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The lattice Boltzmann method (LBM) has been applied to electrohydrodynamics (EHD) in

recent years. In this paper, Shan�Chen (SC) single-component multiphase LBM is developed

to study large-density-ratio EHD problems. The deformation/motion of a droplet suspended in

a viscous liquid under an applied external electric field is studied with three different electric

field models. The three models are leaky dielectric model, perfect dielectric model and constant

surface charge model. They are used to investigate the effects of the electric field, electric

properties of liquids and electric charges. The leaky dielectric model and the perfect dielectric

model are validated by the comparison of LBM results with theoretical analysis and available

numerical data. It shows that the SC LBM coupled with these electric field models is able to

predict the droplet deformation under an external electric field. When net charges are present

on the droplet surface and an electric field is applied, both droplet deformation and motion are

reasonably predicted. The current numerical method may be an effective approach to analyze

more complex EHD problems.

Keywords: Two-phase flows; lattice Boltzmann; electrohydrodynamics.

1. Introduction

There are many applications of electrohydrodynamics (EHD), such as spraying,

inkjet printing and boiling.1 One of the most important research topics in EHD is a

single drop’s deformation/motion induced by an applied electric field. Under the

influence of an applied electric field, a drop suspended in a viscous liquid may

deform, move or burst.1�4 The deformation of a single drop suspended in another

fluid under an electric field has been studied analytically using different models,1,3,4

such as the well-known leaky dielectric model which was proposed by Taylor.4

To study fluid flow in multiphase fluids, many theoretical and numerical studies

were also carried out on this EHD problem.1,3�5 Usually the finite-element method5

or the front tracking/finite-volume method6 was used to simulate the drop
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deformation in another fluid and the prediction on the small deformation of the drop

agrees well with the asymptotic results.3,7

Recently, lattice Boltzmann method (LBM) has become a useful numerical tool

in the study of fluid flows including the multiphase flow.8�10 Compared with con-

ventional methods for multiphase flows, LBM is based on mesoscopic kinetic

equations and usually the Poisson equation is not required to solve it. There are

several popular multiphase models in LBM.11�14 Some large-density-ratio multi-

phase models10,11,14 have been successfully applied to study two-phase flow pro-

blems, such as droplet breakup,10 bubble collision, bubble rising,11 etc. However,

these large-density-ratio models11,14 are complex because there are two sets of

particle distribution functions (PDF). The simplest large-density-ratio model is the

modified single-component multiphase Shan�Chen (SC) model.15 In the model, the

equation of state (EOS) of the fluid is incorporated by potentials of nonlocal

interactions and the density ratio up to 1000 can be achieved. The SC model is also a

diffuse-interface model. It contains thermodynamic aspects and may have under-

lying free energy.16 Hence, the topological transitions in flow field, such as breakup

and coalescence, are handled automatically. The pressure tensor p�� of the SC

model is16

p�� ¼ c 2
s�þ

1

2
gc 2

s 
2

� �
þ 1

2
gc 4

s  r2 þ 1

2
jr j2

� �� �
��� �
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2
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s@� @� ; ð1Þ

where � is the density of the mixture, and  ð�Þ and constants g, c 2
s will be intro-

duced later. The well-known form of the pressure tensor based on a free-energy

functional is14

p�� ¼ p� ��r2�� 1

2
�ðr�Þ2

� �
��� þ �@��@��;

where p is the thermodynamic pressure determined by a non-ideal gas EOS. We can

see that if p ¼ c 2
s�þ ðc 2

s g=2Þ 2, � ¼ �ð1=2Þgc 4
s and  / �, the pressure tensor in

the SC model is consistent with the well-known form. Compared to the finite

difference schemes for solving Cahn�Hilliard and Navier�Stokes equations, the SC

LBM is much simpler and more efficient.

Till today only very few LBMs are applied to study EHD problems. Zhang and

Kwok17 used two-component SC LBM (see Ref. 12) to study the drop deformation

under an external electric field, but in their study the densities of the drop and its

surrounding fluid are identical. Huang et al.18 used single-component multiphase

LBM to study the drop deformation and burst in gas. In their study, the formula

"r ¼ 1þ �ð&�Þ þ �ð&�Þ6 is proposed to mimic the permittivity property near the

interface, where "r is the relative permittivity, and � and & are adjustable par-

ameters.18 However, the theoretical base of the above formula is unknown. Besides

that, the simulation results seem sensitive to the choice of the adjustable parameters.

Here to study the drop deformation in gas, the SC single-component mul-

tiphase LBM is used. Compared with the large-density-ratio models proposed by
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Inamuro et al.11 and Lee and Lin,14 the SC model12,15 is simpler and more efficient

since only one set of PDF is used. In our study, the density ratio of the two-fluids is

much higher than that in the study of Zhang and Kwok.17 The permittivity and

conductivity properties near the interface17 will be modeled more physically than

that in the study of Huang et al.18

In our study, not only the leaky dielectric model, but also the perfect dielectric

and constant surface charge model6 are used to study the effects due to different

electric fields, electric properties of liquids, and electric charges. The leaky dielectric

model is used for drops without net charges but finite electrical conductivity. The

perfect dielectric model is used for drops of electrically isolating liquid. The constant

surface charge model6 is also incorporated to simulate the cases with net charges on

the drop surface.

In this paper, the single-component multiphase SC LBM will be applied to study

the large-density-ratio drop deformation in an external electric field. First, we will

briefly introduce the SC single-component multiphase LBM and the three different

electric field models. Then the numerical results are discussed.

2. Method

2.1. Shan-and-Chen-type single-component multiphase LBM

Here we implement the SC LBM (see Ref. 12) in two dimensions for a single-

component multiphase system. In the model, one distribution function is introduced

for the fluid. The distribution function satisfies the following lattice Boltzmann

equation:

faðxþ ea�t; t þ�tÞ ¼ faðx; tÞ �
�t

�
ðfaðx; tÞ � f eqa ðx; tÞÞ; ð2Þ

where faðx; tÞ is the density distribution function in the ath velocity direction and �

is a relaxation time which is related to the kinematic viscosity as � ¼ c 2
s ð� � 0:5�tÞ.

The equilibrium distribution function f eqa ðx; tÞ can be calculated as

f eqa ðx; tÞ ¼ wa� 1þ ea � ueq

c 2
s

þ ðea � ueqÞ2
2c 4

s

� ðueqÞ2
2c 2

s

� �
: ð3Þ

In Eqs. (2) and (3), the ea’s are the discrete velocities. For the D2Q9 model, they

are given by

½e0; e1; e2; e3; e4; e5; e6; e7; e8� ¼ c � 0 1 0 �1 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1

� �
:

In Eq. (3), for the D2Q9 model, wa ¼ 4=9 (a ¼ 0), wa ¼ 1=9 (a ¼ 1; 2; 3; 4),

wa ¼ 1=36 (a ¼ 5; 6; 7; 8), cs ¼ c=
ffiffiffi
3

p
, where c ¼ �x=�t is the ratio of lattice spa-

cing �x and time step �t. Here, we define one lattice unit (�x) as 1 lu and one time

step (�t) as 1 ts. In Eq. (3), � is the density of the fluid, which can be obtained from

� ¼ P
a fa.
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In the SC LBM, the effect of body force is incorporated by adding an acceleration

into the velocity field. The macroscopic velocity ueq is given by

ueq ¼ u 0 þ �F

�
; ð4Þ

where u 0 is the velocity defined as

u 0 ¼
P
a
faea

�
: ð5Þ

In Eq. (4), F ¼ Fint þ FEle is the force acting on the fluid, here including the

interparticle force Fint and an external electric force FEle. The actual whole fluid

velocity u is defined as19

u ¼ u 0 þ F

2�
; ð6Þ

which means the \fluid velocity" should be calculated correctly by averaging the

momentum before and after the collision.19 The interparticle force is defined as20

Fintðx; tÞ ¼ �g ðx; tÞ
X
a

wa ðxþ ea�t; tÞea; ð7Þ

where g is a parameter that controls the strength of the interparticle force. For the

EOS proposed by Shan and Chen,12  ð�Þ ¼ �0½1� expð��=�0Þ�, where  is an

effective number density12 and �0 is a constant.

Through the Taylor expansion as described in Appendix A in Ref. 16 and

�@jpþ @iðc 2
s�Þ ¼ Fi, here i; j means the x or y coordinates, we obtained the

pressure p as16

p ¼ c 2
s�þ

c 2
s g

2
 2: ð8Þ

According to Yuan and Schaefer,15 if the EOS of p ¼ p �ð Þ is already known, we

can use the formula

 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp� c 2

s�Þ
c 2
s g

s
; ð9Þ

to incorporate different EOS into the SC LBM.

Several typical EOSs are available but the Carnahan�Starling�van der Waals

equation is found to be able to achieve the highest density ratio. Hence we would use

this EOS in our study. The EOS is

p ¼ �RT
1þ b�=4þ ðb�=4Þ2 � ðb�=4Þ3

1� b�=4
� a�2; ð10Þ

with a ¼ 0:4963R2T 2
c =pc, b ¼ 0:18727RTc=pc. R is the gas constant and T is the

temperature. We set a ¼ 1, b ¼ 4 and R ¼ 1. The critical temperature is
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Tc ¼ 0:3773a=bR. In our simulations T ¼ 0:57Tc. At the temperature with � ¼ 1,

the densities of liquid and gas are �l ¼ 0:4217 and �g ¼ 0:000407, respectively. The

density ratio is about 1036. The interfacial surface tension 	 is about 0.025 in our

simulations. The surface tension was calculated using Laplace law after the equili-

brium state is obtained in LBM simulations.

Suppose the flow field is isothermal and the drop suspension system is incom-

pressible, the following electric body forces per unit volume should be added into the

SC model through Eq. (4) due to the existence of an applied external electric field1,4;

FEle ¼ � 1

2
E � Er"þ �eEþ 1

2
r �

@"

@�

� �
T

E � E
� �

: ð11Þ

In the equation, E is the strength of the external electric field, " is the absolute

conductivity and �e is the charge density. On the right-hand side of the above

equation, the first term originates from polarization stress and acts along the normal

direction of the interface. The second term is the electrostatic force acting along the

direction of the electric field. The electrorestriction force term�ð1=2Þ�ð@"=@�ÞTE � E
is neglected in our study because the fluid system is assumed to be incompressible.

Hence, the electric forces can be simplified as1

FEle ¼ � 1

2
E � Er"þ �eE: ð12Þ

To calculate the electric forces in Eq. (12), the electric field strength (E) and

charge density �e would be obtained using three electric field models. The three

models are leaky dielectric model, perfect dielectric model and constant surface

charge model.

In EHD, the magnetic induction effects can be ignored and r�E ¼ 0.1,4 Hence,

the E can be written as E ¼ �r
, where 
 is the electric potential.

The Gauss law in a dielectric material with permittivity " isr � ð"EÞ ¼ �e, where

the �e is the density of local free charges.

For all these three models, the governing equations are valid,

r� E ¼ 0; r � ð"EÞ ¼ �e: ð13Þ

The charge conservation equation is6

D�e

Dt
¼ @�e

@t
þ u � r�e ¼ �r � ð�EÞ; ð14Þ

where � is electrical conductivity. For the leaky dielectric model, Eq. (14) can be

simplified as

r � ð�EÞ ¼ 0; ð15Þ
and furthermore, the equation can be written as r � ð�r
Þ ¼ 0 (see Ref. 6). After

solving this equation, the electric field strength is calculated by E ¼ �r
. On the

other hand, one can obtain the distribution of charge density using �e ¼ r � ð"EÞ.
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For the perfect dielectric model, there is no free charge in the medium, i.e. �e ¼ 0

(see Ref. 6). Hence, from Eq. (13), one can obtain that r � ð"r
Þ ¼ 0. For given

electric potentials in the boundary, this governing equation for electric potential can

be solved. Hence, the electric field strength E can be obtained through E ¼ �r
.
With the condition of no free charge �e ¼ 0, Eq. (12) can be simplified as,

FEle ¼ �ð1=2ÞE � Er".
For the constant surface charge model, the free charges are assumed to be dis-

tributed uniformly on the drop interface and the total charge is kept constant. The

assumption is valid when the applied electric field strength is not strong and the

charge density is low.6

The surface charge density q s satisfies

q s ¼
Z l

�l

�edl; r � ð"EÞ ¼ �e: ð16Þ

where l means that the free-charge distribution spans on both sides of the interface.

Solving the equation

r � ð"r
Þ ¼ �e ð17Þ

with electric potentials on the boundary, we can obtain the local electric strength E.

Then, the surface charge density would be obtained as �e ¼ r � ð"EÞ.
Due to the non-uniform electric conductivity, permittivity and electric field, and

free charges in the interface, the drop motion is affected by the applied electric

field.17 Using the density of fluid as an index function, the dielectric properties can

be expressed as

"ð�Þ ¼ �� �i
�e � �i

"e þ
�� �e
�i � �e

"i; �ð�Þ ¼ �� �i
�e � �i

�e þ
�� �e
�i � �e

�i; ð18Þ

where "i and "e are the permittivity constants for the fluid inside and outside of the

drop, and �i and �e are the conductivity constants of the two fluids. �i and �e are the

densities of the fluid inside and outside the drop. Using Eq. (18), the variation of

dielectric properties near the interface is smooth and does not affect the original

interface thickness.

For the constant surface charge model, the free charge density is set to be pro-

portional to the absolute density gradient,6 i.e. �e /jr�j. In the constant surface

charge model, the charge conservation equation is Q ¼ ��e, where Q is the total

charges on the drop’s surface. Hence, the surface charge density is

�eð�Þ ¼ Q

�jr�jjr�j: ð19Þ

In the three models, the following Laplace’s system governs the electric field,

r � ðkr
Þ ¼ q: ð20Þ
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Here for simplicity, the alternating direction implicit (ADI) iteration was used to

solve the Laplace’s system. For the iteration in each particular direction, the effi-

cient tri-diagonal matrix algorithm (TDMA) is used.

3. Results and Discussion

In our study, the external electric field vector E0 is along the Y direction. In the

following discussion, D is the deformation factor defined as D ¼ ðLþ BÞ=ðL� BÞ,
where L is the end-to-end length of the droplet measured along the direction of

electric field (Y axis) and B is the maximum breadth in the traverse direction (X

axis). Positive and negative D’s mean the drop increases in length in the Y axis

(prolate) and X axis (oblate), respectively.

An electrical capillary number CaE or Weber number We, defined as

CaE ¼ We ¼ "eR0E
2
0=	, is introduced here to illustrate the dimensionless strength

of the external electric field E0 compared to the interfacial tension constant 	. In our

system, the external electric field strength E0 can be calculated by dividing the

potential difference between the two parallel electrode walls by the distance in the Y

direction.

3.1. Leaky dielectric model

Using the leaky dielectric model, the asymptotic solution with a first-order

approximation for two-dimensional (2D) drop deformation in the electric field is7

D ¼ R0"eE
2
0d

3	ð1þHÞ2 ¼ dWe

3ð1þ HÞ2 ; ð21Þ

where the discriminating function d ¼ H 2 þ H þ 1� 3S, H ¼ �i=�e and S ¼ "i="e.

This 2D deformation first-order solution seems similar to that of the three-dimen-

sional (3D) one in Ref. 4. The difference is that the discriminating function in 3D is

not only the function of H and S, but also the viscosity ratio of the two fluids.

In the LBM simulation, the density ratio between drop and surrounding gas is

1036. The computational domain is 201� 201; the potentials in the upper and lower

boundaries are specified as 
þ ¼ 50 and 
� ¼ 0, respectively, so that E0 ¼
ð
þ � 
�Þ=200 ¼ 0:25. The initial drop radius is 23 lu. The final steady deformation

factor D for nine cases with different conductivity and permittivity constants are

illustrated in Table 1. The asymptotic solution is also shown in the table. From the

table, it is found that for the discriminating function d < 0, the drop becomes

prolate (D > 0) and for d > 0, the drop becomes oblate (D < 0). From Fig. 1 and

Table 1, we can see that for the small deformation (D < 0:1), the LBM results agree

well with the asymptotic solutions. When the deformation is large (D > 0:1), the

asymptotic solution underestimates the deformation, which is highly consistent

with the conclusions in other numerical studies.1,5

When the deformation of a leaky dielectric drop becomes steady under the

applied electric field, vortices would be formed both inside and outside of the drop.
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The vortex directions are determined only by the sign of ðH � SÞ and are not

relevant to the other parameters, for example, the discriminating function d.1,5,6

When H > S, from the definition of discriminating function, we can see that

obviously d > 0. But when H < S, the discriminating function can be positive or

negative. Figure 2 shows the flow patterns for the following three typical cases:

(a) H > S ; d > 0; (b) H < S ; d > 0 and (c) H < S ; d < 0.

In the simulations, the density ratio is 1036 : 1. In each panel of Fig. 2, only a

quarter of the central computational domain is illustrated due to symmetry. For the

case (a), E0 ¼ 0:25; "i ¼ 0:005; "e ¼ 0:01; �i ¼ 0:1 and �e ¼ 0:05, the Taylor vortex

inside the drop is counterclockwise. For the case (b), E0 ¼ 0:25; "i ¼ 0:02; "e ¼
0:01; �i ¼ 0:1 and �e ¼ 0:1, the Taylor vortex inside the drop is clockwise. For the

case (c), E0 ¼ 0:13; "i ¼ 0:018; "e ¼ 0:02; �i ¼ 0:05 and �e ¼ 0:1, the Taylor vortex

We

D

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Simulation
Theory

Fig. 1. Deformation factor D as a function of We. In the simulation, H ¼ 2 and S ¼ 0:5.

Table 1. The discriminating function d and the deformation factor D for different

combinations of the conductivity and permittivity. (In the LBM simulations E0 ¼ 0:25

with mesh 201� 201 and density-ratio is about 1036).

"i "e �i �e d D (LBM) D [Eq. (21)]

0.020 0.010 0.10 0.05 1.0 0.02222 0.02337

0.010 0.010 0.20 0.10 4.0 0.08696 0.09347

0.010 0.020 0.10 0.10 1.5 0.14894 0.14680

0.010 0.020 0.10 0.05 5.5 0.33333 0.25705

0.005 0.010 0.10 0.05 5.5 0.13043 0.12853

0.015 0.010 0.10 0.10 �1.5 �0.08696 �0.07887

0.010 0.010 0.10 0.20 �1.25 �0.13043 �0.11684

0.020 0.010 0.10 0.10 �3.0 �0.14894 �0.14680

0.018 0.020 0.05 0.10 �1.0 �0.21739 �0.17760
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inside the drop is also clockwise. These results are consistent with the other numerical

results.6,17 Here we can see that, although the signs of d are different in case (b) and

(c), the vortex directions are same. The vortex directions for case (a), and cases (b)

and (c) are different because the sign of ðH � SÞ in case (a) is positive while in cases

(b) and (c) it is negative.1,5

3.2. Perfect dielectric model

When the electrical conductivity of the system is too low, the perfect dielectric

model should be used to carry out simulations. In this section, firstly the asymptotic

(a) (b)

(c)

Fig. 2. (Color online) Flow patterns for three typical cases: ðaÞH > S ; d > 0; ðbÞH < S ; d > 0;
ðcÞH < S ; d < 0. Only a quarter of the central computational domain is illustrated.
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solution for the deformation of a perfect dielectric drop in an electric field (refer to

the Appendix) was derived. Then the LBM simulations were carried out. Table 2

shows the deformation solution obtained by LBM. The asymptotic solutions

obtained by Eq. (A.10) are also illustrated. In Table 2, it is found that whenD < 0:1,

the LBM results agree well with the asymptotic solutions. Figure 3 further shows the

comparison of theoretical predictions and results of LBM simulations for cases S > 1

and S < 1. We can see that when the S > 1 and D is small, the LBM results are

consistent with the predictions. However, if S > 1 and D is larger, the theoretical

predictions underestimate theD value. On the other hand, from Fig. 3(b), we can see

that if S < 1 andD is large, the theoretical predictions overestimate theD values. All

these results are highly consistent with the numerical results in Ref. 21.

In general, the perfect dielectric drop deforms into a prolate shape.6 Figure 4

shows a typical flowpattern in a perfect dielectric drop under an electric field. It shows

the state when the drop is stable. In the simulation, E0 ¼ 0:09, "i ¼ 0:7 and "e ¼ 0:2.

Table 2. The comparison of the numerical and asymptotic solution for

deformation of a perfect dielectric drop (D) in the electric field.

"i "e E0 D (LBM) D (asymptotic [Eq. (A.10)])

0.20 0.10 0.20 0.15556 0.14956

0.40 0.20 0.10 0.15556 0.14951

0.70 0.20 0.10 0.26087 0.20772

0.25 0.20 0.15 0.02222 0.01869

0.10 0.20 0.10 0.06667 0.07478

0.10 0.40 0.10 0.29167 0.48456

We

D

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

Theory

Simulation

(a)

Fig. 3. (a) S > 1 ("i ¼ 0:7 and "e ¼ 0:2); (b) S < 1 ("i ¼ 0:1 and "e ¼ 0:4).
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We

T

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

Theory

Simulation

(b)

Fig. 3. (Continued )

Fig. 4. A typical flow pattern in a perfect dielectric drop under an electric field with E0 ¼ 0:09; "i ¼ 0:7

and "e ¼ 0:2.
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Compared to the strong vortices inside the leaky dielectric drop, the vortices

inside the perfect dielectric drop are much weaker. Besides, in the two ends of the

prolate drop, four very weak Taylor vortices are generated.

As we know, in the equilibrium state, there is no fluid flow inside a perfect

dielectric drop.6 It is noted in Fig. 4 that there are some weak flow patterns. This

may be attributed to the following two factors: (a) the final drop shape is obtained

from the initial shape of a sphere. During our transient simulation, the induced flows

would decay with time but the time for the vortices to vanish is much longer than

that for the drop shape to become stable6; (b) in LBM simulations, usually a

spurious velocity is induced near the interface although the magnitude is very small.

3.3. Constant surface charge model

For the above leaky and perfect dielectric drop deformation under an electric field,

the drop center is not moved. However, when there are net charges on the drop

surface, because of the electrostatic force, the suspended drop will be moved.6

Figure 5 shows the deformation and motion of a charged drop under an electric

field using the constant surface charge model. In the figure, the drop deforms into a

prolate shape and moves along the electric field.

X

Y

20 40 60 80 100

20

40

60

80

100

T=0

T=100

T=200

(a)

Fig. 5. (Color online) Deformation and motion of a droplet with constant charges in the surface under an

electric field. In the simulation, computational domain is 101� 101 and initial radius of the drop is 11 lu.
The other parameters are E0 ¼ 0:1, "i ¼ 0:4 and "e ¼ 0:2.
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The flow pattern at time T ¼ 200 ts shows that the moving liquid makes the

surrounding fluid move, resulting in two circulating vortices outside the droplet.

4. Conclusion

The SC single-component multiphase LBM was developed to study large-density-

ratio EHD problems. The deformation/motion of a droplet suspended in a viscous

liquid under an applied external electric field is studied with leaky dielectric, perfect

dielectric and constant surface charge models. Our results are highly consistent with

the available asymptotic and numerical results.5,6,17 This study demonstrates that

SC single-component multiphase LBM is a very good tool to study the droplet

deformation and motion under an external electric field due to its simplicity and

capability of achieving large density ratio.
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(b)

Fig. 5. (Continued )
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Appendix. Deformation of a Perfect Dielectric Drop in

an Electric Field

Due to the force balance between the electric stress developed on the interface and

the interfacial tension, an incompressible fluid drop in an electric field may deform.2

Here we would discuss the case of a perfect dielectric drop in another dielectric fluid.

The following analysis is limited to 2D small deformations.

The potentials inside and outside of a circle of radius R0 are 
i and 
e, respec-

tively. The dielectric drop is in a macroscopically uniform electric field of strength E

directed along the Y axis of a Cartesian co-ordinate system. The potentials are

given by the following electrostatic equations2:


i ¼ � 2

S þ 2
E0r cos �; ðA:1Þ


e ¼ � 1� R2
0

r 2

S � 1

S þ 1

� �� �
E0r cos �; ðA:2Þ

where (r; �) are the polar co-ordinates with the drop centered at the origin, � is the

angle between the radius vector and the Y axis, and S is the ratio of the dielectric

constant of the drop ("i) to that of the surrounding medium ("e). The tangential and

normal components of the local field strengths on the outside of the drop are

Et;e ¼ � 1

R0

@
e
@�

� �
r¼R0

¼ � 2

S þ 1
E0 sin �; ðA:3Þ

En;e ¼ � @
e
@r

� �
r¼R0

¼ 2S

S þ 1
E0 cos �; ðA:4Þ

The normal electric stress (fn) acting outwards on the interface is (Smythe, 1953)

fn ¼ "i � "e
2"e

ð"eEt;eÞ2
"e

þ ð"eEn;eÞ2
"i

� �
: ðA:5Þ

Simplifying the above equation, one can obtain

fn ¼ "eE
2
0 ðS � 1Þ2

ðS þ 1Þ2 ðþ cos 2�Þ;  ¼ "i þ "e
"i � "e

¼ S þ 1

S � 1
: ðA:6Þ

To balance the electric stress (fn), the 2D drop’s curvature must satisfy the

Laplace law,

	

Rc

¼ ðpi � peÞ þ fn; ðA:7Þ

where Rc is the radius of curvature at any point on the interface, pi and pe are

the hydrostatic pressures inside and outside of the drop, respectively, and 	 is the

interfacial tension. According to the asymptotic analysis,22 we suppose that the

742 Z.-T. Li et al.



drop’s shape satisfy the following equation of an ellipse:

r ¼ R0 1þ 2

3
Dð3 cos2 �� 1Þ

� �
; ðA:8Þ

where D is the deformation factor. Hence, the curvature of the ellipse is:

1

Rc

¼ 1� D

3
� 43D 2

18
þ 133D2

54
þ D

4
ð12� 8D þ 7D 2Þ cos 2�

þ 9

2
ðD � 1ÞD2 cos 4�þ 41

4
D 3 cos 6�: ðA:9Þ

Then we substitute Eqs. (A.9) and (A.6) into that of Eq. (A.7). Supposing D

satisfies the assumption of small deformation, series expansion around zero can be

performed. Omitting the terms higher than first order and comparing the coefficient

before the term cosð2�Þ, one can obtain

D ¼ R0"eE
2
0

	

ð1� SÞ2
3ð1þ SÞ2 ¼ ð1� SÞ2

3ð1þ SÞ2 We: ðA:10Þ

This is the asymptotic solution of the deformation of a perfect dielectric drop in the

surrounding dielectric medium under an electric field.

It is noted that if the S value in Eq. (A.10) is S ¼ 1, then

D ¼ R0"eE
2
0

3	
¼ We

3
: ðA:11Þ

This is the solution of an electric drop in the surrounding dielectric medium under

an electric field.

In what follows, let us compare our explicit formula [Eq. (A.10)] with an implicit

formula proposed by Miksis.23 Miksis studied the effect of the critical Sc (ratio of

dielectric constant) on the deformation of the drop and the implicit solution for the

2D drop-deformation for S > 1 was given as23

E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�"e

R0

	

s
�

ffiffiffiffiffiffi
8�

p 1

S � 1
þ 1

1þ x

� �
ðx 3=2 þ x�3=2Þ1=2; x ¼ 1þ D

1� D
: ðA:12Þ

Notice that the minor differences between the above equation and the original one23

are due to the international system of units used here and that the coefficient
ffiffiffiffiffiffi
8�

p
is

omitted from the original one. The critical dielectric-constant-ratio is shown as

S ¼ 50:73 (see Ref. 23). Hence in the study of Huang et al.,18 the conclusion of

14 � Sc � 15 is questionable.

Squaring the above equation and performing series expansion around zero, one

can obtain

R0"eE
2
0

	
� 3ð1þ SÞ2

ð1� SÞ2 D þ 3ð1þ SÞ2
ð1� SÞ2 D 2 þOðD3Þ: ðA:13Þ
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Omitting the terms higher than OðD 1Þ, the explicit solution of D is identical as

that in Eq. (A.10), but the explicit asymptotic solution of a 2D dielectric drop-

deformation [Eq. (A.10)] is more general because when S < 1, it is still valid.

References

1. D. A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997).
2. R. S. Allan and S. G. Mason, Proc. R. Soc. London, Ser. A 267, 45 (1962).
3. G. I. Taylor, Proc. R. Soc. London, Ser. A 291, 159 (1966).
4. J. R. Melcher and G. I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969).
5. J. Q. Feng and T. C. Scott, J. Fluid Mech. 311, 289 (1996).
6. J. Hua, L. K. Lim and C. Wang, Phys. Fluids 20, 113302 (2008).
7. J. Q. Feng, J. Colloid Interface Sci. 246, 112 (2002).
8. A. Kuzmin, A. A. Mohamad and S. Succi, Int. J. Mod. Phys. C 19, 875 (2008).
9. J. J. Huang, C. Shu, Y. T. Chew and H. W. Zheng, Int. J. Mod. Phys. C 18, 492 (2007).
10. D. Chiappini, G. Bella, S. Succi and S. Ubertini, Int. J. Mod. Phys. C 20, 1803 (2009).
11. T. Inamuro, T. Ogata, S. Tajima and N. Konishi, J. Comput. Phys. 198, 628 (2004).
12. X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993).
13. D. J. Holdych, D. Rovas, J. G. Georgiadis and R. O. Buckius, Int. J. Mod. Phys. C 9,

1393 (1998).
14. T. Lee and C. L. Lin, J. Comput. Phys. 206, 16 (2005).
15. P. Yuan and L. Schaefer, Phys. Fluids 18, 042101 (2006).
16. X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994).
17. J. Zhang and D. Y. Kwok, J. Comput. Phys. 206, 105 (2005).
18. W. Huang, Y. Li and Q. Liu, Chin. Sci. Bull. 52, 3319 (2007).
19. X. Shan and G. Doolen, J. Stat. Phys. 81, 379 (1995).
20. N. S. Martys and H. D. Chen, Phys. Rev. E 53, 743 (1996).
21. E. Lac and G. M. Homsy, J. Fluid Mech. 590, 239 (2007).
22. C. S. Park, N. A. Clark and R. D. Noble, Phys. Rev. Lett. 72, 1838 (1994).
23. M. J. Miksis, Phys. Fluids 24, 1967 (1981).

744 Z.-T. Li et al.


	LATTICE BOLTZMANN STUDY OF ELECTROHYDRODYNAMIC DROP DEFORMATION WITH LARGE DENSITY RATIO
	1. Introduction
	2. Method
	2.1. Shan-and-Chen-type single-component multiphase LBM

	3. Results and Discussion
	3.1. Leaky dielectric model
	3.2. Perfect dielectric model
	3.3. Constant surface charge model

	4. Conclusion
	 Acknowledgments
	Appendix A. Deformation of a Perfect Dielectric Drop in an Electric Field
	References


