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This study investigates droplet impact on elastic plates using a two-phase lattice Boltzmann
method in both two-dimensional (2-D) and three-dimensional (3-D) configurations, with
a focus on rebound dynamics and contact time. The 2-D simulations reveal three
distinct rebound modes – conventional bounce, early bounce and rim rising – driven
by fluid–structure interaction. Among them, the early bounce mode uniquely achieves
a significant reduction in contact time, occurring only at moderate plate oscillation
frequency. Momentum analysis shows a non-monotonic relationship between vertical
momentum transfer and rebound efficiency: increased momentum does not necessarily
promote rebound if it concentrates in a central jet, which contributes minimally to lift-
off. This introduces a novel rebound mechanism governed by momentum distribution
morphology rather than total magnitude. A theoretical model treating the droplet–plate
system as coupled oscillators is developed to predict contact time in the early bounce
regime, showing good agreement with numerical results. The mechanism and model are
further validated through fully 3-D simulations, confirming the robustness of the findings.
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1. Introduction
The impact of liquid droplets on solid surfaces is a common phenomenon observed in
both nature and industry. Examples include raindrops striking soil (Joung & Buie 2015),
inkjet printing (Derby 2010; Sousa et al. 2014; Lohse 2022), spray coating (Dhiman,
McDonald & Chandra 2007; Ye & Domnick 2017), pesticide application (Nuyttens et al.
2007; Massinon & Lebeau 2012) and bloodstain pattern analysis (Laan et al. 2014).
This problem has attracted sustained interest in fluid dynamics for decades (Yarin 2006;
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Josserand & Thoroddsen 2016; Cheng, Sun & Gordillo 2022; Lohse 2022). Upon impact,
a droplet may deposit, rebound or splash (Josserand & Thoroddsen 2016), depending on
various factors such as its viscosity (μH ), surface tension (σ ), density (ρH ), initial size (the
diameter D0), impact velocity (U0) and the characteristics of the surface. The dynamics
of this process are primarily governed by inertial, viscous and capillary forces, which are
often described using key dimensionless parameters. Among these, the Weber number
(We = ρH U 2

0 D0/σ ) characterizes the relative importance of inertial forces to surface
tension, while the Reynolds number (Re = ρH U0 D0/μH ) represents the ratio of inertial to
viscous forces.

When droplets impact superhydrophobic or non-wetting surfaces at a relatively low
velocity, they initially spread, reach a maximum diameter (Clanet et al. 2004) and then
retract. In some cases, if the droplet is not too viscous or heavy, it fully bounces off due to
the restoring force of surface tension (Richard & Quéré 2000; Biance et al. 2006; Sanjay,
Chantelot & Lohse 2023). This rebound mechanism is commonly observed in nature,
allowing plants and animals to repel water and stay dry (Quéré 2008; Bird et al. 2013;
Wisdom et al. 2013). It also finds widespread industrial applications, such as anti-icing
surfaces (Mishchenko et al. 2010; Kreder et al. 2016), self-cleaning technologies (Blossey
2003; Bhushan & Jung 2011), heat transfer enhancement (Zhang et al. 2016; Liang &
Mudawar 2017) and directional droplet transport (Li et al. 2016; Sun et al. 2019).

A key factor in these applications is the droplet’s contact time, tc, which represents the
duration between initial impact and departure from the surface. Richard, Clanet & Quéré
(2002) were among the first to experimentally demonstrate that contact time is primarily
influenced by droplet size rather than impact velocity. This behaviour can be modelled
using an inertia–capillarity time scale,

tc = a

√
ρH D3

0
σ

, (1.1)

where a is an experimentally determined prefactor, independent of impact velocity at
the inertia–capillary regime (moderate and high Weber numbers) (Richard et al. 2002;
Abolghasemibizaki et al. 2019). While at low Weber numbers (viscous–capillary regime)
a acquires a velocity dependence (Abolghasemibizaki et al. 2019). Although contact
times are typically of the order of milliseconds, significant energy, momentum and mass
exchanges occur between the droplet and the surface (Voigt et al. 2011; Shiri & Bird 2017).

For many industrial applications, minimizing contact time is beneficial. For instance,
ice accumulation on surfaces can pose serious challenges for aircraft (Mohseni &
Amirfazli 2013), transmission lines (Wei et al. 2016) and wind turbines (Kraj & Bibeau
2010). Reducing ice formation requires rapid shedding of impacting droplets (Maitra
et al. 2014a). Studies have shown that at the same surface temperatures, droplets on
superhydrophobic surfaces can rebound before freezing, whereas ice nucleates on smooth
hydrophilic and hydrophobic surfaces (Mishchenko et al. 2010).

Consequently, reducing droplet contact time (tc) has become a central goal in many
related applications. Based on the interaction mechanisms between the impacting droplet
and the surface, research in this area can be broadly categorized into three main strategies
(Fan et al. 2023): (i) surfaces patterned with micro/nanotextures (Li, Ma & Lan 2010; Liu
et al. 2014; Moqaddam, Chikatamarla & Karlin 2017); (ii) axisymmetry breaking (Bird
et al. 2013; Liu et al. 2015; Gauthier et al. 2015; Zhan et al. 2021); (iii) the use of elastic
surfaces (Weisensee et al. 2016; Vasileiou et al. 2016; Xiong, Huang & Lu 2020).

The first strategy involves micro/nanotextured surfaces, where part of the droplet
penetrates into the surface texture, storing capillary energy within the liquid. This stored
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energy is then converted into kinetic energy, facilitating a more rapid upward motion and
faster detachment. For instance, Liu et al. (2014) experimentally demonstrated that droplets
impacting surfaces with submillimetre-scale textured posts decorated with nanostructures
can bounce off in a pancake-like shape without significant retraction, reducing contact
time by a factor of four compared with conventional rebounds. The latter typically involve
symmetric spreading and full retraction on flat, superhydrophobic rigid surfaces. Similarly,
Moqaddam et al. (2017) observed a nonlinear relationship between contact time and We in
simulations at higher We. Additionally, hierarchical and densely packed nanoscale textures
have been shown to significantly decrease contact time (Lv et al. 2016; Wang et al. 2020).

The second strategy, breaking axisymmetry, accelerates droplet recoil by disrupting
the uniform inward retraction seen in axisymmetric impacts. In symmetric cases, the
droplet’s edge retracts uniformly at a constant velocity. However, when asymmetry is
introduced, retraction occurs more rapidly along specific directions, leading to a faster
rebound (Bird et al. 2013). Various methods have been employed to induce this asymmetry.
For instance, Bird et al. (2013) introduced surface ridges on the scale of the spreading
drop’s film thickness. These ridges lead to localized variations in film thickness that
accelerate retraction along specific paths along the ridge direction than in other areas,
thereby breaking radial symmetry and enhancing recoil efficiency. Similarly, Liu et al.
(2015) investigated droplet impacts on curved surfaces with a curvature comparable to
the droplet size. They found that liquid retracts more quickly along the axial direction,
reducing contact time compared with impacts on flat surfaces. Another approach involves
dynamic surfaces. Zhan et al. (2021) demonstrated that a horizontally moving surface
stretches the droplet’s front lamella along the motion direction, keeping it farther from
the droplet bulk. This early dewetting initiation leads to a faster rebound compared with
stationary surfaces. Additionally, oblique impacts have been shown to effectively reduce
contact time by naturally breaking axisymmetry (Regulagadda, Bakshi & Das 2018).

The third strategy for reducing droplet contact time involves using elastic surfaces.
Unlike rigid surfaces, elastic surfaces deform upon impact, temporarily storing energy
that is subsequently transferred back to the droplet through upward motion, enhancing
its rebound. This early-lift mechanism, termed the ‘springboard effect’ by Weisensee et al.
(2016), was also associated with the ‘pancake bouncing’ phenomenon. Similarly, Vasileiou
et al. (2016) demonstrated that when the oscillation frequencies of the elastic surface and
the droplet are synchronized, surface repellency is enhanced, providing additional energy
for the droplet’s rebound. Upadhyay, Kumar & Bhardwaj (2021) further explored this
interaction by studying droplets bouncing on an elastic cantilever beam and developing a
spring–mass model to describe the dynamic coupling between the droplet and the surface.
Additional experimental studies have reinforced the effectiveness of elastic surfaces in
reducing contact time (Kim, Rothstein & Shang 2018; Huang et al. 2018). Other studies
also examine droplet impact on flexible substrates (see Gart et al. 2015, Dressaire et al.
2016), which also show the significant effect of substrate flexibility on droplet dynamics.

While the first two strategies have been extensively investigated through both
experiments and simulations, numerical studies on droplet rebound from elastic surfaces
remain limited. In particular, the early-lift mechanism, or ‘springboard effect’ (Weisensee
et al. 2016), remains poorly understood. Compared with experiments, numerical
simulations can provide more detailed quantitative insights into droplet dynamics, helping
to elucidate the key mechanisms responsible for faster rebounds on elastic surfaces.
To date, the only relevant numerical study was conducted by Xiong et al. (2020),
which focused on two-dimensional (2-D) simulations. However, due to the low We used
in the study, it failed to capture the experimentally observed pancake bounce – the
phenomenon responsible for the greatest reduction in contact time. To bridge this gap,
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Figure 1. Schematic diagram of a droplet impacting an elastic plate. (a) The 2-D case. (b) The three-
dimensional (3-D) case, where the two edges marked by red lines are free, while the other two edges are
simply supported. Here, L and W represent the length and width of the plate, respectively.

further simulations covering a broader range of We are needed, along with a deeper
understanding of the early-lift mechanism.

In this study, we simulate droplet impact on elastic plates at moderate We using
the phase-field lattice Boltzmann method (LBM). Our focus is to investigate how
surface motion influences the rebound process and contact time. By analysing the
detailed flow field within the droplet, our simulations provide valuable insights into the
underlying dynamics of early bouncing. Furthermore, we develop a theoretical model
to predict the contact time for droplets impacting elastic surfaces. This work aims to
offer a comprehensive understanding of droplet rebound dynamics, contributing to the
optimization of industrial applications such as anti-icing surface design and self-cleaning
technologies.

2. Methodology
A schematic diagram of a droplet impacting an elastic plate is shown in figure 1(a).
The droplet, with an initial diameter D0, impacts the plate with a downward velocity
U0. Initially, the droplet is positioned above the centre of the elastic plate. Gravity is
neglected in this study because the droplet diameter is much smaller than the capillary
length lc = √

σ/(ρH g), and the Bond number follows Bo2 � W e (Molacek & Bush 2012),
where Bo = ρH gD2

0/σ and g is the gravitational acceleration. Under these conditions,
surface tension dominates and gravitational effects are negligible. The plate has an initial
length L , with both ends simply supported. Figure 1(b) illustrates the 3-D set-up, where
the two ends are simply supported, while the other sides (marked by red lines) are free.

In our simulations, we employ the phase-field LBM (Liang et al. 2018) to solve the fluid
flow and the finite element method (Doyle 2001) to model the deformation and motion of
the elastic plate. To track the fluid interface, we use the conservative phase-field Allen–
Cahn equation (Xiong et al. 2020; Ma & Huang 2023),

∂φ

∂t
+ ∇ · (φu) = ∇ ·

[
M

(
∇φ − 4

ξ
φ(1 − φ)n̂

)]
, (2.1)

where φ is the phase-field variable, varying from 0 (vapour) to 1 (liquid). The densities of
the vapour and liquid phases are denoted as ρL and ρH , respectively. Here, u represents
the macroscopic velocity vector, M is the mobility, ξ is the interface thickness and n̂ is the
unit normal vector to the fluid interface, defined as ∇φ/|∇φ|, pointing towards the liquid
phase.

The isothermal, incompressible Navier–Stokes equations are also solved using the LBM
framework (Xiong et al. 2020; Ma & Huang 2024). The motion and deformation of the
elastic plate in both 2-D and 3-D cases are governed by the structural (2.2) and (2.3),
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respectively (Hua, Zhu & Lu 2014; Xiong et al. 2020),

ρshs
∂2 X
∂t2 − ∂

∂s

[
Ehs

(
1 −

∣∣∣∣∂ X
∂s

∣∣∣∣
−1
)

∂ X
∂s

]
+ E I

∂4 X
∂4s

= Fext, 2-D, (2.2)

ρshs
∂2 X
∂t2 −

2∑
i, j=1

[
∂

∂si

(
Ehsϕij

[
δij −

(
∂ X
∂si

· ∂ X
∂sj

)−1/2
]

∂ X
∂sj

− ∂

∂sj

(
E Iγij

∂2 X
∂si∂sj

))]

= Fext, 3-D, (2.3)

where s is the Lagrangian coordinate along the plate direction, X is the position vector
of the plate, ρs is the plate density, hs is the plate thickness, E I and Ehs are the
bending and stretching stiffnesses, respectively, where I = h3

s /12 and E is Young’s
modulus. Here ϕij and γij are the in-plane and out-of-plane effect matrices, respectively.
And their components are ϕ11 = ϕ22 = 1, ϕ12 = ϕ21 = 1/(2 + 2νs), γ11 = γ22 = 1 and
γ12 = γ21 = 0, where νs is Poisson’s ratio. Here δij is the Kronecker delta function. Here
Fext is the external force exerted by the fluid on the plate, which is determined using
the momentum exchange method (Xiong et al. 2020). The initial plate is straight, i.e.
(∂2 X0/∂s2

i · ∂2 X0/∂s2
j )1/2 = 0, where X0 is the initial position vector. At the two ends

of the plate, a simply supported boundary condition is imposed, namely X = X0 and
∂2 X/∂s2 = 0.

To optimize computational efficiency, we exploit symmetry in the problem set-up. For
the 2-D cases, a symmetric boundary condition reduces the computational domain to
half of the physical domain. In the 3-D cases, a similar strategy is employed, where the
computational domain is reduced to a quarter of the full physical domain. This cubic
domain is bounded by six planes, with symmetric boundary conditions applied on the
two planes that intersect the symmetry axis. At the bottom moving plane, the substrate’s
wettability is modelled using a Neumann boundary condition (Shao, Shu & Chew 2013),
which sets the equilibrium contact angle, θe. To improve accuracy, we utilize a weighted
least squares method (Pan, Ni & Zhang 2018). It is noted that in our simulations, the
contact line is not modelled dynamically: only an equilibrium contact angle is prescribed,
with no explicit treatment of contact-line slip. In practice, the apparent contact-line motion
in our simulations originates from the implicitly imposed numerical slip length. This
simplification is justified by the use of superhydrophobic surfaces, where contact-angle
hysteresis is negligible and dynamic contact-line effects have only a minor influence
on rebound dynamics (de Goede et al. 2019). Recent studies (Thenarianto et al. 2023)
indicate that contact-line effects can become important at smaller Weber numbers, but
since our focus is on moderate Weber numbers where inertio–capillary and fluid–structure
interaction (FSI) effects dominate, the influence of the numerical slip length remains
limited in the present regime. Additional details of the numerical implementation are
provided in Xiong et al. (2020). Outflow boundary conditions are applied at the remaining
three boundaries.

Here, we provide context for the complexity of the coupled FSI model. The present
framework couples a multiphase lattice Boltzmann solver with a finite element solver,
transferring fluid stresses to the solid and updating fluid boundaries with the plate
displacement. The model also resolves surface wettability and multiphase interfacial
dynamics on a moving substrate, which further increases computational complexity
compared with conventional single-phase FSI models.

To non-dimensionalize the governing equations, we select ρH , D0 and σ as
characteristic quantities. The corresponding reference velocity and time are defined as
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Dimensional parameters Non-dimensional parameters

Impact velocity, U0 Weber number, We = ρH U 2
0 D0/σ

Droplet diameter, D0 Bending stiffness, KB = E I/(ρH U 2
ref L

3)

Liquid/vapour density, ρH /ρL Mass ratio, Mr = ρshs/(ρH L)

Liquid/vapour viscosity, μH /μL Reynolds number, Re = ρH U0 D0/μH

Surface tension, σ Ohnesorge number, Oh = √
We/Re = 0.01

Plate length, L Stretch stiffness, KS = Ehs/(ρH U 2
ref L) = 100

Plate thickness, hs Density ratio, ρr = ρH /ρL = 1000
Plate width (3-D), W Viscosity ratio, μr = μH /μL = 50
Plate density, ρs Length ratios, (6 for 2-D and 8 for 3-D)
Bending stiffness, E I Width ratio (for 3-D), Wr = W/D0 = 3
Stretch stiffness, Ehs

Reference velocity, Uref = √
σ/(ρH D0)

Reference time, Tref =
√

ρH D3
0/σ

Table 1. Summary of dimensional and non-dimensional parameters.

Uref = √
σ/(ρH D0) and Tref =

√
ρH D3

0/σ , representing the inertia–capillarity time scale.
All velocities and times in the following discussion are non-dimensionalized using Uref
and Tref, respectively. The key dimensionless parameters governing the problem include
the Weber number W e = ρH U 2

0 D0/σ , the bending stiffness KB = E I/(ρH U 2
refL

3) and
the mass ratio Mr = ρshs/(ρH L). Here Mr represents the ratio of plate mass to droplet
mass and characterizes the relative inertia of the solid and liquid: small Mr corresponds
to a light plate that responds strongly to droplet impact, while large Mr corresponds to a
heavier plate with weaker motion. More details of its physical interpretation can be found
in Ma & Huang (2025).

We note, however, that Mr is a defined mass ratio, introduced following a convention
commonly adopted in FSI studies of elastic plates (Connell & Yue 2007; Hua et al. 2014),
rather than the true ratio of droplet mass md to plate mass m p. The actual droplet-to-plate
mass ratio can be expressed explicitly in terms of Mr and geometric parameters of the
system as

md

mp
=

ρH π
(

D0
2

)2

ρs hs L
= π

4L2
r Mr

, 2-D, (2.4)

md

mp
=

ρH
4
3π

(
D0
2

)3

ρs hs L W
= π

6L2
r Wr Mr

, 3-D, (2.5)

where Lr = L/D0 and Wr = W/D0 denote the plate length and width ratios, respectively.
In our simulations, we use the following values: density ratio ρr = ρH/ρL = 1000,

dynamic viscosity ratio μr = μH/μL = 50, Ohnesorge number Oh = √
We/Re = 0.01,

stretching stiffness KS = Ehs/(ρH U 2
refL) = 100 and length ratios Lr = 6 for 2-D cases,

while for 3-D cases, we set Lr = 8 and width ratio Wr = 3. All dimensional and
non-dimensional parameters are summarized in table 1.
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D0 = 80�x,   Tref = 11925�t
D0 = 160�x, Tref = 33731�t
D0 = 320�x, Tref = 95405�t

Figure 2. Time evolution of the droplet diameter Dt in (a) and plate centre displacement ypc in (b) for a droplet
impacting a flexible plate at We = 30, KB = 0.5 and Mr = 0.1, obtained with different grid resolutions and time
steps.

0.5 1.0

t

D
w
/
D

0

2.0

1.0

0.5

0

1.5

Experiment
Simulation

Rebound

Figure 3. Time evolution of the wetting diameter Dw for a droplet impacting a superhydrophobic rigid
surface at We = 55 and Oh = 0.01, comparing experimental and simulation results. The points represent the
experimental data from Bird et al. (2013), while the line shows the current 3-D simulation results. When Dw

returns to zero, it indicates the droplet has bounced off the surface.

A detailed convergence analysis of our numerical framework has been presented in our
earlier works (Ma & Huang 2023, 2024). For completeness, and to address the present
parameter regime, we have carried out two additional mesh-independence and time step-
independence studies: (i) spatial refinement with grid resolutions D0 = 80
x , 160
x and
320
x ; (ii) temporal refinement with time steps Tref = 11925
t , 33731
t and 95405
t .
The time evolutions of the droplet diameter and plate displacement were monitored, and
the results (figure 2) show monotonic convergence, with only minor differences between
the two finest resolutions. Based on these tests, the resolutions used in the main simulations
(D0 = 160
x , Tref = 33731
t) are confirmed to lie within the converged regime for all
cases studied.

Our numerical methods have been previously validated for simulating droplet
interactions with elastic surfaces (Xiong et al. 2020; Ma & Huang 2023). Here, we focus
on verifying the accuracy of our simulations in capturing droplet rebound dynamics.
Figure 3 presents the numerical results for a droplet impacting a rigid superhydrophobic
surface, demonstrating strong agreement with experimental data from Bird et al.
(2013). Additionally, our simulation precisely captures the moment of droplet rebound,
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confirming the reliability of our numerical approach in modelling droplet bouncing.
In our simulations, the Ohnesorge number is set to Oh = 0.01, slightly larger than the
experimental value for water in figure 3. Previous studies (Antonini et al. 2013; Maitra
et al. 2014b; Moqaddam et al. 2017) have shown that viscous effects on contact time
become significant only for Oh � 0.1. For Oh < 0.1, viscosity has negligible influence on
bounce dynamics, which explains the good agreement between our Oh = 0.01 simulations
and the experiments.

3. Results and discussion
Since droplet impact dynamics in two and three dimensions exhibit similar behaviour, as
shown in our previous work (Ma & Huang 2023) and validated here, we begin by analysing
2-D cases. These findings are later confirmed by 3-D results in § 3.4. We investigate the
effects of three key parameters: the Weber number (We), bending stiffness (KB) and mass
ratio (Mr ). All surfaces are superhydrophobic with a contact angle of θe = 170◦ to ensure
rebound.

3.1. Bouncing drops
We conducted simulations across a broad range of parameters: We ∈ [10, 60], KB ∈
[0.2, ∞) and Mr ∈ [0.1, 0.4], where KB = ∞ represents a rigid plate. The range Mr was
chosen to focus on the flexible-plate regime of interest: the lower bound avoids excessively
large deformations that would violate the small-displacement assumption (Ma & Huang
2023), and the upper bound excludes cases approaching the rigid-substrate limit. Higher
We or lower KB values are also not considered, consistent with the small-displacement
assumption.

Figure 4 illustrates droplet impact dynamics on elastic plates with varying bending
stiffness. Upon contact, droplets spread, retract and eventually bounce off due to the
superhydrophobic surface, regardless of plate rigidity. In elastic cases, the plate oscillates
in response to impact. When it moves upward, it transfers momentum back to the droplet,
enabling an earlier rebound – an effect known as the ‘springboard effect’ (Weisensee et al.
2016). Column (v) in figure 4 shows the time evolution of wetting diameter (Dw) and plate
centre position (ypc), characterizing plate motion. Suppose the initial moment is t0 = 0 and
Dw returns to zero at time tb, indicating droplet departure; the contact time (tc) is defined
as the time elapsed since impact: tc = tb − t0.

Figure 4 presents five representative cases illustrating three distinct rebound modes –
conventional bounce, early bounce and rim rising – corresponding to figure 4(a–e).

The conventional bounce mode appears in cases with low or very high stiffness
(figures 4a and 4e, KB = 0.2 and 50, respectively). Here, Dw decreases smoothly to zero
during retraction, resembling the rigid case. Contact time is similar to the rigid case, with
only slight reductions at lower stiffness.

In the early bounce mode (figures 4b and 4c, KB = 0.5 and 2.0), the droplet lifts off
before completing retraction, leading to a discontinuous drop in Dw and a significantly
shorter contact time. It is noted that a discrete jump also appears at rebound for the rigid
case shown in figure 3. This can be interpreted as follows: near rebound, the droplet’s
wetted area shrinks rapidly, and surface tension contracts the remaining contact patch
abruptly, producing the observed discontinuity. The experimental data in figure 3 show
the same behaviour, supporting this interpretation. However, this feature arises from a
different mechanism than in the flexible case, where the discontinuity is influenced by
the substrate’s oscillatory motion and is classified as conventional bounce. It is further
observed that this discrete jump does not occur in the rigid reference curve of figure 4.
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Figure 4. Snapshots of droplet impact on elastic plates at Mr = 0.1 and We = 30 for different KB : (a) KB = 0.2;
(b) KB = 0.5; (c) KB = 2.0; (d) KB = 5.0; (e) KB = 50. Red dashed lines indicate the plates’ initial positions.
A uniform reference vector is applied across all cases in (a). Column (v) of snapshots highlights the moments
when the droplets detach from the surface. It presents the corresponding time evolution of the wetting diameter
Dw (blue line with dots) and the plate centre position ypc (blue line). For comparison, the evolution of Dw and
ypc for the rigid case (orange line with dots and orange line, respectively) at the same W e are included. The
moment Dw returns to zero marks the droplet’s departure.

The difference arises from geometry: in 3-D (spherical or axisymmetric) cases, surface-
tension effects are stronger, leading to a more pronounced contraction (as in figure 3),
whereas in the 2-D (cylindrical) reference of figure 4, surface-tension effects are weaker
and the jump is absent.

A central jet forms during retraction due to fluid accumulation. The rebound shape
depends on the jet timing: in the postjet bounce (figure 4b), the jet forms before lift-off,
producing a columnar rebound. In the prejet bounce (figure 4c), lift-off occurs earlier,
yielding a pancake-like shape – previously observed as ‘pancake bounce’ in experiments
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(Vasileiou et al. 2016). This scenario results in the greatest reduction in contact time due
to minimal retraction.

When the plate becomes stiffer (KB = 5.0, figure 4d), the droplet exhibits the rim-rising
mode. Here, only the rim lifts while the centre remains attached. Although Dw decreases
quickly, it does not reach zero, indicating incomplete lift-off. During retraction, its value
remains consistently smaller than in the rigid case. This mode reduces spreading but does
not shorten contact time compared with the rigid case.

Figure 5 shows the distribution of bounce modes in the (We, KB , Mr ) space. The
frequency ratio Fr is defined as the ratio between the plate’s natural frequency and

the characteristic droplet frequency: Fr = f p0/ fref, where fref = 1/Tref =
√

σ/(ρH D3
0),

corresponding to the fundamental (n = 2) Rayleigh frequency of a freely vibrating,
inviscid droplet (Takaki & Adachi 1985). The Rayleigh frequency can be expressed as

fRay =
√

2(n − 1)n(n + 2)

π

√
σ

ρH D3
0

spherical drop, (3.1)

fRay =
√

2(n − 1)n(n + 1)

π

√
σ

ρH D3
0

cylindrical drop. (3.2)

The plate frequency f p0 is calculated using the fundamental (n = 1) mode of an Euler–
Bernoulli beam simply supported at both ends,

f p0 = π

2

√
E I

ρshs L4 . (3.3)

Rewriting Fr in terms of non-dimensional parameters yields

Fr = π D0

2L

√
KB

Mr
. (3.4)

It is noted that the frequency ratio Fr is defined using the prefactor-free scaling√
σ/(ρH D3

0) of the Rayleigh frequency, which emphasizes relative trends and scaling
behaviour. Moreover, because the prefactor differs between 2-D (cylindrical) and 3-D
(spherical) geometries, omitting it ensures consistency when comparing results across
cases.

From figure 5, it can be seen that at low We (We < 20), early bounce does not occur,
consistent with Xiong et al. (2020). Here, the impact is too weak to significantly deform
the plate and transfer upward momentum to the droplet.

As We increases, early bounce becomes more frequent. The phase diagrams reveal a
non-monotonic trend: the system transitions from conventional bounce to early bounce
and back to conventional bounce as KB increases. At low KB (e.g. figure 4a), the plate
oscillates too slowly to transfer momentum in time for early rebound. At moderate KB
(figure 4b,c), the plate responds more quickly, enhancing upward momentum transfer and
enabling early bounce. At high KB (figure 4d), the plate is too stiff to deform significantly.
Although it moves upward earlier (higher Fr ), the reduced deformation limits momentum
transfer, resulting in partial rebound (rim-rising mode). Besides, before the droplet fully
detaches, the plate begins to move downward, ceasing to provide additional momentum
and thus preventing early bounce. Eventually, at very high KB (figure 4e), the plate behaves
nearly rigidly, and the conventional bounce mode returns.
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Figure 5. Phase diagrams in the 3-D parameter space (We, KB , Mr ), showing the distribution of bounce modes.
Each point corresponds to a simulated case. The inclined plane denotes the boundary where the frequency ratio
Fr ∼ 1, marking the resonance condition between the plate and droplet oscillation frequencies.

The rim-rising mode acts as a transitional regime between early and conventional
bounce. As it yields little contact time reduction, it may be considered a variant of
conventional bounce.

Figure 5 shows that increasing Mr reduces the prevalence of early bounce and enlarges
the conventional bounce region. This is because larger Mr lowers f p0, delaying plate
motion and weakening momentum transfer – similar to the effect of low KB . A ‘heavier’
plate also moves less overall, further suppressing early bounce.

In summary, early bounce only occurs when f p0 is in a moderate range – not too low
or too high. Pancake bounce, a subset of early bounce, appears near Fr ≈ 1, where the
droplet and plate frequencies match. This matches the experimental findings of Vasileiou
et al. (2016). However, for Mr = 0.4, pancake bounce is absent even at Fr ≈ 1, due to the
plate’s minimal movement.

Figure 6 further clarifies this with the ‘bouncing-off phase’ ϕb, defined in figure 6(a)
as the phase at which the droplet lifts off, relative to the plate’s oscillation. The phases
at which ypc = 0 are assigned values of ϕb = 0, π , 2π , 3π , etc., in chronological order.
Given a bouncing-off moment tb occurring between two successive zero-crossings at t1
and t2, the corresponding bouncing-off phase ϕb is interpolated linearly between ϕb(t1)
and ϕb(t2). For the case illustrated in figure 6(a), ϕb is therefore expressed as

ϕb(tb) = [ϕb(t2) − ϕb(t1)] tb − t1
t2 − t1

+ ϕb(t1). (3.5)

Figure 6(b,c) show that early bounce events (blue symbols) consistently occur in the
range ϕb ∈ (π, 3π/2). For ϕb < π (e.g. KB = 0.2, Mr = 0.4), the plate does not rise until
the droplet detached, preventing early lift-off. At ϕb > 3π/2, typical of high KB , the plate
has already reversed motion before droplet detachment, also suppressing early bounce.

Thus, the bouncing-off phase confirms that early bounce requires synchronized plate
motion – specifically, upward motion at the right moment – only achievable at moderate
oscillation frequency.

3.2. Momentum analysis
To investigate momentum transfer between the droplet and the plate, we focus on the early
bounce mode – the only regime that significantly reduces contact time (see figure 5).
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Else

(b) (c)

10−1

100

Figure 6. (a) Schematic definition of the bouncing-off phase ϕb, which represents the phase of the plate’s
oscillation (ypc) at the moment the droplet lifts off (tb). The phase is measured relative to successive zero-
crossings of ypc. (b) Bouncing-off phase ϕb as a function of KB and Mr at We = 30. (c) Same as (b), but at
We = 60. Blue symbols indicate early bounce cases, while red symbols correspond to other bounce modes. The
region between the two shaded planes highlights the phase window ϕb ∈ (π, 3π/2), where early bounce is most
likely to occur.

The analysis is restricted to cases with KB � 2. Momentum is normalized by mdUref,
where md is the droplet mass. The total vertical momentum is defined as

My =
∫

Ω

ρHvdΩ, (3.6)

where Ω denotes the droplet volume and v the vertical fluid velocity.
Figure 7 shows the contact time tc versus the vertical momentum at rebound, Myc,

for various KB , W e and Mr values in the early bounce regime. Contrary to intuition, tc
increases with Myc and decreases with KB . One might expect that a droplet with higher
upward momentum would lift off sooner, but the data reveal the opposite: more momentum
correlates with longer contact times.

To explain this unexpected trend, we examine the time evolution of My in figure 8.
For droplets on a rigid plate, downward momentum drops sharply upon impact, and
energy is quickly redistributed laterally, then partially recovered as upward momentum
during retraction. In contrast, on elastic plates, the droplet’s downward momentum (|My |)
decreases more gradually due to the plate’s own motion. As KB decreases, the plate’s
deformation becomes more pronounced, which slows the rate at which the droplet’s
momentum decreases. Once the plate begins to move upwards, the droplet starts gaining
upward momentum.
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Figure 7. Contact time tc as a function of vertical momentum at rebound (Myc) and KB for different Weber
numbers: (a) Mr = 0.1, (b) Mr = 0.2. Only cases exhibiting the early bounce mode, as identified in figure 5,
are shown. Symbols inside dotted red circles represent ‘prejet bounce’ cases; all others correspond to ‘postjet
bounce’ cases.
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Figure 8. Time evolution of the droplet’s total vertical momentum My (solid lines) and the vertical position
of the plate centre ypc (dashed lines) for various KB values at Mr = 0.1 and We = 30. Coloured dot–dash lines
mark the rebound moments for each corresponding KB case.

For high KB (e.g. KB = 10), the plate oscillates up and down before the droplet rebounds
due to its high vibration frequency (see the orange dashed line). As a result, My fluctuates
around zero until the droplet eventually lifts off. In contrast, at moderate and lower KB ,
My increases approximately steadily before lift-off. In these cases, the plate first moves
downwards and then upwards, and the droplet rebounds during the upward motion (see
the dashed lines), typically within the plate’s first vibration cycle. Specifically, the droplet
lifts off when the plate reaches approximately ypc = 0 (see the dot–dashed lines). At this
moment, the plate’s upward velocity peaks, and momentum transfer to the droplet ends.
Thus, a longer vibration period (i.e. lower frequency, applicable only in early-bounce
cases) allows more time for momentum to accumulate, resulting in a larger My . In other
words, longer contact time leads to greater momentum buildup before rebound, explaining
the observed positive correlation between tc and Myc in figure 7.

Despite the overall correlation, figure 8 shows that droplets with similar vertical
momentum can exhibit different rebound behaviours. For instance, at KB = 1.0, the droplet
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Figure 9. Droplet vertical momentum My at selected moments for various KB values, with Mr = 0.1 at (a)
We = 30 and (b) We = 50. Each moment corresponds to the rebound moment of one case. Dark bars indicate
cases where the droplet has rebounded at that moment; light bars represent cases where rebound has not yet
occurred. Cases beyond the rebound moment are not shown.

rebounds at t = 0.9, while droplets at KB = 0.5 and 0.2 – with comparable momentum –
do not. A similar discrepancy occurs at t = 1.1: the droplet at KB = 0.5 rebounds, but the
one at KB = 0.2, despite having nearly the same momentum, does not.

To verify that this behaviour is not incidental, we present additional cases in figure 9,
which shows My at key time instants for various KB values at We = 30 and 50. Dark bars
indicate rebound, while light bars represent cases where the droplet remains on the plate.
The results confirm that similar total momentum does not ensure rebound. For example,
at t = 0.68 in figure 9(a), the droplet rebounds for KB = 2.0 but not for KB = 1.0, despite
comparable momentum. The cases from the previous paragraph are also included at t =
0.90 and t = 1.10. Similarly, in figure 9(b), the droplet at KB = 0.5 rebounds at t = 0.98,
even though its My is nearly equal to or lower than that of the KB = 0.2 case, which does
not rebound.

These findings suggest that total momentum alone does not determine rebound
behaviour. To understand why, we examine the internal momentum distribution within
the droplet. Figure 10(a) shows the vertical velocity fields at t = 0.90, the rebound time
for KB = 1.0. At this moment, the elastic cases exhibit broader regions of high vertical
velocity (red areas) compared with the rigid case. While all elastic cases gain more
upward momentum due to the plate’s motion, their internal momentum distributions differ
significantly.

For KB = 0.2 and 0.5, a narrow central jet forms, concentrating momentum near the
axis. This localized jet absorbs energy but contributes little to lifting the droplet as a whole.
In contrast, at KB = 1.0, the jet is just forming, allowing most of the upward momentum
to support rebound. This explains why similar total My values lead to rebound in one case
and not the others (see figure 9a).

Because of this jet effect, lower KB cases require additional upward force from the
plate to achieve rebound – resulting in delayed lift-off and longer contact time. This
distinction defines the postjet bounce mode (jet forms before rebound) and the prejet
bounce mode (rebound occurs before jet formation). As shown in figure 7, postjet bounces
are consistently associated with higher My and longer tc.

The delayed jet formation at higher KB values arises from the droplet’s spreading
dynamics. As shown in figure 10(b), a higher KB (KB = 1.0) results in a greater maximum
spreading diameter (see the peaks of the curves). Since the retraction speeds are similar
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Figure 10. (a) Vertical velocity contours for rigid and elastic cases with various KB values at We = 30 and
Mr = 0.1, captured at t = 0.90 – the rebound moment for KB = 1.0. (b) Time evolution of the droplet’s
spreading diameter Dt for the elastic cases shown in (a). The dashed line marks t = 0.90.
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Figure 11. Vertical velocity contours for rigid and elastic substrates with various KB values at We = 40: (a)
Mr = 0.1 at t = 0.86, when rebound occurs for KB = 1.0; (c) Mr = 0.2 at t = 1.02, when rebound occurs for
KB = 2.0. Corresponding total vertical momentum My is shown in (b) and (d); dark bars denote cases where
the droplet has rebounded.

(as indicated by the slope of the lines during the retraction phase), the fluid takes longer to
gather at the centre, delaying jet formation.

This explanation is supported by the cases shown in figure 11. In figure 11(a), at
t = 0.86, the droplet rebounds only for KB = 1.0. The corresponding momentum bars in
figure 11(b) indicate that total My is not a reliable predictor – only the KB = 1.0 case lacks
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ydc

ypc
x

y

Figure 12. A schematic diagram of the drop-plate system modelled as two interacting spring oscillators. The
droplet is supposed to be the upper oscillator. The horizontal plate is supposed to be the lower oscillator, which
heaves up and down. Here ydc and ypc denote the centre positions of the droplet and the plate, respectively.

a central jet. Similarly, figure 11(c) shows that rebound occurs only at KB = 2.0 (no jet is
present), even though lower KB cases exhibit greater momentum (figure 11d). Once again,
figure 11 demonstrates that the jet diverts momentum otherwise needed for rebound.

These findings reveal that not only the amount of momentum transferred from the plate
but also its spatial distribution within the droplet determines whether rebound occurs.
A central jet traps upward momentum and delays lift-off, meaning that postjet bounces
require more My and result in longer contact times. In contrast, prejet bounces – where
momentum remains more uniformly distributed – enable earlier rebound with less My .
Thus, contrary to intuition, more momentum does not always lead to a faster rebound. To
promote early detachment, jet formation should be avoided.

3.3. Contact time prediction
This section presents a theoretical model to predict the contact time of a droplet impacting
an elastic surface. The droplet–plate interaction is modelled as a coupling between two
oscillators (Chantelot et al. 2018; Xiong et al. 2020), as illustrated in figure 12. Both the
droplet and the plate are represented as springs, with their vibrations described by the time
evolution of their central positions, ydc and ypc, respectively,

ydc(t) = Ad sin(2π fd t + π) + 0.5D0, ypc(t) = Ap sin(2π f pt + π). (3.7a–b)

Here, Ad and Ap are the vibration amplitudes, and fd and f p are the frequencies of the
droplet and plate, respectively. Initially, the droplet rests at a height equal to its radius
above the plate (figure 12). Equation (3.7) is introduced as a simplified approximation of
the coupled system, retaining the dominant physics while remaining analytically tractable.
The neglected higher-order coupling terms are shown to be quantitatively small (see the
discussion on f p), supporting the validity of this assumption. To further justify this ansatz,
we include additional numerical comparisons (see figure 13), which demonstrate good
agreement between (3.7a) and the fully coupled droplet–substrate dynamics.

It is noted that the model assumes a time-symmetric rebound, which is invalid for rigid
cases. As shown in figure 4, droplet rebound on rigid surfaces is highly time-asymmetric.
While viscous dissipation contributes to this asymmetry (Villermaux & Bossa 2011),
recent studies have demonstrated that inertio–capillary effects alone can also break time
symmetry, even for inviscid droplets at intermediate We (Thenarianto et al. 2023; Lin et al.
2024; Gabbard et al. 2025). However, the situation is different on a flexible substrate.
For a sufficiently flexible plate (e.g. KB = 0.5 in figure 4b), the retraction phase is
significantly shortened. In this early-bounce regime, viscous effects are negligible relative
to capillarity, and part of the droplet’s inertial energy is transferred to the plate. This energy
exchange weakens the inertio–capillary asymmetry, so that the droplet dynamics become
approximately time-symmetric prior to lift-off. Beside, we verify this time-symmetry
by fitting the droplet centroid trajectory ydc(t) with a sinusoidal function of (3.7a)
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Figure 13. Temporal evolution of the droplet centre displacement ydc for various KB (solid lines) at Mr = 0.1:
(a) We = 30, and (b) We = 60. Only the stage prior to rebound is shown. The dashed lines denote sinusoidal
fits of the form y = c1 sin(c2x + π) + 0.5 (see (3.7a)), where c1 and c2 are fitting constants.
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Figure 14. (a) Schematic of time evolution for the central positions and vertical velocities (vdc, vpc) of the
droplet and plate. The contact time tc is the period from t = 0 to the moment when vdc = vpc. (b) Schematic
of time evolution for the vertical velocities of the droplet (vdc1, vdc2) and the plate (vpc1, vpc2) at high (solid
lines) and low (dashed lines) frequencies. The velocity crossover occurs earlier at higher frequency.

(see figure 13). Thus, the model is specifically intended to describe this unique early-
bounce regime.

The corresponding vertical velocities, vdc and vpc, are obtained by differentiating (3.7),

vdc(t) = 2π Ad fd cos(2π fd t + π), vpc(t) = 2π Ap f p cos(2π f pt + π). (3.8a–b)

Note that vdc represents the time rate of change of the droplet’s centre position in the
vertical direction, which differs from the bulk or average velocity of the droplet.

To determine the rebound moment, we compare the time evolution of vdc and vpc, as
shown in figure 14(a). Initially, both the droplet and the plate move downward, with the
droplet spreading and its centre descending. During this phase, vdc exceeds vpc. After
reaching its maximum downward displacement, the plate begins to move upwards, while
the droplet may still be in the spreading phase. As retraction begins, the droplet’s centre
rises. If vdc surpasses vpc during this upward motion, rebound occurs. Therefore, the
moment when vdc = vpc defines the rebound moment, as illustrated in figure 14(a).

The numerical simulations discussed above already capture the occurrence of early
rebound. The added value of the reduced-order model is that it distils the dynamics
into a low-dimensional description, which makes the underlying parameter dependence
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Figure 15. (a) Comparison of plate vibration frequencies from simulations (symbols) and theory (lines) for
various KB and Mr at fixed We = 30. (b) Relative error between numerical results and theoretical prediction
(3.10).

transparent. In particular, the model provides a quantitative relation between the plate
and droplet oscillation phases, from which it follows directly that the velocity crossover
between vpc and vdc must shift monotonically earlier as frequency increases with higher
KB (see figure 14b). This prediction explains, in a concise form, the systematic decrease of
contact time tc with KB observed in the simulations (figure 7). Thus, while the numerical
model reproduces the phenomenon in detail, the reduced model highlights the essential
mechanism and offers a quantitative framework for interpreting and generalizing the
simulation results.

To evaluate vdc and vpc, the vibration frequencies and amplitudes of both the droplet and
plate ( fd , f p, Ad and Ap) must be determined. Two models for f p exist in the literature.
One accounts for the coupled dynamics between droplet and plate (Chantelot et al. 2018;
Xiong et al. 2020), yielding two natural frequencies,

f p/ fref =
√

1
2
(1 + F2

r + 1/mr )(1 ± √
1 − ε), (3.9)

where mr = m p/md , and ε = 4F2
r /(1 + F2

r + 1/mr )
2. Here m p is the plate mass defined

as m p = ρs Vp, where Vp is the plate volume. For the 2-D formulation, Vp = hs L with
unit width, while in 3-D cases Vp = hs LW . The ‘±’ sign corresponds to the high and low
frequencies. A detailed derivation is provided by Xiong et al. (2020).

An alternative model treats the droplet as a static mass on the plate, neglecting its
oscillation (Soto et al. 2014; Ma & Huang 2023),

f p =
√

mp

m p + md
f p0. (3.10)

To compare the numerical results and theoretical prediction of f p, we extract the
numerical frequency from the time-domain response of the plate centroid trajectory ypc(t)
(figure 6a). Successive peak–trough intervals are measured to calculate the oscillation
period, and the frequency f p is taken as the inverse of the mean period. Only the
phase preceding droplet rebound was analysed to ensure consistency. For trajectories with
fewer than two full cycles, half- or quarter-cycle durations are used ( f p = 1/(2
T ) or
f p = 1/(4
T )).

Figure 15(a) shows that the low- and high-frequency solutions from (3.9) match
numerical results at low and high KB , respectively. Meanwhile, (3.10) performs well
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KB = 2.0

Parabolic fittings

Figure 16. Profiles of the bending plates (solid lines) at a typical moment t = 0.44 after impact for Mr = 0.1
and We = 40 with various KB . The dashed lines show parabolic fits of the form y = ax2 + b, where a and b are
fitting constants.

across most KB values except KB = 0.2, as seen in figure 15(b). This indicates that droplet
oscillations exert little influence on plate vibrations, likely due to the small mass ratio
(md/m p � 0.2) and the localized droplet–plate contact. Given the simplicity and accuracy
of (3.10), we use it in the following analysis.

Figure 15(b) also shows that the relative error increases for KB = 0.2 with small Mr
(Mr = 0.1 and 0.2), due to large plate deformation where stretching effects dominate. In
these regimes, the small-displacement assumption underlying the Euler–Bernoulli beam
theory (used to define f p0, i.e. (3.3)) no longer holds. Thus, cases with low KB or Mr are
excluded from this study.

The plate’s vibration amplitude Ap can be estimated from its maximum displacement,
dmax. According to Ma & Huang (2023), dmax can be derived using momentum
conservation between the droplet and the plate at the moment of impact. Following Soto
et al. (2014), we assume a completely inelastic collision at impact, where both centres
move together immediately afterward (Udp = vdc(0) = vpc(0)), giving

Ad fd = Ap f p. (3.11)

Soto et al. (2014) assumed a parabolic deflection of the plate. It is validated here by direct
comparison with our simulation data, as shown in figure 16, parabolic fits match the plate
deflection profiles closely across all tested cases. Then the plate momentum becomes

2
∫ L/2

0
ρs W hsUdpx2/L2dx = m pUdp/3, (3.12)

where W is the plate width (unity in two dimensions). Applying momentum conservation,
mdU0 = mdUdp + m pUdp/3, yields

Ap = 1
2π

md

md + m p/3
U0

f p
. (3.13)

This scaling has been validated against simulations in prior work (Ma & Huang 2023).
To determine fd and Ad , one more equation is needed in addition to (3.11). At the time

tm = 1/(4 fd) – when the droplet’s centre reaches its lowest position – Ad can be expressed
as the sum of the plate’s displacement at tm and the droplet’s radius (see figure 17),

Ad = 0.5D0 − Ap sin(2π f p/(4 fd) + π), (3.14)
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ypc (tm)

Ad

Figure 17. Schematic diagram illustrating how the droplet’s vibration amplitude Ad is determined from the
maximum displacement of the plate centre ypc. The diagram corresponds to the moment when the droplet’s
centre reaches its peak position during oscillation.
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Figure 18. Comparison between numerical results of the droplet oscillation amplitude Ad,num (a) and
frequency fd,num (b) with the corresponding theoretical predictions (Ad,theo, fd,theo) for various simulated
cases exhibiting the early bounce mode. Each point denotes one case.

which neglects half of the thin film thickness at maximum spreading, a small correction.
Equations (3.11) and (3.14) allow implicit solution for fd and Ad , completing the

model. To verify this model, we compare the model predictions for droplet oscillation
amplitude and frequency and the corresponding values from full numerical simulations
(see figure 18). The droplet frequency is obtained from the fitting lines in figure 13,
which show good agreement between the centroid trajectory and sinusoidal profiles. As
shown in figure 18, the model systematically overestimates the oscillation amplitude and
underestimates the frequency. This discrepancy arises from curvature effects at the droplet-
substrate interface. In the theoretical model, after spreading, the droplet is idealized as
a flat ‘pancake’, with its centre of mass located close to the substrate. In contrast, the
numerical simulations reveal a concave meniscus that forms during oscillations (figure 17),
lifting the droplet edges above the flat substrate assumed in the model. As a result, for
the same plate displacement, the simulated droplet’s centre of mass sits higher than
predicted, reducing the effective oscillation amplitude. This curvature effect becomes
more pronounced at larger amplitudes, explaining the greater deviations observed in
figure 18(a). Moreover, the meniscus geometry advances the oscillation phase, causing
the droplet to reach its lowest position earlier and thus increasing the apparent frequency.
These deviations remain bounded and physically interpretable, confirming that the reduced
model still captures the dominant droplet dynamics despite neglecting higher-order effects.

Comparing vdc and vpc using (3.8) yields the contact time tc (figure 14a). The theoretical
predictions are compared with numerical results in figure 19, with detailed values in
table 2. For most early-bounce cases, the model agrees well (errors < 15 %). Larger
deviations for KB = 0.2 are due to the breakdown of beam theory at large deformations.
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We KB Mr tc,num tc,theo Relative error (%)

20 1.0 0.1 0.896 0.847 5.79
20 2.0 0.1 0.695 0.624 10.84
30 0.5 0.1 1.098 1.127 −2.65
30 1.0 0.1 0.905 0.827 9.05
30 2.0 0.1 0.683 0.608 11.60
40 0.2 0.1 1.141 1.688 −38.69
40 0.5 0.1 1.025 1.112 −8.12
40 1.0 0.1 0.845 0.814 3.74
40 2.0 0.1 0.697 0.598 15.30
50 0.2 0.1 1.039 1.673 −46.78
50 0.5 0.1 0.979 1.100 −11.66
50 1.0 0.1 0.793 0.805 −1.45
50 2.0 0.1 0.691 0.590 15.70
60 0.2 0.1 0.988 1.662 −50.86
60 0.5 0.1 0.956 1.091 −13.21
60 1.0 0.1 0.766 0.797 −4.00
60 2.0 0.1 0.672 0.585 13.93
20 2.0 0.2 0.930 0.861 7.74
30 1.0 0.2 1.150 1.137 1.12
30 2.0 0.2 0.983 0.838 15.90
40 1.0 0.2 1.129 1.119 0.89
40 2.0 0.2 1.018 0.824 21.12
50 0.5 0.2 1.314 1.509 −13.82
50 1.0 0.2 1.113 1.106 0.67
50 2.0 0.2 1.038 0.813 24.35
60 0.5 0.2 1.333 1.496 −11.53
60 1.0 0.2 1.106 1.095 1.00
60 2.0 0.2 1.035 0.804 25.11
50 2.0 0.4 1.284 1.153 10.75
60 2.0 0.4 1.315 1.142 14.13

Table 2. Comparison of the contact time between tc,num and tc,theo with detailed parameters. The relative error
is defined as (tc,num − tc,theo)/[(tc,num + tc,theo)/2].

2.0

1.5

1.0

0

0.5

t c,
th
eo

0.5 1.0 1.5 2.0

tc,num

−15 %

15 %

y = x
Early bounce (prejet)

Early bounce (postjet)

Figure 19. Comparison between numerical results (tc,num ) and theoretical predictions (tc,theo) of the contact
time for various simulated cases exhibiting the early bounce mode (see figure 5). Each point represents a case
detailed in table 2. Solid symbols indicate cases with KB = 0.2, while the dashed lines mark a ±15 % error
range around the identity line.
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Figure 20. Snapshots of droplets impacting elastic plates in 3-D simulations with different KB values: (a)
KB = 0.2, (b) KB = 0.5 and (c) KB = 1.0, at Mr = 0.01 and We = 70. All images are taken at t = 0.43, the
moment when the droplet rebounds for KB = 1.0. (d) Total vertical momentum of the droplet, Mz , for the three
cases, with the dark bar indicating the rebounding case.

For larger KB and Mr , the plate behaves more rigidly, and the inelastic collision
assumption weakens – leading to larger errors, as seen in the KB = 2, Mr = 0.2, We = 60
case (table 2). Despite this, the model remains predictive and is, to our knowledge, the first
to estimate droplet contact time on an elastic substrate a priori.

Finally, we note that vdc may not fully represent droplet dynamics in cases with strong
localized motion (e.g. jet formation during retraction; see figure 4). Thus, the model may
be less accurate for ‘postjet’ early bounces. Nonetheless, figure 19 shows these cases are
still well captured, underscoring the model’s robustness.

3.4. The 3-D validation
In this section, we validate the novel bounce mechanism described in § 3.2 and the
theoretical model proposed in § 3.3 using 3-D simulations. Before doing so, we briefly
discuss the computational cost motivating our focus on 2-D simulations. Due to the
cubic scaling of the fluid grid and the added complexity of the solid domain, a 3-D
case requires orders of magnitude more computational time than its 2-D counterpart.
Systematic parameter sweeps are therefore only feasible in 2-D, while 3-D simulations are
included for selected cases to validate the mechanisms identified. The simulation set-up is
illustrated in figure 1(b). It is noted that the results in § 3.4 are from fully 3-D simulations.
The computational domain was reduced to one quarter only by exploiting front–back and
left–right symmetry to save computational cost; however, no axisymmetry was imposed in
the solver.

Figure 20 presents snapshots of a droplet impacting elastic plates with different KB
values at t = 0.43, which corresponds to the rebound moment for KB = 1.0. At this time,
no rebound occurs in the other cases. The corresponding total droplet momentum is shown
in figure 20(d). As KB decreases, the central jet becomes more prominent, consistent with
the 2-D results in figure 11. Notably, no jet is observed for KB = 1.0 at this moment.
Despite the higher momentum in the softer plates (figure 20d), the droplets do not rebound,
corroborating the 2-D findings and supporting the identified bounce mechanism.
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Figure 21. Comparison of contact time between numerical results (tc,num ) and theoretical predictions (tc,theo)
for various KB values at Mr = 0.01 and We = 70 in 3-D simulations. The dashed lines mark a ±15 % error
range around the identity line.

We then assess the theoretical model’s ability to predict contact time. Given that
variations in We have minimal impact on contact time within our parameter range, a single
We value is used for all 3-D cases. Figure 21 compares the theoretical predictions with
numerical results, showing good agreement with errors within ±15 %. This confirms the
validity of the proposed model in 3-D scenarios.

4. Conclusion
This study numerically investigates droplet rebound on elastic surfaces and identifies
three distinct rebound modes: conventional bounce, early bounce and rim rising. In the
early bounce mode, the droplet rebounds before forming a central jet, adopting a pancake
shape and exhibiting the shortest contact time, as full retraction is not required. Phase
diagrams in the (We, KB , Mr) space show that early bounce occurs only at moderate
oscillation frequency of the plate; plates with very low or very high stiffness fail to induce
this mode. Typically, rebound occurs during the bounce-off phase within the range (π ,
3π/2). Pancake bounce arises when the natural frequencies of the droplet and plate are
comparable, i.e. Fr ∼ 1.

Momentum analysis reveals that in early bounce, the droplet’s vertical momentum (Myc)
at rebound increases with contact duration. However, cases with similar or higher total
momentum may fail to rebound if that momentum is concentrated in a central jet, which
contributes little to lift-off. These cases require additional momentum to achieve rebound,
extending the contact time. This insight reveals a new rebound mechanism governed by
the spatial distribution of momentum, deepening our understanding of droplet interactions
with deformable substrates.

To predict contact time, a theoretical model is proposed by treating the droplet–plate
system as two coupled oscillators. The model accurately predicts contact time in early
bounce cases, with results aligning closely with simulations and demonstrating robustness
across parameter ranges. Finally, 3-D simulations further validate both the identified
bounce mechanism and the proposed model.
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