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Abstract: We propose a numerical method for the simulation of axisymmetric binary fluids
based on the phase-field theory and vorticity-streamfunction formulation. Unlike most existing
methods that solve the incompressible Navier-Stokes equations in the velocity-pressure form,
we recast the equations into the vorticity-streamfunction form, which only need to treat one
evolution equation of the vorticity for two-dimensional (2-D) or axisymmetric (pseudo 2-D)
problems. Besides, this formulation enforces the continuity equation more easily. This method
is verified through a series of benchmark problems under axisymmetric conditions, including
the Laplace relation for a quiescent drop, coalescence of two drops, and the contact angle of
a drop on a smooth wall with given wettability. Good agreements with theoretical relations or
another numerical method are achieved for all these problems.
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1 Introduction

Multiphase flows are important in both many natural
phenomena and many industries (e.g., oil and gas, and
chemical engineering). They are found in some emerging
technologies as well, for instance, digitial microfluidics
(Stone et al., 2004). Mathematical modelling and computer
simulation of complex multiphase flows have experienced
substantial development in the past two decades. The most
famous continuum-based simulation methods include the
methods of front-tracking (FT) (Unverdi and Tryggvason,
1992), volume-of-fluid (VOF) (Scardovelli and Zaleski,
1999), level-set (LS) (Chang et al., 1996), and phase-field
(PF) (also known as diffuse-interface) (Anderson et al.,
1998; Jacqmin, 1999). For all these methods, two
fundamental requirements are imposed on them: first, to
capture or track the interface motion; second, to capture the
flow with the interfacial tension effect. Correspondingly,
two sets of equations must be solved, one for the
interface dynamics and the other for the fluid flow. When
incompressible flow is considered, the latter includes
the incompressible Navier-Stokes equations (NSEs) with
interfacial tension force. The methods mentioned above
(FT, VOF, LS and PF) differ from each other mainly
in the way to capture/track the interface dynamics and
that to model the interfacial tension effect (for near-wall
flows, the ways to treat the contact angle and contact line
also differ). The flow governing equations solved in all
methods share a common form, and they are consisted
of the continuity and momentum equations. Most existing
works adopt the flow equations in the velocity-pressure
(VP) form which is relatively straightforward. In the
literature, an alternative formulation using the vorticity and
streamfunction has also been developed for incompressible
flow, in particular for 2-D or pseudo 2-D problems.
There have been quite some efforts devoted to solving the
equations in the vorticity-streamfunction (VS) formulation
(E and Liu, 1996; Chen et al., 2008b) partly because
it only requires to solve one evolution equation for the
vorticity and the continuity condition is automatically
satisfied in this formulation through the definition of the
streamfunction. This formulation also allows the direct
monitoring of the vorticity, an important physical quantity
in fluid dynamics. At the same time, it is acknowledged
that this formulation has certain limitations as compared
with the VP formulation. The most noticeable one is that it
is limited to (pseudo) 2-D problems. Besides, the boundary
conditions (BCs) for the main variables are a major issue
as BCs are commonly given in terms of the velocity
and pressure. Fortunately, in the literature some workable
solutions have been provided (e.g., see E and Liu, 1996).

As far as we know, till now for incompressible
multiphase flow simulation, only a few works employed the

VS formulation in practice. Chang et al. (1996) developed a
LS formulation for two-phase flows using both the VP and
VS formulations for incompressible flow (this appears to be
the only LS work that used the VS formulation). Anderson
et al. (2006) studied the bulk behaviour of polymer blends
in sliding bi-period frames using the simplified equations
in VS formulation and the PF model for immiscible fluids.
Acar (2009) also carried out a series of simulations of
interface dynamics using a set of equations on similar
basis. However, the unsteady and convective terms were
neglected in both works, which made it possible to obtain
the biharmonic equation for the streamfunction. Besides,
only 2-D problems were considered in all of the above
works.

Axisymmetric flows are special cases of
three-dimensional (3-D) flows. The axisymmetric
conditions make them much simplified and two spatial
coordinates are sufficient to describe them. Because
of the effective reduction of dimension, the use of
an axisymmetric simulation can significantly save the
computational cost as compared with a fully 3-D
simulation. Thus, axisymmetric simulation has always been
pursued and employed whenever applicable. However,
all existing axisymmetric simulations of multiphase flows
employ the VP formulation. This situation is partly due
to the rare use of the VS formulation. To the best of
our knowledge, the present work is the first to develop a
complete numerical method for axisymmetric multiphase
flows using the VS formulation. We note that the PF model
is not the only choice for interface dynamics and other
methods like VOF and LS may also be employed together
with the VS formulation. If another method (VOF, LS or
some others) is used, the interfacial tension terms need
be modified accordingly, but the main framework and
elements given here are still useful.

The paper is organised as follows. Section 2 presents the
PF model and the numerical method. Section 3 illustrates
the application of the proposed method to a few specific
problems, together with discussions on some important
issues including mass conservation and convergence.
Section 4 concludes this paper.

2 Theoretical model and numerical methodology

In the present method, interface dynamics and interfacial
tension effects are taken into account through the PF
model for binary fluids whereas the incompressible flow
is described by the continuity and momentum equations in
the VS formulation. The two types of dynamics are closely
coupled with each other. The individual components are
described as follows.
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2.1 Phase-field model and interface dynamics

In the PF model for binary fluids, different fluids are
distinguished by an order parameter ϕ. For the system a
free energy functional is defined as (Badalassi et al., 2003;
Briant and Yeomans, 2004; Huang et al., 2009),

F(ϕ,∇ϕ) =∫
V

(
Ψ(ϕ) +

1

2
κ|∇ϕ|2

)
dV +

∫
S

φ(ϕS)dS, (1)

where Ψ(ϕ) is the bulk free energy density taking the
double-well form,

Ψ(ϕ) = a(ϕ2 − 1)2, (2)

with a being a constant. This form indicates that ϕ varies
between −1 (in one fluid) and 1 (in the other fluid). The
second term is the interfacial energy density with κ being
another constant. The last term in the surface integral is the
surface energy density with ϕS being the order parameter
on the surface. In this work, we use the following surface
energy (Jacqmin, 2000; Villanueva and Amberg, 2006; Yue
et al., 2010),

φ(ϕS) = −σ cos θw
ϕS(3− ϕ2S)

4
+

1

2
(σw1 + σw2), (3)

where φ(±1) gives the fluid-solid interfacial tensions σw1

and σw2 between the wall and fluid 1 (with ϕ = 1) and fluid
2 (with ϕ = −1), respectively. Young’s equation determines
θw as,

cos θw =
σw2 − σw1

σ
. (4)

The coefficients a and κ can be related to the interfacial
tension σ and interface width W as (Huang et al., 2009),

a =
3σ

4W
, (5)

κ =
3σW

8
. (6)

The chemical potential µ is calculated by taking the
variation of the free energy functional with respect to ϕ,
and upon substitution of equation (2), it reads,

µ =
δF
δϕ

=
dΨ(ϕ)

dϕ
− κ∇2ϕ = 4aϕ(ϕ2 − 1)− κ∇2ϕ, (7)

where ∇2 = ∇ ·∇ is the (general) Laplacian operator. The
evolution of ϕ is governed by the convective Cahn-Hilliard
equation (CHE) (Jacqmin, 1999; Badalassi et al., 2003;
Briant and Yeomans, 2004), which, with the assumption of
a constant mobility M , reads,

∂ϕ

∂t
+ (u ·∇)ϕ =M∇2µ. (8)

It is worth noting that the Laplacian operator in cylindrical
coordinate (r, θ, z) differs from the common one in

Cartesian coordinate (x, y, z); for axisymmetric problems
( ∂∂θ = 0), it reads,

∇2
axisym =

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)
. (9)

In the absence of azimuthal flows, uθ = 0, the convective
term in equation (8) may be expanded as,

(u ·∇)ϕ = ur
∂ϕ

∂r
+ uz

∂ϕ

∂z
, (10)

where ur and uz are the velocity components in the r− and
z− directions, respectively.

2.2 VS formulation for hydrodynamics

As mentioned before, incompressible flows are governed
by the incompressible NSEs. For simplicity, we consider
the relatively simple situation in which both fluids have
the same density and viscosity. The governing equations
in the VS formulation in cylindrical coordinate (r, θ, z) for
axisymmetric problems (i.e., ∂

∂θ = 0) with no azimuthal
flows (i.e., uθ = 0) read,

ur =
1

r

∂ψ̃

∂z
, uz = −1

r

∂ψ̃

∂r
, (11)

∂2ψ̃

∂z2
+
∂2ψ̃

∂r2
= rω − uz, (12)

∂ω

∂t
+ ur

∂ω

∂r
+ uz

∂ω

∂z
− urω

r

= ν

(
∇2

axisymω − ω

r2

)
+

(
∂µ̃

∂z

∂ϕ

∂r
− ∂µ̃

∂r

∂ϕ

∂z

)
, (13)

where the first line, equation (11), is from the definition
of the streamfunction ψ̃ (Chen et al., 2008a), the third,
equation (13), describes the evolution of the vorticity
ω (Peyret, 2002) (in general, the vorticity is a vector,
and strictly speaking, ω is only the θ−component of the
vorticity vector) with the last two terms representing the
contribution to the change of vorticity from the interfacial
tension force, and the second, equation (12), represents the
relation between the streamfunction and the vorticity (Chen
et al., 2008a). Note that ν is the kinematic viscosity and
µ̃ = µ

ρc
is the chemical potential scaled by the characteristic

density ρc. For convenience, we used the Laplacian operator
for axisymmetric problems defined in equation (9); besides,
in what follows two sets of substitutions, (x→ z, y → r)
and (u→ uz, v → ur), are made in order to use the
symbols in Cartesian coordinate.

2.3 Boundary conditions

In this work, only two types of boundaries are encountered:
stationary wall and symmetric line. For each type of
boundary, the BCs for the interface equations are described
first, followed by those for the flow equations.
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2.3.1 BCs on a stationary wall

Denote the wall as ∂Ω and its normal vector (pointing
into the fluid) as n. For the interface equations, when the
surface energy in equation (3) is used, the BCs for ϕ and µ
read,

κn ·∇ϕ|S = κ
∂ϕ

∂n

∣∣∣∣
S

=
dφ(ϕ)

dϕ
(14)

= −3σ

4
cos θw(1− ϕ2S).

n ·∇µ|∂Ω =
∂µ

∂n

∣∣∣∣
∂Ω

= 0. (15)

On the wall one has v|∂Ω = u|∂Ω = 0, thus the BCs for the
streamfunction ψ̃ read,

∂ψ̃

∂x

∣∣∣∣
∂Ω

= 0,
∂ψ̃

∂y

∣∣∣∣
∂Ω

= 0. (16)

It is noted that the above two conditions in equation (16)
are for the first derivatives of ψ̃. In practice, a reference
value of ψ̃ at a selected reference point (say, point A)
on the boundary is usually specified (e.g., ψ̃A = 0). Then,
the two conditions in equation (16) may be converted into
two conditions with one for the gradient and the other
for the function itself through an integration along the
boundary. Here, because of the definition of ψ̃ (ψ̃ = yψ),
it is required that ψ̃ = 0 at y = 0 (i.e., r = 0, at the
axis); thus, when the wall intersects the axis, ψ̃ = 0 at the
intersection point. The BC for the vorticity ω is obtained
simply by applying equation (12) on the wall and using
equation (16) simultaneously. For instance, on the upper
wall where y = Ly (assuming the domain height to be
Ly), u = 0 (∂ψ̃∂y = 0), and v = 0 (∂ψ̃∂x = 0), therefore from
equation (12) one has,

ω|y=Ly =
1

Ly

∂2ψ̃

∂y2

∣∣∣∣
y=Ly

, (17)

which may be further approximated through suitable
discretisations using the condition ∂ψ̃

∂y |y=Ly = 0 (the details
will be given later in Section 2.5.4).

2.3.2 BCs on a symmetric line

On the axis y = 0 (a line of symmetry), for the PF
variables, one has,

∂ϕ

∂y

∣∣∣∣
y=0

= 0,
∂µ

∂y

∣∣∣∣
y=0

= 0, (18)

and for the velocity,

∂u

∂y

∣∣∣∣
y=0

= 0, v|y=0 = 0

(
and

∂v

∂x

∣∣∣∣
y=0

= 0

)
. (19)

From the above one obtains,

ω|y=0 = 0. (20)

This avoids the singularity problem in equation (13) where
the factor 1

y appears. For the streamfunction ψ̃, one has,

ψ̃|y=0 = 0. (21)

For a symmetric line along the other direction (say, x = 0),
the BCs are similar:
∂ϕ

∂x

∣∣∣∣
x=0

= 0,
∂µ

∂x

∣∣∣∣
x=0

= 0, (22)

ω|x=0 = 0, (23)

ψ̃|x=0 = 0, (24)

where the last equation for ψ̃ is obtained through integration
along the line with the condition u|x=0 = − 1

y
∂ψ̃
∂y |x=0 = 0.

2.4 Dimensionless parameters and equations

Suppose we have a characteristic density ρc, a characteristic
length Lc, and a characteristic velocity Uc, from which
a characteristic time is derived as Tc =

Lc

Uc
. With

these characteristic quantities, the dimensionless governing
equations read (note: for brevity the same symbols are used
for the dimensionless variables),

v =
1

y

∂ψ̃

∂x
, u = −1

y

∂ψ̃

∂y
, (25)

∂2ψ̃

∂x2
+
∂2ψ̃

∂y2
= yω − u, (26)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y

=
1

Re
∇2

axisymω +
1

We

(
∂µ

∂x

∂ϕ

∂y
− ∂µ

∂y

∂ϕ

∂x

)
(27)

+
ω

y

(
v − 1

Re

1

y

)
,

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
=

1

Pe
∇2

axisymµ, (28)

µ =
1

Cn
[3ϕ(ϕ2 − 1)]− Cn

(
3

8
∇2

axisymϕ

)
, (29)

where We =
ρcU

2
cLc

σ is the Weber number, Re = UcLc

ν

is the Reynolds number, Cn = W
Lc

is the Cahn number,

and Pe =
UcL

2
c

Mσ is the Peclet number. In addition, the
capillary number is defined as Ca = ρcνUc

σ , and We can be
expressed as We = ReCa. As is well known, the Reynolds
number reflects the ratio of inertia force to viscous force.
For multiphase flows, the capillary number reflects the ratio
of the viscous force over the interfacial tension force. Thus,
We measures the ratio of inertia force to the interfacial
tension force. By definition, Cn measures the interface
width in terms of the characteristic length, and Pe reflects
the ratio of convection over diffusion in the CHE. Note that
both Cn and Pe are computational parameters of the PF
model.
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2.5 Finite-difference method for spatial discretisation

2.5.1 Mesh and the discrete variables

In this work we consider cases with the spatial domain
being a rectangle specified by 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly .
The mesh is composed of uniform squares with the side
length δx = δy = h. The vorticity ω and streamfunction
ψ̃ are defined at cell vertex whereas the PF variables
(including ϕ and µ) are defined at cell centre (see Figure 1).
Suppose Lx and Ly are divided into Nx and Ny uniform
segments respectively, i.e., Lx = Nxh, Ly = Nyh, then one
has the following discrete variables, ωi,j and ψ̃i,j , at the
cell vertices,

(xi,j , yi,j) = (ih, jh), for 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny,

and the discrete variables, ϕi− 1
2 ,j−

1
2
and µi− 1

2 ,j−
1
2
, at the

cell centres,

(xi− 1
2 ,j−

1
2
, yi− 1

2 ,j−
1
2
) =

((
i− 1

2

)
h,

(
j − 1

2

)
h

)
,

for 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1.

Note that for the variables at cell centre, a ghost layer
is added outside of the domain so that the BCs are
implemented more easily. Besides, the velocity components
u and v in the vorticity evolution equation, equation (27),
and those in the CHE, equation (28), are treated differently
(details will be given later).

Figure 1 Mesh and the definition of discrete variables

Center

Vertex

φ, µ

ψ̃, ω
ψ̃, ω

φ, µ

2.5.2 Finite-difference discretisation of spatial
derivatives

There are many finite-difference schemes for the
approximation of spatial derivatives, which may have
different orders of accuracy and different stability
properties. In this work, we mainly consider the following
two schemes:

1 the common 2nd-order centred scheme (denoted as
2nd)

2 another scheme based on the D2Q9 velocity model
(illustrated in Figure 2) in the lattice Boltzmann
method (LBM) (Chen and Doolen, 1998) (denoted as
iso for the reason to be given below).

Figure 2 D2Q9 velocity model in the lattice Boltzmann
method

1

8

0

2

3

4
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7

In order to describe the schemes it is necessary to introduce
the D2Q9 velocity model first. Without losing the core
feature, the (scaled) D2Q9 velocity model (assuming the
lattice velocity is unit) may be expressed as,

ek =



(0, 0) for k = 0

(cos[ (k−1)π
2 ], for k = 1, 2, 3, 4

sin[ (k−1)π
2 ])

(cos[ (2k−9)π
4 ], for k = 5, 6, 7, 8

sin[ (2k−9)π
4 ])

, (30)

where k is the index to number the velocity vector
set. This set of velocity vectors connects a point
(say, at xi,j = (xi, yj)) with its four nearest neighbours
(at xi,j + ekδx, k = 1, 2, 3, 4) and also with its four
next-to-nearest neighbours (at xi,j + ekδx, k = 5, 6, 7, 8).
The scheme 2nd is rather standard, and for brevity it is
not described here. When the scheme iso is used, the
first derivatives and the (usual) Laplacian (in Cartesian
coordinates) of a twice differentiable function f are
calculated as,

∂f

∂x

∣∣∣∣
i,j

=
3

δx

8∑
k=1

wkekxf(xi,j + ekδx), (31)

∂f

∂y

∣∣∣∣
i,j

=
3

δx

8∑
k=1

wkekyf(xi,j + ekδx), (32)

(
∂2f

∂x2
+
∂2f

∂y2

)∣∣∣∣
i,j

(33)

=
6

δ2x
[

8∑
k=1

wkf(xi,j + ekδx)− (1− w0)f(xi,j)],

where wk is the weight for different velocities,

wk =


4
9 for k = 0
1
9 for k = 1, 2, 3, 4
1
36 for k = 5, 6, 7, 8

, (34)
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and ekx and eky denote the x− and y−components of
the vector ek. This scheme is also 2nd-order accurate
and has better isotropic property (thus denoted as iso).
It should be noted that in this work the scheme iso is
only used in the equations for interface dynamics, including
equations (28) and (29). In some previous studies, the
scheme iso was found to reduce the spurious velocity
in the interfacial region of multiphase flows (Tiribocchi
et al., 2009). Our experience indicates that it is also
more stable than the scheme 2nd. We shall make some
comparisons between the two schemes for certain cases
under the current implementation in Section 3. For most
of the problems studied in this work, the default scheme
for the spatial derivatives in the interface equations,
Equations (28) and (29), is the scheme iso.

2.5.3 Data exchange on stagger grid

As noted in Section 2.5.1, ω and ψ̃ are defined at cell vertex
whereas ϕ and µ are defined at cell centre. Each of the
two sets of governing equations contains some variables or
terms that need the information from the other. The CHE,
equation (28), need the velocity components u and v at cell
centre, which are obtained from ψ̃ at the four surrounding
vertices (see Figure 3),

ui− 1
2 ,j−

1
2
= −1

2

1

yi− 1
2 ,j−

1
2

(
∂ψ̃

∂y

∣∣∣∣
L

+
∂ψ̃

∂y

∣∣∣∣
R

)
, (35)

vi− 1
2 ,j−

1
2
=

1

2

1

yi− 1
2 ,j−

1
2

(
∂ψ̃

∂x

∣∣∣∣
Low

+
∂ψ̃

∂x

∣∣∣∣
Up

)
, (36)

where the partial derivatives on the four sides are
approximated by,

∂ψ̃

∂y

∣∣∣∣
L

=
1

h
(ψ̃i−1,j − ψ̃i−1,j−1), (37)

∂ψ̃

∂y

∣∣∣∣
R

=
1

h
(ψ̃i,j − ψ̃i,j−1),

∂ψ̃

∂x

∣∣∣∣
Low

=
1

h
(ψ̃i,j−1 − ψ̃i−1,j−1),

∂ψ̃

∂x

∣∣∣∣
Up

=
1

h
(ψ̃i,j − ψ̃i−1,j). (38)

On the other hand, the vorticity evolution equation,
equation (27), contains two terms that account for the
contribution from the interfacial tension force involving ∂ϕ

∂x ,
∂ϕ
∂y ,

∂µ
∂x and ∂µ

∂y . They are evaluated using the PF variables
at the surrounding cell centres in a similar way.

It should be noted that ui,j and vi,j in the discretised
vorticity evolution equation are obtained directly at the
vertices from the streamfunction ψ̃ using equation (25) and
the scheme 2nd. Although one has the option to obtain ui,j
and vi,j from those already found at the surrounding cell
centres by arithmetic averaging, numerical tests show that
it could cause some problems near the axis under certain
conditions. By contrast, the first way performs much better.

Figure 3 Calculation of the velocity components u and v at
cell centre from the streamfunction at cell vertex

ui− 1

2
,j− 1

2

ψ̃i−1,j

vi− 1

2
,j− 1

2

ψ̃i,j−1
ψ̃i−1,j−1

∂ψ̃
∂y
|R

∂ψ̃
∂x
|Low

∂ψ̃
∂y
|L

∂ψ̃
∂x
|Up ψ̃i,j

2.5.4 BCs in discrete form

With the above spatial discretisations, some of the BCs
about derivatives given in Section 2.3 may be converted
into their respective discrete forms. For example, the
discrete form for equation (17) reads,

ωi,j |j=Ny =
2

Ly

ψ̃i,Ny−1 − ψ̃i,Ny

h2
, (39)

where the condition ∂ψ̃
∂y |y=Ly = 0 has been used.

Equation (39) may be regarded as a variant of Thom’s
formula (see E and Liu, 1996 and references therein). On
other walls, the discrete BC for the vorticity ω may be
written in a similar manner. For all cases considered in this
work, the streamfunction ψ̃ vanishes on all boundaries.

As noted in Section 2.5.1, for the PF variables defined
at cell centre, the BCs are implemented through a ghost
layer added outside of the domain. Take ϕ and µ at the axis
(y = 0) as an example. Upon discretisation, equation (18)
becomes,

∂ϕ

∂y

∣∣∣∣
y=0

≈
ϕi− 1

2 ,
1
2
− ϕi− 1

2 ,−
1
2

h
= 0, (40)

∂µ

∂y

∣∣∣∣
y=0

≈
µi− 1

2 ,
1
2
− µi− 1

2 ,−
1
2

h
= 0,

from which ϕ and µ at the ghost layer y = −h
2 are

obtained as,

ϕi− 1
2 ,−

1
2
= ϕi− 1

2 ,
1
2
, µi− 1

2 ,−
1
2
= µi− 1

2 ,
1
2
. (41)

In equation (14) it is required to have ϕS before knowing
the normal gradient on a wall. Here we use a simple
approximation to find ϕS . Suppose the wall is at y = 0, we
just set ϕS ≈ ϕi− 1

2 ,
1
2
.

2.6 Temporal discretisation

With the spatial derivatives approximated by the
finite-difference schemes, the two main evolution equations,
equation (27) and equation (28), become two ordinary
differential equations, which have to be discretised in time.
Here the common explicit 4th-order Runge-Kutta (RK4)
method is adopted.
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In the present work, all variables are updated at the same
discrete times (i.e., t = 0, δt, 2δt, · · · ). That reduces the
complexity of the coupling between the hydrodynamics and
interface dynamics to some degree. The time marching of
the equation system involving equations (25), (26), (27),
(28) and (29) is in essence to obtain the main variables at
tn+1 from those at tn, i.e.,

(ψ̃n, ωn, ϕn, µn) → (ψ̃n+1, ωn+1, ϕn+1, µn+1). (42)

One can do the marching for the CHE first to obtain
(ϕn+1, µn+1), and then carry out the steps for the flow
equations in VS formulation with (ϕn+1, µn+1) being used
to evaluate the contributions due to interfacial tension
forces. Instead, one can also do the marching for the
flow equations first, followed by that for the CHE. Some
numerical tests show that the change of the order affects
the results only very slightly. Here the first option is used,
and the detailed steps to be carried out from tn(= 0) to
tn+1(= δt) are as follows,

1 to initialise the main variables at cell vertex
(everywhere, i.e., in the bulk region and at all
boundaries), including (ψ̃ni,j , ω

n
i,j) and also those at

cell centre (bulk region only), including
(ϕn
i− 1

2 ,j−
1
2

, µn
i− 1

2 ,j−
1
2

), and also calculate the PF
variables in the ghost layers

2 to calculate the velocity (un
i− 1

2 ,j−
1
2

, vn
i− 1

2 ,j−
1
2

) at cell
centre (bulk region only), using equation (25)

3 to advance the PF variables from tn to tn+1 using
equations (28), (29) and appropriate BCs with RK4
time stepping (while freezing the velocity) to obtain
(ϕn+1
i− 1

2 ,j−
1
2

, µn+1
i− 1

2 ,j−
1
2

) in the bulk region, and update
the PF variables in the ghost layers

4 to calculate the contribution of the interfacial tension
force to the vorticity at cell vertex in the bulk region
using the newly obtained (ϕn+1

i− 1
2 ,j−

1
2

, µn+1
i− 1

2 ,j−
1
2

)

5 To advance the vorticity from tn to tn+1 using
equation (27) with RK4 time stepping (while freezing
the streamfunction ψ̃) to obtain ωn+1

i,j in the bulk
region

6 to solve the Poisson-like equation, equation (26), with
given BCs to obtain ψ̃n+1

i,j in the bulk region

7 to update the vorticity ωn+1
i,j on the wall boundaries

using the newly obtained ψ̃n+1
i,j

8 to go back to step (2) and prepare for the next time
marching cycle.

It is noted that in Step (6) some iterations may be required.
Besides, in Step (1) only ϕn

i− 1
2 ,j−

1
2

is actually given at the
beginning and µn

i− 1
2 ,j−

1
2

is calculated from equation (29)
with suitable BCs which give ϕn

i− 1
2 ,j−

1
2

in the ghost
layers. That takes a few sub-steps, and such sub-steps are
performed in Step (3) as well.

To start a simulation, appropriate initial conditions must
be provided. For ψ̃ and ω, the initial conditions must be
compatible with equation (26) (in our simulation, we have
paid attention to satisfy this requirement). In addition, the
initial fields depend on the specific problem being studied
(to be described in detail below).

Here we would like to give some remarks about the
time marching schemes. According to E and Liu (1996),
the use of RK4 for the vorticity evolution can alleviate
the cell Reynolds number constraint. Besides, RK4 has
better stability than some other lower-order explicit time
marching schemes (like the 1st-order forward Euler and
the 2nd-order Runge-Kutta (RK2) method), which makes it
relatively popular. Nevertheless, we have also tried RK2 for
the vorticity evolution in some problems studied here and
no obvious difference was observed while the computation
time was reduced significantly. Thus, it might not be
necessary to use RK4 for all evolution equations. As the
same time, for the Cahn-Hilliard equation, the use of RK2
for certain cases cannot guarantee a stable computation
whereas RK4 is fine. For large scale simulations, it is
suggested that different time marching schemes may be
tried first and the most economic one is used provided that
the stability is not compromised.

2.7 Some comparison with the VP formulation

It may be helpful to make some comparison between the
VS formulation and the VP formulation. When the VP
formulation is used, the hydrodynamic governing equations
read,

∂ur
∂r

+
ur
r

+
∂uz
∂z

= 0, (43)

∂ur
∂t

+

(
ur
∂ur
∂r

+ uz
∂ur
∂z

)
(44)

= −∂Sp
∂r

+ ν

(
∇2

axisymur −
ur
r2

)
− ϕ

∂µ̃

∂r
,

∂uz
∂t

+

(
ur
∂uz
∂r

+ uz
∂uz
∂z

)
(45)

= −∂Sp
∂z

+ ν∇2
axisymuz − ϕ

∂µ̃

∂z
.

As pointed out by Ferziger and Peric (1999), the most
attractive feature of the VS formulation for (pseudo-)
2-D problems is the reduction of dependent variables and
equations (which is seen easily through the comparison
between equations (11), (12), and (13) and the above
three). Besides, one does not have to worry about the
continuity equation (i.e., to enforce a divergence-free
velocity field) by using the VS formulation. In contrast,
the numerical solution of the VP equations are less
straightforward. One of the famous methods to solve the
VP equations is the projection method by Chorin (1968),
which may be taken for comparison here. In the projection
method, the time marching from un (the velocity vector
at tn: un = [unr , u

n
z ]
T ) to un+1 is divided into two steps
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by introducing an intermediate vector u∗: in the first
sub-step from un to u∗, the pressure term ∇Sp is excluded;
in the second sub-step from u∗ to un+1, the viscous
terms are excluded whereas the pressure term ∇Sp is
treated (which requires to solve a Poisson(-like) equation).
As compared with the VS formulation, an additional
evolution equation with terms nearly as complex as the
evolution equation for the vorticity [c.f. equation (13)]
has to be handled, which reduces the efficiency of the
method to some extent. Of course, the relative increase
of computational cost depends on many factors like the
schemes for derivative evaluation and for time stepping. A
rough estimate suggests that, when an explicit time stepping
scheme is used, the increase may not be quite significant
because the most time-consuming part is the solution of the
Poisson(-like) equation, which cannot be avoided in either
the VS or VP formulation. However, when an implicit (or a
semi-implicit) time stepping scheme is used, the marching
of the evolution equation would require a solver almost as
expensive as the Poisson solver. In that case the increase
of computational cost by using the VP formulation will
be much more appreciable. As more detailed quantitive
comparisons regarding the computational efficiency require
the development of another fully-functional solver using the
VP formulation for incompressible axisymmetric two-phase
flows, we would not carry it out in the present work.

3 Results and discussions

3.1 Characteristic quantities and dimensionless
numbers

In Section 2.4, the dimensionless equations were
derived and the important dimensionless parameters were
identified. Here we revisit the characteristic quantities
and dimensionless parameters, but now with the specific
problems to be studied (a single drop or two drops of equal
size) in mind. In each problem, there is a drop of radius
R, which is chosen to be the characteristic length Lc. The
constant density is selected as the characteristic density ρc.
Following Khatavkar et al. (2007), we use a characteristic
velocity Uc defined solely based on the fluid properties as,

Uc =
σ

ρcν
. (46)

Note that from the physical properties and the drop radius R
another velocity scale Uσ may also be derived (Thoroddsen
et al., 2005),

Uσ =

√
σ

ρcR
. (47)

Here we mainly use on Uc (though Uσ may also be used
for certain cases). From Lc and Uc, the characteristic time
Tc is found to be,

Tc =
Lc
Uc

=
Rρcν

σ
. (48)

All quantities of length, time and velocity below are scaled
by Lc, Tc and Uc, respectively (unless otherwise specified).
With the above definitions of characteristic quantities, the
capillary number is found to be Ca = ρcνUc

σ = 1 and the
Reynolds number is,

Re =
UcR

ν
=

σ

ρcν

R

ν
=

σR

ρcν2
. (49)

In addition, the Weber number (as defined in Section 2.4)
is found to be We = ReCa = Re (as Ca = 1). It should
be noted that Ca and Re defined in this way do not reflect
the actual physics of the problem because the velocity scale
Uc is only based on the fluid properties (rather than the
flow characteristics), but they are useful in setting up the
simulation. If the other velocity scale Uσ is used, another
Reynolds number may be obtained as (Thoroddsen et al.,
2005),

Reσ =
UσR

ν
=

√
σR

ρcν2
=

√
Re. (50)

This Reynolds number Reσ is useful for some problems
(e.g., drop coalescence to be studied below). In addition, the
Ohnesorge number Oh is also often used for drop dynamics
(Ding et al., 2012):

Oh =
ρcν√
ρcσR

, (51)

and it is related to the other dimensionless numbers
as Oh = 1/

√
Re = 1/Reσ. In Section 2.4, two other

parameters related to the PF model were also defined:
the Cahn number Cn and the Peclet number Pe. Using
the characteristic quantities Lc(= R) and Uc given by
equation (46), it is easy to find the individual values of
Cn and Pe for each problem below. We note that different
people may use slightly different definition of the interface
width. For instance, the interface width ε in Yue et al.
(2010) and Ding et al. (2007) is related to the present one as
ε =W/(2

√
2). Thus, the Cahn number based on ε, Cnε, is

related to the present Cn as, Cnε = Cn/(2
√
2) ≈ 0.35Cn.

In addition, Yue et al. (2010) proposed the use of another
parameter S for problems involving contact lines, which
reflects the ratio of the diffusion length scale at the contact
line lD =

√
M(ρcν) over the characteristic length Lc, and

is thus given by S =
√
M(ρcν)/Lc.

3.2 Common problem setup and quantities of interest

As noted in Section 2.5.1, the domain is a rectangle of
size Lx × Ly and the origin is located at the lower-left
corner. In all simulations, the lower side of the domain is
the symmetric axis (y = 0) on which the symmetric BCs
are applied; on the upper and right sides solid walls are
assumed. The left side is either a wall or a symmetric line
depending on the specific problem (if it is a symmetric line,
then only the upper-right quarter is actually considered).
To use a relatively large domain reduces the effects of
the surrounding walls, but increases the computational cost.
Here, Lx and Ly are chosen to balance the two sides. Note
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that the force due to gravity is omitted. This is reasonable
when the scale of the problem is very small or when the
drop is in a microgravity environment.

The simulations are performed in the range 0 ≤ t ≤ te,
where te (measured in Tc) denotes the time at the end of
the simulation. Suppose the characteristic length Lc (the
drop radius R) is discretised by NL uniform segments
and the characteristic time Tc is discretised by Nt uniform
segments, then one has,

δx =
Lc
NL

(
=
Lx
Nx

=
Ly
Ny

= h

)
, δt =

Tc
Nt
. (52)

In all problems, initially there is no flow. Thus, the initial
streamfunction ψ̃ and vorticity ω are,

ψ̃0
i,j = 0, ω0

i,j = 0. (53)

The initial position of the drop centre is (xc, yc) = (xc, 0)
(i.e., always on the axis). The initial order parameter ϕ field
is given by,

ϕ0i− 1
2 ,j−

1
2
= − tanh

(
2(ri− 1

2 ,j−
1
2
−R)

W

)
, (54)

where ri− 1
2 ,j−

1
2
=

√
(xi− 1

2
− xc)2 + (yj− 1

2
− yc)2 is the

distance between the cell centre (xi− 1
2
, yj− 1

2
) and the

drop centre (xc, yc). The initial velocities at cell centre,
u0
i− 1

2 ,j−
1
2

and v0
i− 1

2 ,j−
1
2

, and the initial chemical potential

µ0
i− 1

2 ,j−
1
2

may be computed from ψ̃0
i,j and ϕ0i− 1

2 ,j−
1
2

using
the respective equations and BCs given in Section 2.

For the flow field, we are interested in the maximum
velocity magnitude over the whole domain at time t,√

u2 + v2|max(t) (55)

= max
1≤i≤Nx,1≤j≤Ny

√
(ui− 1

2 ,j−
1
2
(t))2 + (vi− 1

2 ,j−
1
2
(t))2.

In addition, for convenience, we define the maximum
velocity magnitude during the whole simulation as,

Umax = max
0≤t≤te

√
u2 + v2|max(t). (56)

As noted above in Section 3.1, the actual Reynolds number
usually differs from that given by equation (49). With Umax,
we can calculate another Reynolds number Remax as,

Remax =
UmaxR

ν
= UmaxRe, (57)

where we have used the condition that the velocities in
equation (56) are already scaled by Uc. This Reynolds
number Remax is supposed to reflect the actual physics of
the problem better than Re.

3.3 Test of Laplace law for a quiescent drop

The first problem studied is a quiescent drop. For this
problem, the common physical parameter is Ca = 1. Some
studies of this problem have been presented in another
paper (Huang et al., 2013), together with some comparisons

between the method proposed here and that in Huang
et al. (2013), which is a hybridisation of the LBM using
the multiple-relaxation-time (MRT) collision model and
the finite-difference method (following the notations in
Huang et al., 2013, the present method is denoted as
NSCH-VS(FD) and that method is denoted as MRT-LB-FD).
The two methods differ from each other substantially in
the way to deal with the hydrodynamics and also in the
way to couple the flow and interface dynamics. Therefore,
good agreements between them serve the purpose to verify
each other. For conciseness, the results already presented
in Huang et al. (2013) are not replicated here. But for
clarity and completeness some essential descriptions of the
problem are still given. Unlike Huang et al. (2013), here to
reduce the computational cost, the left side is a symmetric
line. Thus, only (the right) half of the domain in Huang
et al. (2013) is used. The domain size is Lx × Ly = 2× 2,
and the drop centre is (xc, yc) = (0, 0).

The initial order parameter ϕ field given in equation (54)
does not correspond to the equilibrium state for an
interface with finite curvature. The CHE provides a
diffusional mechanism to drive the order parameter field
to evolve towards the true equilibrium state (Yue et al.,
2007). Upon reaching equilibrium, the order parameters
inside and outside the drop become ϕeqin = 1 + ϵeqin and
ϕeqout = −(1− ϵeqout) (ϵeqin and ϵeqout take some small positive
values), which satisfy the Laplace law,

(∆p)eq = (pmain − pmaout )
eq ≈ pbin(ϕ

eq
in )− pbout(ϕ

eq
out) (58)

=
σ

2Reqd
,

where Reqd is the drop radius in equilibrium, pb is the bulk
pressure (i.e., pressure of the bulk fluid excluding gradient
and dynamic effects (see Papatzacos, 2002), similar to the
thermodynamic pressure defined by Lee and Lin (2005))
related to ϕ through the equation of state,

pb = ϕ
dΨ(ϕ)

dϕ
−Ψ(ϕ), (59)

and pma is the modified overall pressure related to pb as
(note a modified pressure pm = pb − (κϕ∇2ϕ− 1

2κ|∇ϕ|2)
was defined by Lee and Lin (2005), which has a much
smoother variation across an interface than the bulk
pressure pb),

pma = Sp + pb −
(
κϕ∇2ϕ− 1

2
κ|∇ϕ|2

)
. (60)

where Sp is the hydrodynamic pressure and cannot be
obtained directly using the VS formulation. However, for
the study of a quiescent drop its variation is much smaller
than that of pb. Besides, in equilibrium there is no flow,
and Sp is uniform. Thus, it may be neglected when the
pressure difference is calculated. What is more, away from
the interface, both ∇2ϕ and ∇ϕ (almost) vanish. Therefore,
one has pma ≈ pb in equilibrium. During the evolutionary
process, the drop shrinks a little bit, of which the extent
depends on the Cahn number Cn and the speed depends
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on the Peclet number Pe (Yue et al., 2007). After the
equilibrium state is achieved, the drop radius Reqd is slightly
smaller than the initial one R. As in Huang et al. (2013),
the inside and outside order parameters were sampled at
the drop centre and some point that is Reqd + 2Cn away
from the drop centre respectively, so that neither is in the
interfacial region. The drop radius in equilibrium Reqd was
computed as (Reqx +Reqy )/2 where Reqx and Reqy are the
equilibrium radii along the x−axis and in y−direction along
the vertical line passing through the centre, respectively
(note Reqx and Reqy are almost the same when the interface
width W is large enough, as in most cases below). During
the simulation, we monitor the difference of the bulk
pressure ∆pb = pbin − pbout, the drop radius Rd, and compare
the quantity ∆pb with the pressure difference expected in
equilibrium σ/(2Rd) through the relative deviation δ(∆p),

δ(∆p) =
∆pb − σ/(2Rd)

σ/(2Rd)
× 100%. (61)

Note that upon reaching equilibrium the difference is
expected to (nearly) vanish. Unlike Huang et al. (2013),
here we mainly examine the quantity 2Reqd (∆p)eq (which
is sort of the numerically measured interfacial tension)
under different Weber numbers and also the effect of using
different Cahn numbers Cn (interface width W ) while
fixing the characteristic length Lc.

3.3.1 The quantity 2Reqd (∆p)eq under various We
numbers

The quantity 2Reqd (∆p)eq is supposed to be equal to
the interfacial tension σ. Figure 4 shows the variations
of the quantity 2Reqd (∆p)eq and σ with We with
both axes plotted in logarithmic scale. Four Weber
numbers (We = 25, 100, 103, 104) were tested to
obtain this figure while other parameters were fixed to
be Cn = 0.15, Pe = 4× 103, NL = 20, Nt = 80. The
quantity 2Reqd (∆p)eq was measured after t = 103. It is easy
to see from the definition of We that the (dimensionless)
interfacial tension is inversely proportional to We. In
Figure 4 it is observed that the quantity 2Reqd (∆p)eq varies
with We almost following this way and it agrees with σ
very well. Detailed examinations show that the deviations
of the quantity 2Reqd (∆p)eq from σ are less than 2.5% for
all of the Weber numbers.

3.3.2 Effect of Cahn number Cn (interface width W )

Figure 5 shows the evolutions of δ(∆p) at different Cahn
numbers Cn = 0.2, 0.1, 0.075, 0.05 (or interface widths
W = 6.4, 3.2, 2.4, 1.6 (h)) while other parameters are
fixed to be Re(=We) = 103, Pe = 2× 103, NL = 32,
Nt = 512. It is noted that initially ϕin ≈ 1.0 and
ϕout ≈ −1.0, as specified in equation (54), and those
lead to δ(∆p) ≈ −100%. From Figure 5 it is observed
that as time goes on δ(∆p) evolves towards zero when
Cn (or W ) is large enough (for Cn = 0.2, 0.1, 0.075
or W = 6.4, 3.2, 2.4 (h)). By contrast, when Cn = 0.05

(W = 1.6), this trend is not observed and δ(∆p) remains
between −60% and −70%. This is due to the interface
is too thin (W = 1.6 only) to allow sufficiently good
resolution of the interface profile. Under such a condition,
the isotropy of the circular (spherical in 3-D) interface is
not preserved; in fact, even when Cn = 0.075 (W = 2.4)
the anisotropy of the interface can already be noticed
(not shown here) though the final balance across the
interface can still be roughly achieved. On the other hand,
when Cn becomes larger (W increases) the interfacial
region occupies larger portion of the whole domain and
the interfacial dynamics becomes more significant. For
instance, Figure 5 shows that it takes longer time for
δ(∆p) to become close to zero when Cn = 0.2 than in
the case with Cn = 0.1. For problems with more important
macroscopic dynamics this is not desirable. From the
convergence point of view, Cn should (in theory) approach
zero for usual problems. Therefore, one should use a Cn as
small as possible while maintaining a W large enough to
resolve the interface (Jacqmin, 1999). Yue et al. (2007) also
provided some helpful analyses and comments regarding
the convergence to the sharp-interface limit (SIL), which
are worth revisiting here. In general the Cahn number Cn
should be much less than 1 to approach the SIL, and in
the phase-field-based (diffuse-interface) simulations there is
an error of O(Cn2) in the interfacial tension (Yue et al.,
2007). It is very attractive to apply adaptive meshing to
achieve a small Cn (see, e.g., Yue et al., 2006; Sui and
Spelt, 2013b). In the literature, however, many simulations
still used uniform meshes (see, e.g., Lee and Liu, 2010; Liu
et al., 2013) possibly due to the significant effort required
to develop adaptive meshing (it is beyond the scope of
this work to incorporate the adaptive meshing strategy into
the proposed method). In general, the Cahn number is to
be selected to keep the deviation from the SIL reasonably
small while maintaining an acceptable computational cost
(the smallest Cn acceptable with a uniform mesh can be
much larger than that with an adaptive mesh). We have
taken the above considerations into account in the studies of
other problems below. The typical value of Cn is 0.1 and
that of W is 3.2, which indicates that the interface roughly
covers three grid points.

3.3.3 Comparison between two schemes: 2nd vs. iso

In Section 2.5.2, two schemes for the spatial derivatives
of PF variables in equations (28) and (29) were given.
Here, we select one case with Re(=We) = 103, Cn = 0.2,
Pe = 4× 103, NL = 20, Nt = 80 simply for the purpose
to compare the scheme 2nd with the scheme iso.
Specifically, we compare the evolutions of the maximum
velocity magnitude

√
u2 + v2|max. Figure 6 gives the

semi-logarithmic plot of
√
u2 + v2|max’s evolution for the

two schemes. The current observations are in general
similar to those reported in Huang et al. (2013). It is seen
from Figure 6 that

√
u2 + v2|max remains to be small (less

than 5× 10−4) during the whole simulation. This is because
there are no significant macroscopic flows in this problem.
From Figure 6, one also finds that

√
u2 + v2|max shows
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some fluctuations initially (especially when the scheme 2nd
is used) and keeps decreasing after certain time. For the
two schemes, major differences are seen during the segment
0 ≤ t ≤ 110; afterwards, they almost overlap. The peak
value of

√
u2 + v2|max (i.e., Umax) by 2nd is much larger

than that by iso. We have observed that the scheme 2nd
is in general less stable than iso, most likely due to the
above reason. Although the scheme iso costs (slightly)
more computation time, its improved stability makes it
more preferable. From equation (57) and Figure 6, one can
also estimate that Remax is about O(0.1) for this particular
case (although it is not quite meaningful here because there
is not important macroscopic flow).

3.4 Study of drop coalescence

The next problem studied is the coalescence of two
drops having the same radius R. Initially both drops
are stationary. Their initial centres are given by
(xc1, yc1) = (1, 0) and (xc2, yc2) = (−1, 0). That means
they are in contact with each other through one point
initially (of course, in theory only; actually they have some
small region overlapping due to the finite interface width
in PF models). The symmetry about the y−axis of this
problem makes it possible to use only the right half of the
domain in simulation. In addition, one has the symmetry
about the x−axis. The actual domain of simulation adopted
here is only a quarter (the upper-right one) of the original
domain (the cross section of an enclosed cylinder). On
the left the symmetric conditions are applied (see Section
2.3.2 for details). The size of the simulation domain is
Lx × Ly = 4× 4. Driven by the capillary force in the
contact region, the two drops coalesce with each other and
the radius of the contact region enclosed by the interface
(where ϕ = 0) at x = 0 (denoted as rb here, somewhat
similar to Ry in Section 3.3 above) grows with time. Some
previous studies have found a scaling law for the growth of

rb (Eggers et al., 1999; Duchemin et al., 2003; Wu et al.,
2004; Xing et al., 2007),

rb
R

= αg

√
t

τ
, (62)

where τ =
√
ρcR3/σ is another characteristic time

typically used for inviscid dynamics (Duchemin et al.,
2003), and αg is a constant. Note that αg may have
different values for different flows: for instance, αg = 1.62
for inviscid flows (Duchemin et al., 2003), and it could
have lower values (e.g., 1.29, 1.09 and 1.03) for viscous
flows (Wu et al., 2004), or even lower ones (e.g., 0.46 and
0.41) under different conditions (Thoroddsen et al., 2005).
The characteristic time τ is related to the previous one Tc
defined in equation (48) as τ = ReσTc, where Reσ =

√
Re

[cf. equation (50)]. As the initial drop radius is chosen to
be the characteristic length, when expressed in the scaled
variables of the present work, equation (62) becomes,

rb = αg

√
t

Reσ
. (63)

3.4.1 Mass conservation and convergence

Before investigating the physical problem, we carry out
some numerical tests on the method to look into its
properties. The main focuses include the mass conservation
and convergence. We monitor a quantity Vd which is
proportional to the mass of the drop Md as,

Vd =
Md

2π

=

∫ Lx

0

∫ Ly

0

y
1 + ϕ(x, y)

2
dydx (64)

≈ h2
Nx∑
i=1

Ny∑
j=1

yi− 1
2 ,j−

1
2

1 + ϕi− 1
2 ,j−

1
2

2
.

Figure 4 Variations of the quantity 2Req
d (∆p)eq and the theoretical interfacial tension σ with the Weber number We with Ca = 1,

Cn = 0.15, Pe = 4× 103, NL = 20, Nt = 80
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Figure 5 Evolutions of δ(∆p) (in percent) at different Cahn numbers Cn = 0.2, 0.1, 0.075, 0.05 (or interface widths
W = 6.4, 3.2, 2.4, 1.6 (h)) with Ca = 1, Re(= We) = 103, Pe = 2× 103, NL = 32, Nt = 512
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Recall that y and x are actually the r and z coordinates of
the cylindrical coordinate system. As emphasised by Ding
et al. (2007), here the term conservation is not for a region
enclosed by the interface (ϕ = 0); instead, it is for the
whole domain (i.e., in a global sense). Only when Cn→ 0,
the mass conservation holds in both senses.

We study one specific problem with Re(=We) =
103. The interface width is fixed to be W = 3.2 (to
maintain reasonable resolution of the ϕ−profile across the
interface), and the Peclet number is fixed to be Pe = 8×
103. Other numerical parameters vary in different cases.
For convenience, the cases are denoted as T1 (with Cn =
0.2, NL = 16, Nt = 48), T2 (with Cn = 0.1, NL = 32,
Nt = 96), and T3 (with Cn = 0.05, NL = 64, Nt = 1024).
Figure 7 shows the change of Vd with time in 0 ≤ t ≤
50 for the three cases. It is seen that Vd almost remains
constant in all cases. More careful quantitative examinations

reveal that the amplitudes of Vd’s variation during this
period are about 0.06%, 0.02%, and 0.006% of its initial
value for T1, T2, and T3, respectively. Thus, the mass
conservation is preserved fairly well (especially at lower
Cn) although it is not as good as Ding et al. (2007),
which claimed that it was preserved to machine accuracy.
The possible reason is that the schemes employed in Ding
et al. (2007) were conservative whereas the current ones
are not. Nevertheless, as seen above, the violation of mass
conservation is extremely small (only of order 10−4).
Besides, one finds from Figure 7 that Vd decreases (slightly)
as Cn is reduced. This could be attributed to the reduced
interfacial region at lower Cn. From the trend in Vd’s
change with Cn, it appears that a limit of Vd exists as
Cn→ 0 (as expected from the convergence requirement).
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Figure 7 Evolutions of Vd [defined in equation (64)] for three cases: T1 (Cn = 0.2), T2 (Cn = 0.1), and T3 (Cn = 0.05)
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Figure 8 Evolutions of rb for three cases, T1, T2 and T3, with different Cahn numbers
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To check the convergence, the evolutions of rb for the
three cases with different Cahn numbers are plotted in
Figure 8. Note that the study here is different from
that in Section 3.3.2 because here the interface width is
kept constant (W = 3.2). It is observed from Figure 8
that the difference in rb between T2 (Cn = 0.1) and
T3 (Cn = 0.05) is much smaller than that between T1
(Cn = 0.2) and T2 (Cn = 0.1). In fact the former is hard
to see over a long time (e.g., 0 < t < 40) from Figure 8. To
balance the requirement of accuracy (which favours a Cn
as small as possible) and the computational cost, we choose
to use Cn = 0.1 for the studies below.

3.4.2 Effects of Re and comparison with other results

Before investigating the physical problem in detail, we
want to mention a (minor) fix to the setup of this
problem described above. In Figure 8, it is easy to find
that rb(0) > 0. However, equation (63) obviously predicts
rb(0) = 0. We suspect that it was probably due to the
errors caused by the half-grid shift, the extrapolation to
find rb, as well as the finite interface width (for Cn > 0).
Here one should notice the fact that significant topological
change of the interface occurs at t = 0 (i.e., the drops start
to coalescence) and this event is extremely sensitive to
any numerical errors (in fact, there exists a singularity for
this moment in sharp interface description). Through some
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tests, we have found that to separate the drops a little bit
could improve the results. In the following, we shift the
drop a little along the axis and let xc1 = 1 + ϵ (ϵ ≈ 1%,
corresponding to a size less than 0.5h), which adjusts rb(0)
to be approximately zero.

We mainly investigate the drop coalescence under
different Re (We) numbers: Re(=We) = 1, 10, 100, and
103. All cases share a few common parameters including
Cn = 0.1, Pe = 8× 103, and NL = 32, while Nt may
differ in different cases. Figure 9 shows the variations of
rb with

√
t/Reσ for these cases (by different symbols),

together with three lines predicted by equation (63) for
αg = 1.62, 1.00, and 0.40, respectively. From Figure 9,
it is seen that the scaling law rb ∝

√
t almost holds

(roughly) in all the cases (when rb is not too large), but the
coefficients differ under different Re numbers. As reported
previously, the scaling law agrees well with the experiments
for rb smaller than (about) 0.35 (Thoroddsen et al., 2005;
Xing et al., 2007). Based on Figure 9, the coefficient
seems to decrease as the Reynolds number is reduced. For
instance, the coefficient for the case with Re = 103 seems
to be slightly larger than 1.00 (note: focus on the early
stage when rb < 0.35), and that for the case with Re = 1
is slightly smaller than 0.40 .

In addition to the good agreement with the scaling law,
the present results also agree well with the numerical results
by the other method MRT-LB-FD. The details are not given
here for this problem, but some careful comparisons will be
provided for another problem next.

3.5 Study of contact angle, drop spreading/dewetting

In the final part there is a drop in contact with a
solid wall with given contact angle (wettability). And we
consider the spreading or dewetting of the drop on such
a wall. Recall that the gravity is omitted in this work.
Initially the drop sits on the left wall with a configuration
corresponding to an initial contact angle of θi (θi = 90◦

or 120◦ in different problems). That is, the drop centre
is (xc, yc) = (0, 0) (for θi = 90◦) or (0.5, 0) (for θi =
120◦). The actual wettability of the wall is specified
by the equilibrium contact angle θw, which could differ
from θi. When such a difference exists (i.e, θi ̸= θw), the
drop tends to spread (if θi > θw) or dewet (if θi < θw)
towards a new configuration that would match θw. The
domain size is Lx × Ly = 4× 4. The physical parameters
are Re(=We) = 100 (Ca = 1) except for Subsection 3.5.4
where Re(=We) = 25 (Ca = 1). The common numerical
parameters are Cn = 0.1, Pe = 8× 103 (S = 0.01118),
NL = 32, and the temporal discretisation parameter is
Nt = 96 except for Subsection 3.5.4 where Nt = 128. The
interface width is W = 3.2 (as easily found from Cn
and NL). For this problem, we monitor two evolving
variables: the drop height on the x−axis Hx = Hx(t) and
the drop radius on the (left) wall Ry = Ry(t) (i.e., the
radius of the circle on the wall formed by the contact
line). By assuming that the drop shape is part of a sphere
(which is a good approximation under negligible inertial

effects), the (instantaneous) contact angle θsf = θsf (t) may
be deduced by rough shape-fitting just from these two
quantities (Huang et al., 2011),

θsf =
180◦

π

(
π − arccos

(
1− k2r
1 + k2r

))
, (65)

where kr = Ry/Hx and θsf is in degree (◦). To reduce
the errors due to the half grid size shift, an improved
method to find Reqx and Reqy was adopted to find Ry and
Hx exactly located at the two lines, x = 0 and y = 0.
Note that during the evolution, the inertial effects could
become non-negligible, making the drop shape deform from
a spherical one; besides, the interface near the contact line
may be bent to some extent during the motion. Thus the
rough shape-fitting may not be accurate enough during the
motion but should suffice as an indicator after the drop
reaches static equilibrium. It is noted that the problem
setting in Section 3.4 of Huang et al. (2013) is different
from the present one. In Huang et al. (2013), the initial drop
centre was (xc, yc) = (1, 0) (rendering an initial contact
angle θi = 180◦), the static contact angle θw was fixed to
be 90◦, and only spreading occurred. Besides, the case in
Huang et al. (2013) has a (nominal) Reynolds number Re =
20 and some other numerical parameters also differ from
those in the present work. For the slow drop spreading
problem in Subsection 3.5.4, we also monitor the apparent
contact angle θm and the contact line velocity Vcl. The
apparent contact angle θm is obtained following the way
described by Sui and Spelt (2013b,a). As shown by Sui and
Spelt (2013b,a), the angle the interface makes with the wall
(θ) is a function of the arclength away from the contact
line along the interface (s), i.e., θ = θ(s). It is known that
the region near the contact line around the interface may
be in general divided into three regions: the inner region,
the intermediate region and the outer region based on the
distance away from the contact line (Cox, 1986; Sui and
Spelt, 2013b). For slow drop spreading, θ(s) is (almost) a
linear function in the outer region (Sui and Spelt, 2013b),
and it can be used to obtain the extrapolated angle at
the contact line (s = 0). It is this angle that is taken as
the apparent contact angle θm. Practically, we select the
linear regime as 0.2smax ≤ s ≤ smax where smax is the
maximum of the arclength s (terminated at the axis) and we
find the straight line through least squares fitting the points
(s, θ(s)) in this regime. Based on the recorded drop radius
on the left wall Ry(t), one can calculate the contact line
velocity Vcl by using backward differentiation. For instance,
Vcl(t) at time t is found from,

Vcl(t) =
1

∆t
(Ry(t)−Ry(t−∆t)), (66)

where ∆t is the change in time and may take kδt with
k being a positive integer (here k = 1). From the contact
line velocity Vcl, another capillary number is obtained as
Cacl = ρcνVcl/σ = Vcl/Uc (in other words, it is the contact
line velocity Vcl measured in the characteristic velocity Uc).
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Figure 9 Variations of rb with
√

t/Reσ under different Re (We) numbers: Re(= We) = 1, 10, 100, 103
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Figure 10 Evolutions of the difference between the contact angle θsf obtained by rough shape-fitting and the input contact angle θw,
θsf − θw, under different θw (30◦, 60◦, 120◦, and 150◦)
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Before showing the results, we would like to highlight
again the important issue of the convergence towards
the sharp-interface limit (SIL), now for drop problems
involving contact lines (though this work mainly focuses on
proposing a numerical method using the VS formulation).
Yue et al. (2010) systematically studied this issue and had
some insightful findings and guidelines. One of them is that
a SIL may be achieved by the phase-field model (using the
CHE) through reducing Cn with other parameters fixed.
The second is that the contact line dynamics is controlled
by the diffusion length scale lD [corresponding to the slip
length ls in some slip models to relieve the stress singularity
near the contact line (Cox, 1986)]. Another is that to reach
the SIL the interface width should satisfy Cnε < 4S. In
what follows, we use Cn = 0.1 giving Cnε = 0.035, and

the parameter S is S = 0.01118. Therefore, the condition
Cnε < 4S can be satisfied. However, we note that this is
a necessary condition, but not a sufficient one, to reach the
SIL. As already discussed in Subsection 3.3.2, it is also
required that Cn≪ 1, which is quite demanding when a
uniform mesh is used (the pursuit of the SIL is beyond the
scope of the present work).

3.5.1 Evolution of the contact angle θsf by rough
shape-fitting

The contact angle θsf obtained by rough shape-fitting
is investigated first. Figure 10 shows the evolutions of
the difference between θsf and θw, θsf − θw, for several
θw (30◦, 60◦, 120◦, and 150◦). It is seen that for all
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cases, θsf − θw evolves towards zero. Finally, at t = 200
the deviations are quite small (between the two lines
of θsf − θw = −1.5◦ and θsf − θw = 2.5◦, as seen from
Figure 10). The maximum deviation (about 2.5◦) was
observed for θw = 30◦. These small deviations could be due
to the errors in the measurement of Ry and Hx and/or in
resolving the interface profile.

3.5.2 Comparison of the static contact angle

Next we compare the contact angle when the system is
(almost) static after reaching equilibrium. This angle is
denoted as θeqsf . As there is (almost) no flow when reaching
equilibrium, θeqsf is considered as a reliable indicator to
reflect the drop shape and contact angle. Figure 11 shows
the equilibrium contact angles θeqsf , as obtained numerically
from equation (65) at t = 200, under different input values
of θw (30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, and
150◦). Also shown in Figure 11 is the straight line θeqsf = θw
(which the points should fall on ideally). It is seen that the
equilibrium contact angles from rough shape-fitting agree
quite well with the input ones over a wide range. This
shows (to some extent) the capability of the present method
to handle drops with wetting on a wall.

3.5.3 Comparison between two methods: NSCH-VS(FD)
vs. MRT-LB-FD

In this part, we compare the results of one selected case by
the present method and the method in Huang et al. (2013)
(MRT-LB-FD). Some good comparisons between them were
already given in Huang et al. (2013) for a drop spreading
problem with θi = 180◦, θw = 90◦, and Re = 20. Here
we focus on a drop dewetting problem with the key
parameters being θi = 90◦, θw = 135◦ at Re = 100. Note
that a few more differences in other aspects (e.g., numerical
parameters) exist between this work and Huang et al.
(2013). Therefore, the new results given here would further
verify the correctness of the two methods.

Figure 12 gives the evolutions of Hx and Ry
[Figure 12(a) and 12(b)] and that of

√
u2 + v2|max

[Figure 12(c)] from t = 0 to 100 by the current method,
together with the corresponding evolutions by MRT-LB-FD
for comparison. It is easy to see that the results by the
two different methods agree quite well. As θw = 135◦

on the left wall, upon reaching static equilibrium,
because of the conservation of mass the drop should
(in theory) have a shape with Hx = (1 + cosα)r = 1.38
and Ry = r sinα = 0.57 where α = 180◦ − θw = 45◦

and r = [2/(2 + 3 cosα− cos3 α)]1/3. These theoretical
values are denoted by the horizontal lines in
Figures 12(a) and 12(b). Under this set of parameters, it is
observed in Figure 12(a) that Hx increases from 1.0 to a
value slightly smaller than the theoretical one (1.38) during
0 < t < 40 and then decreases slowly. From Figure 12(b),
it is seen that Ry decreases from 1.0 to a value that is quite
close to the theoretical one (0.57) during 0 < t < 40 and,
afterwards, it also decreases slightly. Further calculation

indicates that the deviation in Hx is less than 2.5% at
t = 100. From Figure 12(c), it is seen that

√
u2 + v2|max

shows two surges during 0 < t < 40 and its maximum
(i.e., Umax) occurs at the second surge with Umax ≈ 0.037.
After that period, it decays fast towards zero. The other
Reynolds number Remax can be estimated now to be
Remax = UmaxRe ≈ 3.7 (which is much, much smaller than
Re).

Next, we compare the interface positions at selected
times, during which significant changes occur, and also the
flow field at one selected time with substantial macroscopic
flow by the present method and by MRT-LB-FD. Figure 13
shows the interfaces (i.e., ,contour lines of ϕ = 0) at t =
0, 10, 20, 30 [Figure 13(a)], and the flow field (shown
through velocity vectors) at t = 10 [Figure 13(b)]. Note
that in Figure 13(b) we zoom in the region near the
vortex generated during the dewetting, which is close to the
interface (thus only a part, instead of the whole domain, is
shown). It is found that overall the two methods predict the
interfaces to be located very close to each other at these
selected moments. Besides, based on Figure 13(b), the flow
fields at t = 10 calculated by them agree with each other
well, though some small differences are observed in regions
away from the drop. As mentioned in Huang et al. (2013),
these small differences do not lead to substantial differences
in the motion of the drop (as found from Figure 12).

3.5.4 Investigation of slow drop spreading

Lastly, we carry out some study of a drop that spreads
on a homogeneous surface in the viscous regime. Unlike
Huang et al. (2013), here we focus on the relation
between the apparent contact angle θm and the contact line
velocity-based capillary number Cacl. Cox (1986) analysed
the spreading dynamics of an interface of immiscible liquids
using matched asymptotic expansions and derived a formula
between the apparent (macroscopic) contact angle θm and
the wall (microscopic) contact angle θw (correct to order
Ca0cl),

g(θm) = g(θw) + Cacl ln(Lc/ls), (67)

where ls is the slip length usually much smaller than
the macroscopic characteristic length Lc, and g is a
complex function (also dependent on the viscosity ratio,
see equations (3.21) and (7.11) in Cox (1986); we hide
it for simplicity as we only consider cases with matched
viscosity here). The quantity ls/Lc is the slip length
made dimensionless with Lc, and is denoted by λ below
(following Ding et al., 2012; Sui and Spelt, 2013b). Sheng
and Zhou (1992) provided an approximate relation between
θm, θw and Cacl for two immiscible fluids with matched
viscosity under the condition | cos θm| < 0.6 (note in Sheng
and Zhou, 1992 an additional slip model dependent constant
appears and it is assumed to be unity here),

cos θw − cos θm ≃ 5.63Cacl lnλ−1. (68)
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Figure 11 Comparison of the equilibrium contact angles θeqsf obtained by rough shape-fitting with the input contact angle θw
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Figure 12 Comparison of the evolutions of (a) the drop height on the x−axis Hx, (b) the drop ‘radius’ on the (left) wall Ry , and
(c) the maximum velocity magnitude
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Pe = 8× 103 (S = 0.01118), NL = 32, Nt = 96, θw = 135◦, and θi = 90◦
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Figure 13 Comparison of (a) the interface positions at
t = 0, 10, 20, 30 (b) the flow field
(velocity vectors) at t = 10 by NSCH-VS(FD)
(solid lines) and MRT-LB-FD (dashed lines) with
Re(= We) = 100, Cn = 0.1, Pe = 8× 103

(S = 0.01118), NL = 32, Nt = 96, θw = 135◦,
and θi = 90◦ (see online version for colours)
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We simulate one case with Re(=We) = 25 (giving an
Ohnesorge number of Oh = 0.2). It is noted that the density
ratio has almost no effect on the results for slow spreading
(as reported in Sui and Spelt, 2013b). The initial velocity is
zero, the initial contact angle is θi = 120◦ (with the centre
of the drop (xc, yc) = (0.5, 0)) and the wall wettability is
specified by θw = 60◦. The choice of these contact angles is
to allow justified comparison with equation (68). The other
parameters have been given before: Cn = 0.1, Pe = 8×
103 (S = 0.01118), NL = 32, Nt = 128. Figure 14 shows
the change of θm with Cacl during the spreading of the
drop. The solid line is predicted by equation (68) with
the dimensionless slip length set as λ = 2.5S = 0.02795
(giving lnλ−1 ≈ 3.577) and the symbols are from the
present simulation. Here the determination of the slip length

(λ = 2.5S) follows Yue et al. (2010). It is easy to see that
the data points of the pair (θm, Cacl) obtained from the
present simulation roughly fall near the line predicted by
theory with a suitably chosen slip length. The seemingly
small but finite deviations could be due to that the SIL has
not been well attained because of the relatively large Cahn
number (Cn = 0.1). Another observation from Figure 14
is that the θm − Cacl relation is not monotonic and shows
some oscillations. Such oscillations could be caused by the
capillary waves at the relatively large Cahn number.

Figure 14 Variation of the apparent contact angle θm with the
contact line velocity-based capillary number Cacl
during the spreading of a drop
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Notes: The solid line represents the prediction by equation (68)
with the dimensionless slip length λ = 2.5S (see Yue
et al., 2010) and the symbols are from the present
simulation. The physical parameters are Re(= We) = 25
(Oh = 0.2), θi = 120◦, θw = 60◦, and the numerical
parameters are Cn = 0.1, Pe = 8× 103 (S = 0.01118),
NL = 32, Nt = 128.

4 Concluding remarks

To summarise, combining the VS formulation for
hydrodynamics and the phase-field modelling of interface
dynamics, we have presented systematically a numerical
method for axisymmetric simulation of two-phase flows.
It is 2nd-order accurate in space and 4th-order accurate
in time. Applications of this new method for several
benchmark problems have shown that it can deliver very
good results that compare reasonably well with known
theoretical results or other numerical ones. With the
good features inherited from its two basic constituents,
this method proves to be a useful tool for simulating
axisymmetric multiphase problems. Future work may
include the extension of this method for flows with different
viscosities and/or densities, and for other types of flows
(e.g., pressure driven flows). It may also be employed to
explore in detail the dynamics of some interesting problems
like drop coalescence.
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