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ABSTRACT

The behavior of a three-dimensional, non-Brownian flexible filament in a low Reynolds number shear flow was investigated through theoreti-
cal and numerical analyses. In the phase plane with Reynolds number Re 2 ½0:03; 8� and flow intensity Z 2 ½800; 35 000�, four primary
motion modes of the filament were identified: rigid, C-buckling, U-turn, and S-turn. By employing the principle of symmetry, a theoretical
model was developed to explain the S-turn mode, and we discovered that the critical flow strength for the transition from U-turn to S-turn
was approximately Zc ¼ 4900. Our numerical simulations confirmed this transition value. In a system devoid of thermal fluctuations, it was
observed that the mode transitions of microscale filament precisely corresponded to the abrupt scale rate changes in the non-Newtonian
behavior of the macroscopic solution. Although the polymer stress under different modes has distinct underlying causes, they can all be pre-
dicted by the generalized Hooke’s law.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0230485

I. INTRODUCTION

Interaction between slender bodies and fluids is a common occur-
rence in nature. Bearded cats and catfish use their whiskers to detect
small perturbations.1 Flagella are used by bacteria and sperm for move-
ment in viscous flow,2 while the cytoskeleton controls the position of
subcellular structures, such as nuclei, chromosomes, and organelles, in
eukaryotic cells.3 The helix and folding of DNA are subject to thermal
fluctuations,4 and cellulose filaments collide and join due to fluid driv-
ing forces.5 Despite the simple appearance of filaments, they exhibit a
wealth of physical phenomena. This is attributed to the larger spatial
scale of flexible filaments in one direction, leading to many degrees of
freedom for deformation and the possibility of unstable buckling with
a characteristic time much smaller than that of tumbling and migra-
tion. Hence, the multi-scale effects in both space and time make it a
fascinating field to investigate.

The dynamics of a rigid filament immersed in a shear flow has
been extensively studied. Jeffery6 investigated the behavior of rigid
ellipsoidal particles and demonstrated that, in a shear flow, these
particles undergo continuous tumbling along a Jeffery orbit without
decay. Cox7 proposed an empirical formula of equivalent aspect
ratio re ¼ 1:24rp=

ffiffiffiffiffiffiffiffiffiffi
ln rp

p
to extend Jeffery’s orbit to cylinders, e.g.,

filaments, where rp is the aspect ratio of the filament (the ratio of
length to diameter). In the presence of inertial forces, the filament
drifts toward the shearing plane at the rate of OðReÞ when the

Reynolds number (Re) is small.8 When Re is above a critical value,
i.e., Rec, the filament stops tumbling completely.9 At a finite Re and
Re < Rec, the rotation period is proportional to ðRec � ReÞ�1=2.10

The above conclusion is quantitatively applicable to the cases of flex-
ible filaments.11

The deformation of flexible filaments when immersed in a shear
flow is a highly complex phenomenon.12 As reported by Salinas and
Pittman,13 these filaments undergo a series of morphological transi-
tions as the shear rate is increased, as seen in Fig. 5. In an experiment
involving nylon filaments in corn syrup, Forgacs and Mason14

observed C-buckling [Fig. 5(b)]. However, the theoretical prediction of
the critical flow strength differed from the experimental observation by
about a factor of 2. To address this gap between theory and experi-
ment, Becker and Shelley15 used the pseudo-spectral collocation
method and correctly predicted the critical flow strength of
C-buckling. Building on these studies, Harasim et al.16 proposed a the-
oretical model for the U-turn mode [Fig. 5(c)], using the analogy of
comparing flexible filaments with flexible capsules. However, Liu
et al.17 noted that the straight portion of the filament is not always
aligned with the direction of flow but has a specific angle of inclination.
This new insight allowed the researchers to obtain a critical flow
strength for the morphological transition from C-buckling to the
U-turn. As the flow strength increases, the flexible filament undergoes
morphological transition from U-turn to S-turn [Fig. 5(d)], which is
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the primary focus of this paper. Theoretical prediction of this specific
transition is not available in the literature, as far as we know.

The filament suspension may exhibit elastic behavior.18 The
behavior can be quantified through the measurement of normal
stresses. Typically, the first normal stress N1 is assumed to be in the
direction of the flow line and accounts for phenomena such as rod-
climbing and co-extrusion instability.19,20 The second normal stress N2

is taken to be along the vortex line, accounting for phenomena like
negative rod-climbing and bowing of the interface in the Tanner tilted
channel.21 Goto and Nagazono18 studied dilute solutions containing
flexible filaments and experimentally found that if the shear rate
exceeded a critical value, the normal stress underwent an abrupt transi-
tion from zero to positive. Becker and Shelley15 numerically simulated
non-Brownian flexible filaments and showed that this critical shear
rate corresponded exactly to the onset of C-buckling. Chakrabarti
et al.22 investigated the three-dimensional rheological properties of
Brownian filaments and found that the morphological transition from
C-buckling to U-turn corresponds to a change in the scale law of rheo-
logical properties. However, this study does not explicitly establish a
detailed connection between the deformation characteristics of the fila-
ment and the non-rheological properties of the solution.

It was discovered that there is a definite connection between the
tensor nðpÞ of optical anisotropy or birefringence of theta solutions and
the polymer stress tensor RðpÞ

xx .
23 This proportionality nðpÞ ¼ CRðpÞ

xx is
called the stress-optic law,24 where C is a constant that depends on
temperature.25,26 From a reductionist perspective, both the optical
anisotropy and the polymer stress share a common cause, which is the
deformation and orientation of the filament. Once this connection is
established, we will be able to a priori predict the complex non-
Newtonian behavior of macroscopic solutions based solely on knowl-
edge of the microscopic properties of the filaments. In this regard,
previous studies have focused extensively on Gaussian chains, but
there have been relatively few studies on non-Brownian fibers.

In this study, we employ a combined theoretical and numerical
approach to investigate the behavior of non-Brownian filaments in
three-dimensional Couette flow, with a particular focus on analyzing
the microscopic morphological changes from U-turn to S-turn and the
corresponding macroscopic rheological properties. The remaining sec-
tions of the paper are structured as follows: Sec. II describes the physi-
cal problems and numerical method used in our investigation, while
Sec. III presents the theoretical model of the U-turn to S-turn transi-
tion and provides a detailed discussion. Finally, our concluding
remarks are presented in Sec. IV.

II. PHYSICAL PROBLEM AND COMPUTATIONAL MODEL
A. Physical problem

As shown in Fig. 1(a), the dynamics of a flexible non-Brownian
filament immersed in shear flow is controlled by the interplay of iner-
tial, viscous, and elastic forces. The forces can be represented using two
non-dimensional parameters, the Reynolds number (Re), and flow
strength (Z). The Reynolds number is defined by Re ¼ q _cL2=l, which
represents the ratio of inertial force to viscous force in the fluid. Here,
q is the fluid density, _c is the shear rate, L is the length of filament, and
l is the dynamic viscosity. Flow strength, defined as Z ¼ _csr=c, repre-
sents the ratio between the hydrodynamic force generated by viscosity
and the restoring force generated by the elasticity of the filaments. The
characteristic relaxation time of bending deformations sr ¼ 8plL4=B,

where B represents the bending stiffness. The asymptotic geometric
parameter, c ¼ �ln ðe2eÞ, emerges from the local mobility operator,27

where e ¼ d=L is the inverse aspect ratio and d is the diameter of the
filament. In this article, e is fixed to be 1

64.
We investigate flows where the fluid displays nearly incompress-

ible behavior. The governing equations for the flow field are the
Navier–Stokes (N–S) equations,

@u
@t

þr � ðu� uÞ ¼ �rpþ 1
Re

r2uþ f ;

r � u ¼ 0;
(1)

where u is the velocity, p is the pressure, and f is the external volume
force.

In the present work, the solid part is a slender body, which can be
described by the Euler–Bernoulli beam model with large deformation.
The neutrally buoyant filament is described in a Lagrangian coordinate
system and the structure equation is employed,28,29

qf =Af � q

q

 !
@2X
@t2

¼ @

@s

"
S 1� @X

@s
� @X
@s

� ��1=2
 !

@X
@s

� @

@s
B
@2X
@s2

�Ms

� �#
þ Fs; (2)

where X is the position, s the curvilinear coordinate along the filaments
centerline, qf the filament linear density, and Af ¼ 1

4pd
2 the cross sec-

tional area. A very large tensile stiffness of S ¼ 1000 is adopted in
order to approximate axial non-tensile conditions. The bending rigid-
ity B ¼ EI, where E is Young’s modulus and I ¼ Af

d2
16 is the second

moment of area. The fluid force acting on the filament segment is
denoted by Fs and the torque acting on the filament segment is
denoted by Ms. The reason why Eq. (2) can be used to describe a fila-
ment with an finite aspect ratio of 64 is that for all the examples dis-
cussed here, the radius of curvature of the axis of the filament is always
much larger than the radius of the filament. For slender bodies, this
means that even though the overall geometrical deformation is large,
the strain is still small. Such physical problems themselves guarantee
the validity of Eq. (2). The boundary conditions of the filament at both
ends are

1� @X
@s

� @X
@s

� ��1=2

¼ 0;
@2X
@s2

¼ ð0; 0Þ; @3X
@s3

¼ ð0; 0Þ; (3)

FIG. 1. (a) Flexible filaments deform in Couette flow. (b) Perspective view of the fila-
ment. The large red circles represent finite element nodes, the blue solid lines
denote finite element elements, and the yellow spheres indicate ghost points.
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which mean no tension force, no bending moment and no shearing
force, respectively.

The filament is initially placed along the streamline. A small ini-
tial deformation

P10
n¼2 anUn with an ¼ 0:01=ðnþ 1Þ4 and Un

¼ ðs2 � 1=4ÞTnð2=sÞ is applied to the filament, which is similar to
that presented in the work of Becker and Shelley,15 where TnðsÞ is a
Chebyshev polynomial, and the origin of s is located at the midpoint of
the filament. The filament is then automatically aligned with velocity-
gradient plane motion and undergoes deformation within the plane.
The formulations described above are normalized using reference
quantities, such as fluid density q, filament length L, and time _c�1.

B. Numerical method

The incompressible N–S equation is solved by the MRT lattice
Boltzmannmethod.30 The evolution equation is

fi x þ eiDt; t þ Dtð Þ � fiðx; tÞ
¼ �M�1SM fiðx; tÞ � f eqi ðx; tÞ� �

Dt þ FiDt; (4)

where fiðx; tÞ is the distribution function for velocity ei at position x
and time t, Fi is the forcing term, M the transformation matrix, and S
the relaxation matrix. The macroscopic variables can be calculated
from

q ¼
X
i

fi; qu ¼
X
i

eifi þ 1
2
fDt; p ¼ c2sq: (5)

The structure equation is discretized by a nonlinear finite element
method with co-rotational scheme.28 The fluid–solid interaction is
coupled through the immersed boundary method (IBM).31,32 In the
IBM, the fluid force acting on the Lagrangian point, i.e., F, is spread to
surrounding Euler points (fluid nodes) by delta function to make sure
the no-slip boundary condition is satisfied. To assess the torque
exerted by the fluid on the filament, four orthogonal ghost points are
placed around each solid Lagrangian point, as depicted in Fig. 1(b).
The green arrow represents r, which signifies the position vector from
the Lagrangian point to the respective ghost points, and jrj ¼ e=2. The
orange arrow represents F, denoting the forces calculated using the
Immersed Boundary (IB) method at these ghost points. The external
force and torque at the internal finite element ith nodes are given by

Fs
i ¼

X4
j¼1

Fij;

Ms
i ¼

X4
j¼1

rij � Fij on i 6¼ 1; ðiÞmax:

(6)

Subscript i represents the finite element node number, and subscript j
represents the ghost point number. For example, rij refers to the vector
that points from the ith finite element node to its corresponding jth
ghost point. Here, Fij can be calculated by the penalty scheme,33

Fij ¼ a
ðt
0
V f Xij; t

0� �� V s Xij; t
0� �h i

dt0

þ b V f ðXij; tÞ � V sðXij; tÞ
h i

; (7)

where a and b are parameters selected based on previous studies.11

V sðXij; tÞ ¼ @Xi j
@t is the velocity of the filament at the ghost points and

Vf is the fluid velocity at the position Xij obtained by interpolation.
The interpolation function can be written as

V f ðXij; tÞ ¼
ð
X
vðx; tÞdðx � XijÞdx; (8)

where d is the Dirac delta function and the subscript X denotes the
whole computational domain. Subsequently, the volume force on the
Euler grid (the force acting on fluid points) can be obtained,

f ðx; tÞ ¼ �
ð
C
FðXij; tÞdðx � XijÞds: (9)

To avoid the issue of pseudo-oscillation associated with the weak
fluid–structure coupling problem, we have adopted a C2 continuous
delta function,34

dðrÞ ¼

3
8
þ p
32

� r2

4
; jrj � 0:5;

1
4
þ 1� jrj

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ 8jrj � 4r2

p
� 1
8
arcsinð

ffiffiffi
2

p
ðjrj � 1ÞÞ; 0:5 � jrj � 1:5;

17
16

� p
64

� 3jrj
4

þ r2

8

þ jrj � 2
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�14þ 16jrj � 4r2

p
þ 1
16

arcsinð ffiffiffi
2

p ðjrj � 2ÞÞ; 1:5 � jrj � 2:5;

0; 2:5 � jrj:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

(10)

The persistent pseudo-oscillation problem, prevalent due to the small
linear density ratio of the filament, is thereby tackled. In order to
obtain accurate and stable solutions, we have introduced predictors to
determine the provisional velocity and position of the fluid–structure
interface at each time step.35

To maintain the condition of zero torque at both ends of the fila-
ment, the torque at the free end nodes should be set as Ms

i

¼ �P4
j¼1 rij � Fij on i ¼ 1; ðiÞmax.29 Although torque is a small

quantity [Oðe2Þ] for slender filaments, when the filament’s orientation
lies in the zero-velocity plane, this torque becomes the sole driving fac-
tor for filament rotation. Therefore, accurately assessing torque is
crucial.

C. Validation and verification

To validate our numerical method, we simulated several typical
cases. First, the simulation of a rope pendulum in a vacuum with
B ¼ 0:01 and Fr ¼ gL=U2

ref ¼ 10 was performed. As depicted in
Fig. 2(a), the rope is initially released from the left end in a stationary
state, and it swings to the right under the influence of gravity alone. In
this case, we adopted a spatial resolution of Ds ¼ 1=64 to discretize
the rope, and two temporal resolutions were implemented: Dt ¼ T=32
and Dt ¼ T=160, where T denotes the period of the rope’s pendulum-
like oscillation. Figure 2(b) illustrates the y-direction displacement of
the rope’s free end under varying temporal resolutions, and the result
of Huang et al.36 is also presented for comparison. The results obtained
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from both temporal resolutions align harmoniously with those of
Huang et al.,36 despite the presence of marginal numerical dissipation
when Dt ¼ T=32.

Second, we simulated the cases of a rigid filament tumbling in
shear flow at Re ¼ 0:1. In this case, the spatial resolution is also set at
Ds ¼ 1=64, with a time resolution of Dt ¼ 2� 10�4. As shown in
Fig. 3(a), the rigid filament is initially aligned with the flow direction
and subsequently undergoes periodic tumbling within the velocity-
gradient plane due to fluid motion. Figure 3(b) shows that our results
agree well with the numerical, experimental, and theoretical data7,31,37

for the non-dimensional tumbling period Tp as a function of rp.
Finally, we tested the flexural deformation of a flexible filament in

shear flow,14,31 as sketched in Fig. 4(a). To replicate the experimental

results, we set the parameters identical to those in the experiment of
Forgacs and Mason:14 the filament diameter d ¼ 0:0122mm, aspect
ratio rp ¼ 170, dimensional Young’s modulus EY ¼ 6:3GPa, and
dynamic viscosity ¼ 9:12Pas. In the simulations, the computational
domain size is 5L� 5L� 3L, which is large enough to eliminate the
boundary effect. Our grid-independence study showed that Dx
¼ Dy ¼ Dz ¼ 1

100 and Ds ¼ 1
64 were sufficient to obtain accurate

results. Figure 4(b) shows the displacement of the filament’s end,
which is consistent with experimental data.14 Additionally, our three-
dimensional numerical method for fluid–structure interactions was
validated in Zhang et al.38

III. RESULTS AND DISCUSSION

Figure 5 (Multimedia view) displays the results of our numerical
experiments. The settings of computational domain and mesh size in
these simulations are consistent with those used in the last validation
case. Under the condition of Re ¼ 0:125 and rp ¼ 64, we obtained
four typical modes of motion under different flow strengths. This
mode classification is not new; it just provides readers with a visual
understanding. As discussed in Sec. I, most of the related work has
been focused on conditions with low flow strength. The transition
from U-turn to S-turn, though complex and intriguing, has never been
extensively explored.

A. Theoretical model of S-turn

One possible theoretical method for analyzing the motion mode
of the filament is to assume a typical configuration at a critical
time.16,17 The relative velocities between the filament and the back-
ground fluid can then be approximated to calculate the fluid–structure
coupling forces. Through the force equilibrium equation for the fila-
ment, this problem can be completely solved. To determine this typical
configuration, we look at the U-turn and S-turn modes, we find that
they diverge at the moment when the deformation begins. If the initial
deformation is asymmetric, as shown in Fig. 5(c) t ¼ 43, that is, only
one end is rolled up, then the filament will inevitably develop into a
U-turn. In contrast, if the initial deformation is with both ends of the
central symmetry rolled up at the same time, as shown in Fig. 5(e)
t ¼ 26, then the filament will develop an S-turn mode. We assume

FIG. 2. (a) The rope swings under the influence of gravity. (b) End displacement of
rope swing in vacuum.

FIG. 3. (a) Rigid filament tumbling in shear flow (plotted at equal time intervals) and
(b) tumbling period of a rigid filament in shear flow.

FIG. 4. (a) Flexible filament undergoes deformation in shear flow at dimensional
shear rate of G ¼ 3:54 s�1 (plotted at equal time intervals), (b) the end position of
the filament undergoing deformation in shear flows with different dimensional shear
rates: G ¼ 3:20, 3.54, and 4:25 s�1.

FIG. 5. Our numerical result for typical morphological evolutions of filament over a
half-period: (a) Rigid motion, (b) C-buckling motion, (c) U-turn motion, (d) and (e) S-
turn motion. Multimedia available online.
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that the S-turn mode is highly symmetric, as depicted in Fig. 6. This
assumption enables us to analyze only one half of it, comprising a
semi-arc and a straight line. Notations “k” and “?” are used to denote
tangential and perpendicular components, respectively. Following are
the expressions for the two components of the relative velocities of the
AO segment:

vrelk ðsÞ ¼ � _cs sin/ cos/; vrel? ðsÞ ¼ vAO? ðsÞ þ _cs sin2/: (11)

In our analysis, we utilized the resistive force theory proposed by Gray
and Hancock,39 in which the resistive force is assumed to be directly
proportional to the relative velocity of the object, i.e.,

fk ¼ ckvrelk ; f? ¼ c?vrel? ; (12)

where the coefficients ck � 2pl= ln ð2L=dÞ and c? ¼ 2ck.
17 Since

there is no force perpendicular to the straight section AO, i.e., f? ¼ 0,
through (11) we have

vAO? ðsÞ ¼ � _cs sin2/: (13)

Similarly, the relative velocity of the arc part AB can be written as

vreljj ðhÞ ¼ vABjj ðhÞ þ vf cosðh� /Þ; (14)

vrel? ðhÞ ¼ vAB? ðhÞ þ vf sinðh� /Þ; (15)

where the background fluid velocity (without filament) vf
¼ _cR½cos/� cosðh� /Þ� � _cl sin/, and all the elements on the arc
must satisfy the force equilibrium condition such that

� 1
R
dfN
dh

¼ cjjvreljj ;
fN
R
þ B
R3

¼ c?vrel? : (16)

Here, fN is the axial internal force. Because the filament cannot be
stretched, we have

dvABjj
dh

þ vAB? ¼ 0: (17)

Substituting (14) into (17), we have

dvrelk
dh

� dvf cosðh� /Þ
dh

þ vAB? ¼ 0: (18)

Substituting the first formula in (16) into (18), we get

�2
d2vrel?
dh2

� dvf cosðh� /Þ
dh

þ vAB? ¼ 0: (19)

Further substituting (15) into (19), we get a second-order differential
equation for vAB? ,

2
d2vAB?
dh2

� vAB? ¼ �2
d2vf sinðh� /Þ

dh2
� dvf cosðh� /Þ

dh
: (20)

According to the perpendicular velocity continuity condition at point
A,

vAB? ð0Þ ¼ � _cl sin2/; (21)

and the tension-free condition at point B,

vAB? ðpiÞ ¼ B
c?R3

þ _cðl sin/� 2R cos/Þ sin/; (22)

we have

vAB? ðhÞ ¼ C1 coshðkhÞ þ C2 sinhðkhÞ
þ
X
n¼1;2

an cosðnhÞ þ bn sinðnhÞ½ �; (23)

where k ¼ 1=
ffiffiffi
2

p
, and

C1 ¼ _cR sinð2/Þ
18

;

C2 ¼ BcschðkpÞ
c?R3

� _cR
18

sinð2/Þtanh kp
2

� �
;

a1 ¼ � _c l sin/� R cos/ð Þsin/; a2 ¼ � 5
9
_cR sinð2/Þ;

b1 ¼ þ _c l sin/� R cos/ð Þcos/; b2 ¼
5
9
_cR cosð2/Þ:

(24)

Then, we can naturally get the tangential velocity,

vABk ¼ �vfk � 2
dvAB?
dh

þ dvf?
dh

 !
: (25)

From the tangential velocity continuity condition and torque equilib-
rium condition at point A, we get

B
18lR5

	
� 14lR4 sin2ð/Þ þ 9plR4 sinð2/Þ

þ 14lR4 cos2ð/Þ þ 18lR4 þ
ffiffiffi
2

p
lR4csch

pffiffiffi
2

p
� �

sinð2/Þ

� lR3 2
ffiffiffi
2

p
R coth

pffiffiffi
2

p
� �

þ 9
� �

sinð/Þ cosð/Þ

� 18
ffiffiffi
2

p
e tanh

p

2
ffiffiffi
2

p
� �

� 18
ffiffiffi
2

p
e coth

p

2
ffiffiffi
2

p
� �


¼ 0; (26)

and

MAB
A ¼ c?R

ðp
0
cos2

h
2

� �
vABjj þ vf cosðh� /Þ
� �

� sin h vAB? þ vf sinðh� /Þ
� �

dh ¼ 2B
R2

; (27)

respectively. The two equations above involve two unknowns, / and
R. It seems that the two unknowns can be determined. However, Eq.
(27) is useless because according to the moment free condition of the

FIG. 6. S-turn configuration model. Bent part is approximated by semi-circle of
radius R. Straight part has tilt angle / and length l. Here, s represents arc length.
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right side of point A, bending rigidity B ¼ 0 or radius R ¼ 1 has to
be satisfied. The underlying reason is that our model is only C0 contin-
uous at the point A, so boundary layer effects will emerge near it.
Therefore, we are trying to find another equation in terms of conserva-
tion of energy. The basic idea is that as the shape of the filament
evolves, a portion of the straight filament will be bent at the rate of
Vsnake, and the increased bending energy will equal the work done by
the fluid,17 i.e.,

_E ¼ B
ðL
0
rt � rssss ds ¼ BVsnake

2R2
¼
ðL
0
rt � Fds: (28)

Here, the subscripts “t” and “s” denote derivatives with respect to t and
s, respectively. The velocity at the end of the filament jvBj is chosen to
approximate Vsnake also due to the discontinuous derivative at point A.
In this way, the problem is finally solved. Equations (26) and (28) only
contain the unknowns / and R. The emergence of at least one solution
represents a transition between U-turn and S-turn.

Although our derivation drew inspiration from Liu et al.,17 our
work differs significantly from theirs, as the main focus is placed on
the S-turn, which possesses symmetry. While (Ref. 17) have primarily
focused on the transition from Rigid to C-buckling or the transition
from C-buckling to U-turn. These investigations primarily explore the
phenomenon of spontaneous symmetry breaking,40 resulting from the
intensification of flow strength. In contrast, our study places consider-
able emphasis on the transition from U-turn to S-turn, which implies
that flow strength exceeding a critical value triggers spontaneous sym-
metry restoration. Symmetry restoration is a pervasive phenomenon in
nature. For instance, the presence of a strong magnetic field can restore
electroweak symmetries,41 while chiral symmetry restoration has been
observed at high matter density in pionic atoms.42

B. Transitions between U-turn and S-turn

Transition criterion between U-turn and S-turn would be further
discussed here. The transition occurs as the two curves represented by
Eqs. (26) and (28) intersect in the /–R plane. The two curves are
shown in Fig. 7(a) and the intersection occurs approximately at
Z ¼ 4900. In other words, the critical flow strength for the transition
is about Zc ¼ 4900.

Actually at Z � Zc, U-turn and S-turn may be difficult to distin-
guish [see Fig. 5(d)]. A quantitative standard should be proposed.
Here, we introduce the dot product of the normal vector of the two
transverse planes hThd;Ttli (as shown in the lower right corner of
Fig. 5). The basic idea is as follows: at some moment in a period, the
two faces of a U-turn will point roughly in the same direction, whereas
for an S-turn, the two faces will always point roughly in opposite direc-
tions. Thus, the two modes are precisely distinguished, with
hThd;Ttlimax > 0:9 defined as U-turn, and hThd;Ttlimax < 0:9 as
S-turn.

Theoretical prediction of Zc (the gray dotted line) and the result
of our numerical experiment (points) are shown in Fig. 7(c). It is seen
that at low Re, e.g., Re < 2, the prediction of Zc precisely separates the
U-turn and S-turn, which are represented by the red inverted triangles
and the green dots, respectively. As Re increases, e.g., Re ¼ 2 and
Re ¼ 4, the theoretical predicted value is slightly greater than the
actual value. The over-prediction can be explained as follows. In our
theoretical analysis, the calculation of hydrodynamic force is based on
the resistive force theory of viscous flow. That implies that our analysis
is only accurate if the Reynolds number is small. The additional inertial
effect makes S-turn mode more likely to occur.

As the Reynolds number increases continuously, e.g., Re ¼ 8, sta-
ble mode emerges, which is represented by a gray square as shown in
the upper part of Fig. 7(c). The filaments no longer tumble with the
external flow but are roughly aligned with the flow direction and form
a small angle with a tiny deformation as shown in Fig. 7(b). This phe-
nomenon is essentially caused by inertial effects, which has been
explained in detail in the work of Aidun et al.43

It is worth mentioning that we also observe that the critical flow
strength between the C-buckling and the U-turn is about 858-1717,
which is generally consistent with the results of Liu et al.17 The work of
Liu et al.17 considered the balance between viscous, elastic, and
Brownian forces, while our work considered the balance between vis-
cous, elastic, and inertial forces. Moreover, the work of Liu et al.17

focuses on a limit of zero Reynolds number and applies to large mole-
cules such as actin. Our work focuses on slightly larger filaments, such
as wood fibers and nylon fibers, which undergo motion at finite
Reynolds numbers.

C. Rheological property

Here, we would like to discuss the variation of the macroscopic
rheology property of the dilute suspension due to different motion
modes. For the suspension of filament, polymer stress can be written
as44

RðpÞ
ij ¼

ð
A0

rikxjnk � l uinj þ ujnið Þ �
dA

�
ð
V0

@rik
@xk

xjdV �
ð
qu0iu

0
jdV : (29)

Here, rij ¼ �pdij þ l @vi
@xj

þ @vj
@xi

� �
is the fluid stress tensor and ni is the

fiber surface normal vector. In actual statistics, first, FFT is used to cal-
culate the period of tumbling, and then the first ten cycles are averaged.
All cases in this subsection are obtained for Re¼ 0.125, and the result
is general for small Reynolds numbers.

FIG. 7. (a) On the /–R plane, the solid yellow and blue lines represent Eqs. (26)
and (28), respectively. (b) The deformation of stable mode when Re ¼ 8 and
Z ¼ 6869. (c) Phase diagrams, each symbol in the phase diagram denotes a simu-
lated case.
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The calculated relative polymer viscosity, denoted as RðpÞ
xy , is pre-

sented in Fig. 8(a). The observed decrease in RðpÞ
xy indicates the shear-

thinning behavior of the flexible filament solution. Notably, during the
transition from C-buckling to U-turn modes,RðpÞ

xy demonstrates a nearly

consistent scaling rate of approximately � 1
3. However, a pronounced

shift occurs between the U-turn and S-turn modes, resulting in a distinc-
tive plateau in the viscosity curve. Additionally, within the S-turn phase,
RðpÞ
xy follows an approximate power law relationship of� 1

5.
For the first normal stress difference N1 ¼ RðpÞ

xx � RðpÞ
yy [see

Fig. 8(b)], the situation was different. There is a sharp change in the
scale law from C-buckling to U-turn, but an identical scale law from
U-turn to S-turn is observed. The situation of the second normal stress
difference N2 ¼ RðpÞ

yy � RðpÞ
zz [Fig. 8(c)] is more complicated, it is diffi-

cult to describe with scale law.
The first row of Fig. 8 presents our calculation results, while the

second row displays the calculation results of Chakrabarti et al.22 The
overall trend observed in both studies is very similar; however, due to
the inclusion of Brownian forces in the model of Chakrabarti et al.,22

while our model incorporates inertial forces, there are notable distinc-
tions in specific details. In the work of Chakrabarti et al.,22 the influence
of thermal fluctuations is considered. It was discovered that rheological
properties exhibit a power law relationship with flow strength across
different P�eclet number ranges, consistent with previous theoretical pre-
dictions.45 The results presented by Chakrabarti et al.22 are visually
striking. However, due to random shape fluctuations and rotational dif-
fusion induced by thermal fluctuations, different filament motion
modes can occur within different periods at the same flow strength.
Consequently, it becomes challenging to determine which mode transi-
tion is responsible for the changes in rheological scaling rate or whether
the series of deformation mode transitions collectively contribute.

To clarify these uncertainties, we intentionally exclude the effects
of thermal fluctuations, ensuring that our filaments strictly adhere to
the same motion mode within each cycle under a specific flow
strength. This approach allows us to obtain less ambiguous scaling
rates, enabling a clearer observation of the impact of mode transitions
on the scaling rate.

The behavior of the first normal stress difference, denoted as N1,
has been a subject of long-standing debate. In the pioneering work by
Becker et al.,15 N1 was observed to initially increase with the flow
strength but then decrease and eventually become negative as the flow
strength further increased. However, in contrast to these findings, the
results presented by Chakrabarti et al.22 demonstrate that N1 continues
to increase with increasing flow strength. The discrepancy between
these studies was attributed by Chakrabarti et al.22 to the perturbation
of filament backbones in the simulations conducted by Becker et al.15

In our study, as shown in Fig. 8(b), our final results are consistent
with those of.22 However, we disagree with the notion that a negative
first normal stress difference (N1) is caused by initial perturbations.
Despite applying the same small initial perturbation as Becker and
Shelley,15 our results show that it does not lead to a negative N1.
Instead, we suspect that inadequate resolution of the solid grid may
contribute to a misleading perception of rigidity under large deforma-
tions, as discussed by Babuvska and Rheinboldt.46 This issue could
potentially explain the negativeN1 observed in Becker et al.15

D. The relationship between filament deformation and
polymer stress

Previous research has predominantly focused on either the
microscopic deformation of filaments or the overall rheological prop-
erties of macroscopic solutions. However, studies that comprehensively
illustrate the detailed connection between the two are scarce. Similar to
the work of Tornberg et al.,47 our strategy is that the motion and defor-
mation of the filament lead to the creation of disturbance flow, and
there exists a corresponding relationship between the disturbance flow
and polymer stress. In the Stokes regime, the disturbance flow is a lin-
ear function of the tractions at the filament surface and the velocities,48

vðxÞ ¼ � 1
8pl

ð
@V
J x � x0ð Þ � t x0ð ÞdA0

þ 1
4p

ð
@V
n x0ð Þ � K x � x0ð Þ � v x0ð ÞdA0; (30)

where t ¼ n � r represents the component of the fluid stress tensor r
along the surface normal vector n. J and K denote the Oseen tensor
and its symmetric gradient,

JijðxÞ ¼ dij
x
þ xixj

x3
; KijkðxÞ ¼ 1

2

@Jij
@xk

þ @Jik
@xj

 !
¼ �3

xixjxk
x5

: (31)

When no external forces are applied, the first-order term of Eq. (30) is
consistently zero. The second-order term in the multipole expansion
of Eq. (30) is expressed as49

viðxÞ ¼ 1
8pg0

xidjk
x3

� 3
xixjxk
r5

� �
Sjk þ eijkLj

xk
x3

	 

; (32)

where S and L denote the first symmetric force moment (stresslet) and
net torque (rotlet),

Sij ¼
ð
@V

1
2

rikxj þ rjkxið Þnk � l vinj þ vjnið Þ
	 


dA;

Li ¼ eijk

ð
@V
rjlxknldA:

(33)

FIG. 8. (a) Polymer viscosity, (b) the first normal stress difference N1, (c) the sec-
ond normal stress difference N2 as functions of Z. The blue circles are numerical
results, and the black solid lines are scale law of approximate fitting. (d)–(f) Polymer
viscosity and normal stress difference of filament with Brownian force, regardless of
fluid inertia (from Ref. 22)
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In the absence of externally applied torque, Li ¼ 0, thereby establish-
ing a linear relationship between stresslet and disturbance flow. As
depicted in Fig. 9(a), when the rigid filament is in the compression
quadrant, causing the disturbance fluid to converge from the vertical
direction and push it out along the horizontal direction, resulting in
N1 < 0, commonly referred to as a “pusher”.50,51 Correspondingly, as
shown in Fig. 9(b), when the rigid filament is in the extension quad-
rant, causing the disturbance fluid to converge from the horizontal
direction and push it out along the vertical direction, leading to
N1 > 0, denoted as a “puller.” If we neglect the inertia terms associated
with the fluctuations about the average motion, the last two terms of
Eq. (29) will vanish, rendering Sij and the symmetric parts of RðpÞ

ij fully
equivalent.

To address the relationship in detail, we present the changes in
polymer stress and normal stress difference over time for three differ-
ent filament motion modes in Fig. 10. Before delving into each mode
individually, it is important to address some common considerations.
In Fig. 10, both the normal stress difference N1 and N2 are plotted,
while the complete component of polymer stress is not. The rationale
behind this omission is that throughout the cycle, the values of RðpÞ

zz ,

RðpÞ
xz , and RðpÞ

yz are almost zero. Recall that N2 ¼ RðpÞ
yy � RðpÞ

zz , and thus,

the curve representing N2 and the curve representing R
ðpÞ
yy always coin-

cide perfectly. Similarly, since N1 ¼ RðpÞ
xx � RðpÞ

yy , and considering that

RðpÞ
xx is much larger than RðpÞ

yy , the curves of N1 and RðpÞ
xx , although dis-

tinguishable, are consistently very close. The three subgraphs in Fig. 10
share the same horizontal axis, and the filaments are initially posi-
tioned at rest along the flow direction and commence moving with the
fluid at t ¼ 0.

As shown in Fig. 10(a), under the condition of C-buckling, the fil-
ament undergoes a small “C” shape bending deformation during the
tumbling process. In half a cycle, both curves of N1 and RðpÞ

xx exhibit a
valley and a peak at tI and tIII, respectively. The corresponding fila-
ment shapes at tI and tIII are depicted in the upper part of Fig. 10(a).
The occurrence of these two extrema can be explained as follows. First,
the maximum compression and maximum stretching of the hyperbolic
flow occur in the orientations of �45	 and 45	, respectively.
Therefore, for a rigid filament, suppose the angle between the filament
axis and the incoming flow is /, then the strain rate of the fluid along
the filament axis is proportional to sinð2/Þ. In the global coordinate
system, the x-component of the polymer stress RðpÞ

xx should be propor-
tional to sinð2/Þ cosð/Þ, and this function reaches a minimum (maxi-
mum) value at / ¼ �35	 (/ ¼ 35	) [see upper part of Fig. 10(a)].
Similarly, the y-component of the polymer stress RðpÞ

yy is proportional

to sinð2/Þ sinð/Þ, and it reaches a minimum (maximum) value at
/ ¼ �55	 (/ ¼ 55	). Although the above analysis is based on the
rigid filament, the variation trend is still applicable to the filament with
small deformation. The minor difference is that the flexible filament
will store elastic energy when it is buckling at tI and release elastic
energy when it is recovering at tII. At the moment of tII, the upper por-
tion of the filament stroke toward the right [see the light blue arrow in
Fig. 10(a-II)], and correspondingly, the remaining part of the filament
accelerates toward the left, moving like a pusher, and corresponds to a
small decrease in the N1 curve at tII. On the whole, it is the filament’s
flexibility that leads to the integral of N1 over one period being non-
zero, and the filament solution exhibits viscoelasticity.

The U-turn mode shown in Fig. 10(b) is broadly similar to the C-
buckling described above. Because the filament is more flexible in this
case, the buckling occurs earlier (at / � �13	), and the polymer stress
at buckling (tI) is also smaller than that at C-buckling. The more essen-
tial difference is that the filaments exhibit tank-treading motions (tII to
tIII) during U-turn, both RðpÞ

xx and RðpÞ
xy show a positive slowly rising

plateau, and RðpÞ
yy exhibits a near-zero plateau. When the tank-treading

motions end (tIII), the stored elasticity within the flexible filament
is suddenly released, a quick stroke [see the light blue arrow in

FIG. 9. (a) Filament aligned with the compression quadrant and the disturbance
flow with N1 < 0 is often called pusher. (b) Filament aligned with the extension
quadrant and the disturbance flow with N1 > 0 is often called puller. Light blue
arrows represent the forces exerted by the filament on the surrounding fluid, while
light purple arrows represent the disturbance flow caused by the presence of the
filament.

FIG. 10. The relationship of polymer stress and normal stress difference with time
in the case of (a) C-buckling, (b) U-turn, and (c) S-turn during half a cycle. Images
depicting the instantaneous motion at time points tI , tII , tIII , and tIV are displayed in
the upper portion of panels (a)–(c). The curves representing N2 and RðpÞ

yy always
coincide.
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Fig. 10(b-III)] occurs at the right end of the filament, while the remain-
ing part of the filament accelerates toward the left. The filament acts as
a pusher, and the N1 curve descends. After the tank-treading is
completely finished, similar to C-buckling, RðpÞ

xx and RðpÞ
xy rise sharply

and reach their maximum value (tIV).
The S-turn mode shown in Fig. 10(c) is very unique, which is

mainly reflected in the fact that both ends of the filament go through
tank-treading motions (tII-tIII) at the same time. Compared to U-turn,
the S-turn has a longer duration of tank-treading, which lasts about 0.1
period. As shown in the lower part of Fig. 10(c), both RðpÞ

xx and RðpÞ
xy

experienced a long positive but slowly declining plateau and RðpÞ
yy

exhibits a near-zero plateau (from tII to tIII). The decrease in RðpÞ
xx and

RðpÞ
xy can be attributed to the fact that as tank-treading progresses, the

inclination angle of the straight section of the filament gradually
decreases, resulting in less stretching by the flow field. As the tank-
treading motion approaches its end, the two bending regions of the fil-
ament come closer together and eventually merge, leading to the
release of stored elasticity within the filament. When the two bending
regions of the filament come into contact, the internal elastic forces
push the right half of the filament accelerates to the right while the left
half accelerates to the left [see the light blue arrow in Fig. 10(c-III)].
The filament acts as a pusher, and corresponding to a decrease in N1.
In general, the magnitude of N1 in the S-turn mode is much smaller
than in the U-turn mode. However, due to the longer duration of
tank-treading and the shorter tumbling period in the S-turn mode, the
average value of N1 in the S-turn mode can even be larger than that in
the U-turn mode.

From the above discussion, we find that there is an inseparable
relationship between RðpÞ

xx and filament shape. In order to quantita-
tively analyze the internal relationship between the two, we introduce
the gyration tensor,11,17

Gng ¼
XN
i¼1

snði; tÞ � snðtÞ
� �

sgði; tÞ � sgðtÞ
� �

=N; (34)

where snði; tÞ is the position of the ith node at time t, snðtÞ is the aver-
age position of the filament at time t, andN is the total number of solid
nodes. In the polymer stress tensor, the normal stress in the x-direction
RðpÞ
xx is absolutely dominant. In order to better understand the complex

changes of RðpÞ
xx , we further define the generalized strain of filament in

the x-direction,

Eng ¼
Gng � G0

ng

G0
ng

; (35)

where Gng is the periodic average of the gyration tensor, and G0
ng is the

periodic average of the gyration tensor of rigid filament. In this paper,
we use the example of Z ¼ 5 to represent a rigid filament. As shown
in Fig. 11, we observe that the generalized strain in the x-direction is
directly proportional to the polymer stress, just like Hooke’s law. We
find that the points near the lower right corner slightly deviate from
the linear relationship, which may be mainly due to the small general-
ized strain corresponding to these points, so the error introduced by
the approximate calculation of G0

ng is revealed. This linear relationship
means that even though the deformation of the different modes is

complex, the time-varying curve of the resulting polymer stress is dif-
ferent. We still found some statistics that unite them. It is worth noting
that for filaments considering thermal fluctuations, the linear relation-
ship may not be observed after time averaging due to the existence of
rotational diffusion. Therefore, this observed linear relationship may
only apply to flexible filaments with large characteristic length (on the
order of 0.1mm, for example, for pulp fibers) in flows with relatively
high shear rates.

IV. CONCLUDING REMARKS

We present a comprehensive investigation of the behavior of a
non-Brownian flexible filament in three dimensions under low
Reynolds number shear flow. Our study includes the development
of a theoretical model for the S-turn mode and a thorough theoreti-
cal analysis to determine the critical flow strength needed for the
transition from U-turn to S-turn mode, which is estimated to be
Zc ¼ 4900. We also conducted numerical simulations, which identi-
fied four distinct motion modes. The phase diagram of the motion
modes in the ðRe;ZÞ-plane is presented, and our simulation results
confirmed the theoretical prediction of Zc. Moreover, our study
revealed a direct association between the filament’s motion modes
and the scaling transition of solution rheological properties. We
provided a detailed description of the relationship between the
deformation of the filament and polymer stress over time, as well
as highlighted significant differences in polymer stress curves under
different modes. Interestingly, we observe an overall linear relation-
ship between time-averaged polymer stress and the generalized
strain.
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