
Phys. Fluids 32, 025105 (2020); https://doi.org/10.1063/1.5140772 32, 025105

© 2020 Author(s).

Deep learning methods for super-resolution
reconstruction of turbulent flows
Cite as: Phys. Fluids 32, 025105 (2020); https://doi.org/10.1063/1.5140772
Submitted: 01 December 2019 . Accepted: 21 January 2020 . Published Online: 12 February 2020

Bo Liu, Jiupeng Tang, Haibo Huang , and Xi-Yun Lu

https://images.scitation.org/redirect.spark?MID=176720&plid=1087495&setID=379031&channelID=0&CID=358804&banID=519828231&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=d3dd3029e60845577759ecdb8e819567011ca084&location=
https://doi.org/10.1063/1.5140772
https://doi.org/10.1063/1.5140772
https://aip.scitation.org/author/Liu%2C+Bo
https://aip.scitation.org/author/Tang%2C+Jiupeng
https://aip.scitation.org/author/Huang%2C+Haibo
http://orcid.org/0000-0002-1308-9900
https://aip.scitation.org/author/Lu%2C+Xi-Yun
https://doi.org/10.1063/1.5140772
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5140772
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5140772&domain=aip.scitation.org&date_stamp=2020-02-12


Physics of Fluids ARTICLE scitation.org/journal/phf

Deep learning methods for super-resolution
reconstruction of turbulent flows

Cite as: Phys. Fluids 32, 025105 (2020); doi: 10.1063/1.5140772
Submitted: 1 December 2019 • Accepted: 21 January 2020 •
Published Online: 12 February 2020

Bo Liu, Jiupeng Tang, Haibo Huang,a) and Xi-Yun Lu

AFFILIATIONS
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China

a)Author to whom correspondence should be addressed: huanghb@ustc.edu.cn

ABSTRACT
Two deep learning (DL) models addressing the super-resolution (SR) reconstruction of turbulent flows from low-resolution coarse flow field
data are developed. One is the static convolutional neural network (SCNN), and the other is the novel multiple temporal paths convolutional
neural network (MTPC). The SCNN model takes instantaneous snapshots as an input, while the MTPC model takes a time series of velocity
fields as an input, and it includes spatial and temporal information simultaneously. Three temporal paths are designed in the MTPC to fully
capture features in different time ranges. A weight path is added to generate pixel-level weight maps of each temporal path. These models
were first applied to forced isotropic turbulence. The corresponding high-resolution flow fields were reconstructed with high accuracy. The
MTPC seems to be able to reproduce many important features as well, such as kinetic energy spectra and the joint probability density function
of the second and third invariants of the velocity gradient tensor. As a further evaluation, the SR reconstruction of anisotropic channel flow
with the DL models was performed. The SCNN and MTPC remarkably improve the spatial resolution in various wall regions and potentially
grasp all the anisotropic turbulent properties. It is also shown that the MTPC supplements more under-resolved details than the SCNN. The
success is attributed to the fact that the MTPC can extract extra temporal information from consecutive fluid fields. The present work may
contribute to the development of the subgrid-scale model in computational fluid dynamics and enrich the application of SR technology in fluid
mechanics.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5140772., s

NOMENCLATURE

C the number of channels of each sample
F functional mapping
H the height of each sample
nsnapshots the number of snapshots
Q the second invariant of the velocity gradient tensor
r upscaling factor
R the third invariant of the velocity gradient tensor
W the width of each sample
y+ distance from the wall normalized by the viscous length

scale

Greek letters
ε L2 error norms
ρ correlation coefficient
θ model parameters

Abbreviations

CFD computational fluid dynamics
CNN convolutional neural network
DL: deep learning
DNS direct numerical simulation
EMSRB enhanced multi-scale residual block
HR high-resolution
JHTDB Johns Hopkins turbulence databases
LES large eddy simulation
LR low-resolution
MTPC multiple temporal paths convolutional neural network
PDF probability density function
PIV particle image velocimetry
ReLU rectified linear unit
SCNN static convolutional neural network
SR super-resolution
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I. INTRODUCTION

With the advances of high-performance computers and exper-
imental techniques, it is easier for researchers to get high-resolution
(HR) fluid data. Experimental flow field measurements, e.g., par-
ticle image velocimetry (PIV),1 could capture the intricate details
of turbulent flows. We are also able to obtain high-resolution flow
fields using computational fluid dynamics (CFD) methods, such
as large eddy simulation (LES) and direct numerical simulation
(DNS). However, in industry, we may expect to achieve high-
resolution (HR) flow data quickly with less effort, but experiments
and simulations still seem to be expensive and time-consuming.2

It becomes essential to develop an efficient way to obtain the HR
data. Because experimental and CFD results for turbulence are
data-rich, the rapidly developed data-driven technology may pro-
vide an efficient way to generate high-resolution flow field quickly
without solving partial differential equations again and again. In
this study, we focus on reconstructing turbulent flows from spa-
tiotemporal low-resolution (LR) data through deep learning (DL)
technology.

Deep learning, as an important branch of machine learning, has
been widely applied in fluid mechanics in the past few years.3–7 Ling
et al.8 proposed a novel deep neural network architecture embedded
with Galilean invariance to model the anisotropic Reynolds stresses.
Their results have shown the superiority of combining deep learning
with domain knowledge. Tracey et al.9 used a feed-forward neural
network to model the source terms in the Spalart–Allmaras turbu-
lence model. In their work, DL served as a new way to develop tur-
bulence models. Besides, the convolutional neural network (CNN)
is a powerful tool to extract fluid dynamics features and predict flow
fields. Jin et al.10 designed a fusion CNN to predict the velocity
field around a circular cylinder solely based on pressure fluctua-
tions on the cylinder, which are readily available in fluid mechanics
experiments. Apart from that, deep reinforcement learning has been
successfully applied in the studies of flow control11,12 and collec-
tive motion of creatures.13,14 Deep learning technology has become
a promising tool in these fields.

Super-resolution (SR) is a class of techniques that improve the
resolution of an imaging system. As a consequence of imperfections
of measuring devices or instability of the observed scene, the attained
images may be noisy and flawed in spatial and temporal resolution.15

The SR is able to leverage high-resolution data on a smaller domain
to enhance the resolution on a larger imaging system.16 The deep
learning method was first used in the SR problem by Dong et al.17

in 2014. They proposed a model termed SRCNN and showed enor-
mous potentials of the learning method compared with traditional
methods such as sparsity-based techniques18,19 and bicubic interpo-
lation. Thenceforth, massive novel deep learning models, such as
FSRCNN,20 LapSRN,21 and DBPN,22 have been designed. The SR
is becoming a more attractive research area in the computer vision
field.

Similarly, it is quite common to encounter handicapped data
resulting from the limitation of sensor resolution in experiments or
insufficient mesh size in the CFD simulations. In the CFD, mesh
refinement is a direct way to get HR data, but the calculation cost
of numerical simulation may grow exponentially. A typical DNS
may take a couple of days. For the experiment, improving the spa-
tial resolution of the equipment is the only way to get higher quality

data. However, it may bring expensive additional expenses. On the
other hand, deep learning methods are much more efficient and eco-
nomical. The computational time is only relevant to the size of the
networks. Once the networks have been trained, the time spent on
calculating is usually about several seconds.

Benefiting from the mushroom growth of deep learning tech-
nology, super-resolution has been developed in computational fluid
dynamics recently. Fukaimi et al.23 proposed a hybrid Downsam-
pled Skip-Connection Multi-Scale (DSC/MS) model to reconstruct
the flow field of two-dimensional decaying isotropic turbulence. The
model could enhance the spatial resolution of velocity field greatly
even with only 50 training samples. The kinetic energy spectra could
also be accurately preserved. However, the studied case is simple,
and it is relatively easy to grasp the flow characteristics of two-
dimensional isotropic turbulence. In the field of experimental fluid
dynamics, many efforts have been deployed in improving the spatial
resolution of PIV data.24,25 To better extract PIV velocity from the
particle image patches, the PIV-DCNN model with four-level regres-
sion deep convolutional neural networks was developed.26 Although
the fine structures of natural complex flow are extracted, the compu-
tational efficiency is low. Deng et al.27 used two generative adversar-
ial network-based models, SRGAN and ESRGAN, to augment the
spatial resolution of complicated wake flow behind two side-by-side
cylinders. Their result shows that the SR technology works well even
in an intricate flow configuration.

It is noticed that all the models mentioned above, e.g., DSC/MS,
only utilize the spatial information on the low-resolution (LR) fluid
field at an instant ILRt to generate the corresponding HR fluid field at
the instant IHRt . We call these kinds of models “static models.” Static
models try to establish a mapping F from LR data to HR data, i.e.,
IHRt = F(ILRt , θ), where θ are the parameters of the models. As we
know, turbulent flows are time-space coupled. Therefore, we won-
der if the supplement of temporal information could help to further
improve the quality of the reconstruction. To incorporate the idea,
we developed a novel multiple temporal paths convolutional neural
network (MTPC). Unlike the static models, MTPC takes a sequence
of low-resolution data ILR

[t−d:t+d] as an input. The network can read-
ily extract temporal information from the consecutive snapshots. In
this way, the spatiotemporal information could be considered simul-
taneously, and the hidden physical mechanism may be revealed. In
other words, the MTPC tries to establish a mapping function like
IHRt = F(ILR[t−d:t+d], θ). We would check whether the MTPC is able to
reconstruct better results.

The rest of this paper is structured as follows. Section II intro-
duces the basic knowledge of the convolutional neural network and
the proposed model framework. Section III describes the dataset
used in this work. In Sec. IV, the results of two test cases are pre-
sented. One is about forced isotropic turbulence, and the other is tur-
bulent channel flow. Finally, conclusions and outlook are presented
in Sec. V.

II. METHOD
The purpose of this work is to reconstruct high-resolution

turbulent fluid data IHR from a sequence of low-resolution data
ILR
[t−d:t+d]. These LR data are obtained by filtering the high-resolution

data IHR
[t−d:t+d] down using a box filter. Our objective is to learn an
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FIG. 1. Schematic diagram of the static
convolutional neural network (SCNN). It
takes instantaneous low-resolution snap-
shots ILRt as an input and generates
the corresponding high-resolution fluid
field IHRt .

end-to-end mapping function F to predict the HR flow field,

ISR = F(ILR
[t−d:t+d], θ), (1)

where ISR is the SR reconstructed result and θ denote all the learn-
able parameters of CNN. In the case of d = 0, the mapping function
becomes ISR = F(ILRt , θ), which is the usual single-input–single-
output case. In this situation, the input is only instantaneous spatial
data without temporal information. It should be noted that the single
image super-resolution is an ill-posed problem because one input LR
data may lead to several different high-resolution outputs. The solu-
tion to the super-resolution problem relies on data redundancy pro-
vided by training pairs. IHR can surely be super-resolved indepen-
dently as the single-input case, but it is not wise to waste the details
available from the other LR frames.22 In the multiple-input–single-
output case, the shared explicit redundancy from adjacent frames
would provide more constrains, thus alleviating the ill-posedness of
such an inverse problem.

Suppose a training set contains some instances, e.g.,
{IHRt , ILR

[t−d:t+d]}, the training process of machine learning is equiv-
alent to solving an optimization problem,

θ = arg min
θ

L(F(ILR
[t−d:t+d], θ), IHR), (2)

where L denotes the loss function. Once the training process is
finished, θ is fixed for the test.

Two deep learning models are tested in the present study. They
are the static convolutional neural network (SCNN) taking instan-
taneous spatial data as an input and the multiple temporal paths
convolutional neural network (MTPC) taking a sequence of data
as an input. We will present more details about the two models in
Secs. II A and II B .

A. Static convolutional neural network
Convolutional Neural Networks, as powerful tools in deep

learning, have been widely used in image classification,28 object
detection,29 image segmentation,30 and many other fields. For a net-
work with L layers, each layer’s input comes from the output of its
former layer. The procedure can be described as

f l = ϕ(wl∗f l−1 + bl), l = 1, . . . ,L, (3)

with f 0 = ILR, where f l is the input feature maps of layer l+ 1, and wl,
bl are the learnable weights and biases of the network, respectively.
ϕ is the nonlinear activation function and due to ϕ, the network is
able to approximate an arbitrary complex function. Two of the most

widely used activation functions in regression problem are the rec-
tified linear unit (ReLU) ϕ(x) = max(x, 0) and the tanh activate
function ϕ(x) = ex−e−x

ex+e−x .
The architecture of SCNN is shown in Fig. 1, and the input is

instantaneous snapshots of fluid data. Suppose H, W, and C denote
the height, width, and channels of the image, respectively, the shape
of a two-dimensional (2D) snapshot is H ×W × C. In this architec-
ture, the input frame is first transmitted to three consecutive convo-
lutional layers for feature detection and field reconstruction. After
that, the data size is scaled to rH × rW × C through an upsam-
pling operator, where r is the upscaling factor. There are several
up-sampling methods available in the literature to recover the res-
olution from down-sampling layers.15 One of the most commonly
used methods is to upscale an input image to HR space using bicu-
bic interpolation at the beginning of networks, which means that
the SR operator is performed in HR space. Here, in the SCNN, an
efficient sub-pixel convolution layer which was first proposed by
Shi31 is adopted. This layer, also termed PixelShuffle, transforms
the shape of an H ×W × C × r2 tensor into rH × rW × C using a
periodic shuffling operator shown in Fig. 2 at the end of the net-
work. Thanks to PixelShuffle, feature extraction can be performed
in LR space instead of HR space, thus making the SR process more
efficient.

The square of the L2 error loss function is chosen as the
objective optimization function, which can be written as

L2(ISR, IHR) = 1
N

N

∑
t=1
∥F(ILRt ; θ) − IHRt ∥

2

2
. (4)

Details of the parameters in SCNN are listed in Table I.

FIG. 2. Schematic diagram of the PixelShuffle. It transforms an H ×W × C × r2

tensor into a tensor of shape rH × rW × C.
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TABLE I. Detailed structure of the static convolutional neural network (SCNN).

Activation
Layer Kernel size/filters function Output size

Input . . . . . . H ×W × C
Conv1 5 × 5/64 tanh H ×W × 64
Conv2 5 × 5/64 tanh H ×W × 64
Conv3 5 × 5/C × r2 tanh H ×W × C × r2

Upsampling . . . . . . rH × rW × C

B. Multiple temporal paths CNN
Static models such as SCNN take one instantaneous low-

resolution snapshot as an input. These models can only utilize spatial
information and completely ignore the dynamic characteristics of
turbulence. Actually, the turbulent processes are non-local in both
time and space. In other words, the turbulent behavior at a point may
be influenced by the flow remote from that point.32 The MTPC has
an advantage of taking a temporal sequence of low-resolution snap-
shots as an input. It can observe the turbulent motions through con-
secutive snapshots and thus grasp the temporally non-local prop-
erties as well as spatially non-local properties. The integration of
spatiotemporal information may improve the reconstruction of the
fine-scale structure of turbulence. The detailed description of the
MTPC is presented in Subsections II B 1–II B 4.

1. Architecture
The MTPC takes a temporal sequence of LR snapshots ILR

[t−d:t+d]
as an input. Figure 3 shows the architecture of the MTPC. It is shown

that the network is composed of three temporal paths for predic-
tion and one weight path to determine the weights of each predicted
result. The three temporal paths are termed Backward Temporal
Path (BTP), Central Temporal Path (CTP), and Forward Temporal
Path (FTP), respectively, according to their inputs. The BTP takes
ILR
[t−d:t] as its input. This branch outputs a potential HR result IBTt by

observing frames at the current instant t and the former. The BTP
looks like the idea of the backward temporal differential method in
the CFD. Correspondingly, the CTP and FTP have some similarity
to the central and forward temporal differential methods, respec-
tively. Through observing different motion ranges, the three paths
can extract diverse temporal information.

2. Temporal path
Each temporal path consists of a feature extraction module and

a reconstruction module. The feature extraction module is com-
posed of a convolutional layer and two basic blocks. The exploited
features from the first layer and basic blocks are concatenated
through skip connections. In this way, the possible disappearance
of features during transmission is avoided. The basic block utilized
here is the enhanced multi-scale residual block (EMSRB) shown in
Fig. 4. The EMSRB is developed from the multi-scale residual block
(MSRB),33 which has been shown as an efficient block to detect
image features at different scales. A novel two-bypass network with
different sized convolutional kernels is used in the EMSRB to extract
flow characteristics. The extracted features are concatenated and
sent to a 1 × 1 convolutional layer to reduce the number of fea-
ture maps. We modified the MSRB by adding a 1 × 1 convolutional
layer without any following activation functions in the residual path.
With this modification, the model is able to adjust the residual

FIG. 3. Schematic diagram of the multiple temporal paths convolutional neural network (MTPC). It consists of three temporal paths and a weight path. The three temporal
paths generate HR predictions IBTt , ICTt , and IFTt based on the series of LR snapshots ILR[t−d:t], I

LR
[t− d

2
:t+ d

2
], and ILR[t:t+d], respectively. These predictions are combined based

on the weight maps from the weight path to generate the final prediction ISRt .
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FIG. 4. The structure of the enhanced multi-scale residual block (EMSRB).

information without additional computational cost. The reconstruc-
tion module is made up of several convolutional layers and an
upscaling operator. The upscaling operator used here is the Pix-
elShuffle, which is also applied in the SCNN. The detailed param-
eters of the BTC are listed in Table II. These parameters are also
applied to the other two paths for simplicity.

3. Weight path and aggregation
The weight path concatenates all the features extracted in tem-

poral paths as the input of the reconstruction module. The recon-
struction module in the weight path has an identical structure as
that in temporal paths except for the last convolutional layer. In
the last layer, the activation function is the sigmoid function, i.e.,
ϕ(x) = 1

1+e−x , which normalizes data into the range of [0, 1]. The
reconstruction module outputs the pixel-level weight maps with the
shape of rH × rW × C × 3. The final output ISRt is obtained by the
following operator:

ISRt =WBT ⊙ IBTt + WCT ⊙ ICTt + WFT ⊙ IFTt , (5)

where ⊙ denotes pointwise multiplication. The loss function of the
MTPC is

L(ISR, IHR) =L2(ISR, IHR) + λ(L2(IBT , IHR)

+ L2(ICT , IHR) + L2(IFT , IHR)), (6)

TABLE II. Detailed parameters of the Backward Temporal Path (BTP) in the multiple
temporal paths convolutional neural network (MTPC). Both basic block 1 and basic
block 2 are the enhanced multi-scale residual block (EMSRB).

Activation
Layer Kernel size/filters function Output size

Input . . . . . . H ×W × C × (d + 1)
Conv1 3 × 3/64 . . . H ×W × 64
Basic block 1 . . . ReLU H ×W × 64
Basic block 2 . . . ReLU H ×W × 64
Concat . . . . . . H ×W × 192
Conv2 1 × 1/C × r2 . . . H ×W × C × r2

Upsampling . . . . . . rH × rW × C
Conv3 3 × 3/C . . . rH × rW × C

where λ is a constant to control the ratio between prediction results
in branches and the final output. λ = 0.5 is chosen in this work.

4. Hyperparameter
The hyperparameter is a key factor that may significantly affect

the performance of networks. Generally speaking, if the amount
of data is sufficient, the performance of the networks would be
enhanced with the increase in the number of the basic blocks, convo-
lutional layers, filter maps, etc. Considering the balance of efficiency
and accuracy, we only use two basic blocks in the feature extrac-
tion module. In addition, all the convolutional layers have 64 filter
maps.

III. DATASET AND IMPLEMENT DETAILS
Johns Hopkins turbulence databases34,35 (JHTDB) are open-

source simulation databases containing space-time histories of
direct numerical simulations of several classical turbulent flow prob-
lems. Two datasets, namely, forced isotropic turbulence and turbu-
lent channel flow,36 from the JHTDB are used in this study.

All the DL models are trained and tested on the 2D slices of
three-dimensional (3D) fluid fields. The velocity vector u = (u, v,w)
is selected as the input quantity, so the channels C = 3. Here, we set
d = 2, i.e., the MTPC takes 2d + 1 = 5 consecutive frames as inputs.
To be more efficient in the training process, we randomly sample
128 × 128 patches at each training iteration. Therefore, the shape of
input LR frames to the SCNN and MTPC is batchsize×128×128×3
and batchsize × 128 × 128 × 15, respectively. The Adam optimizer37

is adopted to update the weights of both models.

IV. RESULT
A. Forced isotropic turbulence

To evaluate the DL models’ ability for recovering the turbulent
flows, the classical forced isotropic turbulence is selected as our first
test. Many important statistical properties would be assessed here
to check the performance at different spatial scales. In addition to
the two DL models, the bicubic interpolation method is also exam-
ined for comparison. The isotropic turbulence data of the JHTDB
are generated from a direct numerical simulation on a 10243 mesh
size at Taylor-scale Reynolds number Reλ = 418. The size of the
computational domain is 2π × 2π × 2π (the range of x, y, z is [0,
2π]). The flow is governed by the incompressible Navier–Stokes
equations,

∂u
∂t

+ u ⋅ ∇u = −∇p + ν∇2u, (7)

∇ ⋅ u = 0, (8)

where u is the velocity vector, p is the pressure, and ν is the kine-
matic viscosity. About five large-eddy turnover times are stored in
the dataset. The training set is sampled in the first turnover time at
z = 0 (x-y plane), and another 200 snapshots are selected as the vali-
dation set. Besides, 200 snapshots at z = π/2 in the last turnover time
are chosen for testing. The input data are normalized by the maxi-
mum absolute value computed over the current frame. The L2 error
norms that are defined as ε = ∥IHR − F(ILR, θ)∥2/∥I

HR∥2 are utilized
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FIG. 5. (a) L2 error norms on the validation set for the models trained with different data amounts. Learning curves for the SCNN and MTPC at [(b) and (c)] r = 4 and [(d) and
(e)] r = 8 when the number of the snapshots for training nsnapshots is 1000.

here as the measurement of error between the reconstructed flow
field and that from the DNS. Two upscaling factors r = 4 and r = 8
are studied.

First, the influence of the number of training samples on the
performance is checked. The L2 error norms as a function of train-
ing data amounts are shown in Fig. 5(a). It is shown that ε on the
validation set decreases with the increase in nsnapshots for both the
SCNN and MTPC models. It seems that when the amount of data is
500, the error norms approach a plateau. The models’ accuracy can-
not be enhanced noticeably from increasing training data anymore.
In other words, 1000 snapshots are enough to get a good result and
after that the performances of the models become data-independent.
Both models are trained with learning rate lr = 10−4 and batchsize
= 32. To avoid overfitting, the training procedure is stopped when
the loss on the validation set no longer decreases significantly.
The following results are obtained from models trained with 1000
snapshots, and the corresponding learning curves are shown in
Figs. 5(b)–5(e).

Second, the performances of the models on the testing set
are investigated. The L2 error norms for the models are listed in
Table III. It is seen that the error norms of the SCNN and MTPC
are much smaller than those of the bicubic interpolation. Further-
more, among the three models, the MTPC achieves the minimum

TABLE III. L2 error norms and standard deviations of the reconstructed flow
fields from bicubic interpolation, SCNN, and MTPC in the case of forced isotropic
turbulence. The boldface values indicate the best result obtained in each case.

Bicubic SCNN MTPC

r = 4 0.1458± 0.0015 0.0449± 0.0006 0.0283 ± 0.0004
r = 8 0.2575± 0.0022 0.1218± 0.0010 0.0985 ± 0.0007

error and deviation at both scales, e.g., the average error norm of
the MTPC at r = 4, is only 0.0283 with 0.0004 standard deviation.
Therefore, the MTPC is the most accurate and stable model.

Next, to demonstrate the capability of the DL models, we would
like to perform a direct comparison. 64× 64 patches from an instan-
taneous snapshot in each case were cropped, and the comparison is
presented in Fig. 6. It seems that the patch generated by the bicu-
bic interpolation is excessively smooth, e.g., the flow fields of v in
Figs. 6(a) and 6(b). Maybe it only captures the low-frequency infor-
mation. The results of the SCNN and MTPC look closer to the DNS
result than those of the bicubic interpolation, e.g., the flow fields
of u and w in Fig. 6(b). A possible explanation is that the SCNN
and MTPC enrich the low-resolution fluid field with high-frequency
contents. Furthermore, the flow fields of u and w in Fig. 6(b) also
clearly show that the MTPC supplements more details and recon-
structs finer structures than the SCNN. It may be due to the addi-
tional temporal information that the MTPC includes. These argu-
ments are also supported by the following analysis of the kinetic
energy spectra.

In this section, several turbulent statistics are evaluated to check
whether the reconstructed turbulent flow is physically reasonable.
It is noticed that the measurement of the numerical error, e.g., the
L2 error norm, is not enough. To assess the performance of mod-
els at the inertial scale, the energy spectra are shown in Fig. 7(a).
It is shown that all the proposed methods are able to reproduce
the spectra at low wavenumbers. However, the bicubic interpola-
tion, SCNN, and MTPC result at r = 8 gradually deviates from the
DNS result at k ≈ 25, k ≈ 50, and k ≈ 60, respectively. The
SCNN result almost covers the range where −5/3 power law holds
(k < 60), while the MTPC completely recovers the range. For the
r = 4 case, the MTPC predicts almost all the inertial scales although
some deviations exist at the scales where E(k) < 10−5. Meanwhile,
it is also seen that there is a challenge for the DL models to predict
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FIG. 6. Comparison of the low resolution, bicubic interpolation, SCNN, MTPC, and DNS results of the isotropic turbulence at (a) r = 4 and (b) r = 8. The inputs are scaled to
the same size as the others for comparison.

the kinetic energy several orders of magnitude smaller than the total
energy.

We would like to further assess the intermittency of velocity
gradients to test the performance of models at the smallest scale. The

probability density function (PDF) of the normalized velocity gradi-
ents for the reconstructed field and DNS data is shown in Fig. 7(b).
It is seen that all the DL models captured the non-Gaussian feature,
but the SCNN underestimates the PDF at tails. It reveals that the

Phys. Fluids 32, 025105 (2020); doi: 10.1063/1.5140772 32, 025105-7

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 7. (a) Kinetic energy spectra and (b) probability density functions of the normalized velocity gradients p(Z) of the reconstructed isotropic turbulent flow fields and
corresponding DNS data. Here, k is the wavenumber, and Z = ∂u′

∂x is the partial derivative of velocity fluctuation u′ in the x−direction. The dashed–dotted lines in (a) denote
the locations that the reconstructed results begin to deviate from the DNS result.

SCNN prediction may be less intermittent than the DNS result. On
the other hand, the prediction of the MTPC is more consistent with
the DNS result.

Finally, to check if the relation between different directions
and velocity components is well captured, an additional test of the
Q–R joint PDF of the velocity gradient tensor (VGT) for the MTPC
is performed, where Q and R are the second and third invariants
of VGT, respectively. The Q–R joint PDFs at r = 4 and r = 8 for the
reconstructed field and DNS data are shown in Figs. 8(a) and 8(b),
respectively. It is shown that the PDF at r = 4 is much closer to the
DNS result than that at r = 8. The isolines of probability in the Q–R
plane are perfectly predicted when r = 4. Hence, a smaller upscaling
factor is preferred in the MTPC model. On the other hand, the clas-
sic tear-drop shape is still obtained when r = 8, i.e., the flow field is
still well reconstructed.

In summary, the above performances show that the DL models
can reproduce isotropic turbulence with high fidelity. In terms of all

the above criteria, the performance of the MTPC is better than that
of the SCNN and bicubic interpolation method.

B. Channel flow
The above forced isotropic turbulence may be the simplest tur-

bulence. Most turbulent flows are anisotropic and may be bounded
by solid surfaces in reality. In this section, we would like to investi-
gate the performances of these models on a more complex turbulent
flow, i.e., a turbulent channel flow. Using the DL models to recon-
struct the turbulent channel velocity field is a tougher task due to the
anisotropic property, the three components of the velocity maybe
not in the same order of magnitude.

The channel flow database used here also comes from JHTDB.
It was obtained from a DNS with periodic boundary conditions in
the longitudinal (x) and transverse (z) directions, a no-slip boundary
condition was applied at the top and bottom walls (y/h = ±1, h is

FIG. 8. Q–R joint PDF of the reconstructed isotropic turbu-
lent fields and corresponding DNS data at (a) r = 4 and (b)
r = 8. Q and R are the second and third invariants of the
velocity gradient tensor, respectively.

Phys. Fluids 32, 025105 (2020); doi: 10.1063/1.5140772 32, 025105-8

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 9. (a) L2 error norms on the val-
idation set for the models trained with
various amounts of data. The learning
curves of (b) the SCNN and (c) the
MTPC when the number of snapshots for
training nsnapshots is 120.

the half-channel height). To solve the incompressible Navier–Stokes
equations, a wall-normal, velocity–vorticity formulation38 was used.
The simulation was performed at friction velocity Reynolds number
Reτ = 9.9935 × 102 on a 2048 × 512 × 1536 (Nx × Ny × Nz) grid for
about a single flow-through time. The domain length is Lx × Ly × Lz
= 8πh× 2h× 3πh. More details about the simulation can be found in
the work of Graham et al.36

In this section, only the snapshots on the wall-parallel x−z plane
are considered. In the wall-bounded turbulent flow, according to the
distance to the wall y, the boundary layer can be divided into two lay-
ers, i.e., the outer layer (0.2δ ≤ y ≤ δ) and the inner layer (y ≤ 0.2δ),
where δ is the thickness of the boundary layer. Usually, the normal-
ized distance to the wall is defined as y+ ≡ uτy

ν , where uτ is the friction
velocity and ν is the kinematic viscosity. The inner layer can be fur-
ther divided into three regions, i.e., viscous sublayer (y+ ≤ 5), buffer
layer (5 ≤ y+ ≤ 30), and log-law region (30 ≤ y+ ≤ 0.2δ). Each
region has its own specific property. For the simplicity, in the fol-
lowing description, the viscous sublayer, buffer layer, log-law region,
and outer layer are denoted by regions I, II, III, and IV, respectively.

To test our SCNN and MTPC models, wall-parallel snapshots
are chosen from regions I, II, III, and IV at a ratio of 1 : 1 : 2 : 2
because less data are available inside regions I and II in the origi-
nal database. Totally 30 snapshots are sampled as validation data.
Because the orders of magnitude of three velocity components (u, v,
and w) in the channel flow may be different, the maximum absolute
value of each velocity component in the current frame is adopted to
normalize the corresponding velocity component separately. Both
models are trained with learning rate lr = 10−4 and batchsize = 16.
The validation error as a function of data amounts is shown in
Fig. 9(a). It is shown that the data amount nsnapshots = 120 is enough
for the SCNN and MTPC to get good results. Hence, the follow-
ing results are all obtained from models trained with 120 snap-
shots. The corresponding learning curves are shown in Figs. 9(b)
and 9(c).

The testing set consists of 30 snapshots at the other y+ loca-
tions, which are not included in the training set. It is also noted that
the testing data are sampled 10 000 DNS time steps away from the
training data. In this way, we can check whether the DL models are

FIG. 10. Mean velocity profiles for the predicted results and
corresponding DNS result in the case of channel flow. κ is
von Karman constant, and B is a constant. Here, κ = 0.41,
B = 5.2.
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FIG. 11. The average correlation coefficients between the reconstructed channel flow fields and corresponding DNS results. The red, orange, and yellow columns represent
the performances of the bicubic interpolation, SCNN, and MTPC models, respectively.

able to grasp various statistical properties in different flow regions.
Here, only r = 4 case is investigated.

First, the mean velocity profiles are checked. The predicted
mean velocity profiles are shown in Fig. 10. It is shown that both

the SCNN and MTPC predict the u+ profile well and captures the
linear property in the viscous sublayer as well as the 1

κ logarithmic
law property in the log-law region, where the von Karmen constant
κ = 0.41 here.

FIG. 12. Reynolds stresses normalized by the friction velocity against y+ from DNS of channel flow and (a) low resolution input, (b) bicubic interpolation, (c) SCNN, and (d)
MTPC result. Here, Rij = ⟨u′iu

′
j ⟩/u

2
τ and u′i is the velocity fluctuation (i = 1, 2, 3 for streamwise, wall-normal, and spanwise directions, respectively).
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Second, the performances of the DL models on prediction of u,
v and w in regions I to IV are evaluated. The correlation coefficients
ρ(ISR, IHR) are used to quantify the difference between the prediction
and the reference, i.e.,

ρ(ISR, IHR) = ∑i(ISRi − ⟨ISR⟩)(IHRi − ⟨IHR⟩)√
∑i(ISRi − ⟨ISR⟩)2

√
∑i(IHRi − ⟨IHR⟩)2

, (9)

where ⟨⋅⟩ denotes the ensemble average. The larger the coefficient ρ
is, the more accurate the prediction is.

The correlation coefficients between the reconstructed data and
the DNS data are shown in Fig. 11. It is shown that for the velocity
components u and w, all three reconstruction methods achieve high
ρ. However, for v, the correlation coefficient is relatively low. There-
fore, it seems more difficult to predict the non-mainstream velocity
component. It is also shown that for each model, the prediction in
region IV is better than those in regions I and II, especially for v. This
may be attributed to the fact that the turbulent property is abundant
and changes intensively inside the regions very close to the wall.

We also observe that among each group of columns, which con-
sist of red, orange, and yellow columns, the yellow one is always the
highest. Besides, the heights of all yellow columns are very close to
unity, and even the shortest yellow column has a height of about 0.9
(see regions I for v). Hence, correlations between the MTPC pre-
dictions and the DNS results are very high. The performance of the
MTPC model seems always the best among the three models.

Third, the performances of the DL models on prediction of
Reynolds stresses are investigated. The Reynolds stresses that are
relevant to velocity fluctuation as a function of y+ are shown in
Fig. 12. Figure 12(b) looks like Fig. 12(a). It seems that the bicubic

interpolation does not improve the LR input and almost underes-
timates all components of Reynolds stresses seriously. Predictions
obtained from the SCNN [see Fig. 12(c)] are in reasonable agree-
ment with the DNS data, except for small deviations at the peaks.
On the other hand, the MTPC well reproduced all components of
Reynolds stresses [Fig. 12(d)].

Finally, an additional test to check the predicted spatial struc-
tures is performed. An intuitive demonstration of the reconstructed
flow fields at the outer layer is shown in Fig. 13. It is seen that com-
pared with the bicubic and SCNN cases, in terms of the contours
of u and w, the MTPC predicts more small scales in the contours,
which are very close to those in the DNS result. Hence, the perfor-
mance of the MTPC model is better than those of the bicubic and
SCNN models. The kinetic energy spectra at the location y+ = 10.45
are also analyzed. The result is shown in Fig. 14. It is seen that energy
spectra produced from the low-resolution input are not able to fol-
low the trend of the DNS result even at low wavenumbers. However,
the MTPC result, taking LR data as an input, agrees well with the
DNS result in the most range. It seems that the MTPC does not
take the low-frequency information in the input as the whole truth
but amends it and then supplements the high-frequency contents.
For the MTPC model, the kinetic energy spectrum of v seems not
so good as that of u and w. The possible reason is that the kinetic
energy in the y direction is two orders of magnitude smaller than
that in the x direction. From Fig. 14, it is also shown that all the
kinetic energy spectra generated from the MTPC drop faster than
those of the DNS at high wavenumbers. Hence, it is still a challenge
to reconstruct small scale spatial structures.

All the experiments are conducted on the NVIDIA RTX 2080
graphics processing unit (GPU). The training processes of the SCNN

FIG. 13. Comparison of the low resolution, bicubic interpolations, SCNN, MTPC, and DNS results of turbulent channel flow at r = 4. The low-resolution inputs are scaled to
the same size as the other results for comparison.
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FIG. 14. (a) Streamwise power spectra and (b) spanwise power spectra at y+
= 10.45 as functions of kx and kz in the case of turbulent channel flow.

and MTPC for the channel flow take about 2.5 h (4.5s/epoch× 2000)
and 21.9 h (19.7s/epoch × 4000), respectively. On the other hand,
reconstructing a shape of the 1536 × 2048 × 3 flow field from
384×512×3 LR flow data only takes approximately 0.03 s and 0.38 s
for the SCNN and MTPC models, respectively.

V. CONCLUSIONS
Two deep learning models, i.e., the SCNN and MTPC, are

developed for the super-resolution reconstruction of turbulent
flows. They all take low-resolution flow information as an input.
However, the SCNN takes one instantaneous snapshot as an input,
while the MTPC takes a temporal sequence of snapshots as an input.
Therefore, the MTPC has the advantage of drawing extra temporal
information from adjacent frames.

To see whether the deep learning methods are able to repro-
duce turbulence, two canonical turbulent problems were tested. For
the isotropic turbulence, the reproduced energy spectra and pre-
dicted PDF of the normalized velocity gradients by the MTPC are
close to those of the DNS result. For the turbulent channel flow, the
deep-learning-based approaches greatly enhanced the spatial reso-
lution in different wall regions and layers. The correlation coeffi-
cients between reconstructed data and the reference data are high
in the outer layer and log-law region where turbulence dominates.
However, the coefficients are not so high in the viscosity-dominated
region where there are the most vigorous turbulent activities. All
assessments in both cases show that the MTPC greatly improved the
quality of the LR input and outperformed the SCNN and bicubic
interpolation method, especially at small scales. The extra temporal
information from consecutive snapshots helps the MTPC to gener-
ate more physically reasonable results. On the other hand, because
there are more input snapshots to handle, the MTPC spends more
time on prediction compared with static models. All the experiments
were performed with 2D snapshots, but the networks used in this

study can be easily extended to 3D cases by using 3D convolution
kernels.

Although deep-learning methods achieve great progress, there
are still some challenges. First, the DL models are not able to exactly
reproduce the kinetic energy several orders of magnitude smaller
than the total energy, i.e., the very small spatial structures. Sec-
ond, the DL methods show performance diversity in different direc-
tions in the anisotropic turbulence case even though a special nor-
malization method is used to convert data in the three directions
into the same order of magnitude. These problems may be elimi-
nated by introducing novel machine learning methods like unsuper-
vised learning or including prior physical knowledge in the training
process. That may be part of our future work.

The success of the DL models in reconstructing subgrid flow
variables probably inspires the development of subgrid models in the
CFD. The SR technology can also serve as the post-processing tool
to denoise, correct, or enrich data from experiments and numerical
simulations. We believe that the super-resolution technology would
have a board practical application in the fluid dynamics with the
increasing volumes of data accessible.
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