besides various investigations on the WG-driven drop, there are also some studies exploring
techniques to overcome the effects of CAH. Daniel and Chaudhury21 showed that the resistance
caused by CAH may be greatly reduced by applying a periodic force to the drop driven by a
continuous WG generated from an in-plane vibration that resulted from an audio speaker. Later,
Daniel et al.22 extended this study to more fluids with different surface tensions and viscosities
and explored the vibration parameters (including the wave form, amplitude and frequency). They
found an interesting ratcheting motion of a drop on gradient surfaces that results from shape
fluctuation and that the drop velocity increases linearly with the amplitude but nonlinearly with the
frequency.

Despite abundant research on WG-driven drops there are still certain open questions and char-
acteristics of such drop motions that remain to be explored. Most existing theoretical or numerical
studies on WG-driven drops7, 9, 10, 12–14, 18, 20 have not included (explicitly) the effects of CAH through
a continuum model even though CAH has been long identified as an important factor in the motion of
WG-driven drop.16, 17 How CAH affects the migration velocity and the flow need to be investigated
more thoroughly or to be further confirmed by simulations. In addition, the characteristics of the
shape of a WG-driven drop in motion have been rarely studied. Although there are abundant studies
on the relation between the shape of a moving interface, the contact angle and the contact line velocity
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by using theoretical,23, 24 experimental,25, 26 and numerical methods,26–28 most of them focused on
either a simple interface or a drop spreading/dewetting on a surface. As far as we know, this kind of
study is still lacking for WG-driven drops. Besides, most previous studies did not consider the effects
of the surrounding fluid. This is reasonable for air-liquid systems with large density and viscosity
contrasts, but may be questionable for liquid-liquid (e.g., water-oil) systems. Just for curiosity, it
is also of interest to know how the surrounding fluid affects the drop motion caused by WG. In
this work, we study a 2D drop on a surface with specified WG numerically by a phase-field-based
hybrid LBM that incorporates a CAH model. Our aim is mainly to investigate the characteristics
of the shape of a WG-driven drop (including its relation with the contact angles and velocities),
and to explore the effects of the Reynolds number, the wettability gradient of different strengths,
the viscosity ratio, and the CAH on the motion of the drop. Even though phenomenological CAH
models have been included in simulations of various multiphase flows, including a drop subject to
a shear flow, a pressure gradient or under the action of gravity (see, e.g., Refs. 29–34), it appears to
us that they have not been used in the study of WG-driven drops. Thus, this work is a further and
essential step towards more accurate and realistic simulations of WG-driven drops.

The paper is organized as follows. Section II introduces the phase-field model for binary fluids
and the wetting boundary condition (WBC) on a wall together with the CAH model. The numerical
method (simplified from Ref. 35) and the implementation of the WBC and CAH model are also
described briefly in this section. In Sec. III, several validation tests are presented first and then
investigations on a drop driven by a stepwise WG are carried out under different conditions, and
the results are discussed and compared with some theoretical predictions as well as some other
numerical studies. Finally, Sec. IV summaries the findings and concludes this paper.

II. THEORETICAL AND NUMERICAL METHODOLOGY

The present simulations are based on the phase-field modeling of two-phase flows. The physical
governing equations are solved by a hybrid lattice-Boltzmann finite-difference method. For flows
of binary fluids, there are two fundamental dynamics: the hydrodynamics for fluid flow and the
interfacial dynamics. We introduce the phase-field model for interfacial dynamics first.

A. Phase-field model

In the phase-field model, two immiscible fluids are distinguished by an order parameter field φ.
For a system of binary fluids, a free energy functional F may be defined based on φ as

F(φ,∇φ) =
∫

V

(
�(φ) + 1

2
κ|∇φ|2

)
dV +

∫
S
ϕ(φS)d S, (1)

where �(φ) is the bulk free energy density. The popular form of �(φ) is the double-well form,

�(φ) = a(φ2 − 1)2, (2)

with a being a constant. With this form of �(φ), φ varies between 1 in one of the fluids (named
fluid A for convenience) and −1 in the other (named fluid B). The second term in the bracket on the
right-hand side (RHS) of Eq. (1) is the interfacial energy density with κ being another constant, and
the last term on the RHS of Eq. (1) in the surface integral, ϕ(φS), is the surface energy density with
φS being the order parameter on the surface (i.e., solid wall).

The chemical potential μ is obtained by taking the variation of the free energy functional F
with respect to the order parameter φ,

μ = δF
δφ

= d�(φ)

dφ
− κ∇2φ = 4aφ(φ2 − 1) − κ∇2φ. (3)

The coefficients a (in the bulk free energy) and κ (in the interfacial energy) are related to the
interfacial tension σ and interface width W as36

a = 3σ

4W
, κ = 3σ W

8
. (4)
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Equivalently, the interfacial tension σ and interface width W can be expressed in terms of a and κ as

σ = 4

3

√
2κa, W =

√
2κ

a
. (5)

Usually, it is assumed that the diffusion of the order parameter is driven by the gradient of the
chemical potential. By also including the contribution due to convection, one obtains the following
evolution equation of the order parameter,37

∂φ

∂t
+ (u · ∇)φ = ∇ · (M∇μ), (6)

where M is the diffusion coefficient called mobility (taken as constant in this work), and u is the
local fluid velocity.

Suitable boundary conditions are needed for Eqs. (3) and (6). Here we mainly focus on the
conditions near a (rigid) wall, which are closely related to the wetting phenomenon and the motion
of contact line. For the fluid velocity u that appears in Eq. (6), we assume that the no-slip condition
applies on a wall. In what follows, we concentrate on the conditions for the phase-field variables,
φ and μ. It is noted that in phase-field simulations interface slip on a wall is allowed due to the
diffusion in Eq. (6).38

B. Wetting boundary condition

On a wall, the boundary condition for the chemical potential μ is simply the no-flux condition,

nw · ∇μ|S = ∂μ

∂nw

∣∣∣∣
S

= 0, (7)

where nw denotes the unit normal vector on the wall pointing into the fluid. For the order param-
eter φ, there are different kinds of boundary conditions in the literature with varying degree of
complexity.38–45 Huang, Huang, and Wang46 compared several types of boundary conditions for the
study of drop dewetting. Here the WBC in geometric formulation proposed by Ding and Spelt41

is adopted because of its certain advantages. The geometrical WBC abandons the surface energy
integral in Eq. (1) and starts from some geometric considerations. It assumes that the contours of
the order parameter in the diffuse interface are parallel to each other, including in the region near
the surface. Then, the unit vector normal to the interface, denoted by ns , may be written in terms of
the gradient of the order parameter as41

ns = ∇φ

|∇φ| . (8)

By noting that the vector ∇φ may be decomposed as

∇φ = (nw · ∇φ)nw + (tw · ∇φ)tw, (9)

where tw is the unit tangential vector along the wall, one finds that the contact angle θ at the contact
line may be expressed by

tan

(
π

2
− θ

)
= −nw · ∇φ

|∇φ − (nw · ∇φ)nw| = −nw · ∇φ

|(tw · ∇φ)tw| . (10)

Thus, one has

∂φ

∂nw

∣∣∣∣
S

= − tan

(
π

2
− θ

)
|tw · ∇φ|. (11)

In the design of this geometric WBC, the following fact has been taken into account: the tangential
component of φ’s gradient cannot be modified during simulation and the local (microscopic) contact
angle can only be enforced through the change of the normal component.41 Owning to this, the
geometric WBC performs better than other surface-energy-based boundary conditions in assuring
that the local contact angle matches the specified one.
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C. Contact angle hysteresis model

The above boundary conditions are applicable for ideally smooth surfaces with given contact
angle. In reality, however, perfectly smooth surfaces are rarely encountered and the CAH can play an
important role. There exist some investigations on the relation between the CAH and the underlying
surface heterogeneities at small scales (e.g., see the work by Kusumaatmaja and Yeomans47). Here
we do not intend to consider the CAH by directly including the surface heterogeneities; instead, we
assume the surface is sufficiently smooth at a relatively large scale and employ a phenomenological
CAH model for contact lines. Specifically, the method presented by Ding and Spelt32 (in phase-field
simulation) and also used by Wang, Huang, and Lu34 (in LBM simulation) is employed. In this
method, the effects of CAH are considered as follows:

θ = θA if Vcl > 0

θR < θ < θA if Vcl = 0

θ = θR if Vcl < 0

⎫⎪⎬
⎪⎭ , (12)

where Vcl is the contact line velocity. The implementation details will be described next.

D. Governing equations for hydrodynamics and numerical method

In the above sections, the basics of phase-field model for binary fluids, the wetting boundary
condition as well as the contact angle hysteresis model have been presented. In this section, the
governing equations of the fluid flow and the methods for the numerical solutions of all equations
are briefly introduced.

When the interfacial tension effects are modeled by the phase-field model, the governing
equations of the incompressible flow of binary fluids with uniform density and variable viscosity
may be written as

∇ · u = 0, (13)

∂t u + (u · ∇)u = −∇Sp + ∇ · [ν(φ)(∇u + (∇u)T )] − φ∇μ + G, (14)

where Sp is a term similar to the hydrodynamic pressure in single-phase incompressible flow,37 G
is a body force (which may be zero or a function of space and time), and ν(φ) is the kinematic
viscosity which is a function of the order parameter. In this work, the following function is adopted
to interpolate the viscosity from the order parameter,

ν(φ) =
[

1 + φ

2

1

νA
+ 1 − φ

2

1

νB

]−1

, (15)

where νA and νB are the kinematic viscosities of fluid A (represented by φ = 1) and fluid B
(represented by φ = −1), respectively. As pointed out by Lee and Liu48 and Zu and He,49 who
employed Eq. (15) or its equivalent form in LBM simulations of binary fluids, this form of function
for ν(φ) performs better than the commonly used linear function in phase-field simulations, which
reads,50, 51

ν(φ) = 1 + φ

2
νA + 1 − φ

2
νB . (16)

We note that Coward et al.52 analyzed the issue of viscosity interpolation and proposed the use of
Eq. (15) much earlier in the volume-of-fluid simulation of two-phase flows.

The complete set of governing equations of binary fluids considered in this work consists of
Eqs. (13), (14), and (6). The first two are solved by the lattice-Boltzmann method and the third
is solved by the finite-difference method for spatial discretization and the 4th-order Runge-Kutta
method for time marching. The whole method is called the hybrid lattice-Boltzmann finite-difference
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method. The present formulation is simplified from another axisymmetric version presented by
Huang et al.,35 but with some extension for binary fluids with variable viscosity. Most of the details
of this hybrid method can be found in Ref. 35; for conciseness, they will not be fully repeated; here
we mainly describe the extension for variable viscosity and the implementation of the geometric
WBC with CAH model. It is noted that there are different choices for some of the components of
the hybrid method in Ref. 35. The present work uses the multiple-relaxation-time (MRT) collision
model for LBM, the centered formulation (instead of the GZS formulation) for the forcing term,
and the isotropic discretization based on the D2Q9 velocity model (i.e., the iso scheme in Ref. 35)
to evaluate the spatial gradients of the phase-field variables. The effects of variable viscosity are
taken into account through the modification of one of the relaxation parameters in the MRT collision
model, specifically the parameter τ f,

1

τ f (φ) − 0.5
= 1 + φ

2(τ f,A − 0.5)
+ 1 − φ

2(τ f,B − 0.5)
, (17)

where τ f, A and τ f, B are two relaxation parameters related to the kinematic viscosities of fluids A and
B (i.e., νA and νB) as

νA = c2
s (τ f,A − 0.5)δt , νB = c2

s (τ f,B − 0.5)δt , (18)

where cs = c/
√

3 is the lattice sound speed in LBM (for the adopted D2Q9 velocity model), δt is
the time step, and c = δx/δt is the lattice velocity (δx, the grid size).

The spatial domain of simulation is a rectangle specified by 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, and this
domain is discretized into Nx × Ny uniform squares of side length h(=δx), giving Lx = Nxh and
Ly = Nyh. The distribution functions in LBM and the discrete phase-field variables, φi, j and μi, j,
are both located at the centers of the squares (like the cell center in the finite-volume method). The
indices (i, j) for the bulk region (i.e., within the computational domain) are 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.
To facilitate the implementation of boundary conditions, a ghost layer is added on each side of the
domain.

The WBC involves the enforcement of the normal gradient of the order parameter φ on the wall.
Consider the case with the lower side being a wall with a given contact angle θ . The enforcement of
φ’s normal gradient is realized through a ghost layer of squares, the centers of which are h/2 below
the wall with the index j = 0. When the geometric WBC is used, upon discretization of Eq. (11),
one has

φi,0 = φi,1 + tan

(
π

2
− θ

)
|tw · ∇φ|h. (19)

Equation (19) contains the tangential component of φ’s gradient on the wall tw · ∇φ|S , and it is
evaluated by the following extrapolation scheme,

tw · ∇φ|S = 1.5tw · ∇φ|i,1 − 0.5tw · ∇φ|i,2, (20)

where the tangential gradients on the right-hand side are calculated by the central difference scheme,
e.g.,

tw · ∇φ|i,1 = ∂φ

∂tw

∣∣∣∣
i,1

= φi+1,1 − φi−1,1

2h
. (21)

Once the order parameter in the ghost layer below the wall is specified according to Eq. (19), the
normal gradient condition for φ is enforced. For a wall along some other directions, the formulas
are similar (only some changes to the indices are required). It is noted that the above schemes for
finite differencing and extrapolation are 2nd-order accurate.

The actual implementation of the CAH model given in Eq. (12) is as follows.32 First, an initial
approximation of the local contact angle on the wall, θ ia, is obtained by using Eq. (10). Based on
the range θ ia belongs to (i.e., one of the three ranges divided by the advancing and receding angles,
θA and θR), φi, 0 is specified in one of the following three manners (also take the lower side as an
example):
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� (1) if θ ia ≥ θA, set θ = θA and then update φi, 0 by using Eq. (19);
� (2) if θR < θ ia < θA, keep φi, 0 unchanged;
� (3) if θ ia ≤ θR , set θ = θR and then update φi, 0 by using Eq. (19).

We note that the present work only considers 2D problems and the implementation of the WBC
with this CAH model is relatively easy as compared with the situation for 3D problems (which may
be dealt with in future).

III. RESULTS AND DISCUSSIONS

A. Characteristic quantities, dimensionless numbers, and numerical parameters

Before showing the results, we introduce several important characteristic quantities and dimen-
sionless numbers. In each of the problems below (including the validation cases and the WG-driven
drop), a relevant length scale (for instance, the drop radius R or the channel height H (or some
fraction of it, e.g., 0.25H)) is chosen to be the characteristic length Lc. Note that if the drop is only
part of a circle, we take R as the radius of the full circle. The constant density is selected as the
characteristic density ρc. The interfacial tension between the two fluids is σ . As given in Sec. II D,
the kinematic viscosity of fluid A (making up the drop) is νA (its dynamic viscosity is ηA = ρcνA)
whereas that of fluid B (the ambient fluid) is νB (its dynamic viscosity is ηB = ρcνB). The viscosity
ratio is thus rν = νA/νB = rη. Based on the fluid properties, one can derive a characteristic velocity
Uc,53

Uc = σ

ρcνA
. (22)

Then, the characteristic time Tc is

Tc = Lc

Uc
= LcρcνA

σ
. (23)

The quantities of length, time, and velocity may be scaled by Lc, Tc, and Uc, respectively. In two-phase
flows, the capillary number Ca and the Reynolds number Re are commonly used to characterize a
problem. The capillary number Ca reflects the relative importance of the viscous force as compared
with the interfacial tension force, and the Reynolds number Re reflects the ratio of the inertial force
over the viscous force. With the above characteristic quantities, the capillary number is found to be

Ca = ρcνAUc

σ
= 1, (24)

and the Reynolds number is

Re = Uc Lc

νA
= σ

ρcνA

Lc

νA
= σ Lc

ρcν
2
A

. (25)

It is noted that the capillary number and the Reynolds number given in Eqs. (24) and (25) do not
reflect the actual physics of the problem because the velocity scale Uc is purely derived from the
physical properties of the fluid rather than taken as the characteristic dynamic velocities during the
fluid motion. Nevertheless, they are helpful in setting up the simulation.

In addition, the Ohnesorge number Oh is also often used for drop dynamics.54 It is defined as
(note here the drop radius, instead of the diameter in Ref. 54, is used),

Oh = ρcνA√
ρcσ R

, (26)

and it is related to the other dimensionless numbers as Oh = 1/
√

Re. No body force is included in
the study of WG-driven drop, but in some validation cases a constant body force (per unit mass) g
may be applied on the drop. For a drop of radius R under the action of a body force g, the Bond
number may be defined as

Bo = ρcgR2

σ
, (27)

which reflects the ratio of the body force over the interfacial tension force.
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In phase-field-based simulations of two-phase flows, two additional parameters are introduced:
(1) the Cahn number (the ratio of interface width over the characteristic length),

Cn = W

Lc
, (28)

and (2) the Peclet number (the ratio of convection over diffusion in the CHE),

Pe = Uc L2
c

Mσ
. (29)

There exist a few previous studies that investigated or discussed the issue on how to select Cn
and Pe to get reliable results for various problems.27, 37 Since most of the problems studied in the
present work have moving contact lines (MCLs), special attention is paid to the work by Yue,
Zhou, and Feng,27 who investigated the issue on how to attain the sharp interface limit (SIL) for
problems involving MCLs and provided some useful guidelines. They found that the contact line
dynamics is controlled by a diffusion length scale ld with ld = √

M(ρcν) when both fluids have
the same viscosity, and in problems with a viscosity contrast, ld is modified as ld = √

M(ρcνe)
where νe = √

ν1ν2 = ν1/
√

rν is the effective viscosity (in Ref. 27 the dynamic viscosities were
used; we consider two fluids with the same density, thus the kinematic viscosities can be used here).
A dimensionless parameter S = ld/Lc (besides Pe) was introduced in Ref. 27 (note as we set Lc =
1, S = ld, we may use S and ld interchangeably below), and it was also found that the numerical
results for a particular problem with MCLs approach a SIL as the Cahn number goes to zero with
a fixed S; in other words, S should be scaled with Cn as S ∝ Cn0 in order to achieve the SIL (see
Fig. 5 in Ref. 27). Besides, they suggested a criterion to achieve the SIL: Cnε < 4S where Cnε is
the Cahn number based on their definition (the present Cahn number Cn = 2

√
2Cnε). We would

like to also mention another important finding by Yue, Zhou, and Feng27 that the slip length ls is
(approximately) related to the diffusion length ld as ls = 2.5ld. Thus the parameter S is related to the
dimensionless slip length ε = ls/Lc as ε = 2.5S. Therefore, to change S (e.g., through the mobility)
actually changes a physical parameter in problems with MCLs. The present definition of the Peclet
number Pe = (Uc L2

c)/(Mσ ) differs from that by some others. Yue, Zhou, and Feng27 defined the
Peclet number as Pe1 = (Uc LcW )/(2

√
2Mσ ) whereas the Peclet number defined by Villanueva

and Amberg55 and by Khatavkar, Anderson, and Meijer53 is Pe2 = (Uc LcW )/(3Mσ ). They are
related to the present one as Pe1 = PeCn/(2

√
2) and Pe2 = PeCn/3, respectively. It is noted that

the parameter S may be written as

S = 1√
Pe

√
rν

=
√

Cn√
3Pe2

√
rν

, (30)

which shows that S is independent of the Cahn number Cn using the present definition of the Peclet
number (but it becomes a function of Cn if the Peclet number defined in other works are used). In
this work, some investigations about the Cahn number will also be carried out. Although the Peclet
number is not a major focus, some discussions about its selection will be also given later.

The simulations are performed in the range 0 ≤ t ≤ te, where te denotes the time at the end of
the simulation. Suppose the characteristic length Lc is discretized by NL uniform segments and the
characteristic time Tc is discretized by Nt uniform segments, then one has

δx = Lc

NL

(
= Lx

Nx
= L y

Ny
= h

)
, δt = Tc

Nt
. (31)

B. Validation

As mentioned in Sec. I, the present numerical method is a simplified version (from axisymmetric
to 2D geometry) of that given in Ref. 35. The hybrid method has been validated through the study
of several drop problems in that work. Here three more validation tests are performed to check
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the major extensions in the present work, including (1) the extension to handle binary fluids with
different viscosities; (2) the capability to simulate drops on substrates with WG; (3) the CAH model.

1. Layered Poiseuille flow

In this test, the layered two-phase flow inside an infinitely long horizontal channel is considered.
The channel height is H = 2b and the x-axis is located at the center of the channel. The middle part
(−a ≤ y < a where 0 < a < b) is filled with one of the fluids (denoted as fluid 1) and the remaining
regions (−b ≤ y < −a and a ≤ y ≤ b) are filled with the other fluid (denoted as fluid 2). Due to
the symmetry about the x-axis, only the upper half (0 ≤ y ≤ b) is considered. The flow is driven
by constant body forces in the horizontal direction with different magnitudes g1 and g2 acting on
the inner and outer fluids, respectively. The two fluids have the same density and their kinematic
viscosities are ν1 and ν2. This problem is essentially 1D with variations only in the vertical direction.
In simulation, along the horizontal direction (with no variations) only four grid points were used
and periodic boundary conditions were applied. The upper side is a stationary solid wall and the
lower side is a symmetric line. Figure 1 illustrates the setup of the problem. Initially, the velocities
were zero everywhere. Under the action of the body forces, a steady velocity profile is gradually
developed. Upon reaching steady state, the velocity profile u(y) may be found by analytical means,56

u(y) =
{

A1 y2 + C1 0 ≤ y < a

A2 y2 + B2 y + C2 a ≤ y ≤ b
, (32)

where the coefficients are given by

A1 = − g1

2ν1
, A2 = − g2

2ν2
, B2 =

(
− 2A2 + 2

ν1

ν2
A1

)
a,

C1 = (A2 − A1)a2 − B2(b − a) − A2b2, C2 = −A2b2 − B2b.

(33)

The parameter a is taken as a = b/2 = H/4 and is also chosen as the characteristic length, i.e., Lc

= a. Four cases with different force magnitudes and distributions at different viscosity ratios were
studied: (a) g1 = 1.46 × 10−8, g2 = 0, ν1/ν2 = 0.1; (b) g1 = 0, g2 = 1.46 × 10−8, ν1/ν2 = 10; (c) g1

= 0, g2 = 1.46 × 10−6, ν1/ν2 = 0.1; (d) g1 = 1.46 × 10−6, g2 = 0, ν1/ν2 = 10. The magnitudes of the
body force are given in lattice units. The Reynolds numbers as defined in Eq. (25) are 1000, 1000,
100, and 100 for case (a), (b), (c), and (d), respectively (note that we always applied the non-zero
body force on fluid A, which may be located either on the inner side (fluid 1) or the outer sider (fluid
2)). Figure 2 compares the velocity profiles obtained from the present simulations and those given
by Eq. (32) for the above four cases. Note that the numerical solutions were obtained after the whole
velocity field became steady and the velocities in Fig. 2 were scaled by the coefficient: max (g1/ν1,
g2/ν2)a2. From Fig. 2 it is observed that the numerical results agree quite well with the theoretical
solutions for all the cases.

g

1
g

2

Wall

Symmetric line

ν

ν1

2

a

b

FIG. 1. Problem setup for the layered Poiseuille flow inside a channel.
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FIG. 2. Comparison of the velocity profiles of layered Poiseuille flow with analytical solutions given in Eq. (32) under four
different conditions: (a) g1 = 1.46 × 10−8, g2 = 0, ν1/ν2 = 0.1; (b) g1 = 0, g2 = 1.46 × 10−8, ν1/ν2 = 10; (c) g1 = 0, g2 =
1.46 × 10−6, ν1/ν2 = 0.1; (d) g1 = 1.46 × 10−6, g2 = 0, ν1/ν2 = 10. The parameters are Cn = 0.125, Pe = 5 × 103, NL =
32, Nt = 128.

2. Liquid column in a channel with given WG

In the second test, a liquid column confined between two vertical flat plates located at x = 0
and x = H is considered. The problem is symmetric about the middle vertical line x = 0.5H, thus
only the left half (0 ≤ x ≤ 0.5H) is used in simulation. The characteristic length is chosen to be Lc

= H. The problem setup is illustrated in Fig. 3. Initially, the liquid column has a (nominal) width of
Wlc = 4H (the distance between the two three-phase points (TPPs) in the vertical direction) and the
y-coordinate of the middle point between the two TPPs is ymid = 3.5H , giving the y-coordinates of
the upper and lower TPPs: ylow = 1.5H and yupp = 5.5H . In the region with y > ymid the wettability
of the plate is specified by a contact angle (CA) θupp, and for y ≤ ymid the CA is θ low, which is
kept to be larger than θupp. The initial upper and lower interface shapes were specified according to
θupp and θ low. Both the upper and lower parts of the plate are assumed to be smooth (i.e., having no
CAH). Because of the difference in the CAs, the liquid column is driven by the interfacial tension
forces to move upwards (i.e., towards the more hydrophilic part).

To make sure that the liquid column is always under the action of the WG, ymid = (ylow +
yupp)/2 is updated at each step and the wettability distribution is updated based on ymid to maintain
the WG. After some time, the liquid column gradually reaches a steady state, which indicates a
balance between the (driving) interfacial tension forces and the hydrodynamic resistances. It is
noted that a similar problem was investigated by Esmaili, Moosavi, and Mazloomi,14 who provided
an approximate analytical solution for the development of the centroid velocity of the liquid column

θ
lowθ

upp

0.5H

x

y

FIG. 3. Problem setup for a liquid column inside a channel with a stepwise WG (the figure is rotated by 90◦ in the
anti-clockwise direction).
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FIG. 4. Comparison of the evolutions of the centroid velocity of the liquid column vlc driven by a stepwise WG obtained at
three Cahn numbers (Cn = 0.2, 0.125, and 0.1) with that predicted by Eq. (34). The other common parameters are Lx = 0.5,
Ly = 20, Re = 100, rν = 1, θupp = 47◦, θ low = 59◦, Pe = 5 × 103 (S = 1.414 × 10−2).

vlc as

vlc = σ H [2(cos θupp − cos θ low)]

12ρc[νAWlc + νB(L y − Wlc)]
(1 − e−t/ts ), (34)

where ts = H 2L y/[12(νAWlc + νB(L y − Wlc))]. Corresponding to the above settings, boundary
conditions for a stationary wall are applied on the left (x = 0) and on the right (x = 0.5H) symmetric
boundary conditions are used. Periodic boundaries are assumed on the upper and lower sides of the
simulation domain.

For this problem, three Cahn numbers were tried, including Cn = 0.2, 0.125, and 0.1. The
discretization parameter NL takes 20, 32, and 40 for these Cahn numbers, respectively, so that the
interface width (measured in the grid size h) is always 4.0. The common parameters are Lx = 0.5,
Ly = 20, Re = 100, rν = 1, θupp = 47◦, θ low = 59◦, Pe = 5 × 103 (S = 1.414 × 10−2). Figure 4
shows the evolutions of the centroid velocity of the liquid column vlc obtained at the above three
Cahn numbers for 0 ≤ t ≤ 100. The centroid velocity vlc was calculated as

vlc(t) =
∫∫

v(x, y, t)N (φ)dxdy∫∫
N (φ)dxdy

≈
∑

i, j vi, j (t)N (φi, j )∑
i, j N (φi, j )

, (35)

where the function N(φ) is given by

N (φ) =
{

1 (φ > 0)

0 (φ ≤ 0)
. (36)

Note that for this problem the characteristic length is taken as the channel height H. It is seen from
Fig. 4 that at Cn = 0.2 the velocity shows relatively large fluctuations initially and then gradually
approaches a constant value, which is slightly larger than the steady velocity predicted by Eq. (34).
When Cn was reduced to 0.125, the amplitude of the fluctuation became much reduced and the
velocity evolution obtained numerically became much closer to that by Eq. (34). To further reduce
Cn to 0.1 only changed the results slightly. Based on the studies about a drop driven by WG (the main
problem to be discussed later), the initial fluctuations appeared very likely because the initial state
for the order parameter field was not sufficiently relaxed (details will be given below). Although the
main problem differs from this one, it is suspected that the fluctuations have the same origin based
on the common characteristic that they are reduced as the Cahn number decreases. In the study of
the main problem, similar initial fluctuations in velocity were also observed though they were not
as significant as in Fig. 4.
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FIG. 5. Drop shape (in equilibrium) on a wall with CAH under the action of a body force at three different Bond numbers:
Bo = 0.004, 0.128, 0.256.

3. Drop subject to a body force

In the third test, we consider a drop attached to a solid wall subject to a body force. When
there is CAH on the wall, the drop may stay attached to the wall even under the action of the body
force. This depends on the magnitude and direction of the body force, as well as the magnitude of
the hysteresis effect (more specifically, on the advancing and receding angles, θA and θR, on the
wall). In this problem, we assume that initially the drop is a semi-circle on the left wall with the
center (of the circle) being (xc, yc) = (0, 1.5). This shape corresponds to an initial contact angle of
θ i = 90◦. The body force acts along the y-direction on the drop only and its density (per unit mass)
is g. The magnitude of the body force g was varied by changing the Bond number. The simulations
were performed in a rectangular box with Lx = 2 and Ly = 4. Stationary wall was assumed on
all boundaries and the left wall has CAH with θA = 105◦ and θR = 75◦. The common physical
parameters are Re = 16, rν = 1, and the numerical parameters are Cn = 0.125, Pe = 5 × 103, NL

= 32, Nt = 160. Seven Bo numbers (Bo = 2n + 1 × 10−3 with n = 1, 2, · · · , 7) were tried. For this
test we are mainly interested in the force balance when the drop is static. For all the Bo numbers
considered, the drop finally reached a (nearly) static state. Under the action of the body force the
drop deformed slightly and its centroid moved upwards a little bit, but the two TPPs were pinned
due to the presence of CAH.

Figure 5 shows the shapes of the drop at three selected Bond numbers (Bo = 0.004, 0.128, 0.256)
after the interfacial tension force balanced the body force and the drop reached static equilibrium.
The increasing drop deformation with larger Bond number is well captured, as seen in Fig. 5.
Figure 6 compares the evolutions the local dynamic contact angles at the upper and lower TPPs of

the drop, θ
upp
d and θ

low
d . Note that the angles were averaged over the interfacial region spanning a few

grid points. Although the contours of the order parameter in this region should ideally be parallel
to each other, we found that this could be slightly violated in the presence of CAH. Through such
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FIG. 6. Evolutions of the (averaged) dynamic contact angles at the upper and lower TPPs (on the wall) of the drop, θ
upp
d and

θ
low
d , under the action of a body force at seven Bo numbers: Bo = 2n + 1 × 10−3 with n = 1, 2, · · · , 7.
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FIG. 7. Variations of the magnitudes of the net interfacial tension force |Fσ | (acting downwards) and the total body force
|Fg | (acting upwards) on the drop (when in static equilibrium) with the Bond number.

an average, the accuracy of the interfacial force calculation becomes improved. It is observed from

Fig. 6 that at the beginning θ
upp
d increases with time whereas θ

low
d decreases as time evolves. After the

initial stage, the changes in both angles become quite small. At the same time, it is seen that for all

of the Bo numbers θ
upp
d remains to be smaller than the advancing angle θA = 105◦ and θ

low
d is always

larger than the receding angle θR = 75◦. The magnitude of the net interfacial tension force (per unit

length) acting on the drop may be calculated as |Fσ | = σ (cos θ
low
d − cos θ

upp
d ) and this force pulls

the drop downwards. The total body force Fg on the drop may be calculated by a simple integration
over the area covered by the drop and it points upwards: |Fg| = ∫∫

N (φ)gdxdy = g
∫∫

N (φ)dxdy
where the integral

∫ ∫
N(φ)dxdy represents the area covered by the drop and the function N(φ) is

given in Eq. (36). Figure 7 shows the variations of the magnitudes of these two forces on the drop
(when in static equilibrium) with the Bo number. From Fig. 7, it is easy to see that the two kinds of
forces has almost the same magnitudes for all the Bo numbers tested. This means that the balance
condition for the drop was satisfied in the current simulations under all the Bo numbers.

4. Deformation of a drop on a wall with CAH subject to a shear flow

Another validation case is on the deformation of a drop on a wall with CAH in a shear flow.
This case has been employed for validation of numerical methods involving the implementation of
CAH for several times recently.33, 34, 57 In the present work, we set up this problem as follows: in a
box of size Lx × Ly a stationary drop is initially placed on the left wall (in the middle) with its shape
corresponding to an initial contact angle θ i = 60◦. The right wall moves at a constant velocity Uw,
thus creates a shear flow. The advancing and receding contact angles on the left wall are (θA, θR)
= (175◦, 5◦), so there is sufficient hysteresis to keep the drop pinned on the left wall. On the upper
and lower sides, periodic boundary conditions are applied. Both fluids have the same density and
viscosity. Two important parameters for this problem are:57, 58 (1) the scaled drop area A∗

d = 4Ad/L2
x

with Ad = R2(θ i − sin θ i cos θ i) being the area of the drop; (2) the capillary number based on the
velocity near the top of the drop, Cas = ρν(hd/Lx )Uw/σ , with hd = R(1 − cos θ i) being the initial
height of the drop. For brevity, the problem setup is not shown here. We study this problem at
three capillary numbers (by varying Uw) Cas = 0.05, 0.1, and 0.15 while keeping A∗

d = 0.5 (the
domain size is Lx × Ly ≈ 2.217 × 8.867). The Reynolds number is Re = 0.4, and other parameters
are Cn = 0.125, Pe = 5 × 103, NL = 32, Nt = 9600. The deformed shapes of the drop (after the
flow fully developed) under the three capillary numbers are plotted in Fig. 8 (also shown are the
results by Schleizer and Bonnecaze58 obtained using the boundary-integral method under the same
parameters). It is seen from Fig. 8 that the present drop shapes agree well with those predicted by
the boundary-integral method.
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FIG. 8. Shape of a drop on a wall with contact angle hysteresis subject to a shear flow after sufficient development (the figure
is rotated by 90◦ in the anti-clockwise direction). From top to bottom, the capillary numbers are Cas = 0.05, 0.1, and 0.15,
respectively.

5. Motion of a flat drop on a wall with a stepwise WG

Besides, we have studied a relatively flat drop driven by a stepwise WG under a setting re-
sembling one of the cases reported in Ref. 15. The initial setup is given in Fig. 9. This problem is
actually similar to the main problem to be studied next except that the drop is quite flat and some
other parameters differ. Several parameters are determined based on one case in Ref. 15 in which
the immersion oil (with a surface tension σ = 37.11 mN/m and a dynamic viscosity η = 98 cP)
was used, the advancing angle of the hydrophilic part was 23◦ and the receding angle of the hy-
drophobic part was 35.4◦. The density of the immersion oil used in the experiment was not provided
by Ondarcuhu and Veyssie,15 and we use the value ρ = 923 kg/m3 (at 23 ◦C)59. The width of the
ridge varied from 1–3 mm in the experiments (comparable to the capillary length). Here we use
a width of Ldrop = 1.5 mm. The interface is initialized to be an arc of a circle with its center lo-
cated at (xc, yc) = (−√

3R/2, R), which gives an initial contact angle of 30◦. It is easy to find that
R = Ldrop = 1.5 mm. These parameters give a Reynolds number Re = ρUcR/η = ρσR/η2 ≈ 5.35.
To reduce the effects of the ambient fluid, we use a large viscosity ratio rν = 50. Because the drop
is very flat (its volume occupies only a small fraction of the full circle of radius R), it is necessary to

θlowθupp

x

y

Lx

Ly

0

0.4

0.8

0123

FIG. 9. Problem setup for a flat drop inside a box of size Lx × Ly = 0.8 × 3 with a stepwise WG on the left wall (the figure is
rotated by 90◦ in the anti-clockwise direction). The radius of the circle is R and its initial origin is (xc, yc) = (−√

3R/2, L y/3)
(corresponding to an initial contact angle 30◦). The contact angle of the left wall is θupp = 23◦ for y > yc and θ low for y < yc.
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employ a small Cn number; otherwise, it will shrink significantly and even dissolve completely in the
ambient fluid (see the part on the initial relaxation, Subsection III C 4, to be given later). Here we use
Cn = 0.025 with the interface thickness in grid size W/h = 4 and a spatial discretization parameter
NL = 160 (Cnε ≈ 8.8 × 10−3). The Peclet number is Pe = 5 × 103. Then, the parameter S is found to
be S ≈ 5.32 × 10−3 and the dimensionless slip length is ε = ls/Lc = 2.5S ≈ 1.33 × 10−2 (i.e., the slip
length is about ls ≈ 20 μm). Note that we do not intend to simulate a drop exactly under the same
condition as the experiment because of some difficulties and limitations of the present method. For
instance, the density ratio is limited to be unity here (though for flows at small Reynolds numbers
the density ratio is not a very important parameter); besides, as mentioned above, the slip length in
a real system is usually very small (of molecular size) and it is extremely demanding (beyond our
capability) to fully resolve it in numerical simulations. Although being already quite small, the slip
length used for the simulation (ls ≈ 20 μm) is still several orders of magnitude larger than the real
slip length. What we actually do here is to compare the simulated results for the steady drop velocity
with those predicted by an equation derived based on certain assumptions, which was also used by
Ondarcuhu and Veyssie15 for comparison with their experimental results. This equation predicts the
steady capillary number as

Cadrop = 1

6l

√
(θ low)2 + (θupp)2

2

(
(θ low)2 − (θupp)2

2

)
, (37)

where all angles are in radian, and l is the constant prefactor mentioned above (l = ln (klLc/ls) =
ln (kl/ε)). In the derivation of Eq. (37) a few assumptions were made.5, 15 For example, the pressure
was assumed to reach equilibrium much faster than the drop’s motion and the profile of the drop
remains an arc of circle. And the drop was assumed to be quite flat with the contact angle being
much smaller than unity (one radian). Besides, the resistance due to the ambient fluid was assumed
to be negligible. Here we fix the contact angle on the upper part at θupp = 23◦ and try several lower
contact angles: θ low = 30◦, 33◦, 35.4◦, 38◦, and 40◦. The current settings should not cause large
deviations from those assumptions for Eq. (37) and the major difference is mainly in the slip length.
The centroid velocity of the drop vdrop was calculated as in Eq. (35). Under the action of the WG, the
drop gradually reaches a steady state and the steady drop velocity is denoted by Vdrop. The steady
capillary number Cadrop is defined based on Vdrop,

Cadrop = ρcνAVdrop

σ
, (38)

which just corresponds to the drop velocity Vdrop measured in the characteristic velocity Uc.
Figure 10 shows the variation of the steady capillary number Cadrop with the lower contact an-
gle θ low. For comparison, the respective predictions of Cadrop by Eq. (37) with kl = 0.152, l = 2.44
and kl = 0.189, l = 2.65 are also plotted in Fig 10. It is seen that with some suitable value of the
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FIG. 10. Variation of the steady capillary number Cadrop with the lower contact angle θ low for a flat drop driven by a stepwise
WG.
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FIG. 11. Problem setup for a (semi-circular) drop inside a rectangular box with a stepwise WG. Note that the figure is rotated
by 90◦ in the anti-clockwise direction. The radius of the circle is R and its initial origin is (xc, yc) = (0, 1.5R). The domain
size is Lx × Ly = 4R × 16R. The contact angle of the wall in touch with the drop is θupp for y > yc and θ low for y < yc.

constant kl the numerical results can match Eq. (37) very well. Here, the suitable value of kl seems
to be of order O(0.1). Another observation is that the prefactor l that gives the best agreement seems
to increase slightly as the difference between the contact angles increases (for example, l = 2.44
for (θupp, θ low) = (23◦, 30◦), �cos θ = 0.0545, and l = 2.65 for (θupp, θ low) = (23◦, 40◦), �cos θ =
0.1545). It is interesting to note that similar trend was reported by Ondarcuhu and Veyssie15 when
they compared their experimental results with the theoretical ones: for (θupp, θ low) = (23◦, 35.4◦),
�cos θ = 0.1054, l = 12.8 gave the best fit, whereas for (θupp, θ low) = (19.2◦, 38◦), �cos θ =
0.1564, l = 13.5 was the best.

C. Drop driven by WG

1. Problem setup

Now we study the main problem in this work, namely, a drop on a wall subject to a stepwise
WG. Figure 11 illustrates the overall setup. There is no body force in this problem (i.e., it is assumed
that the Bond number is negligibly small). This problem resembles that in Sec. III B 2 to some extent
except that the domain is now a rectangular box with solid walls on all boundaries and the object
under consideration is a drop in touch with one wall only. In addition, the wall in touch with the
drop may have hysteresis effects. Therefore, in addition to the contact angles at the upper and lower
parts, θupp and θ low, four additional parameters may come into play in this problem. They are the
advancing and receding angles of the upper and lower parts: θ

upp
A , θ

upp
R , θ low

A , θ low
R . In fact, for walls

with CAH, it should suffice to just give the advancing and receding angles, θA and θR, instead of
the contact angle θ , which may possibly take any value between θA and θR. However, here we still
keep the usual contact angle because it represents the limiting case when the CAH approaches zero
(i.e., θA → θ and θR → θ ). In this way, the CAH effect may be better appreciated. For convenience,
when θH = θA − θR is not zero, we assume that θ = (θA + θR)/2. Note that in Fig. 11 the drop has
a semi-circular shape (with the origin of the circle located on the y −axis, i.e., xc = 0). This initial
shape corresponds to an initial contact angle θ i = 90◦, and it is used below as the default setting.

2. Observables of interest

In this problem, we are mainly interested in the following observables: (1) the (instantaneous)
average drop velocity (or the centroid velocity of the drop), vdrop(t); (2) the dynamic contact angles
(DCAs) near the upper and lower three-phase-points, θ

upp
d,nw(t), and θ low

d,nw(t); (3) the (instantaneous)
position and velocity of the contact line, ycl(t) and vcl(t). The two DCAs, θ

upp
d,nw and θ low

d,nw, were
measured at the interface (where φ = 0) along the layer next to the outermost one (i.e., along the
line which is 1.5δx away from the wall with WG). The contact line velocity vcl(t) is calculated by
numerical differentiation of the contact line position ycl(t) as vcl(t) = (ycl(t) − ycl(t − δt ))/δt . When
vcl is scaled by the characteristic velocity Uc, it becomes the capillary number of the contact line,
i.e., Cacl(t) = vcl(t)/Uc. As the upper CL is advancing and the lower is receding, the corresponding
capillary numbers are denoted by Caacl and Carcl, respectively. In most cases studied here, the drop
eventually reached a (nearly) steadily moving state. We will focus especially on the steady state,
which in theory is reached only when te → ∞ (if the drop is in an infinitely large domain). In
practice, it is determined by the following criterion for the drop velocity vdrop(t) (with t ≥ �t where
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�t = √
ReTc), ∣∣∣∣vdrop(t) − vdrop(t − �t)

vdrop(t)

∣∣∣∣ < 0.25%. (39)

That is, the relative change of vdrop in one �t is less than 0.25%. The time to reach the steady state
depends on various physical parameters: in many cases below, te = 50�t guarantees that Eq. (39)
can be satisfied; for some cases (e.g., at very low Re), even longer time (e.g., te = 300Tc,inv) may
be required. It is noted that at large viscosity ratio the velocity showed some fluctuations (which
made it difficult to satisfy Eq. (39)) even though it seemed to have already entered a stable stage. In
those cases, the simulations were terminated at certain time (say, te = 50�t) when the fluctuations
became reasonably small (e.g., the criterion is relaxed to 0.75%). The steady drop velocity Vdrop is
equivalent to Vmig defined by Xu and Qian13 and it is no longer a function of time.

In Sec. III A, we defined the Reynolds number Re based on the characteristic velocity Uc (cf.
Eq. (25)) rather than the actual drop velocity. To more realistically reflect the physics of the problem,
one may define another Reynolds number based on Vdrop as

Redrop = Vdrop R

νA
, (40)

which is related to Re and Cadrop as

Redrop = Vdrop

Uc
Re = ReCadrop. (41)

For a real problem, the Reynolds number Re may be calculated once the drop dimension and the
fluid properties are specified. Since Redrop = Re Cadrop, we will mainly focus on Cadrop. In general,
Cadrop may depend on the size of the domain to certain extent. For simplicity, we concentrate on
the situation in which the drop stays in a confined space with the domain size being Lx × Ly = 4R
× 16R unless specified otherwise. Then, one may write Cadrop as a function of all the remaining
physical factors that appear in this problem,

Cadrop = f (Re, rν, θ
upp, θ

upp
H , θ low, θ low

H ). (42)

3. Parameter setting and the attainment of the sharp-interface limit

For numerical simulations, the results may depend on the spatial and temporal discretization
parameters NL and Nt as well (i.e., convergence in space and time). In addition, for phase-field-based
simulations, the results depend to some extent on more factors including the Cahn number Cn and the
Peclet number Pe (i.e., convergence towards the SIL).27, 37 We first briefly describe some parameters
mostly used and then present some studies regarding the issue of convergence, which may justify our
choices. Specifically, the spatial discretization parameter is fixed at NL = 32 for most simulations
unless specified otherwise (i.e., the radius of the drop is discretized into 32 uniform segments), the
Cahn number is fixed at Cn = 0.125 which means that the interfacial width is about an eighth of the
drop radius and spans about NL × Cn = 4 grid points, and the Peclet number is fixed at Pe = 5 ×
103. It is noted that the present definition of Cahn number differs from some others: if one adopts
the definition used by Yue, Zhou, and Feng27 and also by Ding, Spelt, and Shu60 where the interface
width ε is related to the present one as ε = W/(2

√
2), one would have an even smaller Cahn number

of 0.044. In the computational domain, both the characteristic length Lc = R and the characteristic
time Tc are fixed to be unity (so is the characteristic velocity Uc). When the spatial discretization
parameter is fixed at NL = 32, in general it is not viable to use a fixed temporal discretization
parameters Nt. From Eqs. (18) and (25), and also by noting that

c = δx

δt
= Lc

NL

1

Tc/Nt
= Nt

NL
Uc,
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one can derive the following relations to determine the relaxation parameters τ f, A and τ f, B,

τ f,A = 0.5 + 3N 2
L

ReNt
, τ f,B = 0.5 + 3N 2

L

rν ReNt
. (43)

In LBM simulations, it is important to keep the relaxation parameter in an appropriate range to
guarantee the stability and accuracy. Thus, we used different temporal discretization parameters Nt

for different cases (depending on the Reynolds number and the viscosity ratio, as seen in Eq. (43))
to make sure that 0.5 < τ f, A < 2.0 and 0.5 < τ f, B < 2.0. The details about Nt for different cases will
be given later.

In our work, the typical value of S is 1.414 × 10−2 and the Cahn number is Cn = 0.125
(giving Cnε = 0.04419). Therefore, the condition Cnε < 4S can be satisfied. From Eq. (30) it is also
obvious that S ∝ Pe−1/2 and S ∝ r−1/4

ν . Thus, the condition to achieve the SIL for S, S ∝ Cn0, may be
converted to that for Pe as Pe ∝ Cn0 (if one uses Pe2, it is Pe2 ∝ Cn). Here we want to mention that
for capillary-driven flows (e.g., drop spreading or the problem studied here) it is often not viable to
know in priori the actual characteristic velocity (such as the steady drop velocity) that reflects the
real characteristics of the problem before the simulation. The use of another velocity scale σ /(ρcν)
helps to define various parameters and set up the simulation. And based on our experience, it does
not prevent us from achieving consistent sets of results (the same choice of Uc was adopted by
Khatavkar, Anderson, and Meijer53). As discussed above and shown below, when Pe is defined as
Pe = (Uc L2

c)/(Mσ ) (where Uc = σ /(ρcν)), for the present problem convergence towards a SIL can
be observed with a fixed Pe and an increasingly smaller Cn (Pe ∝ Cn0 as Cn → 0+). To reduce the
difference between the simulation and the SIL, the Cahn number should be as small as possible. We
have tried even smaller Cahn numbers (Cn = 0.0625, and 0.03125) to investigate the convergence
for one typical case with Re = 16, rν = 1, θupp = 75◦, θ low = 105◦, θ

upp
H = θ low

H = 0, Lx = 4, Ly =
16. Figure 12 shows the evolutions of the instantaneous velocity of the drop vdrop under three Cahn
numbers (Cn = 0.125, 0.0625, and 0.03125). Note that the computation for the smallest Cn (Cn =
0.03125 or Cnε = 0.011) used NL = 128 (the grid size being 512 × 2048) and Nt = 10240, thus
it was much more time consuming. We terminated this computation at t = 20. Nevertheless, the
results till t = 20 seem to be sufficient to show the convergence. It is seen from Fig. 12 that there
are not quite significant changes in vdrop as Cn decreases. Some noticeable difference is observed in
the initial acceleration stage between Cn = 0.125 and Cn = 0.0625 (see the inset in Fig. 12 for an
enlarged view). However, the difference becomes very small when the velocity of the drop reaches
the steady state. Besides, the two lines for Cn = 0.0625 and Cn = 0.03125 almost overlap with each
other in Fig. 12. From these results, one can see a definite trend of convergence towards a SIL for the
present problem for Pe ∝ Cn0 as Cn → 0+. It seems that to use Cn = 0.125 can provide fairly reliable
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FIG. 12. Comparison of the evolutions of the drop velocity vdrop at three different Cahn numbers (Cn = 0.125, 0.0625, and
0.03125) with the Peclet number fixed at Pe = 5 × 103 (or the parameter S fixed at S = 1.414 × 10−2). The other parameters
are Re = 16, rν = 1 θupp = 75◦, θ low = 105◦, θ
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H = θ low

H = 0, Lx = 4, Ly = 16.
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predictions on the steady state of a drop driven by a stepwise WG (at least under the current settings).
In addition, the interface shapes at the three Cahn numbers at a given time (even before the steady
stage) were found to be very close: the difference between Cn = 0.0625 and Cn = 0.03125 could
be barely seen and that between Cn = 0.125 and Cn = 0.0625 was quite small (for conciseness, the
details are not given here). As noted above, the simulation becomes quite demanding when Cn →
0+, especially for simulations that use a uniform mesh. To keep the computational cost reasonable
without incurring too large deviations from the SIL, we used Cn = 0.125 (Cnε = 0.04419) in most
cases; for some cases with a large viscosity ratio rν (thus a small S as S ∝ r−1/4

ν ), Cn = 0.0625 (Cnε

= 0.0221) was used in order to satisfy the condition Cnε < 4S.

4. On the initial relaxation of the order parameter field

For the above results, we used the following equation to initialize the order parameter field φ(x,
y; 0),

φ0
i, j = − tanh

(
2(ri, j − R)

W

)
, (44)

where ri, j = √
(xi, j − xc)2 + (yi, j − yc)2 is the distance between the cell center (xi, yj) and the drop

center (xc, yc). Equation (44) gives the order parameter inside the drop as φin ≈ 1 and that outside
the drop as φout ≈ −1. However, because of the curvature of the interface is finite (here, 1/R), ±1
are not the exact equilibrium values of φ far away from the interface. Even without any external
deriving mechanisms (such as a WG, a body force or an external flow), the order parameter field
would undergo a small change (mainly caused by the Cahn-Hilliard diffusion), making the order
parameters inside and outside the drop become φ

eq
in = 1 + εin and φ

eq
out = −(1 − εout ) (εin and εout

have some small positive values) and the radius of the drop decrease slightly to Req = R + δr (δr
< 0 and the magnitude of the relative change |δr|/R is also small). Yue, Zhou, and Feng61 studied
this phenomenon systematically for a circular drop in a quiescent matrix and found that δr/R is
approximately given by

δr

R
= −

√
2

24

(
V

Vd

)(
W/(2

√
2)

R

)
, (45)

where V is the volume (area) of the computational domain, Vd is the volume (area) of the drop,
and W/(2

√
2) corresponds to the interface thickness defined in their work. It seems that sufficient

initial relaxation is required to obtain relatively smooth evolutions of some quantities of interest
such as the drop velocity, especially when the Cahn number is not that small. For instance, some
noticeable fluctuations can be seen in Fig. 12 during the initial acceleration stage at Cn = 0.125
(similar phenomenon is found in Fig. 4 as well). Without any relaxation before the simulation, the
relaxation process occurs simultaneously with the main process that is studied (e.g., the flow caused
by the WG). The two processes interfere with each other, leading to certain fluctuations. As will be
found below, when a sufficiently relaxed order parameter field is employed for the initial condition (if
possible to obtain such a relaxed field), the fluctuations are greatly reduced (even at a large viscosity
ratio rν = 10). Note that because of the shrinkage of the drop during the relaxation, the drop radius
R0 for the initial relaxation is set to be R − δr, which is slightly larger than R. For most cases of a
drop driven by WG, the initial drop shape is semi-circular corresponding to an equilibrium contact
angle of 90◦. Thus, the drop volume is given by Vd = π R2/2. Besides, the volume of the domain
is Lx × Ly = 4R × 16R = 64R2, and the Cahn number is Cn = W/R = 0.125. These parameters
give R0 ≈ 1.106R. Probably because in this work the drop is attached to the wall (different from
that studied by Yue, Zhou, and Feng61) and the estimate is rough, the drop does not shrink to have
a radius of R exactly when we use R0 = 1.106R. Some further adjustments and tests were carried
out to obtain a relaxed initial field with the drop radius being very close to R (with R0 ≈ 1.101R, the
deviation was less than 0.1%). Also note that during the initial relaxation, the contact angle is set to
be 90◦ (i.e., no WG) to avoid any undesired flow (however, this requirement cannot be satisfied for
the liquid column studied above in Sec. III B 2). Figure 13 shows the evolutions the drop velocity
vdrop using two different initial conditions, one with initial relaxation for the order parameter field
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FIG. 13. Comparison of the evolutions of the drop velocity vdrop using different initial conditions for the order parameter
field: (a) rν = 1; (b) rν = 10. The other parameters are Re = 16, θupp = 75◦, θ low = 105◦, θ
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H = θ low

H = 0, Lx = 4, Ly =
16, Cn = 0.125, Pe = 5 × 103, NL = 32, Nt = 320.

(IR) and the other without IR, for two typical cases with the viscosity ratio rν = 1 and 10 respectively
(the two insets in Fig. 13 enlarge the relevant segments with fluctuations for better view). It is seen
that with IR the fluctuations and overshoots in vdrop can be hardly observed in Fig. 13 for both rν

= 1 and 10. Note that when one zooms in on the figure even further, some fluctuations of quite
small magnitudes can be still observed for rν = 10 (not quite visible in Fig. 13). We suspect that
they might be related to the interpolation of the viscosity (relaxation parameter). As these remaining
fluctuations are so small, we do not intend to dig into them here. Another observation is that the
initial relaxation appears to have only quite small effects on the steady state. Detailed examinations
on other quantities of interest give similar findings. Thus, we will not highlight whether a simulation
is done with or without IR later when we are concerned about the steady state. In addition, as seen
from Eq. (45), the change caused by IR is proportional to the Cahn number. Hence, for even smaller
Cn the effects of IR will be more reduced, making the IR less significant to affect the simulation
outcome (this has been confirmed by our numerical tests). Ideally, one should use a very small Cn,
but that is too demanding for the simulation with uniform mesh. In our opinion, Cn = 0.125 (Cnε =
0.04419) seems to be already good enough.

5. Slip of the contact line

For the study of drop motion on a solid surface, one of the important issues is the slip of the
contact line (CL). In Sec. II A, it was mentioned that in the present work the slip is generated
by the diffusion in the Cahn-Hilliard equation (CHE). At the same time, there may be certain
amount of slip generated by the LBM near the wall. We have investigated in detail the slip from
the two mechanisms for a typical case in our simulation. In phase-field simulations, the motion of
the interface is directly linked to the change of the order parameter φ. Therefore, to know the slip
caused by the two mechanisms, we examined the change of φ on the wall per time step due to the
convection and diffusion in the CHE: (�φ)conv = [−(u · ∇)φ] and (�φ)diff = [M∇2μ]. It is noted
that the quantities on the wall are obtained by using the linear extrapolation scheme (similar to Eq.
(20)). Figure 14 compares the changes of the order parameter φ on the (left) wall caused by diffusion
and convection in the CHE for a typical case when the drop reaches steady state. In Fig. 14, only a
small portion of the boundary (of a length 4R) that covers the two MCLs is shown, and the spatial
coordinate is relative to the position of the lower MCL (receding CL, RCL) yrcl. As expected, (�φ)diff

and (�φ)conv are non-zero only near the two MCLs and vanish elsewhere. As found from Fig. 14,
for typical cases in the present work, the slip is mainly caused by the diffusion in the CHE: the
change of φ due to convection, (�φ)conv, which is linked to the slip generated by LBM, is less than
a quarter of φ’s change due to Cahn-Hilliard diffusion, (�φ)diff. Note that away from the interfacial
regions where both (�φ)diff and (�φ)conv vanish, the ratio (�φ)conv/(�φ)diff was set to zero (to avoid
division by zero). Here we would like to mention that the use of linear extrapolation increases the
gap between (�φ)diff and (�φ)conv. We argue that the extrapolation makes the evaluation of the slip
effects more accurate. Our experience shows that in LBM simulations of a Poiseuille flow (driven by
a constant body force) that employ the half-way bounce-back scheme (as in this work), the velocities
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FIG. 14. Changes of the order parameter on the wall per time step due to diffusion and convection in the Cahn-Hilliard
equation (CHE): (a) the absolute values of (�φ)diff and (�φ)conv; (b) the ratio of the change due to convection over that due to
diffusion (�φ)conv/(�φ)diff. The results are picked at t = 200 (steady state) from the case with Re = 16, rν = 1, θupp = 75◦,
θ low = 105◦, θ
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H = θ low

H = 0, Lx = 4, Ly = 16, Cn = 0.125, Pe = 5 × 103 (S = 1.414 × 10−2), NL = 32, Nt = 320.

on the wall obtained by extrapolation are (nearly) zero even when those in the first layer near the wall
are finite and not negligible. It is expected that with the grid refined the slip caused by convection
becomes even less significant. This has been confirmed by numerical tests. Figure 15 shows the
ratio (�φ)conv/(�φ)diff at the same moment (t = 20) for the same case simulated with different grid
resolutions NL = 32, 64, and 128 (at the same Peclet number). It is observed from Fig. 15 that with
NL = 64 the maximum of (�φ)conv becomes only about one tenth of that of (�φ)diff, and with an
even finer grid (NL = 128), this ratio becomes about only 5% to 6%. Another note is that the slip
due to diffusion is closely related to the mobility (or the Peclet number Pe). For the case selected
for examination (which is typical in the present work), the Peclet number is Pe = 5 × 103 and the
Cahn number is Cn = 0.125, which correspond to Pe1 ≈ 221 or Pe2 ≈ 208. This value is comparable
to those used by Khatavkar, Anderson, and Meijer53 (Pe2 = 50 and 500) where the characteristic
velocity Uc = σ /(ρcν) is the same as the present. It is noted that the restriction on the choice of
mobility (Peclet number) due to the explicit RK4 may be alleviated to some extent by employing a
small time step though this may increase the computation time significantly.

6. Some characteristics of the shape of the drop

The interface shape of the drop during its motion was carefully examined with a special focus
on the extraction of the apparent contact angle. It was found that under a stepwise WG the interface
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FIG. 15. The ratio of the change of the order parameter on the wall per time step due to convection over that due to diffusion
in the CHE, (�φ)conv/(�φ)diff, at three Cahn numbers, Cn = 0.125, 0.0625, and 0.03125, with different grid resolutions
NL = 32, 64, and 128. The results are picked at t = 20 from the case with Re = 16, rν = 1, θupp = 75◦, θ low = 105◦,
θ
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H = θ low

H = 0, Lx = 4, Ly = 16, Pe = 5 × 103 (S = 1.414 × 10−2).
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FIG. 16. Illustration of the shape fitting of the interface by two arcs connected at the top with different origins located at
(xu

c,s f , yu
c,s f ) and (xl

c,s f , yl
c,s f ) and different radii Ru

s f and Rl
s f for the upper and lower portions, respectively. The dotted line

represents the wall, the dashed line represents a quarter of the circle described by the equation (x − xu
c,s f )2 + (y − yu

c,s f )2 =
(Ru

s f )2, whereas the dash-dot-dotted line represents a quarter of the circle described by (x − xl
c,s f )2 + (y − yl

c,s f )2 = (Rl
s f )2.

The symbols are the interface points on the grid (i.e., intersection points between the contour φ = 0 and the grid).

in steady state (with a relatively small velocity) may be divided into two portions with the transition
point located at the top of the interface. Each portion (excluding the near-wall region) may be well
fitted by a circle using the least-squares fitting technique. The two circles that fit the upper and lower
parts have different origins and radii. For concreteness, they are denoted by (xu

c,s f , yu
c,s f ; Ru

s f ) and
(xl

c,s f , yl
c,s f ; Rl

s f ), respectively. From these quantities, it is possible to derive the apparent contact
angles of the two arcs, denoted by θu

m,s f and θ l
m,s f . Figure 16 illustrates the results of the above shape

fitting and the extraction of the apparent contact angles based on the shape fitting for a case with
Re = 16, rν = 1, θupp = 60◦, θ low = 90◦, θ

upp
H = θ low

H = 0, Lx = 4, Ly = 16, Cn = 0.125, Pe = 5
× 103 (S = 1.414 × 10−2), NL = 32, Nt = 320. Besides, for each point on the interface (xi, yi) the
deviation from the respective circle was also calculated and the maximum was monitored. It was
found that during the simulation (excluding the early adjustment stage), the maximum deviation
remained small (less than 1%; in most cases, less than 0.5%). Thus, the description of the interface
through the above division into two segments seems to be well justified. In addition to the above way
to find the apparent contact angle, there is another method recently proposed by Sui and Spelt28 that
may be used to extract the apparent contact angle. Sui and Spelt28 found that the angle the interface
makes with the wall is a function of the arclength from the contact line along the interface, θ =
θ (s). For viscous flow, θ (s) is (roughly) a linear function away from the wall. An apparent angle is
obtained by extrapolating this function to the contact line (s = 0). Figure 17 shows the monitored
θ (s) along the advancing and receding interfaces in (nearly) steady state and illustrates the above
way to obtain another apparent contact angle. We also tried this method and the apparent angle
obtained in this way is denoted as θm, lf.

It is known that the flow around a moving contact line may be in general divided into three
regions: the inner, intermediate, and the outer region.23 Cox23 studied the motion of the contact line
in the viscous regime with both fluids being liquids and derived a formula between the contact line
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FIG. 17. Illustration of the way to obtain the apparent contact angle through extrapolating the function θ (s) to the contact
line (s = 0).
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velocity Vcl (more precisely, the Vcl-based capillary number Cacl) and the apparent contact angle θm

in the outer region. The zeroth-order value of θm may be expressed as23

g(θm, λ) = g(θw, λ) + Cacl ln(ε−1), (46)

where θw is the (microscopic) contact angle on the wall, ε = ls/Lc is the dimensionless slip length, λ
is the ratio of the dynamic viscosities of the two fluids, and g(θ, λ) = ∫ θ

0 [1/ f (β, λ)]dβ is a function
of both the angle θ and the viscosity ratio λ (λ = (ρcν2)/(ρcν1) = ν2/ν1 = 1/rν in the present work)
with the function f(β, λ) given by

f (β, λ) = 2 sin β[λ2(β2 − sin2 β) + 2λ{β(π − β) + sin2 β} + {(π − β)2 − sin2 β}]
λ(β2 − sin2 β){(π − β) + sin β cos β} + {(π − β)2 − sin2 β}(β − sin β cos β)

. (47)

Note that the contact line velocity Vcl is positive for an advancing contact line (ACL) and negative
for a receding contact line (RCL).23 For simplicity, we always use a positive Cacl here, thus for
a RCL the sign before Cacl in Eq. (46) is changed to the opposite. As noted before, one has ε =
2.5S and S = 1/

√
Pe

√
rν (see Eq. (30) above) in phase-field simulations.27 We have investigated the

relation between the apparent contact angle θm and the capillary number Cacl based on Vcl for various
cases under different conditions and compared the present results with those predicted by Cox.23

Figure 18 shows the evolutions of Cacl and θm at the ACL on the upper part (by arc-fitting and linear
fitting, θu

m,s f and θu
m,l f ) for the case with Re = 16, rν = 1, θupp = 75◦, θ low = 105◦, θupp

H = θ low
H = 0,

Lx = 4, Ly = 16, Cn = 0.125, Pe = 5 × 103 (S = 1.414 × 10−2), NL = 32, Nt = 320. In Fig. 18(a)
the instantaneous velocity of the drop vdrop is also plotted for reference. From Fig. 18(a) one can
see that at the beginning Cacl is the largest (due to the abrupt enforcement of the contact angle) and
it quickly decreases to oscillate near vdrop. In other words, after a short period the motions of the
drop and the ACL are overall synchronized except that a small oscillation should be superimposed
on the drop motion to obtain that of the ACL. From Fig. 18(b) it is found that the apparent contact
angle obtained by the arc-fitting (θu

m,s f ) is slightly larger than that by linear-fitting (θu
m,l f ) (the

maximum difference is about 2◦), and both show an initial overshoot in the early stage. It is also
seen from Fig. 18(b) that θu

m,s f has smaller oscillations than θu
m,l f , possibly because the least-squares

fitting has better performance. Note that we had similar observations for the RCL (not shown here).
Figure 19 shows the variations of the apparent contact angles with the capillary number Cacl based
on the contact line velocity Vcl at the ACL on the upper part (left column) and at the RCL on the lower
part (right column) for three cases with different parameters (see the figure caption for details). The
small green and blue disks are used in Fig. 19 to circle the regions where the data of the pairs (θm, sf,
Cacl) and (θm, lf, Cacl) are located when the drop enters the steady stage (note there are still small
oscillations in these quantities at this stage, as seen in Fig. 18). The solid lines show the predictions
by Cox.23 It is noted that for the third row in Fig. 19 (the case with CAH), the contact angles on the
wall (θw in Eq. (46)) take the values of the advancing and receding contact angles for the ACL and
RCL, respectively. It is found from Fig. 19 that except during the early stage (when Cacl is quite
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FIG. 19. Variation of the apparent contact angle θm with the capillary number Cacl based on the contact line velocity Vcl

as the drop accelerates from the beginning, gradually reaches and remains in the steady state. The left column shows the
advancing contact line (ACL) on the upper part, and the right shows the receding contact line (RCL) on the lower part. From
top to bottom: (a) rν = 1, Cn = 0.125, Pe = 5 × 103 (S = 1.414 × 10−2), θupp = 75◦, θ low = 105◦, θ

upp
H = θ low

H = 0; (b) rν

= 10, Cn = 0.0625, Pe = 5 × 103 (S = 7.95 × 10−3), θupp = 75◦, θ low = 105◦, θ
upp
H = θ low

H = 0; (c) rν = 1, Cn = 0.125,
Pe = 5 × 103 (S = 1.414 × 10−2), θupp = 75◦, θ low = 105◦, θ

upp
H = θ low

H = 10◦ (giving θ
upp
A = 80◦ and θ low

R = 100◦). The
common parameters are Re = 16, Lx = 4, Ly = 16.

large and the drop has not had enough time to adjust its shape) the relation between θm and Cacl

generally follows the theoretical prediction (with the maximum deviation being just a few degrees).
The best agreement is seen in the apparent contact angle by arc-fitting (θm, sf) for the case with rν =
10 and Pe = 5 × 103 (S = 7.95 × 10−3) (the second row in Fig. 19) in which the data of (θm, sf, Cacl)
fall almost exactly on the theoretical line. The possible reason is that the slip length (ε = 2.5S) is the
smallest among all cases and that leads to better separation of different scales, which was assumed
by Cox23 in deriving the theoretical results. As the apparent contact angles may be calculated from
the equations by Cox23 once the capillary number Cacl (equal to Cadrop in steady state) is known, we
will mainly focus on the velocity of the drop in what follows. Some investigations on the dynamic
contact angles near the wall will also be made in Sec. III C 7.

From Fig. 19, one can also find that the following relation holds for the (specified) contact angles
on the wall (θw) and the apparent contact angles (θm) for the upper and lower parts: θ

upp
w < θu

m <

θ l
m < θ low

w . In other words, the difference in the apparent contact angle between the upper and lower
parts (|θu

m − θ l
m |) is reduced as compared with that in the contact angle on the wall (|θupp

w − θ low
w |).

This reflects the effect of the drop motion on the shape of the drop. Besides, it is obvious that the
difference in θm is nonzero, and the interface away from the wall cannot be fitted by a single arc.
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This contradicts the assumption made in some theoretical work, e.g., by Brochard5 (though it is
noted that Brochard5 considered a drop driven by a continuous WG of mild magnitude and the
assumption may be approximately correct). At the same time, the present finding seems to agree
with the experimental observation by Ondarcuhu and Veyssie,15 who investigated a flat drop driven
by a stepwise WG and always observed a difference between the contact angles on different patches.
It should be noted that the contact angles measured in Ref. 15 may differ (by definition) from θm

defined here. Nevertheless, the difference in either θm or the contact angle measured by Ondarcuhu
and Veyssie15 shows that the drop deforms from the shape of one single arc.

7. Effects of the Reynolds number and viscosity ratio

In this part, the effects of the Reynolds number Re and the viscosity ratio rν are investigated
while the other factors in Eq. (42) are fixed at θupp = 75◦, θ low = 105◦, θ

upp
H = θ low

H = 0 (i.e., there
is no CAH).

First, we vary the Reynolds number while keeping the viscosity ratio at rν = 1. Six Reynolds
numbers spanning a wide range were considered, including Re = 0.09, 1, 4, 16, 100, and 400. The
temporal discretization parameter Nt was varied for different Re: Nt = 320, 640, 3200, and 25600
for Re ≥ 16, Re = 4, Re = 1, and Re = 0.09, respectively. The simulation time te was varied for
different Re to make sure the steady state was reached. Figure 20 shows the evolutions of the drop
velocity vdrop at five different Reynolds numbers: Re = 0.09, 1, 4, 16, and 400. Note that “LD” in this
figure means the simulation was done with a “Larger Domain” of Lx × Ly = 8 × 20. As found from
Fig. 20, the drop velocity vdrop increases with time under the action of the WG and gradually reaches
a steady state at all Reynolds numbers and the values of the steady velocity Vdrop (here equivalent to
the steady capillary number Cadrop because Vdrop is measured in Uc) at different Re are quite close to
each other. At Re = 400, Vdrop appears to be smaller than others; however, when the domain size is
increased to Lx × Ly = 8 × 20 it becomes close to others as observed in Fig. 20 (this suggests that at
higher Re the simulation is more affected by the domain size). Thus, excluding the effects of domain
size, one may expect from Fig. 20 that the steady capillary number of the drop driven by a stepwise
WG is independent of the Reynolds number. The present results indicate that the capillary number
of the drop is independent of the drop size, which seems to differ from that by Daniel et al.,22 where
it was predicted that (cf. Eq. (1) in that article),

Ca = αR
d(cos θ )

dx
, (48)

with x being the coordinate in the WG direction and α being a constant. This is because Daniel et al.22

considered a continuously varying WG with the contact angle θ having a distribution that satisfies
d(cos θ )/dx = const whereas the present work considers a stepwise WG that is independent of the
drop radius R. On the other hand, from Eq. (48) one may deduce that Ca is proportional to the change
in cos θ across the footprint of the drop. For convenience, we denote this quantity as �cos θ . In the
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FIG. 20. Evolutions of the centroid velocity of the drop vdrop subject to a WG on a wall at different Reynolds numbers: Re
= 0.09, 1, 4, 16, and 400. The common parameters are rν = 1, θupp = 75◦, θ low = 105◦, θ
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H = 0, Lx = 4, Ly = 16,
Cn = 0.125, Pe = 5 × 103 (S = 1.414 × 10−2), NL = 32. In the left panel both axes are in normal scale whereas in the right
both are in logarithmic scale. The range for time is 10 ≤ t ≤ 600.
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case of a stepwise WG as in the present work, it may be expressed as � cos θ = cos θupp − cos θ low

and its effects will be studied in Sec. III C 8. At the same time, we would highlight that the present
finding is favoured by the experimental study on a drop driven by a stepwise WG performed by
Ondarcuhu and Veyssie,15 who reported that the steady capillary number of the drop is indeed
independent of the drop size (as long as it is small enough for the gravity effects to be neglected).

Figure 21 compares the evolutions of the DCAs near the upper and lower (Figs. 21(a) and 21(b))
TPPs at these Reynolds numbers: Re = 0.09, 1, 4, 16, and 400. An obvious difference is seen for
both the upper and lower DCAs between those at high and low Reynolds numbers from Fig. 21.
At high Re, the DCA shows an overshoot initially before it gradually reaches a (nearly) constant
value. As Re decreases, the amplitude of the overshoot decreases, and it even disappears when Re is
low enough (e.g., at Re = 0.09). This could be attributed to the inertial effects, which become more
significant at high Re. Another observation in DCA is that it shows regular periodic oscillations after
the initial adjustment stage: the oscillation frequencies at different Reynolds numbers seem to be
close; for all the Reynolds numbers considered, the amplitudes of the oscillation are small (less than
1◦). Such oscillations are very likely caused by the grid roughness effect37 and will be revisited later
in Subsection III C 12. Finally, it is seen that the DCAs at different Re are very close to each other
after the initial adjustment stage.

Next, the effects of the viscosity ratio rν are studied while the Reynolds number is fixed at Re =
16. Several viscosity ratios, including rν = 0.1, 0.5, 1, 5, 10, 25, and 40, were tested. In order to keep
both relaxation parameters τ f, A and τ f, B in a suitable range, the temporal discretization parameter
Nt was varied for different rν . Recall that S = Pe−1/2r−1/4

ν (see Eq. (30)) and the Peclet number is
fixed at Pe = 5 × 103. In order to satisfy the condition to achieve the SIL (Cnε < 4S), the Cahn
number has to vary with rν . For rν ≤ 1, we used Cn = 0.125 (Cnε = 0.04419); for rν > 1 we used
Cn = 0.0625 (Cnε = 0.0221). The smallest value of S (for rν = 40) is approximately 5.62 × 10−3.
It is worth noting again that the viscosity ratio is defined as rν = νA/νB (i.e., the kinematic viscosity
of the drop (fluid A) over that of the ambient fluid (fluid B)). With a fixed Reynolds number Re, a
larger rν means a less viscous ambient fluid B. Figure 22 shows the evolutions of the drop velocity
vdrop at five different viscosity ratios: rν = 0.1, 0.5, 1, 5, and 10. It is obvious that the viscosity of
the ambient fluid has a significant effect on the drop motion: increase in rν (decrease in νB) results
in faster motion. Figure 23 shows the variation of the steady capillary number of the drop Cadrop

with the viscosity ratio rν based on the results obtained at the seven viscosity ratios tested, rν =
0.1, 0.5, 1, 5, 10, 25, and 40. From Fig. 23 we have the following observations: when rν ≤ 1 the
capillary number of the drop Cadrop increases very fast as rν becomes larger; in contrast, when rν

is much larger than unity (e.g., rν ≥ 25), the rate of increase �Cadrop/�rν decreases fast as rν

increases, which seems to indicate an upper limit for Cadrop (found to be approximately 0.03838
based on the exponential fit of the data at rν = 25 and 40; see the dashed line in Fig. 23); rν between
1 and 25 is a transition region.
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As before, the DCAs are also examined. Figure 24 compares the evolutions of the DCAs near
the upper and lower (Figs. 24(a) and 24(b)) TPPs at the five viscosity ratios as in Fig. 22 (rν =
0.1, 0.5, 1, 5, and 10). A difference is observed for both the upper and lower DCAs between those
at high and low viscosity ratios from Fig. 24. At high rν (i.e., with less viscous ambient fluid), the
DCA shows an overshoot initially before it gradually becomes (almost) constant. As rν decreases
(i.e., the ambient fluid becomes more viscous), the amplitude of the overshoot decreases, and the
overshoot disappears when the ambient fluid is sufficiently viscous (e.g., at rν = 0.1). This is likely
due to the high viscous damping at small rν . As above, the DCAs show regular oscillations after the
initial stage, and a less viscous ambient fluid (corresponding to a larger rν) makes the oscillation
frequency higher. Besides, in the simulations conducted at a smaller Cahn number (Cn = 0.0625
for rν = 5, and 10) the oscillation frequencies increase significantly. For all cases, the oscillation
amplitudes remain small. As mentioned before, such oscillations are related to the grid roughness
effect, which can explain the change of the frequency with various factors. More details are given
below in Subsection III C 12.

Further investigations on the effects of the Reynolds number at other viscosity ratios led to
the same finding that the steady capillary number of the drop Cadrop is (almost) independent of the
Reynolds number (for brevity, the details are not shown here). This suggests that Eq. (42) may be
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FIG. 23. Variation of the steady capillary number of the drop Cadrop subject to a stepwise WG with the viscosity ratio rν .
The common parameters are Re = 16, θupp = 75◦, θ low = 105◦, θ
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H = 0, Lx = 4, Ly = 16, Pe = 5 × 103.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  202.38.87.141 On: Fri, 05 Aug

2016 01:50:43



062101-29 Huang, Huang, and Wang Phys. Fluids 26, 062101 (2014)

73

74

75

76

77

78

79

80

81

0 50 100 150 200

θu
p
p

d
,n

w

t

(a)
97

98

99

100

101

102

103

104

0 50 100 150 200

θl
ow d
,n

w

t

(b)

rν = 10
rν = 5
rν = 1

rν = 0.5
rν = 0.1

rν = 10
rν = 5
rν = 1

rν = 0.5
rν = 0.1

FIG. 24. (a, b) Evolutions of the dynamic contact angles near the upper (a) and lower (b) TPPs (measured at the next-to-
outermost layer), θupp

d,nw and θ low
d,nw, of the drop subject to a stepwise WG at different viscosity ratios rν = 0.1, 0.5, 1, 5, and 10.

The common parameters are Re = 16, θupp = 75◦, θ low = 105◦, θ
upp
H = θ low

H = 0, Lx = 4, Ly = 16, Pe = 5 × 103.

reduced to

Cadrop = f (rν, θ
upp, θ

upp
H , θ low, θ low

H ). (49)

With this equation and the previous relation, Redrop = ReCadrop, the steady Reynolds number Redrop

can be easily obtained once Cadrop is known. For most cases in the present work, Redrop is less than
1 and the inertial effects are not quite significant.

8. Effects of the magnitude of WG

In Eq. (49), in addition to the viscosity ratio rν there are still four parameters that may affect the
capillary number Cadrop, namely, the contact angles of the upper and lower parts, θupp and θ low, and
the magnitudes of the CAH of the two parts, θupp

H and θ low
H . If there is no CAH (i.e., θupp

H = θ low
H = 0),

two remaining parameters, θupp and θ low, still play some role. Their effects are studied in this
section. As mentioned above, the parameter � cos θ = cos θupp − cos θ low is an important factor to
determine the drop motion. Thus, we will not only focus on the individual contact angle, but also
on this special parameter �cos θ . Two groups of the contact angle pair (θupp, θ low), each containing
five pairs, were investigated. In both groups, the parameter �cos θ takes one of the following five
values: 0.087, 0.259, 0.5, 0.707, and 0.866. In one group, the lower contact angle θ low was fixed to be
θ low = 90◦ and the upper one θupp was varied: θupp = 85◦, 75◦, 60◦, 45◦, and 30◦. In this group, the
averages of the two contact angles, (θupp + θ low)/2, are less than 90◦, and it is called the hydrophilic
group (GL). In the other group, the upper contact angle θupp was fixed to be θupp = 90◦, and that
on the lower part was varied: θ low = 95◦, 105◦, 120◦, 135◦, and 150◦. In this group, the averages
of θupp and θ low are greater than 90◦, and it is called the hydrophobic group (GB). The common
parameters for all the cases in this part are Re = 16, rν = 1, θ

upp
H = θ low

H = 0, Lx = 4, Ly = 16, Cn
= 0.125, Pe = 5 × 103 (S = 1.414 × 10−2), NL = 32, Nt = 320.

Figure 25 shows the evolutions of the drop velocity under the above two groups of different
combinations of θupp and θ low on the left wall. Note that the results for �cos θ = 0.087 are not shown
in order to make the legends easy to recognize. It is found from Fig. 25 that, as expected, the velocity
in steady state increases as �cos θ increases. When �cos θ was small (e.g., �cos θ = 0.259), the
velocity seems to be less dependent on the specific values of the upper and lower contact angles
(this also holds for another two cases with �cos θ = 0.087 not shown here). By contrast, at larger
�cos θ (e.g., �cos θ = 0.5, 0.707, 0.866), the drop velocity also depends on the specific values of
θ low and θupp. As seen from Fig. 25, after the initial acceleration stage the drop moves faster in the
case with (θupp, θ low) = (90◦, 150◦) than in the case with (θupp, θ low) = (30◦, 90◦) though the value
of �cos θ is the same (�cos θ = 0.866) for the two cases. This is likely due to that in the case of
GB the drop has less contact area with the wall, thus having smaller viscous resistance. Figure 26
shows the shapes of the drop in steady motion for two cases with the same WG (�cos θ = 0.866) but
with different upper and lower contact angles. It is obvious that in the case of GL the drop spreads
more on the wall. Another observation from Fig. 25 is that the initial acceleration stage seems to
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FIG. 25. Evolutions of the centroid velocity of the drop vdrop subject to different (stepwise) WGs on a wall. The common
parameters are Re = 16, rν = 1, θ

upp
H = θ low

H = 0, Lx = 4, Ly = 16, Cn = 0.125, Pe = 5 × 103 (S = 1.414 × 10−2), NL =
32, Nt = 320.

depend on the group (GL or GB), especially at larger �cos θ : for the hydrophilic group, the drop
experienced greater accelerations initially and the drop velocity showed a bump before it gradually
approached the steady value; by contrast, for the hydrophobic group, the drop was driven towards
the steady state smoothly. This could be attributed to the fact that the difference between the initial
configuration and the final steady shape of the drop is larger in the cases of GL (see Figs. 11 and
26), thus the drop was accelerated more during the initial adjustment of configuration.

Figure 27 shows the variations the capillary number Cadrop (when the drop is in steady state)
with the parameter �cos θ for the two groups of simulations. Note that the steady velocity Vdrop used
to calculate Cadrop was taken at different times for different cases to make sure that the criterion
in Subsection III C 2 is satisfied. In Fig. 27 we also show the linear fit for the hydrophilic group
(GL with θ low = 90◦). From this figure, it is seen that the capillary number Cadrop in steady state
almost increases linearly with the magnitude of the WG (�cos θ ) for the hydrophilic group. For the
hydrophobic group, the linear relation still roughly holds when �cos θ is small; but when the WG
magnitude is large, a trend of nonlinear variation is observed and the capillary number becomes
slightly larger than that described by the linear variation. The possible reason is already given above:
the contact area between the drop and the wall becomes smaller and the viscous resistance is reduced
in the hydrophobic group at large �cos θ .

The present findings agree with that reported by Li et al.62 but seem to contradict those reported
by Xu and Qian.13 In Ref. 13 it was reported that the drop moved faster on the hydrophilic substrate
than on the hydrophobic one under “the same other conditions.” This contradiction can be most likely
attributed to the different definitions of the same other conditions. Xu and Qian13 also considered a
2D drop, but it was driven by a continuous WG with the contact angle θ having a distribution that
satisfies d(cos θ)

dx = const and d(cos θ)
dx � 1. They mainly looked into the variation of the steady drop

FIG. 26. Drop shapes in steady state for two cases with the same WG (�cos θ = 0.866): (a) (θupp, θ low) = (30◦, 90◦); (b)
(θupp, θ low) = (90◦, 150◦). The common parameters are Re = 16, rν = 1, θ

upp
H = θ low

H = 0, Lx = 4, Ly = 16, Cn = 0.125, Pe
= 5 × 103 (S = 1.414 × 10−2), NL = 32, Nt = 320. The arrows denote the direction of motion. The figures are rotated by
90◦ in the anti-clockwise direction.
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velocity with the parameter h0
σ
η

d cos θ
dx where h0 is the height of the drop. Consider two drops, one

on a hydrophilic surface with the average contact angle being θ1 < 90◦ and the WG being d(cos θ)
dx

and the other on a hydrophobic surface with the average contact angle being θ2 > 90◦ and the same
WG. When they have the same height h0, they are regarded as under the same other conditions
according to Xu and Qian.13 However, the actual driving forces caused by the WG differ because
the distances between the two TPPs (about twice of the contact radius Rc in Ref. 13) differ in these
two cases. Under a weak WG ( d(cos θ)

dx � 1), the drop does not have significant deformations. A
straightforward calculation relates the average contact angle θ , the drop height h0, and the contact
radius Rc as follows:

Rc = h0
sin θ

1 − cos θ
. (50)

Since the WG satisfies d(cos θ)
dx = const , the driving force (per unit length, as we are considering 2D

problems) |Fd | is found to be

|Fd | = σ

[
(2Rc)

d(cos θ )

dx

]
= σ

[(
2h0

sin θ

1 − cos θ

)
d(cos θ )

dx

]
, (51)

where the quantity in the square brackets is equivalent to �cos θ in the present work. Then, it is easy
to find that the ratio of the driving forces in the hydrophilic and hydrophobic cases is

|Fd |1
|Fd |2 = sin θ1(1 − cos θ2)

(1 − cos θ1) sin θ2
. (52)

Based on the lengths in Fig. 4 of Ref. 13, the two cases they compared were estimated to have θ1 ≈
62.4◦ and θ2 ≈ 125.3◦, which gives |Fd |1

|Fd |2 ≈ 2. In steady state, with any resistance due to pressure
difference or shearing by the ambient fluid being neglected (roughly valid at a large viscosity ratio),
the driving force Fd is balanced by (thus equals in magnitude) the viscous resistance force due to the
wall (here denoted as Fvis, w), and with a parabolic velocity profile along each cross section (vertical
to the wall) inside the drop being assumed, |Fvis, w| is found to be proportional to the steady drop
velocity Vdrop (i.e., |Fvis, w| ∝ Vdrop) (for more details, see Ref. 5). Therefore, one has |Fd | ∝ Vdrop.
Then, it is not difficult to understand that this factor of 2 found here is quite close to the ratio of
the coefficient αV defined by Xu and Qian13 (as a measure to reflect how fast the drop moves under
certain conditions) for the hydrophilic case over that for the hydrophobic case, which is about 2.06
(αV ≈ 0.33, and 0.16 for the hydrophilic and hydrophobic cases respectively13). In the present work,
one of the requirements for two cases to be under the same other conditions is that the driving forces

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  202.38.87.141 On: Fri, 05 Aug

2016 01:50:43



062101-32 Huang, Huang, and Wang Phys. Fluids 26, 062101 (2014)

(or equivalently, the magnitudes of the stepwise WG) are equal (rather than any others based on the
height of the drop).

9. Effects of the CAH

In the above, all the factors in Eq. (49) have been studied except the magnitude of the CAH,
θ

upp
H = θ

upp
A − θ

upp
R , and θ low

H = θ low
A − θ low

R . In this part, we consider the effects of the CAH. By
exploring different parameter regimes, we find (at least) three different situations. In the first, there
is no notable contact line pinning; in the second, contact line pinning is observed on both the upper
and lower parts and the drop almost remains stationary completely; in the third, contact line pinning
occurs only on one of the two parts (either lower or upper).

The first two situations are presented first. For simplicity, we only study the cases with θ
upp
H =

θ low
H = θH . Two sets of upper and lower contact angles are considered: (S1) θupp = 75◦, θ low = 105◦;

(S2) θupp = 60◦, θ low = 120◦. The Reynolds number and the viscosity ratio are fixed at Re = 16 and
rν = 1. The remaining parameters are Lx = 4, Ly = 16, Cn = 0.125, Pe = 5 × 103 (S = 1.414 ×
10−2), NL = 32, Nt = 320. In each of the two sets, S1 and S2, three magnitudes of CAH were tried
in addition to the cases with no CAH (i.e., θH = 0). In S1, θH = 4◦, 10◦, and 30◦, and in S2, θH =
20◦, 40◦, and 60◦. Thus, we have the following pairs of advancing and receding contact angles for
the upper and lower parts in S1,

� (S1a) θ
upp
A,R = 77◦, 73◦, θ low

A,R = 107◦, 103◦,
� (S1b) θ

upp
A,R = 80◦, 70◦, θ low

A,R = 110◦, 100◦,
� (S1c) θ

upp
A,R = 90◦, 60◦, θ low

A,R = 120◦, 90◦,

and in S2 we have

� (S2a) θ
upp
A,R = 70◦, 50◦, θ low

A,R = 130◦, 110◦,
� (S2b) θ

upp
A,R = 80◦, 40◦, θ low

A,R = 140◦, 100◦,
� (S2c) θ

upp
A,R = 90◦, 30◦, θ low

A,R = 150◦, 90◦.

Figure 28 shows the evolutions of the drop velocity vdrop in the four cases with different θH in
S1. It is found from Fig. 28 that when the CAH was not too large (θH = 4◦ for Case (S1a)), and θH

= 10◦ for Case (S1b)) the drop accelerated initially and then gradually showed a trend to become
steady. This behavior is just like the reference case with no CAH and the difference is that the
velocity is reduced when CAH is present, as expected. When the CAH was large enough (θH = 30◦

for Case (S1c)), the drop almost remained static. This is because in Case (S1c) the initial drop shape
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FIG. 28. Evolutions of the centroid velocity of the drop vdrop subject to a stepwise WG on a wall with CAH of (S1a)
θH = 4◦ (θupp

A,R = 77◦, 73◦, θ low
A,R = 107◦, 103◦); (S1b) θH = 10◦ (θupp

A,R = 80◦, 70◦, θ low
A,R = 110◦, 100◦); (S1c) θH = 30◦

(θupp
A,R = 90◦, 60◦, θ low

A,R = 120◦, 90◦). Also shown is the case with no CAH (θH = 0◦). The common parameters are Re =
16, rν = 1, Lx = 4, Ly = 16, Cn = 0.125, Pe = 5 × 103 (S = 1.414 × 10−2), θupp = 75◦, θ low = 105◦, NL = 32, Nt = 320.
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FIG. 29. Variation of the steady capillary number Cadrop of a drop subject to a stepwise WG on a wall with CAH with
the magnitude of the CAH (θH) (left) and the parameter (� cos θ )H = cos θ
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R (right) for two sets with (S1)
θupp = 75◦, θ low = 105◦; (S2) θupp = 60◦, θ low = 120◦. The common parameters are Re = 16, rν = 1, Lx = 4, Ly = 16, Cn
= 0.125, Pe = 5 × 103 (S = 1.414 × 10−2), NL = 32, Nt = 320.

is within the range of the equilibrium states allowed by the given advancing and receding contact
angles (θ i = θ

upp
A = θ low

R = 90◦). In the other set of simulations (S2) we have similar observations.
Figure 29 plots the variations of the steady capillary number Cadrop with the magnitude of the

CAH (θH) (left panel) and also with another quantity (� cos θ )H = cos θ
upp
A − cos θ low

R (right panel)
for the two sets (S1 and S2). It is found from the left panel of Fig. 29 that the steady capillary
number Cadrop decreases as the magnitude of the hysteresis (θH) increases, and the data points of
the pair (Cadrop, θH ) almost fall on a straight line for each set. Besides, the two lines for S1 and S2
appear to be parallel. From the right panel of Fig. 29 it is seen that Cadrop increases roughly linearly
with the quantity (�cos θ )H and the data points for both sets are almost on the same straight line.
These results suggest that for a (2D) drop on a substrate with a stepwise WG and CAH, the most
important factors are the advancing contact angle of the more hydrophilic region and the receding
contact angle of the more hydrophobic region, which somehow defines the equivalent magnitude of
the WG in the presence of CAH.

Next, we present the third situation with contact line pinning on one part only. The above
results indicate that θ

upp
A and θ low

R are two determinant factors. As one can see, in the above two
situations the initial contact angle θ i satisfies θ low

R ≥ θ i ≥ θ
upp
A . Unlike these two situations, in the

third we have θ i > θ low
R > θ

upp
A (R1) or θ low

R > θ
upp
A > θ i (R2). The common parameters for the

new cases are Re = 16, rν = 1, Lx = 4, Ly = 16, Cn = 0.125, Pe = 5 × 103 (S = 1.414 ×
10−2), NL = 32, Nt = 320. For R1, we did more thorough studies whereas only one case was
considered for R2 (because R2 is quite similar to R1 in many aspects except the pinning occurs
at a different place). For R1 the lower contact angle and the parameter that characterizes the CAH
on the upper part are θ low = 90◦, θ

upp
H = 10◦, whereas for R2 the lower contact angle and the

parameter for CAH on the lower part are θupp = 90◦, θ low
H = 10◦. Other parameters for the case in

R2 are θ low = 140◦, θ
upp
H = 40◦, which give the following pairs of advancing and receding angles

for the upper and lower parts: (θupp
A , θ

upp
R ) = (110◦, 70◦), (θ low

A , θ low
R ) = (145◦, 135◦). In R1, two

sets are studied in order to examine the effects of θ low
R and θ

upp
A , respectively. In one set, the upper

contact angle is fixed at θupp = 40◦ ((θupp
A , θ

upp
R ) = (45◦, 35◦)) whereas θ low

H takes the following
values: θ low

H = 20◦, 30◦, 40◦, 50◦, and 70◦, which correspond to the following pairs of advancing
and receding angles on the lower part: (θ low

A , θ low
R ) = (100◦, 80◦), (105◦, 75◦), (110◦, 70◦), (115◦,

65◦), and (125◦, 55◦). In the other set, θ low
H is fixed at 40◦ ((θ low

A , θ low
R ) = (110◦, 70◦)) whereas the

upper contact angle θupp takes these values: θupp = 35◦, 40◦, 45◦, 50◦, and 55◦, which correspond
to the following pairs of advancing and receding angles on the upper part: (θupp

A , θ
upp
R ) = (40◦, 30◦),

(45◦, 35◦), (50◦, 40◦), (55◦, 45◦), and (60◦, 50◦). First, the common case shared by the two sets
in R1 with (θupp

A , θ
upp
R ) = (45◦, 35◦) and (θ low

A , θ low
R ) = (110◦, 70◦) and the (single) case in R2 with

(θupp
A , θ

upp
R ) = (110◦, 70◦) and (θ low

A , θ low
R ) = (145◦, 135◦) are examined in detail. Figure 30 shows

the temporal evolutions of the positions and velocities of the advancing and receding CLs (ACL
and RCL) as well as the local contact angle at the RCL (for the case in R1) or at the ACL (for
the case in R2) on the wall for the two selected cases. From the left column (for the case in R1)
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FIG. 30. Evolutions of the positions (upper row) and velocities (middle row) of the advancing and receding CLs (ACL and
RCL) and the local contact angle at the RCL or ACL on the wall (lower row) for two cases with (θupp

A , θ
upp
R ) = (45◦, 35◦),

(θ low
A , θ low

R ) = (110◦, 70◦) (left column) and with (θupp
A , θ

upp
R ) = (110◦, 70◦), (θ low

A , θ low
R ) = (145◦, 135◦) (right column). The

common parameters are Re = 16, rν = 1, Lx = 4, Ly = 16, Cn = 0.125, Pe = 5 × 103 (S = 1.414 × 10−2), NL = 32,
Nt = 320.

of Fig. 30 it is seen that while the ACL moves as in other cases that have been studied before, the
RCL almost remains stationary (i.e., pinned) during the period t < Tpin (Tpin = 25.25 for this case);
it starts to move only after t = Tpin when the local contact angle near the RCL has adjusted from
the initial value of 90◦–70◦ (the receding angle θ low

R on the lower part). Note that in Fig. 30 the
positions of the ACL and RCL are brought closer artificially: we plotted −yacl and −(yrcl + 3.2),
instead of yacl and yrcl, in Fig. 30. Through this transformation, the upper-left panel of Fig. 30
appears similar to some portion of Fig. 4 in Ref. 15, which showed the evolutions of the positions
of two contact lines of a ridge driven by a stepwise WG on a surface with CAH as recorded in their
experiments. Here we do not intend to make quantitative comparisons with their experimental data
because the current problem setting differs in many aspects and it is difficult to perform simulations
under exactly the same condition (e.g., the slip length in reality is too small to be resolved); we
mainly want to highlight that the different stages of drop motion caused by the contact line pinning
are captured in the present simulation. In the right column (for the case in R2) of Fig. 30 one has
similar observations except that the ACL (instead of the RCL) is pinned for t < Tpin (Tpin = 26 for
this case), and it starts to move from t = Tpin when the local contact angle near the ACL increases
from the initial value of 90◦ to 110◦ (the advancing angle θ

upp
A on the upper part). Figure 31 shows

the interfaces at selected times for the two cases, including the initial stage when the RCL or ACL
is pinned (t = 0, 10, 20) and the subsequent stage when it is in motion (t = 30, 50). From Fig. 31
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FIG. 31. Snapshots of the interfaces at selected times for a drop driven by a stepwise WG for two cases with (θupp
A , θ

upp
R ) =

(45◦, 35◦), (θ low
A , θ low

R ) = (110◦, 70◦) (upper panel) and with (θupp
A , θ

upp
R ) = (110◦, 70◦), (θ low

A , θ low
R ) = (145◦, 135◦) (lower

panel). Note that the figures have been transformed to make the x-axis point upwards and the y-axis point rightwards. The
other parameters are the same as in Fig. 30.

one can directly observe how the drop deforms as the surface tension pulls the ACL (or pushes the
RCL) and finally makes the RCL (or ACL) move. In addition to the analyses of this specific case,
we have also checked the time for the RCL to remain pinned on the wall (Tpin) in R1 at different
upper contact angles (θupp) and different magnitudes of low CAH (θ low

H ). Through some physical
analyses, one may expect that Tpin is affected by the three angles mentioned above: (1) the initial
contact angle θ i; (2) the receding angle of the lower part θ low

R ; (3) the advancing angle of the upper
part θ

upp
A . The difference between θ i and θ low

R reflects the gap between the initial condition and the
state when the RCL starts to move. The upper advancing angle θ

upp
A determines, to some extent, the

magnitude of the driving force. Figure 32 gives the variation of Tpin with θ i − θ low
R and θ low

R − θ
upp
A

as obtained from the cases in the above two sets in R1, with θ i fixed and θ low
R varying and with

θ low
R fixed and θ

upp
A varying, respectively. As found in Fig. 32, Tpin increases as θ i − θ low

R becomes
larger (the larger the gap is, the more time is required for the RCL to move) whereas it decreases as
θ low

R − θ
upp
A increases (the larger the driving force is, the less time is required); besides, Tpin seems

to show an exponential increase at large θ i − θ low
R .

10. Analyses of the overall flow field and velocity profile

Finally, we examine some details of the flow when the drop reaches steady state. For this
purpose, we select a few typical cases with Re = 16, θupp = 75◦, θ low = 105◦, θ

upp
H = θ low

H = 0, and
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FIG. 32. Variation of the time for the receding contact line to be pinned on the wall Tpin with the difference between the
initial contact angle θ i and the receding angle of the lower part θ low

R , θ i − θ low
R , and with the difference between θ low

R and the
upper advancing contact angle θ

upp
A , θ low

R − θ
upp
A . The left panel is obtained with θ i fixed and θ low

R varying whereas the right
is obtained with θ low

R fixed and θ
upp
A varying. The specific parameters are given in the text.
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FIG. 33. Drop shapes and streamlines around the drop subject to a stepwise WG at rν = 0.1, 1, and 40 (left, middle, and right
columns, respectively). The upper row shows streamlines as observed in the frame fixed on the wall whereas the lower row
shows those observed in the frame moving with the drop. The common parameters are Re = 16, θupp = 75◦, θ low = 105◦,
θ

upp
H = θ low

H = 0, Lx = 4, Ly = 16, Pe = 5 × 103. The figures are rotated by 90◦ in the anti-clockwise direction.

the following viscosity ratios: rν = 0.1, 1, 5, and 40. Other common parameters are Lx = 4, Ly = 16,
Pe = 5 × 103 (S = 1.414 × 10−2).

Figure 33 shows the drop shapes and the streamlines around the drop (from left to right: (a, d)
for rν = 0.1 at t = 600, (b, e) for rν = 1 at t = 400, and (c, f) for rν = 40 at t = 200) as observed in
two different frames: the frame fixed on the wall denoted as the absolute frame shown in the upper
row, and the frame moving with the drop denoted as the relative frame shown in the lower row.
From the upper row in Fig. 33, when the observation is made in the absolute frame, a circulation is
seen with its center being close to but above the top of drop. As the viscosity ratio rν increases, the
circulation center first moves upwards and then moves downstream. Besides, the streamlines pass
through the drop and were slightly bent when crossing the interfaces. If the observation is made in
the relative frame, the streamlines show distinctive patterns, as found in the lower row of Fig. 33.
The most noticeable feature is that two circulation regions form, with one above the other. At low
viscosity ratios (i.e., the ambient fluid is more viscous), both circulations are inside the drop, but the
upper one covers a larger area than the lower one at rν = 0.1 whereas the opposite is true at rν = 1.
At a high viscosity ratio (rν = 40), the upper circulation forms outside the drop and the lower one
almost occupies the whole inner area of the drop. It is suspected that the above change of streamline
pattern is not only caused by the change of the viscosity ratio, but also (probably more likely) caused
by the change of the actual Reynolds number Redrop (Redrop = 0.054, 0.18, and 0.60 for rν = 0.1, 1,
and 40, respectively).

In addition, we examine the profile of the (absolute) velocity component v in steady state along
the horizontal line passing through the top of the drop. Four cases with different viscosity ratios,
rν = 0.1, 1, 5, and 40, are examined with other common parameters already given above. Figure 34
compares the profiles of v(x) for the four cases. Note that the x-axis is put as in its normal position
in Fig. 34 without any rotation (unlike in Fig. 33), and the velocity is measured in the characteristic
velocity Uc. It is seen that in all cases the profiles v(x) along the selected lines inside the drop
(on the left of the short dashed vertical lines) resemble that of a Poiseuille flow, but the points of
inflection, where the maximum velocities occur, are below (i.e., on the left of) the top of the drop.
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FIG. 34. The profiles of the (absolute) velocity component v(x) along the horizontal line passing through the top of the
drop in steady state for four cases with different viscosity ratios, rν = 0.1, 1, 5, and 40. The common parameters are Re =
16, θupp = 75◦, θ low = 105◦, θ

upp
H = θ low

H = 0, Lx = 4, Ly = 16, Pe = 5 × 103. The short dashed vertical lines denote the
positions of the top of the drop for the four cases, which differ slightly.

When the viscosity ratio is relatively low (rν = 0.1, 1, and 5), the point of inflection is relatively
farther away from the top of the drop (the lower rν is, the farther). The profile at rν = 0.1 (i.e.,
when the ambient fluid is ten times more viscous than the drop) appears to be the closest to a full
Poiseuille profile among all cases. The observation on the inflection point at rν = 5 seems to agree
with that reported by Xu and Qian,13 in which the viscosity ratio was about 5. In contrast, the point
of inflection becomes very close to the top of the drop at a large viscosity ratio (rν = 40), making
the profile inside the drop look like half of the full Poiseuille profile. This observation supports the
previous assumption about the velocity profile made by Brochard5 for the derivation of theoretical
results.

11. Flow near the contact line and the slip length

In addition to the overall flow, we have also checked the flow near the contact line. Two
cases are selected for this purpose. The common parameters are Re = 16, θupp = 75◦, θ low = 105◦,
θ

upp
H = θ low

H = 0, Lx = 4, Ly = 16, Cn = 0.0625, Pe = 5 × 103, NL = 64, Nt = 2560. In one case,
the viscosity ratio is rν = 1 and the diffusion length is ld = 1.414 × 10−2; in the other, rν = 10 and
ld = 7.95 × 10−3. Figure 35 shows the streamlines near the ACL for the two cases as observed in
the frame moving with the ACL. As seen from this figure, the wedge flow pattern (see Refs. 23, 63)
is observed in both cases and look similar to previous findings by Jacqmin38 and by Yue, Zhou, and
Feng27 although the flow in their work was driven by other means instead of a stepwise WG (e.g.,
by a moving wall in Ref. 38 or by Poiseuille flow in Ref. 27). The small dot in Fig. 35 denotes the
stagnation point with u ≈ 0 and v − vacl ≈ 0. Note that in Fig. 35 the wall is located h/2 away from
the outmost grid line (for clarity, the mesh is not shown). The distance between the stagnation point
and the wall, which may be regarded as the slip length ls,27 was found to be 0.0346 for rν = 1 (ld =
1.414 × 10−2) and 0.0194 for rν = 10 (ld = 7.95 × 10−3), respectively. Both follow the correlation
found by Yue, Zhou, and Feng:27 ls = 2.5ld (for ld = 1.414 × 10−2, 2.5ld ≈ 0.0354 and for ld =
7.95 × 10−3, 2.5ld ≈ 0.0199). Besides, the stagnation point at the large viscosity ratio, rν = 10,
moves towards the ambient fluid (which is less viscous) as compared with that at rν = 1. Similar
observation on this kind of migration was reported by Yue, Zhou, and Feng.27

12. On the oscillations during the motion of the contact lines

It has been observed from the above results that not only the dynamic contact angle near the
wall θd,nw but also the contact line velocity on the wall Vcl (when scaled by Uc, it is the capillary
number based on Vcl , Cacl) oscillated (at a small amplitude) even when the drop velocity reached
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FIG. 35. The streamlines near the advancing contact line (ACL) as observed in the frame moving with the ACL (left panel:
rν = 1, ld = 1.414 × 10−2; right panel: rν = 10, ld = 7.95 × 10−3). The common parameters are Re = 16, θupp = 75◦,
θ low = 105◦, θupp

H = θ low
H = 0, Lx = 4, Ly = 16, Cn = 0.0625, Pe = 5 × 103, NL = 64, Nt = 2560, and both plots are taken at

t = 200. The parallel lines are the contour lines for −0.6 ≤ φ ≤ 0.6 (with an increment of 0.1). The figures have been rotated
by 90◦ in the anti-clockwise direction. In each plot, the coordinate in the horizontal direction is relative to the respective
position of the ACL (i.e., it denotes y − yacl).

the steady stage. Besides, careful examinations of the oscillations of θd,nw and Cacl reveal that they
are well synchronized. Further analyses indicate that such oscillations do not seem to have physical
origins (i.e., they are not related to the characteristic frequency of the drop). Instead, they are very
probably related to the grid roughness effect, which was briefly studied by Jacqmin37 for phase-field
simulation of two-phase flows (perhaps the first study of this kind). As pointed out by Jacqmin,37

the use of a discrete grid in numerical simulations causes a spatial roughness, and an interface that
moves through it shows small oscillations similar to a real interface moving on a surface with certain
roughness. The ultimate cause can be traced to the difference in the approximation errors of the
spatial gradients (e.g., ∇φ) when the interface (where φ = 0) is located at different positions in a
grid (for instance, at the cell center and at the cell interface if a simple 1D interface is considered).
Numerical schemes for the evaluation of spatial gradients always have certain errors embedded. In
phase-field simulations, the magnitude of the gradient |∇φ| is usually very large at the interface.
Even at a separation distance of half grid size h/2, the difference in the numerical errors could be
significant, leading to a small artificial oscillation. To confirm that the grid roughness effect causes
the oscillations, a straightforward way is to plot the change of the respective variable with the contact
line position. We studied the oscillations for three sets of simulations at different viscosity ratios,
different pairs of the upper and lower contact angles and different Cahn numbers with these common
parameters Re = 16, θupp

H = θ low
H = 0, Lx = 4, Ly = 16, Pe = 5 × 103. Figure 36 shows the variations

of the capillary number of the advancing contact line Caacl, including its temporal evolutions and
its spatial variation near the end of the simulation (t = 200). In the plots of its spatial variation, the
spatial coordinates are in units of the respective grid size h (h = 1/32 for Cn = 0.125 and h = 1/64
for Cn = 0.0625). As found from the left column of Fig. 36, the oscillation frequency of Caacl varies
with all the factors (the viscosity ratio rν , contact angles (θupp, θ low), and Cahn number Cn). In the
present work the grid points are located at ((i − 0.5)h, (j − 0.5)h) (i and j are positive integers).
From the right column of Fig. 36, one can find that the oscillation has a wavelength h irrespective of
any of the factors: rν , (θupp, θ low), or Cn.

Based on the above knowledge of the grid roughness effect, one may expect that it would
become less significant as the approximation error of the spatial gradient decreases. This was
actually demonstrated by Jacqmin37 for a 1D interface. Here we also verify this for the drop driven
by the imposed WG. By increasing the ratio of the interface thickness W over the grid size h, one
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FIG. 36. Variations of the capillary number of the advancing contact line Caacl near the end of the simulation (t = 200) under
different parameters (left column: variation of Caacl with time t; right column: variation of Caacl with the advancing contact
line position yacl/h): (a) at two viscosity ratios rν = 1 and 10 (both at Cn = 0.0625); (b) at two pairs of upper and lower
contact angles (θupp, θ low) = (75◦, 105◦) and (85◦, 95◦); (c) at two Cahn numbers Cn = 0.125 and 0.0625. The common
parameters are Re = 16, θ

upp
H = θ low

H = 0, Lx = 4, Ly = 16, Pe = 5 × 103.

allows the interface to span more grid points (i.e., the profile of φ across the interface is better
resolved), thus reducing the approximation error (and, most likely, also reducing the difference in
the error). Figure 37 compares the evolutions of Caacl for two simulations of the case with Re = 16,
rν = 1, (θupp, θ low) = (75◦, 105◦), θ

upp
H = θ low

H = 0, Lx = 4, Ly = 16, Cn = 0.125, Pe = 5 × 103 at
different W/h (W/h = 4 and 8). The discretization parameters for W/h = 4 are NL = 32, Nt = 320,
whereas those for W/h = 8 are NL = 64, Nt = 2560. It is obvious from Fig. 37 that at W/h = 8 the
oscillation amplitude is much reduced. It is also seen that the oscillation is still present at W/h = 8
and the wavelength is still equal to the grid size h (see the right panel of Fig. 37). At the same time,
it should be mentioned that the computational cost for W/h = 8 increased by more than tenfold.
Thus, here one faces again the issue of making a compromise between the computational cost and
the accuracy (plus the associated grid roughness effect). When the main focus is on the large scale
drop motion, these oscillations may not be so disturbing. If one needs very accurate details of the
contact line motion, it is very desirable to reduce as much as possible such artificial oscillations as
they may interfere with the physical interface movement. The use of adaptive mesh refinement can
help to improve the accuracy without significantly increasing the cost (we would leave the relevant
development for future).

In the literature, the studies of the grid roughness effect on the motion of contact lines seem to be
rather rare. Many previous studies on phase-field (diffuse-interface) simulations involving contact
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FIG. 37. (a, b) Variations of the capillary number of the advancing contact line Caacl near the end of the simulation (t =
200) under different W/h (W/h = 4 and 8) (left: variation of Caacl with time t; right: variation of Caacl with the advancing
contact line position yacl/h). The common parameters are Re = 16, rν = 1, (θupp, θ low) = (75◦, 105◦), θ
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H = 0, Lx

= 4, Ly = 16, Cn = 0.125, Pe = 5 × 103 (S = 1.414 × 10−2).

lines fall into one of the following categorizes (which do not involve or somehow circumvent the
grid roughness effect): (1) the problem of interest was steady and the contact line did not move
across the grid (e.g., Ref. 40); (2) only the temporal evolution of the (absolute or relative) position
of the contact line (which is much smoother than that of the contact line velocity) was reported
(e.g., Ref. 53); (3) the temporal evolution of the contact line velocity was shown, but sampled at
some frequency, which could possibly hide the oscillation caused by the grid roughness effect (e.g.,
Ref. 64). Here we would like to mention that Khatavkar, Anderson, and Meijer53 attributed the
nonsmoothness of the contact line velocity in one of their figures (Fig. 8 therein) to the numerical
differentiation of the contact line position. We suspect that it might be related to the grid roughness
effect. At the same time, we note that it is probable that in some previous studies the ratio W/h was
large enough and the grid roughness effect was not quite significant. We also want to highlight that
the contact line becomes a line in 3D (instead of a point in 2D) and there are multiple grid points
near/on the boundary that may affect the contact line; therefore, the effect of the grid roughness
could be more complex (e.g., in Ref. 64). This surely need further study.

13. Some discussions about the parameters

Some remarks on the parameters in the present work may be useful. First, we assume the two
fluids have the same density, ρA = ρB = ρc, thus the density ratio is unity. This differs significantly
from the liquid-air systems under usual conditions, in which the liquid/air density ratio can be
as high as 103. At the same time, this setting is fairly close to some liquid-liquid systems under
usual conditions. For instance, Mugele, Baret, and Steinhauser65 used droplets of water-glycerol-
NaCl mixtures with densities about 1000 kg/m3 in silicone oil (Wacker AK5 with a density about
920 kg/m3) in their experiments. And recently, Oldenziel, Delfos, and Westerweel66 used two-fluid
systems composed of water/glucose syrup mixture with densities about 1170 kg/m3 and silicone oil
(of three different types, Wacker AK5, AK20, and AK50 with their densities being about 920 kg/m3,
945 kg/m3, and 960 kg/m3, respectively). Besides, for some cases with low Reynolds numbers the
inertial effects may be negligible, making the density ratio not so important. Of course, this may
not hold for all of the cases studied here, and for cases with intermediate (or even higher) Re the
effects of density ratio may be worth pursuing (this is left for future work). Second, we compare
some parameters in the experiments by Mugele, Baret, and Steinhauser65 and Oldenziel, Delfos, and
Westerweel66 for some real liquid-liquid systems with the present work (only one case selected for
each work). The comparisons are given in Table I. Note that the drop radius in Ref. 65 was estimated
from the drop volume given in that article. The comparisons are made just to show the connections
(in terms of the fluid properties and key dimensionless parameters) between the present numerical
simulation and the real world while we are aware that the three pieces of work study quite different
drop problems. In Table I the fluid properties (e.g., the density, viscosity, interfacial tension and drop
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TABLE I. Parameters in the experiments by Mugele, Baret, and Steinhauser,65 by Oldenziel, Delfos, and Westerweel,66 and
in the present work. Note that only one case in each work is selected for comparison.

Parameter\Source Ref. 65 Ref. 66 Present

Drop density (kg/m3) 1000 920 1000
Drop viscosity (dynamic) (mPa s) 5 5.5 5
Ambient fluid density (kg/m3) 920 1170 1000
Ambient fluid viscosity (dynamic) (mPa s) 5 5.8 5
Interfacial rension (mN/m) 34 21 25
Drop radius (mm) 0.7 3.6 0.4
Density ratio (−) 1.09 0.79 1.0
Viscosity ratio (dynamic) (−) 1.0 0.95 1.0
Characteristic velocity Uc (m/s) 6.8 3.82 5.0
Characteristic time Tc (s) 1.03 × 10−4 9.43 × 10−4 8 × 10−5

Reynolds number Re (−) 952 2299 400
Ohnesorge number Oh (−) 0.032 0.021 0.05

radius) in the present work are not uniquely determined; they are just one of the possible sets that
would render a Reynolds number of Re = σ R/(ρcν

2
A) = 400.

IV. CONCLUDING REMARKS

To summarize, we have investigated through numerical simulations a 2D drop on a wall with a
stepwise WG specified by two distinct contact angles under a broad range of conditions, covering
different Reynolds numbers and viscosity ratios, different magnitudes of WG and CAH. Several
important issues, including the convergence towards the sharp interface limit, the effect of initial
relaxation of the order parameter field, the mechanism of CL slip, and the grid roughness effect,
have been examined carefully to establish a solid foundation for the present numerical investigation
and also to illustrate certain limitations of the present work. The major findings are summarized
as follows. Almost under all conditions (except when the CAH is sufficiently large), the drop was
accelerated in the initial stage and gradually reached a steady state. The input Reynolds number
(based on the physical properties of the fluids and the drop dimension) was found to have little effect
on the capillary number of the drop in steady state. The steady capillary number increases with the
viscosity ratio significantly when the viscosity ratio is small, but its dependence on the viscosity ratio
becomes weaker at large viscosity ratios. Besides, this capillary number shows linear dependence
on the magnitude of the WG under most situations. In the presence of CAH, the motion of the
drop is largely determined by the advancing CA of the more hydrophilic region and the receding
CA of the more hydrophobic region. When the hysteresis is high enough, the drop remains static
because it is within the range of possible configurations allowed by the advancing and receding
CAs of both regions. When the initial CA of the drop is larger than the receding CA of the more
hydrophobic region or smaller than the advancing CA of the more hydrophilic region, CL pinning
in one region may occur during the initial stage. What is more, it has been uncovered that, during
its steady motion, the drop assumes a shape that can be well fitted by two arcs corresponding to two
different apparent CAs. Besides, in accordance with previous findings by Yue, Zhou, and Feng,27

the slip length for the WG-driven drop was found to be also proportional to the diffusion length
determined by the viscosity and mobility. With a suitably defined slip length, the apparent CAs, the
CAs specified on the wall, and the capillary numbers based on the corresponding CL velocities have
been found to follow the relation derived by Cox23 reasonably well. In future, an important further
step should be the extension of both the model and investigations to 3D cases. The 2D problems
with CAH are relatively simple and the WG in the presence of CAH may be characterized by an
equivalent parameter straightforwardly. However, it will not be as easy for 3D problems; it remains
to be explored whether such an equivalent parameter exists, and if so, how it can expressed in terms
of other known parameters.
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