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Abstract. A multiple-relaxation-time (MRT) lattice Boltzmann model (LBM) is used to
study the relative permeabilities in porous media. In many simulations in the litera-
ture, usually the periodic boundary condition at inlet and outlet and a uniform pres-
sure gradient were applied to measure the relative permeabilities. However, it is not
consistent with the pressure or velocity boundary conditions in the real experiments
and may lead to unphysical results. Here using the convective outflow and constant
velocity boundary conditions at outlet and inlet, respectively, we can simulate the real
experimental setup. Meanwhile, the distribution of the two phases at the outlet can
be resolved. The effects of wettability, initial saturation, viscosity ratio (M∈ (1,50)),
capillary number (Ca∈ (10−4,10−2)) and micro two-phase distribution at the inlet on
permeabilities are investigated comprehensively. It is found that generally speaking,
the strong wetting, drainage, larger Ca, and larger M may result in a larger relative
permeability of the non-wetting phase. Different flow pattern, the lubrication effect of
the wetting phase that attaches to the wall, and influence of stagnant pores may con-
tribute to the feature. The study is helpful to further develop the LBM to simulate the
real experimental process.

AMS subject classifications: 76S05, 76T99, 76M28
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1 Introduction

Numerical study of multiphase flow in porous media is of great benefit to engineering
applications [1–3]. Numerous macroscopic numerical methods have been developed
for solving the two-phase Navier-Stokes (N-S) equation [4], such as the front-tracking
method, volume-of-fluid (VOF) method, level set method, and so on. The former three
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methods are the most popular ones. However, the front-tracking method is usually dif-
ficult to simulate interface coalescence or break-up [4, 5]. In the VOF and level set meth-
ods, usually the interface reconstruction step or the interface reinitialization is required,
which may be non-physical or complex to implement [5]. Besides, numerical instability
may appear when the VOF and level set methods are applied to simulate surface-tension-
dominated flows in complex geometries [4].

In the last twenty years, the Lattice Boltzmann method (LBM) has been developed
into a useful tool to solve two-phase flow in porous media [6–11]. The LBM is a meso-
scopic method and easy to handle complex wall geometries. It is also an explicit method,
which makes the code easy to parallelize. In the LBM, solving the Poisson equation is not
required. Hence, it is more efficient than common macroscopic schemes.

There are many multiphase LBMs available in the literature [7]. However, quantita-
tive numerical study shows that the Rothman and Keller (R-K) model is more accurate
than the other models [12]. The model was firstly proposed by Rothman and Keller [13]
and further developed by Gunstensen et al. [14] through introducing an extra binary
fluid collision into the Lattice Boltzmann equation [14]. Latva-Kokko and Rothman [15]
improved the recoloring step in the R-K model, which is able to reduce the lattice pinning
effect and decrease the spurious currents [5, 16]. Now the recoloring step is widely used
in applications of the R-K model [5, 12, 17]. Recently, Reis and Phillips developed a two-
dimensional nine-velocity R-K model [18]. In the model, a revised binary fluid collision
is proposed and is shown to be able to recover the additional term which accounts for
surface tension in the N-S equation [18].

For the R-K model, the wetting condition, i.e., contact angle in the pore scale can
be specified through setting the densities of the two fluids in the solid nodes. That is
more simpler than its counterpart, the free-energy LB model, in which the gradient of
the density near the wall has to be imposed. Due to this simplicity, the model has been
applied to simulations of multiphase flows in porous media [8, 19]. Reducing spurious
currents is another important issue for multiphase models. Here in the R-K method, the
multiple-relaxation-time (MRT) collision model [20] is adopted. The present method is
able to reduce spurious currents and improve numerical stability significantly. Those are
good features for reproducing the capillary fingering phenomena for two-phase flow in
porous media [21].

There are many numerical simulations for testing the relative permeability, e.g., [11,
22, 23]. That is very different from the measurement scheme in experiments. Due to pe-
riodic boundary condition, the flow at the outlet is supposed to flow back to the inlet
boundary. In this setup, the porous media is supposed to be infinitely long in the flow
direction. That is different from the reality. Besides, the relative permeability has been
reported to be slightly negative in the preliminary results of [11,23,24], which is not phys-
ically valid. These values are likely a result of applying periodic boundary conditions to
a nonperiodic porous medium [23].

Hence, non-periodic boundary conditions may be necessary to develop. In [25], two-
phase immiscible displacements driven by constant pressure difference were simulated.
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The pressure outlet boundary condition is somewhat similar to that in [26]. However, the
performance of the boundary condition seems not good because in Fig. 2 in [26], when a
droplet is close to the outlet it deforms severely.

In reality, the porous medium is located between the inlet and outlet boundaries, in
which the wetting and non-wetting fluids are injected into the inlet by pumps and flow
out at the outlet. Usually the pressure sensors are located close to the inlet and outlet
boundary. At the steady state, When the flow flux and saturation in the porous media
become statistically steady, through measuring the pressure drop and flow flux of each
phase, we are able to obtain the relative permeability.

Hence, it is important to simulate the realistic flow in the experimental setup. In the
setup, the free outflow boundary condition has to be developed to handle the flow at the
outlet. The boundary condition should be able to determine the phase distribution at the
outlet automatically. The convective outflow boundary condition [27, 28] may be able to
fulfill this task.

Here using the convective outflow boundary and inlet constant flux boundary condi-
tion, in our simulations the setup of real measurement of the relative permeabilities is re-
covered. The effects of wettability, initial saturation, viscosity ratio (M∈(1,50)), capillary
number (Ca∈(10−4,10−2)) and micro two-phase distribution at the inlet on permeabilities
are investigated comprehensively.

The paper is arranged in the following way. First the present R-K model and the
convective outflow boundary condition are introduced. The numerical method is also
validated through two benchmark problems. Then a 400×400 porous media is intro-
duced in our simulations. Relative permeability variation due to the wetting property,
initial saturation, capillary number and viscosity ratio are investigated comprehensively.
Finally, relevant mechanisms for these effects are explored.

2 Method

2.1 R-K model

In the R-K model, the particle distribution function (PDF) for fluid k is defined to be f k
i .

For two-phase flows, two distribution functions are defined, i.e., f b
i and f r

i , where b and
r denote ”blue” and ”red” component, respectively. The total PDF at (x,t) is fi(x,t) =
∑k f k

i (x,t).
Usually there are two steps implemented in the LBM, collision and streaming. In the

R-K model, there are three steps for each component: streaming, collision, and recoloring.
Suppose an iteration begins from the streaming step. We illustrate how the three steps
construct a loop. The streaming step is [18]

f k
i (x+eiδt,t+δt)= f k+

i (x,t), (2.1)

where f k+
i is the PDF after the recoloring step. In the above equation, ei, i=0,1,··· ,b are

the discrete velocities of the velocity models. For the D2Q9 velocity model (b=8). Here c
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is the lattice speed defined to be c= δx
δt . We use the lattice units of 1l.u.=1δx, 1t.s.=1δt,

and the mass unit is m.u. in our study.
The collision step can be written as [15]

f k∗
i (x,t)= f k

i (x,t)+(Ωk
i )

1+(Ωk
i )

2, (2.2)

where f k∗
i (x,t) is the post-collision state. There are two collision terms in the equation,

i.e., (Ωk
i )

1 and (Ωk
i )

2. If the lattice BGK scheme is adopted, the first collision term is

(Ωk
i )

1=−δt
τ

(
f k
i (x,t)− f k,eq

i (x,t)
)

, (2.3)

where τ is the relaxation time.
The equilibrium distribution function f k,eq

i (x,t) can be calculated using [18]

f k,eq
i (x,t)=ρk

(
Ci+wi

[
ei ·u

c2
s

+
(ei ·u)2

2c4
s
− (u)2

2c2
s

])
, (2.4)

where the density of the kth component is

ρk =∑
i

f k
i , (2.5)

and the total density is ρ=∑k ρk. The momentum is

ρu=∑
k

∑
i

f k
i ei. (2.6)

In the above formula, the coefficients are [18] C0=αk, Ci=
1−αk

5 , i=1,2,3,4 and Ci=
1−αk

20 , i=
5,6,7,8, where αk is a parameter that is assumed able to adjust the density of fluids [18,29]
but it may be not true [30]. The other parameters are w0=

4
9 , wi=

1
9 , i=1,2,3,4, and wi=

1
36 ,

i=5,6,7,8.
When the relaxation time parameters for the two fluids are very different, for exam-

ple, τr = 0.501 and τb = 1.0, τ(x) at the interface can be determined by a simple way:
if

ψ(x)=
ρr(x)−ρb(x)
ρr(x)+ρb(x)

>0,

τ(x) = τr and otherwise τ(x) = τb. To make the relaxation parameter (τ(x)) change
smoothly at the interfaces between two fluids, the interpolation scheme constructed by
Grunau et al. [18,29] is an alternative way. In our simulations, the simple way is adopted.
The viscosity of each component is νk = c2

s (τk−0.5), where c2
s =

1
3 c2. The viscosity ratio is

defined as M= νn
νw

, where the subscript ”n”, “w” denote the non-wetting fluid and wetting
fluid, respectively.

The second collision term is more complex and there are some different forms found
in the literature [11, 18]. An example is [11]:

(Ωk
i )

2=
A
2
|f|(2·cos2(λi)−1), (2.7)
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where λi is the angle between the color gradient f and the direction ei, and we have
cos(λi)=

ei ·f
|ei |·|f| [15].

The color-gradient f(x,t) is calculated as [15]:

f(x,t)=∑
i

ei∑
j
[ f r

j (x+eiδt,t)− f b
j (x+eiδt,t)]. (2.8)

However, according to the study of Reis and Phillips [18], the correct collision operator
should be

(Ωk
i )

2=
A
2
|f|
[

wi
(ei ·f)2

|f|2 −Bi

]
, (2.9)

where B0=− 4
27 , Bi=

2
27 , i=1,2,3,4, Bi=

5
108 , i=5,6,7,8. Using these parameters, the correct

term due to surface tension in the N-S equation can be recovered [18].
Then the recoloring step is implemented to achieve separation of the two fluids [15],

f r,+
i =

ρr

ρ
f ∗i +β

ρrρb

ρ2 f (eq)
i (ρ,0)cos(λi), (2.10a)

f b,+
i =

ρb

ρ
f ∗i −β

ρrρb

ρ2 f (eq)
i (ρ,0)cos(λi), (2.10b)

where f ∗i =∑k f k∗
i .

After f r
i (x,t) and f b

i (x,t) are updated, the streaming steps (i.e., Eq. (2.1)) should be
implemented for each component. Through iteration of the procedure illustrated above,
two-phase flows can be simulated.

In the model, A and β are the two most important parameters that adjust interfa-
cial properties. β does not change the surface tension but affects the interface thickness,
isotropy, and the magnitude of spurious current [21]. Usually β is chosen to be 0.5 in our
simulations [21]. The surface tension is only determined by τr, τb and A [15]. The surface
tension σ as a function of A for the R-K simulations with viscosity ratio M = 1 can be
determined analytically [18]. Later Huang et al. [21] have shown that over a wide range
of M, σ is also proportional to the parameter A, i.e., σ=2.72A. The pressure in the flow
field can be obtained from the density via the equation of state p= c2

s ρ.
In our study, only components with identical densities are considered and the corre-

sponding equilibrium PDF is Eq. (2.4) with Ci=wi. That is the common equilibrium PDF
usually used in the LBM [31]. Hence, for two components with identical densities, the
equilibrium PDF has the same formula. It is not necessary to calculate both collision step
Eq. (2.3) and Eq. (2.9) separately for each component. The two collision steps become

(Ωi)
1=−δt

τ

(
fi(x,t)− f eq

i (x,t)
)

, (2.11a)

(Ωi)
2=A|f|

[
wi

(ei ·f)2

|f|2 −Bi

]
, (2.11b)

where fi =∑k f k
i .
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2.2 MRT R-K model

The difference between the MRT and BGK R-K model is the collision term. The collision
term (Ωi)

1 in Eq. (2.11a) should be replaced by the MRT collision model [20]. That is

(Ωi)
1=−M−1Ŝ

[
|m(x,t)〉−|m(eq)(x,t)〉

]
, (2.12)

where the Dirac notation of ket |·〉 vectors symbolize column vectors. The collision matrix
Ŝ= M·S·M−1 is diagonal with Ŝ= diag(s0,s1,··· ,sb). |m(eq)〉 is the equilibrium value of
the moment |m〉. The matrix M [20] is a linear transformation which is used to map a
vector | f 〉 in discrete velocity space to a vector |m〉 in moment space, i.e., |m〉= M·| f 〉,
| f 〉=M−1 ·|m〉.

The momenta jζ =ρuζ are obtained from

jζ =∑
i

fieiζ , (2.13)

where ζ denotes x or y coordinates. The collision process is executed in moment
space [20]. For the D2Q9 model, |m〉= (ρ,e,ε, jx,qx, jy,qy,pxx,pxy)T, where e, ε, and qζ

are the energy, the energy square, and the heat flux, respectively.

|m(eq)〉=(ρ,eeq,εeq, jeq
x ,qeq

x , jeq
y ,qeq

y ,peq
xx,peq

xy)
T,

where

eeq =−2ρ+3(j2x+ j2y)/ρ, εeq =ρ−3(j2x+ j2y)/ρ, qeq
x =−jx,

qeq
y =−jy, peq

xx =(j2x− j2y)/ρ, peq
xy = jx jy/ρ.

The diagonal collision matrix Ŝ is given by [20] Ŝ≡ diag(s0,s1,s2,s3,s4,s5,s6,s7,s8). The
parameters are chosen as: s0= s3= s5=1.0 s1=1.64, s2=1.54, s4= s6=1.9, and s7= s8=

1
τ .

Compared to the BGK R-K model, the MRT R-K model decreases the spurious current
significantly at high viscosity contrast [21].

2.3 Contact angle

To consider the effect of wettability on the relative permeability, we have to specify the
contact angle in the pore scale. Through setting ρr and ρb values on the wall nodes,
i.e., ρwr and ρwb, different contact angles can be specified. The contact angle θ can be
analytically determined by [15]

θ=arccos
(ρwr−ρwb

ρi

)
, (2.14)

where θ is measured from the red phase. In this way, the wetting property of the wall can
be specified because ρwr and ρwb affect the color gradient illustrated in Eq. (2.8).
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2.4 Boundary conditions

When simulate the immiscible displacements, the velocity inlet boundary condition and
constant pressure (or density) boundary condition can be set for the upper and lower
boundary, respectively. In the upper boundary the PDF f4, f7, f8 are unknown af-
ter the streaming step for the non-wetting fluid (majority component). Through non-
equilibrium bounce back assumption [26], one gets the density of the majority component
is

ρn =
f n
0 + f n

1 + f n
3 +2( f n

2 + f n
5 + f n

6 )

1+ui
, (2.15)

and the unknowns can be obtained through [26]

f n
4 = f n

2 −
2
3

ρnui, (2.16a)

f n
7 = f n

5 +
1
2
( f n

1 − f n
3 )−

1
6

ρnui, (2.16b)

f n
8 = f n

6 +
1
2
( f n

3 − f n
1 )−

1
6

ρnui, (2.16c)

where ui is the specified inlet velocity of the non-wetting fluid.
The pressure boundary conditions for the lower boundary can be handled simi-

larly [26]. Suppose ρs is the density of the wetting component (majority component)
that is specified on the lower convective outlet boundary node. One can get the outlet
velocity of wetting fluid

uy =1− f w
0 + f w

1 + f w
3 +2( f w

4 + f w
7 + f w

8 )

ρs
, (2.17)

and the unknowns are

f w
2 = f w

4 +
2
3

ρsuy, (2.18a)

f w
5 = f w

7 +
1
2
( f w

3 − f w
1 )+

1
6

ρsuy, (2.18b)

f w
6 = f w

8 +
1
2
( f w

1 − f w
3 )+

1
6

ρsuy. (2.18c)

We note that maintaining the density (or pressure) of the minority component, which is
usually set to be a very small value, say 10−8m.u./l.u.3, on both the upper and lower
boundaries is also important.

In the setup for measuring relative permeabilities, however the constant pressure
boundary condition is difficult to determine a lattice node on the outlet is occupied by
the red or blue component. It maybe reasonable to perform an extrapolation. For exam-
ple, if the node that one or two layers above the bottom boundary, is red, it is reasonable
to assume the node will be occupied by the red component. Then the density of the red
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is specified for the node, the minor density is specified for the other component. How-
ever, the simple extrapolation does not work well because the outflow sometimes seems
blocked at the lower boundary.

To make the fluid flow out the the domain naturally, for the lower outflow boundary
condition, the convection boundary condition is imposed [27, 28], i.e.,

∂χ

∂t
+Ui

∂χ

∂y
=0, (2.19)

where Ui is the convective velocity, χ represents any physical variables we used in our
simulations [28]. In our simulations at the outlet j=1 the convective velocity in the lattice
(i, j) is specified as that in the upper neighbouring layer, i.e., Ui =uy(i, j+1).

In the layer j=1, suppose χ= fi if the upwind scheme is used, we have

f n
k (j)− f n−1

k (j)
∆t

+Ui
f n
k (j+1)− f n

k (j)
∆y

=0 (2.20)

for Ui <0. It yield

f n
k (j)=

[∆y
∆t

f n−1
k (j)−Ui f n

k (j+1)
]/(∆y

∆t
−Ui

)
, (2.21)

where k=0,1,··· ,8 and j=1. On the other hand, if Ui >0 and upwind scheme is applied,
it means that the information transfers from the outside of the domain into the domain.
Since the information from outside is unknown, we simply set Ui =0 for the case Ui >0,
i.e., f n

k (j)= f n−1
k (j) is applied. In the follows we would test how the boundary condition

works.

3 Numerical validations

To validate the out-flow boundary condition, first a two-phase displacement case is
simulated. The result is shown in Fig. 1. In this case, the computational domain is
400lu×540lu. The density ratio is unity and viscosity ratio of red and blue phase is
10 (τr = 1.5, τb = 0.6). The upper velocity boundary condition is specified [26] and the
constant displacing velocity is −0.01l.u./t.s. The lower outflow boundary condition is
applied. Periodic boundary condition is applied to the left and right boundaries. From
Fig. 1, It is seen that the upper blue phase displaces the red phase containing a blue-phase
bubble. In the procedure, the blue-phase bubble passes the bottom boundary smoothly
without deformation. The interface moves seamlessly through the outflow and open
boundary. Finally it thoroughly leaves the computational domain. It is seen that in the
simulation, the phase distribution at the lower boundary is convected from the inner
upper lattices due to convection boundary condition.

To further validate the boundary condition, another simulation was also performed
and compared with the experimental result in [32]. The porous medium consists many



Z. S. Lv and H. B. Huang / Adv. Appl. Math. Mech., 13 (2021), pp. 619-644 627

Figure 1: Two-phase displacement. The upper blue phase displaces the red phase containing a blue-phase
droplet. Displacing velocity is −0.01lu/ts. Density ratio is unity and viscosity ratio of red and blue phase is 10.
Periodic boundary condition is applied to the left and right boundaries.

identical cylinders with irregular spacings (see Fig. 2). The key physical parameters of
the porous medium and those for the wetting and non-wetting fluids in the experiment
are listed in the right-most column in Table 1 [32]. The parameters in the LBM simulation
are also listed in Table 1.

Table 1: Geometrical parameters and fluid properties in the LB simulation and experiment.

Symbol Simulation Experiment
Model length L 600 30mm
Model width W 600 30mm
Obstacle diameter b 42 2mm
Porosity φ ≈0.59 ≈0.59
Single-phase permeability k ≈17 2.1×10−4cm2

Contact angle θw ≈40◦ <70◦

Wetting fluid viscosity µw 1/3 3.6×10−3Pa·s
Non-wetting fluid viscosity µnw 1/3 1.9×10−5Pa·s
Wetting fluid density ρw 1.0 1.10×103kg·m−3

Non-wetting fluid density ρnw 1.0 1.2kg·m−3

Surface tension σ 0.108 ≈6.2×10−2N·m−1

Capillary number Ca ≈3.2×10−2 ≈2.6×10−5
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Figure 2: Initially wetting phase -saturated porous media displaced by the a non-wetting fluid. The result of the
LBM simulation (the lower two rows (a)-(h)) is compared the experimental result (the upper two rows (a)-(h))
in [32].

In the simulation, a 600lu×600lu domain is used to discretize the porous medium.
The obstacle diameter is 42 lattice units. The porous media has porosity of 0.59. Both the
non-wetting and wetting fluids have density of unity and at solid nodes ρr=0.7, ρb=0.0.
The corresponding contact angle of the wetting red phase is about 40◦ (see Eq. (2.14)).
The relaxation times for the two fluids are τr =τb =1.0 and the two fluids have identical
viscosity. A= 0.04 and the corresponding surface tension is σ≈ 2.72×A= 0.108. Hence
it is seen that in the LBM simulation viscosity ratio M is unity while in the experiment is
about 5.27×10−3. Besides M, another key parameter is the capillary number, Ca, which
on pore scale is defined as Ca = µwb2u0

kσ , where u0 is the average inlet velocity. The Ca
numbers in our simulation and the experiment [32] are approximately 3.2×10−2 and
2.6×10−5, respectively. According to phase diagram in [33], at small M and small Ca
the flow pattern may be viscous fingering. In our simulation, we tried to minimize the
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capillary number. However, when Ca is too small, numerical instability may appear.
Hence, after a trial and error test, the smallest Ca in this simulation that we are able to
achieve is about ∼3.2×10−2, which is adopted in this validation case. According to [33],
in the M-Ca plane, the viscous fingering pattern covers a wide range. Although the Ca
number in our simulation is not so small as that in the experiment, the flow pattern may
be still the viscous fingering. Two flows with same pattern may look like very much.
Hence, our simulation and the experiment may be still comparable.

In the experiment in [32], the invasion process in the experiment is driven by a con-
stant invasion rate. However, in their LBM simulation [32], instead applying a constant
inlet velocity boundary condition, they adopt a body force F(t), which is fluctuating in
time, acting globally on the whole system. In their simulation, the fluctuating manner of
the body force is similar to that measured in the experiment. In this way, the constant
invasion rate may be recovered from the LBM simulation. It is seen that this boundary
condition depends on the pressure history measured in the experiment. It is not a priori
and not so straightforward.

In our simulation a constant inlet velocity boundary condition with u0=10−4lu/ts is
applied. At the lower boundary condition the outflow boundary condition is adopted.
In the displacement simulation, initially the non-wetting fluid occupies at least 10 layer
lattices near the upper inlet boundary. From Fig. 2, it is seen that phase distributions in
our LBM result ((a)-(h) in the lower two rows) are consistent with those in the experiment
((a)-(h) in the upper two rows), respectively. Hence, the convective boundary condition
is further validated.

4 Immiscible two-phase flow in porous media

In this section, two-phase flow in a porous medium is simulated. A typical apparatus
used to measure the relative permeabilities in the experiment is shown in Fig. 3(a). At
the inlet, the two phases are injected through 15 syringes simultaneously. The pressures
close to the inlet and outlet are measured by pressure sensors.

Our simulation setup is shown in Fig. 3(b). It shows an initial condition of our simu-
lations. The red, green and black regions represent the nonwetting phase (NWP), wetting
phase (WP) and solid, respectively. At the inlet, the NWP or WP are injected into the 25
channels at a constant flow rate, which is similar to the situation in the experiment. In
our simulations, there are blank section between the inlet and porous region. In this way,
they are able to mix before they enter the porous region. The free outflow condition is ap-
plied at the outlet. The blank section between the outlet and porous region is set to avoid
the capillary end effect at the outlet, which may cause numerical instability. The left and
right sides of the domain are periodic. The pressures close to the inlet and outlet of the
porous are monitored in our simulation. Hence, our simulation setup is very similar to
the experimental process of measuring relative permeability in the laboratory.

Porous medium structure generations are not a topic we are concerned with here.
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Figure 3: (a) Sketch of experimental setup from the work of Erpelding et al. [35]. The two phases are contained
in 15 syringes, each connected to one of the 15 inlet nodes of the porous model (seven syringes of air represented
in white and eight syringes of water glycerol solution in black). The same syringe pump is used to inject both
phases simultaneously. The dotted lines give the dimensions of the area studied by image analysis. (b) An initial
condition of simulation in our works. In the 400×800lu2 domain, the blue regions represent solid while the red,
green and blue regions stand for the NWP, WP, and solid, respectively. Periodic boundary condition is applied
to the left and right boundaries. The velocity boundary condition and the free outflow boundary condition are
applied at the upper inlet and the lower outlet, respectively.

The porous medium in [34] is adopted in our simulations, which is a 2D pore networks
of 202 lu2 square solid and void pore space blocks. The porosity of the network is 0.776.
The size of the whole network is 400×400lu2. The absolute permeability of the porous
medium is 48.8l.u.2, which is determined by single-phase lattice Boltzmann simulations.
In our simulations, the flow region is initially occupied by one component. At every
flow node, the dominating and the minority component have densities of 1.0m.u./l.u.3

and 10−8m.u./l.u.3, respectively. Although the densities of the two fluids are identical,
the kinematic viscosity can be adjusted to achieve different dynamic viscosity ratio. The
wettability of the solid can be set through specifying ρwb and ρwr (see Section 2.3).

In our cases, the inlet velocity has magnitude of 10−4∼ 10−3lu/ts. In our study, the
capillary number (Ca) and the viscosity ratio (M) are two key dimensionless numbers.
The capillary number is defined as Ca= Qwµw

σA0
, where Qw is the flow flux of the wetting

component, A0 is the area of the cross section of the porous media. For the 2D porous



Z. S. Lv and H. B. Huang / Adv. Appl. Math. Mech., 13 (2021), pp. 619-644 631

t

S
w
 ,

 S
n

0 1E+06 2E+06
0

0.2

0.4

0.6

0.8

1

S
n

S
w

0.641

0.359

Figure 4: Phase saturations (Sw,Sn) as functions of time (t) for a simulation case with Ca=0.02.

media in our simulation, A0=400lu.
In our simulations, the relative permeabilities of two phases are calculated by Darcy’s

law, i.e.,

kr,i =
Qiµi∆L
KA0∆Pi

, (i=w,n), (4.1)

where Qi is the flow flux of the WP or NWP at the cross section, µi the viscosity of the
WP or NWP, K the absolute permeability, ∆L the length of the porous media and ∆Pi =
Pi,in−Pi,out the pressure drop of the WP or NWP between the inlet and the outlet. Our
simulations are run until steady states achieved, at which the wetting saturation Sw is
almost a constant (see Fig. 4). Then the flow flux and the pressure drop (see Fig. 3(b)) at
steady state are calculated. Finally, the relative permeabilities are obtained using Eq. (4.1).

Next, we study the effect of wettability, initial saturation, capillary number, and vis-
cosity ratio (M= µn

µw
) on the relative permeability. In the following simulations, to fix Ca

and achieve different saturation, the WP occupies 5 channels and the WP inlet velocity
uw,in is fixed but the inlet velocity of the NWP at the other 20 inlet channels un,in varies
(see Fig. 3(b)).

4.1 Wettability effect

To investigate the wettability effect, simulations of two group cases were carried out. The
parameters in the two groups are shown in Table 2. It is seen that in all cases, the NWP
is more viscous than the WP because τn =1.5 and τw =0.6. In all cases, the porous media
is initially saturated with the NWP. The capillary numbers of all cases have the same
magnitude of 10−3.
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Figure 5: Relative permeability as function of saturation of the WP (Sw) for simulations A and B. Filled and
hollow symbols denote relative permeabilities of NWP and WP, respectively. Key parameters for simulations
A and B are listed in Table 2. “0◦” and “60◦” in the lagend denote the static contact angles of the WP in
simulations A and B, respectively. Each point represents a case in our simulation. In the simulations Ca=0.002.

Table 2: Two group cases for investigation of wettability effect on kr.

group contact angle
of the WP initial phase τn

(NWP)
τw

(WP) Ca M description

A 0◦ NWP 1.5 0.6 0.002 10 strong wetting
B 60◦ NWP 1.5 0.6 0.002 10 neutrally wetting

Fig. 5 shows kr as functions of saturation of the WP (Sw) for group A and B. The filled
and hollow squares represent kr,n (kr of the NWP) and kr,w (kr of the WP), respectively. It
is seen that generally speaking, kr,w increases with Sw while kr,n decreases with Sw. The
trend is reasonable because when there are more WP in the porous media, the WP may
be more continuous and kr,w should be high. It is also noticed that for group A, kr,n may
exceed unity. Because when Sw is small, the WP mainly attaches the solid walls, which
acts like a moisture. The attached WP is less viscous and helps the NWP flow faster in the
pores and the NWP would be easier to penetrate the porous media. Hence, kr,n is larger
than any single phase case, e.g., the non-wetting fluid itself.

From Fig. 5, it is also seen that strong wetting cases have a larger kr,n and smaller
kr,w than the neutrally wetting cases at a specific saturation. In order to figure out the
effect of wettability, phase distributions in the porous media at the steady state for typical
cases with Sw≈0.6 in group A and B are shown in Figs. 6(a) and (b), respectively. From
Fig. 6(a), it is seen that the NWP forms two connected paths and occupies the center of the
two main paths. While in the neutrally wetting case, the NWP forms only one connected
path (see Fig. 6(b)). Besides, Fig. 6(a) shows that in the strong wetting case, the WP is
always attached to the wall (see the marked regions 1, 2 and 3). The WP acts as moisture,
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Figure 6: Instantaneous phase distributions of (a) the strong wetting (0◦) case with Sw = 0.601 and (b) the
neutrally wetting (60◦) case with Sw = 0.646. The red, green and blue regions stand for the NWP, WP, and
solid, respectively.

which helps the NWP flow faster in the pores. While in the neutrally wetting case (see
Fig. 6(b)), the NWP is attached to the wall directly (see the marked regions 1, 2 and 3).
Hence, at a specific Sw, the strong wetting case has a larger kr,n.

On the other hand, the flow in main channels significantly affects kr of two phases,
due to the parabolic velocity profile in the channel. Compared to the strong wetting case,
the WP in the neutrally wetting case has more opportunities to flow at the center of the
main channels. Hence, the WP may flow faster in the neutrally wetting case. In this way,
the neutrally wetting case has a higher kr,w at a specific Sw.

4.2 Initial saturation effect

In this section, we study the effect of initial saturation on relative permeability by sim-
ulating two group cases, including drainage and imbibition. Imbibition refers to a dis-
placement process in a porous media which is initially saturated by the NWP. On the
other hand, if the porous media is initially saturated by the WP, the flow process is called
drainage. To investigate the initial saturation effect, the porous media in group A and B
are initially filled with the NWP and WP, respectively (see Table 3).

Fig. 7 shows kr as a function of Sw for group A and B. The filled and hollow squares
represent kr,n and kr,w, respectively. It should be noted that the curves represent different

Table 3: Two group cases for investigation of initial saturation effect on kr.

group initial phase contact angle
of the WP τn τw Ca M description

A WP 0◦ 1.5 0.6 0.002 10 drainage
B NWP 0◦ 1.5 0.6 0.002 10 imbibition



634 Z. S. Lv and H. B. Huang / Adv. Appl. Math. Mech., 13 (2021), pp. 619-644

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

k r

Sw

 A: NWP (drainage)
 A:    WP (drainage)
 B: NWP (imbibition)
 B:    WP (imbibition)

Figure 7: kr as a function of Sw (saturation of the WP) for simulations A and B for investigation of initial
saturation effect. Filled and hollow symbols denote kr,n and kr,w, respectively. Key parameters for simulations
A and B are listed in Table 3. The vertical dashed black line is set at Sw=0.5, which separates the curves into
two sides. The curves in different sides represent different laws. In the simulations Ca=0.002.

Figure 8: An instantaneous phase distribution of (a) a drainage case with Sw=0.602 and (b) an imbibition case
with Sw =0.601. The red, green and blue regions represent the NWP, WP and solid, respectively. The marked
region shows the stagnant pores.

features in the two sides of the vertical dashed black line. In the left side (Sw < 0.5), kr,n
of drainage is smaller than that of imbibition, and kr,w of two processes approximately
equal, at the same saturation. However, in the right side (Sw > 0.5), kr,n of drainage is
larger than that of imbibition, while kr,w of drainage is smaller than that of imbibition, at
a specific Sw.

To find out the effect of initial saturation, phase distributions in the porous media at
the steady state for typical cases with Sw≈ 0.6 in group A and B are shown in Figs. 8(a)
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Table 4: Three group cases for investigation of capillary number effect on kr.

group Ca contact angle
of WP initial phase τn τw M

A 0.02 0◦ NWP 1.5 0.6 10
B 0.002 0◦ NWP 1.5 0.6 10
C 0.0002 0◦ NWP 1.5 0.6 10

and (b), respectively. It is seen that the main difference between Figs. 8(a) and (b) lies in
phase distribution in the dead-end pores (see the marked region). In the drainage and
imbibition cases, the marked dead-end pore is filled with the WP and NWP, respectively.
Therefore in the imbibition case, a part of the NWP is stagnant in the dead-end pore and
the effective saturation of the NWP is smaller than it appears. Smaller effective saturation
usually leads to smaller permeability. Hence, when Sw>0.5, kr,n of drainage is larger than
that of imbibition and meanwhile kr,w of drainage is smaller than that of imbibition.

When Sw is small (Sw <0.5), the lubrication effect of the WP makes the NWP easy to
flow through the porous media. However, a part of the WP is trapped in the stagnant
pores in drainage, and thus the lubrication effect would be weakened. Therefore, kr,n of
drainage is smaller than that of imbibition at a Sw<0.5. When Sw is small, the WP mainly
attaches to the wall and are disconnected. Hence kr,w is close to zero.

4.3 Capillary number effect

To study capillary number (Ca) effect on kr, we implement three group simulations
which are controlled with the same conditions except Ca. The Ca is defined as Ca= Qwµw

σA .
As mentioned above, our model allows us to simulate cases with different surface ten-
sion. Here, Ca can be changed by setting surface tension σ and flow flux Qw. In the
three group simulations, the wettability, the initial saturation and M of the two phases
are identical.

It is seen from Fig. 9 that Ca has a significant effect on both kr,n and kr,w. Besides, kr,n

and kr,w both get smaller as Ca decreases, at a specific saturation. Fig. 10 shows kr,n
kr,w

as a

function of Sw. It is seen that the ratio kr,n
kr,w

becomes larger when Ca decreases at Sw <0.6
although at a small Ca, both kr,n and kr,w are small. These results agree well with those
obtained by Blunt et al. [36] using network modeling.

In order to further understand the effect of Ca, the instantaneous phase distributions
of the cases of Ca = 0.02 and Ca = 0.0002 for Sw ≈ 0.7 are shown in Figs. 11(a) and (b),
respectively. For comparison, several regions are labeled in (a) and (b). It is see that at
Ca=0.02, the NWP is easy to deform and pinch off due to the relatively smaller σ. This is
advantageous for both two phases to flow because the two phases may coflow in a flow
path. Consequently, at large Ca, both phases have relatively larger permeabilities while
kr,n
kr,w

may be not so significant as that at small Ca at a specific Sw (see Fig. 10).



636 Z. S. Lv and H. B. Huang / Adv. Appl. Math. Mech., 13 (2021), pp. 619-644

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 A: NWP (Ca   2  10  )
 A:    WP (Ca   2  10  )
 B: NWP (Ca   2  10  )
 B:    WP (Ca   2  10  )
 C: NWP (Ca   2  10  )
 C:    WP (Ca   2  10  )

-2k r

Sw

»
»
»
»
»
»

´
´
´
´
´
´

-2

-3

-3

-4

-4

Figure 9: Relative permeability as function of saturation of wetting phase (Sw) for simulations A, B and C
for investigation of capillary number effect. Filled and hollow symbols denote kr,n and kr,w, respectively. Key
parameters for simulations A, B and C are listed in Table 4.
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Figure 10: Relative permeability ratio as function of Sw for simulations A, B and C for different Ca.

On the other hand, at Ca = 0.0002, the NWP is able to maintain its shape and not
easy to be pinched off (see Fig. 11(b)). the feature helps the NWP to occupy the main
flow paths and make it more connected. Consequently, at small Ca, the WP flow may be
significantly blocked by the NWP. As a result, the ratio kr,n

kr,w
becomes larger at a specific

saturation (see Fig. 10).
It is also seen that the NWP in the black circles in (b) is stuck and unable to flow due

to the large capillary resistance in the narrow pores. So at small Ca, the NWP is easier to
be trapped and the flow paths may be blocked, which reduces the flow capacity of both
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Figure 11: An instantaneous phase distribution of (a) a Ca=0.02 case with Sw =0.69 (b) a Ca=0.0002 case
with Sw=0.67. The blue, red and the green regions represent solid, NWP and WP, respectively. (c) and (d) are
the pressure contours of (a) and (b), respectively. In (c) and (d), the black lines denote the interfaces between
the WP and NWP.

phases. Therefore, both kr,n and kr,w at small Ca is smaller than those at large Ca for a
specific Sw.

The above issue can also be understood from the nondimensional pressure distribu-
tion in the porous media (Figs. 11(c) and (d)). The nondimensional equation is p∗= p−c2

s ρ
ρU2 ,

where U = Qw
A is the characteristic velocity. The maximum pressure drop in Fig. 11(c) is

approximately 2×103, and that in (d) is 2×104. Hence, the pressure drop in the case of
Ca = 0.0002 is much larger than that in the case Ca = 0.02. In Fig. 11(d), it is also seen
that the pressure drop at the interface between the WP and NWP is remarkable, which
implies the NWP may be difficult to overcome the capillary resistance. While in the case
of Ca= 0.02 (Fig. 11(c)), due to small capillary force, the pressure drops at the interface
between the WP and NWP is small.

4.4 Viscosity ratio effect

To find out the viscosity ratio effect on relative permeability, three group cases with dif-
ferent M were simulated. The capillary numbers of all cases have the same magnitude of
10−3. The parameters are shown in Table 5.
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Table 5: Three group cases for investigation of viscosity ratio effect on kr.

group M contact angle
of the WP initial phase τn τw Ca

A 1 0◦ WP 1.0 1.0 0.002
B 10 0◦ WP 1.5 0.6 0.002
C 50 0◦ WP 1.5 0.52 0.002

From Fig. 12, it is seen that a higher M leads to a higher kr,n at a specific Sw. It also
shows that kr,w becomes smaller as M increases at a specific Sw. Our results about the
effect of M on kr are consistent with those obtained by Blunt et al. [36] using network
model. To further understand the effect of M, the instantaneous phase distribution of
two cases with M=1 and M=10 are illustrated in Fig. 13.

As mentioned before, the WP tends to attach the solid walls and acts like a moisture
(see Section 4.1). Figs. 13(c) and (d) present the velocity fields of the M = 1 and M =
10 cases, respectively. In both cases, Sw ≈ 0.4. Overall the velocity fields in Figs. 13(c)
and (d) have the same order of magnitude. From the zoom-in views, we find that the
velocities of the NWP at M=1 and M=10 have the same order of magnitude. According
to kr,n=

Qnµn∆L
KA∆Pn

, the kr,n would increase with increasing µn when Qn and ∆Pn are constant.
It is noted that ∆Pn in the cases M = 1 and M = 10 is close. Therefore at higher M, kr,n
becomes larger at a specific saturation (see Fig. 12). Similarly, kr,n of the cases with M=50
is usually larger than that in the cases with M=10 at a specific Sw.

According to [37], when Ca>10−5 and M>1, viscous fingering pattern may occur in
the two-phase flow in the porous media. It is seen from the marked regions 1 and 3 in
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Figure 12: Relative permeability as function of Sw for simulations A, B and C, for different M. Filled and hollow
symbols denote kr,n and kr,w, respectively. Key parameters for simulations A, B and C are listed in Table 5.
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Figure 13: Instantaneous phase distribution for (a) a M=1 case with Sw =0.414 and (b) a M=10 case with
Sw=0.405. (c) and (d) the velocity fields of (a) and (b), respectively. (e)-(f) zoom-in view of the white square
regions in (c) and (d), respectively.

Fig. 13(b) that more WP may be trapped by the NWP at larger M and the WP becomes
more difficult to flow. Therefore, kr,w becomes smaller when M is larger at a specific Sw
(see Fig. 12).

4.5 Effect of two-phase distribution at the inlet

Two-phase distribution at the inlet may influence the measured kr. To evaluate the effect,
here two groups of simulations (Cases A and B) with different phase distribution at the
inlet are performed. The physical parameters in the ten cases are τn=1.5, τw=0.6, uw,in=
0.001, un,in =0.001, σ=2.79×10−3 and θ=0◦.

The phase distributions at the inlet 25 channels for cases with Sw≈30% and 60% are
shown in Table 6. The letter ”N” and ”W” represent the NWP and WP, respectively. It
is seen that the phase distributions at the inlet 25 channels in Case A and Case B are
significantly different although they lead to almost identical Sw. For the case of Sw ≈
5%, only one of the 25 inlet channels is filled with the WP. For the cases of Sw ≈ 80%,
and 85% only two and one inlet channel are filled with the NWP, respectively. In the
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Figure 14: Relative permeabilities as functions of Sw for simulations A and B with different phase distributions
at the inlet. Filled and hollow symbols denote kr,n and kr,w, respectively. Distributions at the inlet for Sw≈30%
and 60% are listed in Table 6.

Figure 15: Instantaneous phase distributions at steady state for four cases with (a) Sw =0.036 (Group A), (b)
Sw = 0.038 (Group B), (c) Sw = 0.629 (Group A) and (d) Sw = 0.604 (Group B), respectively. In the cases
Ca=0.002.

corresponding Cases A and B, the inlet channels mentioned in the cases of Sw≈5%, 80%,
85% are located close to the right and left boundaries, respectively. For the resultant
relative permeabilities, Fig. 14 shows that kr,w and kr,n at five specified saturations (Sw≈
5%, 30%, 60%, 80%, 85%) of Case B (circles) are all very close to those of Case A (triangles).

Fig. 15 shows the two-phase distribution at the inlet and the resultant instantaneous
distribution in the porous medium at steady state for cases with Sw ≈ 3.8% and 60%.
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Table 6: The phase distributions at the inlet for cases with Sw≈30% and 60%.

Sw group distributions of inlet channels
(N: NWP, W: WP)

inlet number
(N: W)

≈30% A NNNNNNNNWNWNNNNNNWNNWNNNW 20: 5
≈30% B NWNWNNNNNNWNNNNNNWNNNNNNW 20: 5
≈60% A NWNWWNWNWWNWNWWNWNWWNWNWW 10: 15
≈60% B NWNWNWNWNWNWNWNWNWNWWWWWW 10: 15

It is seen from Figs. 15(a) and (b) that both flows of the WP are not so continuous and
their flow paths are located in the right and left main passages, respectively due to the
locations of the WP at the inlet. Since the flows seem similar, kr,ws in Case A and B
are close, so do kr,ns. From Fig. 15(c), we can see that the flow in the left main path is
not continuous while that in the right path is continuous. The situation in Fig. 15(d) is
reversed. Overall, the penetration abilities of the NWP in the porous media in Case A
and B are close. Hence, kr,ns in Case A and B are close, so do kr,ws.

In summary, the distribution only has very minor effect on kr. The possible reasons
are listed in follows. First, although the porous media is not homogeneous, it has two
main paths in the left and right part, respectively. In other words, the porous media is
close to homogeneous and not so heterogeneous. Second, the two phases are mixed in
some extent before they enter the porous region. The two features weaken the effect of
phase distribution at the inlet.

5 Conclusions

The R-K model is developed to simulate the relative permeability measurement in reality.
This distinctive feature of experimental self-determined outflow two-phase distribution
at the outlet is reproduced in the LBM simulations by the convective boundary condition.

Using the R-K model, we implement a series of simulations to investigate the effects
of wettability, initial condition, Ca and M on the relative permeabilities. Our analysis can
be summarized as follows:

(a) The strong wetting cases have a larger kr,n than the neutrally wetting cases at a
specific Sw due to the more opportunity to flow in the middle of the channel and
the lubrication effect of the WP that attaches to the wall. Besides, kr,n may exceed
unity at smaller Sw.

(b) At Ca≈10−3, compared to the drainage process, kr,n of the imbibition is smaller at
Sw>0.5 because a part of the NWP is stagnant in the dead-end pore and the effective
saturation of the NWP is smaller than it appears. At Sw <0.5, kr,n of the drainage is
lower, because a part of the WP is trapped in the stagnant pores in drainage, which
weakens the lubrication effect.
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(c) As Ca decreases, capillary fingering is more and more dominated, in which more
WP would be trapped in small pore and the flow paths may be blocked. Mean-
while, the NWP has more opportunity to be connected in large pores. As results,
the relative permeabilities of both two phases decrease, but kr,n

kr,w
rises.

(d) When M increases, more micro fingers are generated, which results in a smaller
kr,w. At a high M and smaller Sw, the lubrication effect of the WP is remarkable.

This study provides a more realistic LBM simulation setup for measuring relative perme-
ability in porous media and predicting the two-phase flow in porous media.
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