
PHYSICAL REVIEW FLUIDS 7, 044303 (2022)

Elliptical particle suspensions in Couette flow
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The rheological properties and microstructure of neutrally buoyant elliptical particle
suspensions are studied using the immersed boundary-lattice Boltzmann method. For dilute
suspensions containing only one particle, with the increase of aspect ratio Ar, the particle
ceases to rotate due to the inertia at a critical aspect ratio Arc, and the value of Arc

decreases with increasing Re. The inertia-induced rotation arrest causes a nonmonotonic
variation of particle alignment with the flow direction, and thence the relative viscosity,
with increasing Ar, for a fixed Re. The relative viscosity first decreases, with increasing Ar
due to the increasing alignment (on average) of tumbling particles; however, rotation arrest
leads to a subsequent increase in the relative viscosity for Ar > Arc. This nonmonotonic
variation persists over the entire range of Re and Ar examined here. For dense suspensions
containing multiple particles, with increasing Ar, particles align more with the flow, but
the orientation becomes almost constant when Ar is greater than a threshold Art . Smaller
values of Art are observed for higher Re. Meanwhile, ηr decreases due to particle alignment
for Ar < Art and then increases due to high particle-particle interaction for Ar > Art .
Further, the contributions of stresslet (S), particle acceleration stress (P), and Reynolds
stress (R) on ηr and the first normal stress difference N1 are analyzed. In addition to the
major contribution of stresslet, Reynolds stress contributes more as Ar increases at high
Re. In addition, the microstructure and the probability density functions of lateral velocity
(Uy ) and angular velocity (ωp) are also analyzed. Our results may be helpful to understand
the rheological properties of nonspherical particle suspensions.

DOI: 10.1103/PhysRevFluids.7.044303

I. INTRODUCTION

Suspensions of particles are ubiquitous in nature and industries. Understanding the rheological
properties of suspensions is important in many industrial design processes, such as papermaking [1]
and waste slurries [2]. Usually, a constitutive equation relating shear stress τ to the strain rate γ̇ [3]
is used to quantitatively describe the deformation and flow behavior of suspensions. In the past
research, the effective viscosity η = τ/γ̇ is commonly used. The relative viscosity ηr is defined as
ηr = ηs/η0, where ηs is the effective viscosity of the suspensions and η0 is the viscosity of suspend-
ing liquid. For non-Brownian neutrally buoyant particle suspensions, ηr depends on the particle
concentration φ and Reynolds number Re by the dimensional analysis, i.e., ηr = f (φ, Re) [2],
where Re = ργ̇ a2/μ, ρ is the fluid density, γ̇ is the shear rate of the flow, a is the particle size,
and μ is the dynamic viscosity.

In the Stokesian domain, the effect of Re is negligible and ηr is only a function of φ. Numerous
studies have been performed to understand the correlation between ηr and φ. For dilute suspensions,
Einstein [4] first deduced the classical equation analytically, i.e., ηr = 1 + [η]φ, where [η] is the
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intrinsic viscosity and [η] = 2.5 for rigid spheres. In the derivation, the fluid inertial effect and
the hydrodynamic interactions between particles are neglected. Jeffery [5] analytically extended
Einstein’s results to spheroidal particle suspensions. He investigated the motion of a spheroidal
particle in dilute shearing suspension and found that several terminal motion modes are possible.
Each mode corresponds to a different [η]. To determine which mode is the actual terminal mode,
he hypothesized that “The particle will tend to adopt that motion which, of all the motions possible
under the approximated equations, corresponds to the least dissipation of energy.” To consider the
hydrodynamic interactions, Batchelor and Green [6] further proposed ηr = 1 + [η]φ + Bφ2, where
B = 6.95 for non-Brownian suspensions in pure straining flow [7]. For more dense suspensions,
Krieger and Dougherty [8] derived ηr = (1 − φ/φm)−[η]φm , where φm is the maximum packing
concentration of particles. In addition to the analytical work, many numerical simulations [9–11]
and experiments [3,12] have been carried out to study the microstructure and rheology of Stokes-
flow particle suspension.

In the inertial domain, the effect of Re should be considered. By including the term O(Re
3
2 ), Lin

et al. [13] incorporated the inertial effect into the Einstein viscosity law. Subramanian et al. [14]
calculate the rheological properties of a dilute emulsion of nearly spherical drops at O(φ Re3/2). For
nonspherical particles, Subramanian and co-workers have done a great deal of work to investigate
the effect of inertia on the orientation dynamics of spheroids or fiber [15–17]. Subramanian and
Koch [18] investigated the inertial effect on the orientation of nearly spherical particles in shear
flow, and they concluded that a neutrally buoyant prolate spheroid migrates toward the direction
of vorticity due to the fluid inertia effect. However, their subsequent results showed that this is
incorrect [16]. Dabade et al. [16] evaluate the drifts in orientation and calculate the intrinsic viscosity
coefficients at O(Re) and O(St) as a function of the particle aspect ratio for both prolate and oblate
spheroids. Their results show that fluid inertia drives a prolate spheroid towards a tumbling motion in
the flow-gradient plane in spite of the initial orientations and aspect ratios. The theoretical approach
is a useful tool to study the rheology of suspensions, but it is limited to small Re and simple
geometries [19].

Many numerical simulation methods have been used to study the effect of inertia on the particle
suspension, including the lattice Boltzmann method [20], the force coupling method [21], and the
curvilinear immersed-boundary method [19]. Kulkarni and Morris [22] and Haddadi and Mor-
ris [20] studied the microstructure and rheology of neutrally buoyant spherical particle suspensions,
and the rheological properties including relative viscosity, normal stress differences, and particle
pressure are investigated in detail with finite inertia. For a spheroidal particle, the inertia of both
the fluid and the particle can influence the particle motion and hence the rheology. The studies of
Qi and Luo [23], Huang et al. [24], and Rosén et al. [25] show that a prolate spheroid can rotate
in tumbling, log-rolling (spinning), kayaking, and steady states depending on the aspect ratio, the
Reynolds number, and the initial orientation. For an oblate spheroid, tumbling, log-rolling, and
steady states are observed [26]. Further, Rosén et al. [27] studied the effect of particle inertia on the
rotational motion of a spheroid particle in shear flow. Using the lattice Boltzmann method, Huang
et al. [28] investigated the shear viscosity of dilute suspensions of spheroid particles, and they found
that the viscosity changes linearly at the low Re regime and nonlinearly at the high Re regime.
Daghooghi and Borazjani [19] numerically investigated the rheology properties of the ellipsoid
suspension. They found that the contribution of particle acceleration stress and Reynolds stress on
the normal stress difference cannot be ignored for nonspherical particles at finite inertia. However,
in their simulations, there is only one ellipsoid inside a periodic domain, and the particle-particle
interactions are negligible.

Despite the above numerous studies, the effect of inertia on the rheology of spheroid particle
suspensions is limited, and the effect of particle rotational motion on the rheology is not clear
at finite inertia. Two-dimensional simulation is a useful and efficient tool for understanding the
hydrodynamics dynamics of particle suspensions. Through a large number of two-dimensional
simulations for a sufficiently large range of parameters, we may draw conclusive inferences about
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scaling trends. Besides, most of the qualitative results obtained in a two-dimensional numerical
solution can be generalized to three-dimensional flows, and previous extensive studies support this
viewpoint [29]. For example, Aidun et al. [30] studied the rotational motion of the two-dimensional
(2D) elliptical particle, and they found that the transition from a time-periodic to a steady state
is through a saddle-node bifurcation. The period of oscillation near a transition is proportional to
|p − pc|−1/2, where p is any parameter in the flow. The latter studies for 3D flows found a similar
scaling law [25].

Hence, in this study, two-dimensional simulations are performed to investigate the microstruc-
ture and rheology properties of the elliptical particle suspensions with many particles using the
immersed boundary lattice Boltzmann method (IB-LBM). Here the effects of particle shape, particle
concentration, and Reynolds number are investigated in detail, and the relation between the viscosity
and the particle orientation is investigated. Meanwhile, the contributions of three components, i.e.,
stresslet, particle acceleration stress, and Reynolds stress to the rheological properties are discussed.
Only the tumbling motion is considered in this work due to the limit of 2D simulation. The method
and physical problem are introduced in Sec. II. Validation of the program is presented in Sec. III.
Results and discussion are presented in Sec. IV. Finally, conclusions are summarized in Sec. V.

II. METHOD AND PHYSICAL PROBLEM

A. Lattice-Boltzmann method

Here the governing equations for fluid flows are the incompressible Navier-Stokes equa-
tions [Eq. (1)],

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + μ

ρ
∇2u + f b, (1a)

∇ · u = 0, (1b)

where u is the velocity, p is the pressure, ρ is the density of the fluid, μ is the dynamic viscosity,
and fb is the Eulerian momentum force on the surrounding fluid due to the immersed boundary, as
constrained by the no-slip boundary condition. The motion of the particle is controlled by Newton’s
second law.

The lattice Boltzmann method (LBM) is used to solve the fluid flow governed by the incompress-
ible Navier-Stokes equations, and the direct-forcing immersed boundary method (IB) is applied to
treat flow-structure interaction [31].

The evolution equation in the LBM is

fα (x + eαδt, t + δt ) − fα (x, t ) = − 1

τ
[ fα (x, t ) − f eq

α (x, t )] + δtFα,

where τ is the relaxation time and fα (x, t ) is the particle distribution function. f eq
α (x, t ) is the

equilibrium particle distribution function, and it is written as

f eq
α (x, t ) = ρωα

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− u2

2c2
s

]
. (2)

The last term Fα represents the effect of external force and is calculated as [32]

Fα =
(

1 − 1

2τ

)
ωα

[
eα − u

c2
s

+ (eα · u)

c4
s

eα

]
· F, (3)

where F is the macroscopic external force term. The macroscopic density ρ and macroscopic
velocity can be obtained through

ρ =
8∑

α=0

fα (4)
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and

ρui =
8∑

α=0

eiα fα + Fiδt

2ρ
, (5)

respectively.
In our LBM simulations, the D2Q9 velocity model is adopted. The discrete velocities eα in the

D2Q9 model are defined as

eα =

⎧⎪⎨
⎪⎩

0, α = 0,

c
(

cos
[ (α−1)π

4

]
, sin

[ (α−1)π
4

])
, α = 1 − 4,√

2c
(

cos
[ (α−1)π

4

]
, sin

[ (α−1)π
4

])
, α = 5 − 8. (6)

The corresponding weight parameters ωα are

ωα =

⎧⎪⎨
⎪⎩

4
9 , α = 0,
1
9 , α = 1 − 4,
1

36 , α = 5 − 8. (7)

The lattice speed c is given by c = δx
δt , where δx is the lattice size and δt is the time step. c2

s = c2

3
is the lattice sound speed.

In the immersed boundary method, the particle boundary is discretized into small elements by
many Lagrange points. The boundary force on a Lagrange point, e.g., xb, can be calculated by

F(xb, t ) = 2ρ
Ud − unoF(x, t + δt )

δt
, (8)

where Ud and unoF are the desired velocity and the unforced velocity at the point at t + δt . The
velocity Ud at the Lagrange point xb is

Ud = U p + ωp · r, (9)

where U p and ωp are the translational velocity and angular velocity of the particle, respectively. r
is the vector from the particle center to the Lagrange point. unoF is interpolated from neighboring
Eulerian points, i.e.,

unoF = D(xi, j − xb)u, (10)

where xi, j denotes the Eulerian points surrounding the Lagrange point xb. D() represents a discrete
δ function,

D(xi, j − xb) = 1

(δx)2
dδx

(
xi − xb

δx

)
dδx

(
y j − yb

δx

)
, (11)

with

dδx(r) =

⎧⎪⎨
⎪⎩

1
8 (3 − 2r + √

1 + 4r − 4r2), 0 � r < 1,

1
8 (5 − 2r + √−7 + 12r − 4r2), 1 � r < 2,

0, r � 2.

(12)

The force density on an Eulerian node can be calculated by

F(xi, j, t ) =
∑

xb

D(xi, j − xb)F(xb, t )�Sb, (13)

where �Sb is the boundary segment length including Lagrange point xb.
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The total hydrodynamic force (Fh) and torque (Torh) acting on the particle are

Fh = −
∑

xb

F(xb, t )�Sb + M f
dUp

dt
, (14a)

Torh = −
∑

xb

r × F(xb, t )�Sb + I f
dωp

dt
, (14b)

where M f and I f are the mass and inertia moment of the fluid occupied by the particle representing
the added mass effect, which should be considered for a moving body [31].

In numerical simulations, when two particles are very close to each other or a particle is close to
a wall, a short-range repulsive force, such as the spring force model [33] and the lubrication force
model [34], should be introduced to prevent overlapping. Here, the lubrication force is not used and
only the repulsive spring force is included, and the repulsive force is [33]

FR =
{

0 if |xs| > s,
C
εw

( |xs|−s
s

) xs
|xs| if |xs| < s,

(15)

where s is the threshold distance, εw is the stiffness parameter, C is the relative force scale, and xs

denotes the vector between the two nearest points on two particles or between the particle and the
wall. The torque acting on the particle due to the repulsive force is

TorR = r × FR, (16)

where r is the vector from the particle center to the point on the particle surface at which the repulsive
force is imposed.

The total force and torque acting on the particle are

F p = Fh + FR, (17a)

Torp = Torh + TorR. (17b)

The translational and rotational motions of the particle are controlled by Newton’s law,

Mp
dU p

dt
= F p, (18a)

Ip
dωp

dt
= Torp, (18b)

where Mp and Ip are the mass and inertia moment of the particle, respectively. After the total force
and torque acting on the particles are calculated, the particle translational velocity U p, position X ,
angular velocity ωp, and angular θ are updated as

U p(t + δt ) = U p(t ) + F p

Mp
δt, (19a)

X (t + δt ) = X (t ) + 1

2
[U p(t + δt ) + U p(t )]δt, (19b)

ωp(t + δt ) = ωp(t ) + Torp

Ip
δt, (19c)

θ (t + δt ) = θ (t ) + 1

2
[ωp(t + δt ) + ωp(t )]δt . (19d)
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B. Formulation of rheological parameters

In our study, the bulk stress of a suspension is calculated through Batchelor’s formula-
tion [19,20,35]. The volume-averaged stress in a statistically homogeneous suspension is

� = 1

V

∫
Vf

−pI dV + μ(∇U + ∇UT ) + �p, (20)

where p is the isotropic pressure and ∇U is the average velocity gradient in the fluid. �p denotes
the particle contribution to the bulk stress, and it is given by

�p = 1

V

N∑
n=1

∫
Vp

σ dV − 1

V

∫
V

(ρu′u′)dV, (21)

where Vp is the particle volume, σ is the stress, and u′ is the fluctuating velocity. The first term of
Eq. (21) can be decomposed into two parts,∫

Vp

σ dV =
∫

Ap

1

2
(xσ · n + σ · nx)dA −

∫
Vp

1

2
(ax + xa)dV , (22)

where n is the outward vector normal to the particle surface, x is the displacement vector measured
from the center of mass of the particle, and a is the particle acceleration. a is calculated as a =
ap + αp × r + ωp × ωp × r, where ap is the linear acceleration of the center of mass, and αp and ωp

are the angular acceleration and angular velocity, respectively. Finally, the particle stress is given by

�p = 1

V

N∑
n=1

S −
N∑

n=1

P − R, (23)

where S is the surface stress called the “stresslet” [6], P is the particle acceleration stress due to
particle acceleration, and R is the Reynolds stress, which originates from the velocity fluctuations
due to the presence of particles. These components are calculated as

S =
∫

Ap

1

2
(xσ · n + σ · nx)dA, (24a)

P =
∫

Vp

1

2
(ax + xa)dV , (24b)

R = 1

V

∫
V

(ρu′u′)dV. (24c)

It should be pointed out that the calculation of S contains both the hydrodynamic force and the
repulsive force.

From the above formulas, the rheological properties can be calculated. The relative viscosity ηr

and the first normal stress difference N1 are defined as

ηr = 1 +
〈
�

p
xy

〉
μγ̇

, (25)

N1 = 〈
�p

xx

〉 − 〈
�p

yy

〉
, (26)

where 〈〉 denotes the time-averaged quantity. In the following, N1 is normalized by μγ̇ .
The relative viscosity can also be calculated directly from the wall shear stress (WSS):

ηr = σ̄

μγ̇
, (27)
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U
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H
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FIG. 1. Schematic diagram for elliptical particles in Couette flows. In our study, all 2D elliptical particles
with different Ar have an identical area, i.e., the effective radii of all particles are identical.

where σ̄ is the average shear stress and is obtained through averaging the shear stress acting on the
moving flat walls over time.

C. Problem

We investigate cases of suspensions containing only one particle and multiple particles. The
schematic diagram is shown in Fig. 1. There are upper and lower walls moving in opposite directions
with velocity U and −U , respectively. For the elliptical particles, a and b are the length of semilong
and semishort axes, respectively. re = √

ab is the effective radius of the elliptical particle. In all of
the cases that we studied, re is identical. W and H are the length and width of the computational
domain, respectively. γ̇ = 2U

H is the shear rate and μ is the viscosity of the fluid. ρ and ρp are
densities of fluid and particles, respectively. Since only neutrally buoyant cases are considered, we
have ρp = ρ.

In our study, the following key parameters are defined. The confinement ratio (β) due to the
presence of walls is

β = H

2re
. (28)

The aspect ratio (Ar) of the particle is

Ar = a

b
. (29)

The Reynolds number (Re) is defined as

Re = ργ̇ r2
e

μ
. (30)

The particle concentration is defined as

φ = Nπab

HW
, (31)

where N is the total number of particles.
The grid independence and time-step independence studies are performed. The results are shown

in Fig. 2. In the simulated cases, the elliptical particle rotates in the shear flow with Re = 1, β = 11.
First, dilute suspensions with only one particle are studied, as shown in Figs. 2(a) and 2(b). The
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FIG. 2. Grid (a) and time-step (b) independence studies for dilute suspension containing only one particle
with Ar = 2, Re = 1. (c) Grid independence studies for particles with different aspect ratios. For cases in
(a), (c), a sufficiently small time step δt = 0.000 25 1

γ̇
is adopted and fixed. For cases in (b), a sufficient spatial

resolution δx = 1
14 re is adopted and fixed. In all cases, we keep a fixed Re by changing μ. (d) Grid independence

study for dense cases. The average viscosity as a function of φ for Ar = 2 with different spatial resolution. Here
Re = 1 and δt = 0.000 25 1

γ̇
are fixed.

average ηr for δx/re = 1/14 is only 4.4% higher than that of δx/re = 1/21. Hence δx/re = 1/14
seems sufficient to achieve accurate results. For time-step independence, δx/re = 1/14 is fixed and
different δt γ̇ ’s are used. It is seen that little difference is observed. Further grid independence for
different Ar’s is shown in Fig. 2(c), and δx/re = 1/14 seems sufficient to achieve accurate results.
Next, suspensions containing multiple particles are considered. Figure 2(d) shows the average
relative viscosity as a function of φ. δx/re = 1/14 is also sufficient for dense suspensions considered
in the paper.

Hence, in all cases, δx/re = 1/14 and δt γ̇ = 0.0005 are adopted for Re = 1, and δt γ̇ = 0.0001
is used for cases with Re = 0.05.

To quantify the overall orientation of suspended particles, an orientational order parameter (Txx)
relative to the X -axis is defined as [36]

Txx = 3
2 nxnx − 1

2 , (32)

where nx designates the X component of the unit vector along the particle symmetry axis. Txx = 0,
1.0, and −0.5 represent random dispersion, perfect alignment of particles with the X -axis, and
alignment in the plane perpendicular to the X -axis, respectively.
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FIG. 3. (a) Orientation and angular velocity of an elliptical particle in Couette flow. The solid and dashed
lines represent the simulation result at Re = 0.08 and Jeffery’s analytical solution at Re = 0, respectively.
(b) Relative viscosity as a function of particle concentration of circular particles. (c) The rate of change of the
orientation of an elliptic particle ω at Re = 15, 28, and 30. (d) The period of the motion of the ellipse increases
to infinity as Re goes to the critical value.

In all simulations, the width of the computational domain W = 44re is fixed. Periodic boundaries
are imposed at the left and right side boundaries, and the half-way bounce-back scheme is used to
deal with the no-slip conditions at the upper and lower moving walls. Initially, the particles are
randomly distributed in the flow. From the evolution of ηr of the suspension, we observed that in
most cases, after γ̇ t > 50, it is converged. All simulations are generally terminated at γ̇ t = 500,
which is sufficient to ensure convergence, and relevant properties are usually obtained after they are
well-converged.

III. VALIDATION

Three tests are performed to validate our computational code. The first is an elliptical particle
with Ar = 2 rotating in shear flow. In the simulation, the key parameters are a = 10lu, γ̇ =
0.0005ts−1, Re = 0.08, W = 12a, and H = 10a. Here lu and ts are the lattice units. a = 10lu
means a is discretized by 10 grids and γ̇ = 0.0005ts−1 means 1/γ̇ is discretized into 1/0.0005 =
2000 steps. The orientation angle (θ ) of the particle is defined as the angle between its long axis
and the X -axis. The orientation angle and angular velocity (ωp) as functions of time are shown in
Fig. 3(a). It is seen that our results are consistent with Jeffery’s analytical solution [5].
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FIG. 4. The intrinsic viscosity [η] and orientational order parameter Txx as functions of Ar with different
β’s. The solid and hollow symbols correspond to the values of [η] and Txx , respectively. The vertical dashed
lines are drawn to denote the critical Ar, i.e., Arc, specifically Arc ≈ 8.6, 8.4, 7.8, and 7.7 for β = 7, 11, 16,
and 20, respectively. For these cases, Re = 0.1 is fixed.

The second case is multiple circular particles moving in the shear flow. In the simulation, a =
20lu, γ̇ = 0.000 025ts−1, and Re = 0.02. The relative viscosity of the suspensions is shown in
Fig. 3(b). Our results are consistent with those of the analytical Krieger-Dougherty model [8] and
those in [34]. It is noted that the results obtained from bulk stress based on Batchelor’s formulation
are lower than those based on the wall shear stress at high particle concentration. This point has also
been observed in Ref. [22].

We further perform simulation of an elliptical particle with Ar = 2 rotating in the shear flow. In
these simulations, W = 40a, H = 10a, γ̇ = 0.0002, a = 12lu. The Reynolds number is Red =
4ργ̇ a2/μ. Figures 3(c) and 3(d) show the results. From Fig. 3(c) we can see that as Re increases,
e.g., from Re = 15 to 28, the rotational period (γ̇ T ) increases. When Re = 30, the rotation-induced
arrest occurs. Figure 3(d) shows the variation trend of period. As Red goes to the critical value,
which is approximately 29, the period increases to infinity. Therefore, our results agree well with
those in Ref. [30].

IV. RESULTS AND DISCUSSION

A. Dilute suspension with one particle

First dilute suspensions with one particle were investigated. One particle in a periodic com-
putational domain has been widely used to study the orientation dynamics and rheology of
particles [19,23–25].

First, cases with different confinement ratio β with Re = 0.1 are examined. Figure 4 shows the
intrinsic viscosity [η] = (ηr − 1)/φ and Txx as functions of Ar. For different β, the intrinsic viscosity
exhibits a similar variation with Ar, and the variation of ηr is highly related to Txx. As shown in
Fig. 4, the position of the critical aspect ratio is the same for both [η] and Txx. With the increase of
β, the convergence is clearly observed and β = 16 is close to the domain-size independent case. In
the following, β = 16 is fixed and parameter ranges Ar ∈ [1, 14], Re ∈ [0.05, 1].
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FIG. 5. (a) Time-averaged angular velocity ωp of a particle as a function of aspect ratio Ar for different Re.
(b) Orientational order parameter (Txx) as a function of Ar for different Re. (c) Critical Reynolds number Rec

as a function of Ar. β = 16 is fixed.

1. Rotation motion of the particle

We first investigate the rotation state of an elliptical particle in a wall-bounded Couette flow. An
elliptical particle or ellipsoid can change from a time-periodic to a steady state due to the inertia
effect, and this was identified by Aidun et al. [30] for the first time. Figure 5(a) shows the time-
averaged angular velocity ωp. For a specific Re, ωp decreases with the increase of Ar, and rotation
arrest (ωp = 0) occurs at a critical aspect ratio Arc. With the increase of Re, the critical aspect ratio
decreases, e.g., Arc ≈ 8 for Re = 0.1 and Arc ≈ 6 for Re = 0.2.

On the other hand, for a particle with a specific Ar, rotation arrest occurs at a critical aspect
ratio Rec. Figure 5(c) shows the critical Reynolds number Rec as a function of Ar, and a decrease
of Rec is observed with the increase of Ar. The results are consistent with the previous studies,
including 3D simulations and analytical study. Rosen et al. [25] show that a neutrally buoyant prolate
spheroid with Ar = 2 stops rotating at Rec ≈ 59.4, while it stops at Rec ≈ 5.58 for Ar = 4. Using a
generalization of reciprocal theorem, Subramanian and Koch [15] show that the fiber ceases to rotate
above a critical Reynolds number Rec, and Rec turns out to be O(ln(Ar)/Ar), i.e., Rec decreases with
the increase of Ar.

Figure 5(b) shows the orientational order parameter Txx as a function of Ar for different Re. Txx

first increases with the increase of Ar. A higher value of Txx means particles align more with the
flow direction, i.e., a lower angle between the particle major axis and the flow direction. That can
be understood in the following way. For an elliptical particle rotating in shear flows, the angular
velocity reaches its peak and valley when the particle is normal and aligned to the flow (the X -
axis), respectively. However, the peak and valley periods are different. Usually the valley period is
significantly longer than the peak period [see Fig. 3(a)]. Generally speaking, during one rotating
period, the valley period of a slender rodlike particle (higher Ar) is much longer. Therefore overall,
the slender rodlike particle seems more aligned with the flow. In other words, Txx would increase
with Ar and be closer to unity.

When Ar > Arc, the particle’s motion mode changes from tumbling to a steady inclined state,
and decreases of Txx are observed with increasing Ar. Under this circumstance, the orientation angle
between the particle long axis and the flow direction increases with the increase of Ar. Hence the
particle becomes less aligned with the flow, and Txx decreases with increasing Ar in this stage.

2. Rheological properties

Next, we investigate the rheological properties of dilute suspension with one particle, and we
discuss the relation between the rheology and the particle rotational motion.

Figure 6(a) shows the relative viscosity as a function of Ar for different Re. The reverse variation
is observed when compared to Txx, as shown in Fig. 5(b). In the first stage, the particles rotate
in the flow and ηr decreases with the increase of Ar. In the second stage, particle rotation arrest
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FIG. 6. The relative viscosity as a function of (a) Ar and (b) Txx for different Reynolds number. The black
arrows denote the direction of increasing Ar. β = 16 is fixed.

occurs and ηr increases with Ar. The transition of ηr is highly correlated to the particle’s rotational
motion. Figure 6(b) shows ηr as a function of Txx. Minimum viscosity is observed corresponding to
maximum Txx (maximum particle alignment) for all Reynolds numbers considered here.

Here we can explain the results in Fig. 6 in the following way. In the first stage, with the increase
of Ar, the particle becomes more aligned with the flow, and disturbance on the flow due to the
presence of the particle is weaker. Hence ηr decreases slightly. In the second stage, particles remain
stationary and inclined in the flow. With the increase of Ar, the particle becomes less aligned with the
flow, i.e., Txx decreases, and due to the increased disturbance, ηr increases. However, the increase
in viscosity does not necessarily require the alignment to decrease. With the increase of Ar, the
Reynolds number based on the particle’s major axis increases, and this can lead to an increase
of viscosity known as shear thickening. As shown in Fig. 6(b), a stronger increase of viscosity
for higher Re is observed, and for Re = 1, the alignment curve becomes nearly vertical, i.e., the
viscosity continues to increase with Ar, though Txx is almost constant.

Further, the contributions of stresslet (S), particle acceleration (P), and Reynolds stress (R) in the
rheology are analyzed. Figure 7 shows the contributions of S, P, and R in the rheology at different
Re. For lower Reynolds number (Re = 0.05), the inertial effect is negligible. The contribution of
S is dominant for both ηr and N1. The values of P and R are nearly zero and can be neglected.
In addition, a negative to positive change is observed for N1 with the increase of Ar. For higher
Reynolds number (Re = 1), the inertial effect is apparent for both ηr and N1. The contribution of R
in ηr is small, but the value of R increases with the increase of Ar. For N1, the contributions of both
S and R are important and increase with the increase of Ar. For both Reynolds numbers considered
here, the contribution of P in rheology is negligible.

B. Microstructure and rheological properties of dense suspensions

In this section, the microstructure and rheological properties of dense suspensions with many
particles are investigated. Here β = 11 is fixed, and the effects of Ar, Re, and φ are discussed in
detail. In this section, parameter ranges Ar ∈ [1, 8], Re ∈ [0.05, 1], and φ ∈ [0.1, 0.4].

1. Particle distribution

First the cases of Ar = 1, 2, and 8 are considered. Figure 8 shows instantaneous particle
distributions and contours of x-component velocity at φ = 0.4. For circular particles (Ar = 1), there
are layers of particles close to the channel walls [see Fig. 8(a)]. In cases with higher Re and Ar,
particles’ distribution becomes more homogeneous. Figures 8(c), 8(f) and 8(i) show the average Ux
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FIG. 7. Relative viscosity (a), (c) and first normal stress difference (b), (d) as functions of Ar for Re = 0.05
[(a) and (b)] and Re = 1 [(c) and (d)]. The corresponding contributions of stresslet (S), particle acceleration
(P), and Reynolds stress (R) are shown as well. β = 16 is fixed.

along the Y -axis. It is seen that in the cases with higher Re or Ar, the discrepancies between the
actual velocity profile and that without particles are more significant. That partially demonstrates
the stronger disturbance of the particles to the fluid.

To quantitatively describe the spatial distribution of the particles, the local particle concentration
(φy) is adopted [10],

φy = 1

W

〈∫
χ (x)dx

〉
, (33)

where 〈·〉 represents the time average and χ (x) is an indicator function. χ (x) is defined as

χ (x) =
{

1, x = xs,

0, x = x f ,
(34)

where xs and x f represent the location x inside and outside of particles.
Figures 9(a)–9(c) shows the profiles of the local particle concentration (φy) for different φ at

Re = 0.05 and 1. Due to the symmetry of the system, only half of the channel is considered. It
is seen that generally, the particles are evenly distributed in the central region but become fewer
and fewer in the region close to the wall. However, for circular particles, in the very dense case at
low Re, e.g., φ = 40% at Re = 0.05, φy may increase dramatically in the region close to the wall
[see Fig. 9(a)]. There is a local peak near the wall region, and particle layering is observed. That
is consistent with what we have seen in Fig. 8(a). It is noted that the structured particle layering in
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FIG. 8. The instantaneous particle distributions and contours of x-component velocity (Ux) for (a), (d), (g)
the cases of Re = 0.05, and (b), (e), (h) the cases of Re = 1. The upper, middle, and lower rows correspond
to cases of Ar = 1, 2, and 8, respectively. (c), (f), (i) Time-averaged Ux along the Y -axis. The black solid line
represents the undisturbed shear flow without particles. In these cases, β = 11 and φ = 0.4 are fixed.

wall-bounded suspensions has been reported in the earlier simulations [10,22] and experiments [12]
of spherical particle suspensions.

Shear-induced diffusion caused by hydrodynamic particle-particle interaction plays a key role in
the dynamic behavior of non-Brownian suspensions at the limit of negligible inertia [29,37]. Due
to the shear-induced diffusion, particles can move apart from their original streamlines and toward
the boundary wall. Near a flat wall, a balance between the wall repulsive force and particle-particle
interaction force causes the particles to move along the flow direction, and they are trapped near the
wall. Hence particle layering is observed. For the elliptical particles, the particle layering is weak for
both Re = 0.05 and 1. This may be caused by particle rotation. As an elliptical particle rotates near
the wall, the direction of the particle-wall force changes with time. Hence for elliptical particles, it
is difficult to move along the streamline near the wall even at a small Re.

In Figs. 9(a)–9(c), we can also see that regardless of φ and Ar, the spatial distribution of particles
is more biased toward the centerline at the higher Re. The concentrated profile is governed by a
competition between inertial migration and shear-induced diffusion. The inertial migration would
cause a single particle, certainly a sphere, to move towards the centerline in plane Couette flow,
while the shear-induced diffusion causes the particles to move apart from their original streamlines.
At higher Re, inertial migration is dominated and particles tend to concentrate close to the centerline.

Figure 9(d) shows Txx as a function of φ. For small Ar (Ar = 2), Txx increases with the increase
of φ, i.e., particles align more in the flow direction for higher particle concentration. For large Ar
(Ar = 5, 8), a small variation of Txx is observed for different φ. The saturation of Txx for large Ar
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FIG. 9. The concentration profiles (particle distributions) in the cases of (a) Ar = 1, (b) Ar = 2, and
(c) Ar = 8 with different φ at Re = 0.05 and 1. The solid lines and dashed lines correspond to Re = 0.05
and 1, respectively. (d) Txx as a function of φ for different Re and Ar.

can be understood in the following way. For an elliptical particle rotating in shear flows, the angular
velocity reaches its peak and valley when the particle is normal and aligned to the flow, respectively.
However, the peak and valley period is different. Usually, the valley period is significantly longer
than the peak period. Hence particles align to the flow with a higher probability than normal to the
flow. When multiple particles are considered, the constraint of the near particle causes a particle
to keep its orientation. Thus a longer valley period can be observed with the increase of φ. So the
valley period is dominant gradually with the increase of φ.

For Ar = 2, at low φ, both the peak and valley period contribute to the value of Txx. With
increasing φ, the valley period contributes more, so Txx increases with φ. However, for high Ar,
e.g., Ar = 8, the value of Txx mainly depends on the valley period even at the low φ. So a very small
change of Txx is observed with φ for high Ar, i.e., the values of Txx seem to reach saturation.

2. Rheological properties

In this section, the rheological properties will be discussed in detail. Figure 10(a) shows ηr as a
function of φ for different Ar and Re. It is seen that ηr increases with the increase of φ for different
Ar. In addition, ηr increases with Re, i.e., shear thickening with Re is observed. The thickening is
more significant as φ increases. The results are consistent with the results of circular and spherical
particle suspension simulations [22,29].

Another key rheological property, the first normal stress difference will also be discussed.
Figure 10(b) shows N1 as a function of φ for the cases with different Ar at Re = 0.05 and 1. At
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FIG. 10. The relative viscosity (a) and first normal stress difference (b) as functions of φ for different Ar
and Re.

finite Re, theoretical studies have shown that N1 of spherical particle suspensions is negative, and
the second normal stress difference is positive in the limit of φ → 0 and Re 
 1 [13,14]. In this
study, Fig. 10(b) shows that for a circular particle suspension, N1 is negative in the range of φ and
Re considered here, and |N1| increases with φ and Re. That is consistent with the numerical results
of sphere suspensions [20,22].

For cases of Ar = 2, the situation is similar to that of Ar = 1. However, for Ar = 8, N1 is positive
and negative for Re = 0.05 and 1, respectively. This is due to the contribution of the positive stresslet
in N1 [11], and details will be explained in the later in the paper.

Next, we would like to focus on the Ar effect on ηr and N1. The cases with different Ar but
identical φ = 0.3 are simulated. The results including Txx are presented in Fig. 11. For both Re =
0.05 and 1, with the increase of Ar, ηr first decreases and then increases, i.e., there is a valley in the
curve. For the overall orientation of the particles, Txx increases with Ar and becomes closer to unity.
In other words, the particles are more aligned with the flow as Ar increases. But when the aspect
ratio is greater than a threshold Art , Txx remains almost unchanged. Here Art ≈ 4 for Re = 0.05 and
Art ≈ 3 for Re = 1. It seems that the particle alignment is limited by the particle-particle interaction
for Ar > Art . Besides, at a higher Re, particle-particle interaction becomes stronger so lower Art is
observed.

When the particles are more aligned with the flow, particle-flow interaction or the particle distur-
bance on the flow is weak. Therefore, ηr would decrease first. When Ar > Art , even Txx is almost
a constant, but more slender particles (higher Ar) have stronger particle-particle interactions [19],
which increases ηr . The inertial effect on ηr can be seen from a comparison between Figs. 11(a)
and 11(c). At a specific Ar, ηr at Re = 1 seems significantly larger than that at Re = 0.05, especially
when Ar is large. Generally, the inertia enhances the particles’ disturbance on the flow [see also
Figs. 8(c), 8(f) and 8(i)].

The first normal stress N1 increases with Ar monotonously from negative to positive values at
low Re. At high Re, N1 is always negative and it decreases with Ar slightly. This can be understood
through the contribution of different stress mechanisms defined in Eq. (23).

As shown in Fig. 11, the contribution of S on ηr is dominant while those of the P and R terms
are negligible for all cases of Re = 0.05 and 1. For N1, at Re = 0.05, from Fig. 11(b) we can see
that the contribution of S is dominant and the contribution of P can be neglected. When Ar is small,
the contribution of R is also negligible, but with the increase of Ar, R increases monotonously and it
begins to contribute to N1. At Re = 1, Fig. 11(d) shows that the contribution of R is more prominent
than that of S, and the contribution of P can be neglected. Meanwhile, the contribution of S may be
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FIG. 11. (a), (c) Relative viscosity and (b), (d) first normal stress difference as functions of Ar at (a),
(b) Re = 0.05 and (c), (d) Re = 1. The corresponding contributions of stresslet (S), particle acceleration (P),
and Reynolds stress (R) are shown as well. The values of Txx (blue solid lines) in (a) and (c) are labeled on the
right-hand side of the figure. In these cases, φ = 0.3 is fixed.

negative (Ar < 3) or positive (Ar > 3). It is noted that a positive R leads to a negative N1 [Eq. (23)].
Hence, N1 at Re = 1 is generally negative.

Here we can explain the results of N1 for different Ar in Fig. 10(b). For Re = 0.05, the value of
N1 depends on the contribution stresslet. For Ar = 1 and 2, the contribution of S in N1 is positive,
and for Ar = 8, a negative contribution of S is observed as shown in Fig. 11(b). Hence positive N1

is observed for Ar = 8 in Fig. 10(b). For Re = 1, the negative N1 for Ar = 1 and 2 is the result of
negative S and positive R, while for Ar = 8 the negative N1 is caused by the large positive value
of R.

3. Statistics of velocity fluctuations

One small suspended particle in shear flow may move with the flow almost without disturbance.
However, many particles’ migration in suspensions would significantly depart from the streamline
due to the particle-particle interaction [22]. To have a better understanding of particle suspension,
the statistical physics of particle fluctuation is presented. In the following, the probability density
function (PDF) of linear lateral velocity (Uy) and angular velocity (ωp) is analyzed. Here particles
near the wall are not considered to minimize wall effects. γ̇ H/2 and γ̇ are used to normalize Uy and
ωp, respectively.

Figures 12 and 13 show the PDF for Uy and ωp for different φ, Re, and Ar, respectively. For
sphere suspensions, the PDF of velocity fits a general form [22,38]

P ∝ exp[−c|U |d ], (35)
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FIG. 12. The probability density function of Uy at Re = 0.05 for different φ for (a) Ar = 1, (b) Ar = 2,
and (c) Ar = 8. (d) PDF(Uy )’s for different Ar and Re in the cases of φ = 0.4.

where c is a fitting parameter. d = 1 and 2 correspond to exponential and Gaussian distributions,
respectively. Generally, an exponential distribution qualitatively describes dilute cases well, and a
Gaussian distribution works well for dense cases. Meanwhile, an intermediate d between 1 and
2 represents a transition from an exponential distribution to a Gaussian distribution when φ is
moderate. In Fig. 12(a), the fitting results for φ = 0.1 with an exponential distribution and φ = 0.4
with a Gaussian distribution seem quite perfect. Our results also show that with the increase of φ,
the width of the PDF increases and the peak value decreases for all Ar simulated here.

With the increase of Ar, the peak values increase and the width decreases. As Ar increases,
particles become more aligned with the flow direction, which limits the lateral movement, therefore
Uy = 0 has a higher probability to appear. For the inertial effect, from Fig. 12(d), we can see that
when Ar = 2, the PDF peaks of Re = 1 are higher than those of Re = 0.05. However, for Ar = 8,
the situation is different. The PDF peaks of Re = 1 are lower than those of Re = 0.05 because the
particles are slightly less aligned with the flow direction at Re = 1 [a smaller Txx; see Figs. 11(a)
and 11(c)].

We would like to further discuss the PDF of ωp. As shown in Fig. 13, for Ar = 1, the PDFs of
ωp are not so symmetric, especially at lower φ, e.g., φ = 0.1 and the peaks appear at ωp ≈ 0.5γ̇ .
With the increase of φ, the peak value decreases and the width of the PDF increases. The average
ωp increases with φ. For Ar = 2, the situation is similar to that of Ar = 1 but the curves become
flatter and the peak values appear at a smaller ωp. For Ar = 8, the distribution looks very symmetric
and the peaks appear at ωp ≈ 0. With the increase of φ, the corresponding peak value decreases.
For the inertial effect, Fig. 13(d) shows the PDFs of ωp at Re = 1 and 0.05 for cases with φ = 0.4.
For Ar = 1 and 2, the peak value appears at a lower ωp at higher Re. For Ar = 8, the peak value
decreases slightly with the increase of Re.
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FIG. 13. The probability density function of ωp at Re = 0.05 for different φ for (a) Ar = 1, (b) Ar = 2,
and (c) Ar = 8. (d) PDFs of ωp for different Ar and Re in the cases of φ = 0.4.

V. CONCLUSION AND FUTURE WORK

In this work, we studied the microstructure and rheological properties of neutrally buoyant
elliptical particles in Couette flow using the immersed boundary lattice Boltzmann method. The
effects of particle aspect ratio (Ar), fluid inertia (Re), and particle concentration φ on the rheological
properties of dilute and dense suspensions are investigated in detail.

For suspensions containing only one single particle, the effects of Re and Ar on the particle
rotational motion and the rheological properties are investigated. For any finite Re considered in
the paper, particle rotates periodically in the shear flow for Ar < Arc. The critical aspect ratio
Arc decreases with the increase of Re. Particles with Ar > Arc cease to rotate and keep in a
steady-inclined state. Corresponding to the rotational state, the orientational order parameter Txx

increases with the increase of Ar and then decreases with Ar when rotation arrest occurs. Particles
with higher values of Txx align more in the flow direction. Hence with the increase of Ar, the
particles are more aligned with the flow for Ar < Arc and less aligned with the flow for Ar > Arc.
Meanwhile, the variation of the particle rotational motion from tumbling to a steady state induces
a nonmonotonic variation of viscosity. The viscosity correlates with the particle alignment and the
minimum viscosity corresponding to the maximum alignment. Our results show that the change
of particle rotational motion and viscosity for any finite Re considered here is similar, i.e., for
any Re, an elliptical particle ceases to rotate at a critical aspect ratio Arc and induces a non-
monotonic variation of viscosity. The value of Arc depends on Re and decreases with the increase
of Re.
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For suspensions containing multiple particles, the effects of particle aspect ratio and Re on the
particle distribution and particle orientation are investigated. At low Re, circular particles (Ar = 1)
accumulate near the wall, and wall-induced particle layering is observed. However, the particle
distribution is more biased toward the midplane due to the inertial migration at high Re. For elliptical
particles, particle layering is not observed. With a specific particle concentration, e.g., φ = 0.3, Txx

increases with Ar and Txx remains almost unchanged when the aspect ratio is greater than a threshold
Ar > Art . The value of the threshold Art is smaller for higher Re. With the increase of Ar, the
relative viscosity first decreases due to particle alignment but increases due to high particle-particle
interaction.

The contributions of stresslet, particle acceleration stress, and Reynolds stress [6] on ηr and N1

are analyzed. The contribution of stresslet is dominant, and those of particle acceleration stress and
Reynolds stress in ηr are negligible for different Ar, φ, and Re considered here. As for N1, a negative
to positive change of stresslet contribution is observed with the increase of Ar. Besides the major
contribution of stresslet, the Reynolds stress also contributes significantly to N1 and becomes more
important in cases with higher Ar and Re.

We also investigated the microstructure and the particle velocity fluctuations statistically. For
circular particles (Ar = 1) at Re = 0.05, structured particle layering is dominant in the wall region,
and homogeneous structure is observed near the center of the channel. With the increase of Re, the
concentration of circular particles near the wall decreases. However, for elliptical particles, there
is no structured particle layering near the wall, and the suspensions become more homogeneous
for higher Ar. Similar to the sphere suspensions [22,38], PDF(Uy) of particles with different Ar
all exhibit exponential distributions in dilute cases and Gaussian distributions in dense cases. The
distribution of the angular velocity of particles was also obtained. For circular particles (Ar = 1),
the average values of ωp are roughly equivalent to 0.5γ̇ , and ωp for higher Ar is lower.

Our studies provide the fundamental knowledge of elliptical particle suspensions in Couette
flow. However, our study is limited to elliptic particles, which can only tumble (including rotation
arrest) in two dimensions. In three dimensions, spheroids can spin, tumble, or precess. The subtle
nature of the rheology may arise from a tumbling-spinning transition that occurs for thin oblate
spheroids [16], and there cannot be an analog of this in two dimensions. Anyway, tumbling is a
very common motion mode for 3D spheroidal particles in shear flows. Qualitative results of 2D
simulations obtained here are a stepping stone to investigate 3D spheroid suspensions in Couette
flow. To gain a better understanding of the nonspherical suspensions, we plan to perform 3D
simulations of both prolate and oblate particle suspensions in the near future.
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