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ABSTRACT

The locomotion of a flapping flexible plate with different shapes and non-uniform chordwise stiffness distribution in a stationary fluid is
studied numerically. The normalized effective bending stiffness K� for three-dimensional plates with arbitrary stiffness distribution and
shape parameters is proposed, and the overall bending stiffness of non-uniform plates with different shapes is reasonably characterized. It is
found that the propulsion performance in terms of cruising speed and efficiency of the self-propelled flapping plate mainly depends on the
effective bending stiffness. Plates with moderate flexibility K� show better propulsion performance. Meanwhile, both a large area moment of
the plate and a flexible anterior are favorable to significantly improve their propulsive performance. The evolution of vortical structures and
the pressure distribution on the upper and lower surfaces of the plate are analyzed, and the inherent mechanism is revealed. These findings
are of great significance to the optimal design of propulsion systems with different fins or wings.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0064219

I. INTRODUCTION

Through several hundred million years of evolution and natural
selection, organisms in nature, such as birds and fish, have obtained
superior propulsion performance and high mobility to meet their
expected survival needs. These features are realized by flapping wings
or fins with various shapes and flexibility in different flying and swim-
ming organisms.1–5 The optimal combination of geometry and mate-
rial structure parameters of biological propellers may significantly
enhance their propulsive performances, whose study may provide
inspiration for the design and improvement of new underwater
vehicles.6,7

The effect of fin flexibility on its propulsion and handling perfor-
mance has been investigated with particular focus on flapping plates
by constructing a suitable flapping plate model and assuming that the
biological structure is a homogeneous material combined with theoret-
ical analysis,8–10 experimental observation,11–13 and numerical simula-
tion.8,14–19 The results show that flapping flexible plates are superior to
rigid plates in regard to propulsion speed and efficiency. However, the
structure and material properties of actual organisms are complex,
and the wings of birds or fins of fish are usually anisotropic and

heterogeneous.20 McHenry et al.21 measured the bending stiffness of
sunfish along their body axis, and found that the caudal fin stiffness
decreased exponentially. Zuo and Jiang22 treated the fish to death,
fixed the front part on a horizontal plate with a clamp, and the back
part hung on a horizontal edge so as to bend freely under the action of
gravity. Then, the bending curvature of different parts was analyzed by
a quadratic polynomial function, and the results showed that the tan-
gential bending stiffness of the fish decreased from beginning to end.
Kancharala and Philen23 measured the bending stiffness of the caudal
fin of three kinds of fish (trout, red snapper, red snapper) at the same
time, and found that the fin stiffness profile is similar to the predicted
theoretical optimization profile, that is, the leading edge has a higher
stiffness, and that of the trailing edge gradually decreases.

In recent years, a series of anatomical measurements, model
experiments, and numerical simulations have promoted research on
the hydrodynamic performance of flexible propellers with non-
uniform stiffness distribution. It is worth noting that their chord stiff-
ness distribution may be more important than their spanwise stiffness,
because the flow and autonomous propulsion are along the chord
direction, so the related propulsion performance deserves more atten-
tion. Luo et al.24 studied the influence of chord and spanwise stiffness
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distribution on the propulsion performance of tuna, and the results
confirmed that the chord stiffness was dominant. By changing the
thickness of the flexible plate model to generate discrete regions with
high flexibility and low flexibility and comparing the effects of differ-
ent stiffness distributions on the swimming performance, Zhu
et al.25,26 found that the tangential non-uniform stiffness distribution
is better than the spanwise distribution in regard to thrust and effi-
ciency. Fern�andez-Guti�errez and van Rees27 proposed a simplified
leading edge curvature driven model to simulate the passive elastic
deformation and active curvature of thin films under external hydro-
dynamic loads, and to calculate the thrust and power. Their results
show that improvement in propulsion performance is mainly caused
by the trailing edge motion due to the curvature of the leading edge.
When the trailing edge is fixed, the change of fin camber is beneficial
to improve the propulsion efficiency. Due to the complexity of struc-
tural materials and the lack of appropriate analysis methods to evalu-
ate the overall stiffness of non-uniform flexible plates, views on
optimal stiffness distribution are always contradictory in the literature
and need to be resolved. Lucas et al.28 found that flapping plates with
non-uniform stiffness distribution can achieve faster propulsion speed
and lower energy-efficiency ratio. Moore29 numerically studied the
influence of different chord stiffness distributions on the propulsive
performance of two-dimensional flapping plates. The results show
that the torsional spring stiffness distribution (leading edge stiffness
weakening) is the optimal distribution which can significantly improve
the propulsion performance of the plate. On the other hand, some
researchers believe that flexible flapping wings with enhanced leading
edge stiffness have higher average lift–drag ratio and lift–power
ratio.30–33 According to a series of typical stiffness distributions, Wang
et al.34 derived the effective bending stiffness for the first time, system-
atically studied the propulsion characteristics and flow mechanism of
flexible plate, and found that flapping flexible plates with increasing
stiffness along the chord direction had better propulsion performance,
but only rectangular plates were considered in the study. Shi et al.35

numerically investigated the effects of time-varying bending stiffness
on the propulsion performance of a flapping foil and found that the
maximum time-averaged thrust coefficient can be increased by 52%
whereas the highest propulsion efficiency remains almost the same as
that of the foil with constant flexibility.

In fact, similar to the structural features of organisms, the mor-
phological characteristics of different propellers vary greatly to adapt
to the characteristics of their respective modes of motion.36 In recent
years, some researchers have chosen the rigid model based on the real
fish configuration for experimental, theoretical, and numerical
research, and have further considered the influence of propeller shape
design on biological propulsion performance.4,37–40 Chopra and
Kambe41 studied the effect of plane shape on the caudal fin of fish in
inviscid flow, and gave the functional relationship between thrust and
efficiency when the circular leading edge, sharp trailing edge, and
aspect ratio changed. Green et al.42 used particle image velocimetry
(PIV) to study the three-dimensional (3D) wake vortices of rigid pitch-
ing plates with trapezoidal geometry to simulate the fish caudal fin.
Experimental results show that a trapezoidal geometry generates addi-
tional vortices along the swept edge, and the complexity of the wake
increases with the lateral expansion of spanwise vortices at higher
Strouhal numbers. Li et al.43 compared the effects of caudal fin shape
on propulsion performance of three fish species with different

bifurcations. By changing the flapping amplitude of the combined
pitching and heaving motion, it is found that the shape of the caudal
fin of carangiformes is conducive to the generation of thrust, while the
crescent caudal fin of thunniform can significantly improve their effi-
ciency. Van Buren et al.36 experimentally studied the effect of trailing
edge shape on the propulsion performance of flapping plates. Their
results show that the time-averaged velocity field changes significantly
by changing the wake vortex structure. In terms of performance, the
trailing edge from concave to convex, thrust, and efficiency are gener-
ally improved.

Combination of the benefits of flexible deformation and shape
change may further enhance propulsion performance.44–46 At present,
research work in this topic is relatively less. Lauder et al.47 studied the
influence of the trailing edge shape of flapping plates with high flexibil-
ity under very high aspect ratio (e.g., eel), and found that changing the
trailing edge shape can significantly improve the cruising speed of the
flexible plate. Ryu et al.48 simulated flexible plates with different
shapes, and found that when the shape ratio (the ratio of trailing edge
length to leading edge length) was 0.5, the best propulsion efficiency
was achieved. Zhang et al.49 numerically studied the self-propulsion of
flexible plates with different trailing edges. The results show that the
propulsion characteristics of flexible plates with different bending stiff-
ness vary with the shape of trailing edge. However, the physical models
of the above research work are homogeneous materials, and real
chordwise flexible distribution is not considered. In summary, explor-
ing the influence of specific shape design and flexible distribution of
organisms independently may not be sufficient. An optimal combina-
tion of propeller shape design and flexible distribution may enhance
their propulsive performance significantly.

In the present study, we carried out numerical simulations on the
locomotion of self-propelled three-dimensional (3D) flexible plates
with varying non-uniformly distributed stiffness and shape parameter.
Based on the equivalent global stiffness of rectangular plates summa-
rized in a previous work,34 the effects of different bending stiffness and
shape parameters on the propulsion performance of a series of typical
flexible plates are studied, and the tangential deformation, pressure
distribution, near-field vortex structure and strength, as well as the
normal force on the plate are analyzed. Furthermore, the internal rela-
tionship between the specific shape and flexible design of biology and
the propulsion performance of caudal fin is revealed.

The remainder of this paper is organized as follows: The physical
problem and mathematical formulation are presented in Sec. II. The
numerical method and validation are described in Sec. III. Results are
discussed in Sec. IV and concluding remarks are addressed in Sec. V.

II. PHYSICAL PROBLEM AND MATHEMATICAL
FORMULATION

As shown in Fig. 1(a), a 3D flexible plate with chord length c is
immersed in a stationary fluid and is symmetrical along the spanwise
direction (z) where h represents the angle of the trailing edge. When
h ¼ 90�, the plate is square. In the present study, equivalent aspect
ratio is defined as AR ¼ ðb1 þ b2Þ=2c, where b1 and b2 are the span-
wise length of the leading edge and trailing edge, respectively. In all
cases, AR¼ 1. The leading edge of the plate is forced to heave sinusoi-
dally with oscillating amplitude a0 and frequency f in the vertical direc-
tion. The actuation of the leading edge is described as50,51
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aðtÞ ¼ a0 cosð2pftÞ: (1)

As a result of the interplay of the plate elasticity, leading edge
forcing, and the forces exerted by the surrounding fluid, the plate can
move forward freely and passively in a stationary fluid. Meanwhile,
only the leading edge of the plate is restricted with a prescribed vertical
motion, the remainder of the plate can move freely in the entire fluid
domain. Here, a Lagrangian coordinate system (s1, s2) along the plate
surface is defined to describe the configuration and motion of the
plate. The fluid flow is governed by the incompressible Navier–Stokes
equations as follows:

@v

@t
þ v � rv ¼ � 1

q
rpþ l

q
r2vþ f ; (2)

r � v ¼ 0; (3)

where v is the velocity, p is the pressure, q is the density of the fluid, l
is the dynamic viscosity, and f is the Eulerian force acting on the sur-
rounding fluid due to the immersed boundary (IB), as constrained by
the no-slip boundary condition. The structural equation is employed
to describe the deformation and motion of the plate as follows:52,53

qsh
@2X
@t2
¼
X2
i;j¼1

@

@si
uij dij �

@X
@si
� @X
@sj

 !�1=20
@

1
A @X
@sj

0
@

2
4

� @

@sj
cij

@2X
@si@sj

 !!#
þ F; (4)

where X ¼ ðX;Y ;ZÞ is the position vector of the plate, Fs is the
Lagrangian force exerted on the plate by the fluid, qs is the structural
mass density of the plate, and h is the thickness of the plate. uij is the
in-plane effect matrix, where u11 ¼ u22 ¼ Eh is the stretching stiff-
ness and u12 ¼ Gh is the shearing stiffness of the plate. cij is the out-
of-plane effect matrix, where c11 ¼ c22 ¼ c12 ¼ EI is the bending
stiffness of the plate. Besides, dij is the Kronecker delta function.

At the leading edge of the plate, the clamped boundary condition
is adopted, i.e.,

uij dij �
@X
@si
� @X
@sj

 !�1=20
@

1
A @X
@sj
� @

@sj
cij

@2X
@si@sj

 !
¼ 0; (5)

YðtÞ ¼ Yð0Þ; ZðtÞ ¼ aðtÞ; @X
@s1
¼ ð1; 0; 0Þ: (6)

For the free end of the plate, the boundary condition is

uij dij �
@X
@si
� @X
@sj

 !�1=20
@

1
A @X
@sj
� @

@sj
cij

@2X
@si@sj

 !
¼ 0; (7)

@2X
@si@sj

¼ 0: (8)

The two other free edges s2 ¼ 0 or b are imposed. Here, the Einstein
summation convention is not applied on i and j (i, j¼ 1, 2).

The chord length of the plate c, the heaving frequency f, and the
fluid density q are used as characteristic quantities to normalize
the above equations. It is noted that the characteristic time is 1=f , i.e.,
the heaving period. Based on non-dimensional analysis, there are sev-
eral dimensionless parameters in our problem: the Reynolds number
Re ¼ qfc2=l, the stretching stiffness S ¼ Eh=qf 2c3, the bending stiff-
ness K ¼ EI=qf 2c5, the mass ratio of the plate and the fluid
M ¼ qsh=qc, the heaving amplitude A ¼ a0=c and the aspect ratio of
the plate AR ¼ ðb1 þ b2Þ=2c. In addition, the characteristic time is
T ¼ 1=f , i.e., the flapping period of the plate.

According to the shape of fish caudal fin, the more basic geome-
try is abstracted and five typical planes are studied. To describe the dif-
ferent plate shapes, the area moments are used to distinguish them
quantitatively. Following a description of morphological parameters
for the insect wings,54 the first non-dimensional radius of the area
moment is defined as

r̂ ¼ A1

Ac
; (9)

where A1 ¼
Ð c
0 yðxÞxdx is the first area moment, the span y(x) is a

function of the chord distance x, and A¼ 1 is the dimensionless area
of the plate. For five typical plates, their first area moments are given
in Table I. It is worth noting that 0:4� r̂ � 0:6 represents the major
range of the area moment of the wings and fins of flying and swim-
ming animals.55 It means that the range of r̂ considered in this study
covers the regime of biological observation.

FIG. 1. (a) Schematic diagram of a 3D
flexible plate. The leading edge is forced
to heave vertically and sinusoidally. The
plate deforms passively and moves for-
ward freely; (b) the generated meshes for
the plate with 40 segments in different
colors.

TABLE I. Radii of the area moments of the typical plates.

h 60� 75� 90� 105� 120�

r̂ 0.596 0.545 0.5 0.455 0.404
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To model the non-uniformly distributed stiffness in the present
three-dimensional model, the plate is structurally composed of 40 seg-
ments in the chordwise direction. Each segment is assigned a unique
Ki ¼ EiI=qf 2c5, as shown in Fig. 1(b). In our study, the distributions
of K are considered as follows:

1. Uniform distribution: Ki ¼ �K ;
2. Exponential distribution: Ki ¼ �KRi=R, Ri ¼ e�q

i
N , and e�q

N�i
N for

the DD and GD cases, respectively.

Here, DD and GD denote the declining and growing distribu-
tions, respectively, from the leading to the trailing edge of the plate.
Figure 2 shows the variation of different bending stiffness distributions
along the chord direction. �K is the arithmetic mean stiffness of all the
segments and q¼ 1, 3.698; R ¼

Ð 1
0 e
ð�qxÞdx. To describe the different

stiffness distributions more concisely, the symbols # and " denote the
DD and GD cases, respectively. The symbol exp1 indicates q¼ 1, exp2
for q¼ 3.698.

III. NUMERICAL METHOD AND VALIDATION

The governing equations of the fluid-plate problem are solved
numerically by an immersed boundary-lattice Boltzmann method for
the fluid flow56 and a finite element method for the motion of the flex-
ible plates.57 The immersed boundary (IB) method has been exten-
sively applied to problems involving moving boundaries immersed in
a viscous fluid flow.58,59 When the IB method is used to resolve flow–
structure interaction, the Lagrangian interaction force Fs in Eq. (4)
between the fluid and the immersed boundary can be calculated by the
feedback law,58,59

Fsðs1; s2; tÞ ¼ a
ðt
0
Vf ðs1; s2; t0Þ � Vsðs1; s2; t0Þ
� �

dt0

þb V f ðs1; s2; tÞ � V sðs1; s2; tÞ
� �

; (10)

where a and b are free parameters and are selected based on Ref. 53,
Vs ¼ @X

@t is the plate velocity and the fluid velocity V f at X is interpo-
lated from the velocities of the surrounding fluid nodes v,

V f ðs1; s2; tÞ ¼
ð
vðx; tÞdðx � Xðs1; s2; tÞ�dx: (11)

In the IB scheme, due to the presence of the plate, the body force f
would be exerted on the fluid nodes. In this way, the no-slip boundary
condition on the moving plate would be satisfied. The body force f on
the Eulerian points (fluid nodes) can be obtained from the Lagrangian
force Fs using the Dirac delta function as follows:58

f ðx; tÞ ¼ �
ð

Fsðx; tÞdðx � Xðs1; s2; tÞ�ds1ds2: (12)

Furthermore, the lattice Boltzmann equation (LBE) has been
widely used to simulate complex flows as an alternative to conven-
tional numerical methods for the Navier–Stokes equations.51,53,56,60,61

The LBE with the BGKmodel is

fiðx þ eiDt; t þ DtÞ � fiðx; tÞ ¼ �
1
s

fiðx; tÞ � f eqi ðx; tÞ
� �

þ DtFi;

(13)

where s is the non-dimensional relaxation time related to fluid viscos-
ity, Dt is the time step, and fiðx; tÞ is the distribution function associ-
ated with discrete particle velocity ei. The equilibrium distribution
function f eqi and the forcing term Fi

62 are defined as

f eqi ¼ xiq 1þ ei � v
c2s
þ vv : ðeiei � c2s IÞ

2c4s

" #
; (14)

Fi ¼ 1� 1
2s

� �
xi

ei � v
c2s
þ ei � v

c4s
ei

� �
� f ; (15)

where xi is the weighting factor and cs is the sound speed. The macro-
variables velocity v and mass density q can be obtained through the
distribution functions,

q ¼
X
i

fi; qv ¼
X
i

eifi þ
1
2

f Dt: (16)

Equation (4) for a deformable plate is discretized by a finite ele-
ment method and the deformation with large displacement of the plate
is handled by the co-rotational scheme.57 A detailed description of the
numerical method can be found in our previous papers.53,63 A finite
moving computational domain is used in the x-direction to allow the
plate to move for a sufficiently long time. As the plate travels one lat-
tice in the x direction, the computational domain is shifted, i.e., one
layer is added at the inlet and another layer is removed at the outlet. A
non-uniform mesh technique is employed to solve our problem for
improving the computational efficiency. Based on our careful valida-
tions shown below, the computational domain for the fluid flow is
chosen as ½�10; 30� � ½�10; 10� � ½�10; 10� in the x; y; z directions,
which is large enough so that the blocking effects of the boundaries are
small enough. In the simulations, the Neumann boundary condition
@v=@x ¼ 0 is applied at the outlet and the Dirichlet boundary condi-
tion v ¼ 0 is applied at the inlet and the other four boundaries.

To validate the numerical method used in the present study, a
flapping flag in a uniform incoming flow was simulated. The key
parameters are Re¼ 100, M¼ 1, H¼ 1, S¼ 1000, and K¼ 0.0001,
which are identical to those in Huang and Sung.64 Figure 3(a) shows a
comparison of the present results and data provided in the literature.

FIG. 2. Distribution patterns of stiffness, where the black line represents the uniform
distribution case.
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It is seen that both time-dependent transverse (y direction) displace-
ments at points A (low corner on the trailing edge) and B (mid-point
on the trailing edge) in our simulation agree well with those in Huang
and Sung.64

Grid independence and time step independence studies were also
performed. A typical case of a flexible plate with uniform stiffness was
simulated, with parameters A¼ 0.2, M¼ 0.5, K¼ 2, H¼ 1, and
Re¼ 100. The propulsive velocity of the cases with different mesh size
and time step size is shown in Fig. 3(b). It is seen that Dx=L ¼ 0:025
and Dt ¼ 0:000 25 are sufficient to achieve accurate results. Here, in
all our simulations, Dx=L ¼ 0:025 and Dt ¼ 0:000 25 are adopted.

Our numerical strategy has been validated and successfully
applied to a wide range of flows, such as the collective locomotion of
two closely spaced self-propelled flapping plates,51 the self-propulsion
of 3D flexible plates with different trailing-edge shapes,49 and optimal
chordwise stiffness distribution for self-propelled heaving flexible
plates.34

IV. RESULTS AND DISCUSSION

We present some results on the propulsive behaviors of three-
dimensional flexible trapezoidal plates with non-uniform stiffness dis-
tribution. Their parameters are shown in Table II. It is seen that the
Reynolds number Re, the stretching stiffness S, the mass ratio M, and
the flapping amplitude A are fixed in our study. The following three
parameters are variables: arithmetic mean bending stiffness �K , stiffness
distribution, and plane shape parameter.

A. Propulsive performance

To quantify the propulsive performance of the plates, the mean
propulsive velocity, input work, and propulsive efficiency are evalu-
ated. The mean propulsive velocity U is the time-averaged cruising
speed at equilibrium. Figure 4 shows the propulsive velocity U as a

function of the arithmetic mean bending stiffness �K for plates with dif-
ferent stiffness distributions and shape parameter, i.e., trailing edge
angle h. The case of a uniform plate is also illustrated for comparison.
It can be seen that overall, for a flapping plate with a specific shape
parameter, U first increases and then decreases with �K and there is a
peak at a specific �K . The result looks similar to that of the rectangular
uniform plate in Ref. 34. It is also seen that when the stiffness distribu-
tion changes from the DD mode to uniform plate and then to the GD
mode, the curve of propulsive velocity U gradually shifts to the right,
and the peak of U increases. Under the same �K , the flexible plates with
different stiffness distribution show different trends of propulsion
velocity. On the other hand, for any specific stiffness distribution, with
increase in h, the curve of U moves to the left gradually. The peak
value of maximum propulsion speed for a plate with acute h is better
than that with obtuse h.

The input workW, which is required to actuate the leading edge
of the plate, is the time integral of the power P over the surface of the
plate in the surrounding fluid during one flapping period T,

W ¼
ðt0þT
t0

PðtÞdt ¼
ðt0þT
t0

ð1
0
Frðs1; s2; tÞ �

@Xðs1; s2; tÞ
@t

ds1ds2

" #
dt;

(17)

where Fr is the force on the surrounding fluid by the plate. The pro-
pulsive efficiency g is usually defined as the ratio between the kinetic
energy of the plate and the input work, i.e.,

g ¼ 1
2
MU2=W: (18)

The propulsive efficiency g as a function of �K and geometry
parameter h is shown in Fig. 5. Generally speaking, the variation
trends of g with �K are consistent with that of U. Besides, the corre-
sponding �K when g reaches a peak is identical to that of U.

On the one hand, when the stiffness distribution gradually
changes from the DD mode to the uniform plate and then to the GD
mode, the curves ofU or g move to right and the peaks increase gradu-
ally, especially “exp2 ".” Under the same �K , the flexible plates with dif-
ferent stiffness distribution show different propulsion performance
trends. On the other hand, for any specific stiffness distribution, with
increase in the trailing edge angle h, the U or g curves move left in the
U � �K or g� �K planes. The peak of U or g of the acute angle is better
than that of the obtuse angle. Therefore, �K is not appropriate to
describe the overall bending stiffness of plates with different shapes

FIG. 3. (a) Time-dependent transverse (y
direction) displacements at points A (low
corner on the trailing edge) and B (mid-
point on the trailing edge). (b) Cruising
speed of the flapping flexible plate as a
function of time (A¼ 0.2, M¼ 0.5, K¼ 2,
H¼ 1, and Re¼ 100).

TABLE II. Parameters in the simulations.

Reynolds number Re 100

Mass ratio M 0.5
Stretching stiffness S 1000
Arithmetic mean bending stiffness �K ½0:5; 80�
Flapping amplitude A 0.25
Trailing edge angle h ½60�; 120��
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and non-uniform distributions, especially for GD mode. In addition,
shape parameters play an important role in the propulsion perfor-
mance of the plate. The arithmetic mean stiffness �K is not able to
incorporate the effect of shape parameters.

B. Normalized bending stiffness ~K

In this section, here another appropriate overall bending stiffness
of flexible plate K� is well defined. It is based on the effective bending

stiffness of the rectangular plate derived in Ref. 34 but the shape
parameters are well incorporated. We suppose that when the overall
bending stiffness of the plate is identical, regardless of the stiffness dis-
tribution and shape parameters, the deflection at the end of the plate
should be the same if the same load is applied. In fact, when the span-
wise section shape of a flapping flexible plate changes little, it still can
be regarded as a Euler beam with one end fixed and the other free.
According to the approximate differential equation of the deflection
curve, we have

FIG. 4. Propulsive velocity U as a function
of mean bending stiffness �K of the plate
under different stiffness distributions and
shape parameter h: (a) h ¼ 60�, (b)
h ¼ 75�, (c) h ¼ 105�, and (d) h ¼ 120�.

FIG. 5. Propulsive efficiency g as a function
of mean bending stiffness �K and shape
parameter h: (a) h ¼ 60�, (b) h ¼ 75�, (c)
h ¼ 105�, and (d) h ¼ 120�.
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EðxÞIðxÞ @
2wðxÞ
@x2

¼ �MðxÞ; x 2 0; 1½ �; (19)

where EðxÞIðxÞ represents the chordwise bending stiffness distribution
with x being the chordwise position,w(x) is the deformed deflection of the
plate, and M(x) is the internal moment. It should be noted that Young’s
modulus E(x) and section moment of inertia I(x) both change with chord
position x. The forces experienced by flapping plates in a viscous incom-
pressible fluid is complex. Previous studies49,51 have indicated that the
bending deformation of a flapping plate is mainly contributed by the nor-
mal force. Peng et al.51 have shown that the time-averaged absolute nor-
mal force of a heaving flexible plate approximately decreases linearly from
the leading to the trailing edges. For simplicity, the load distribution along
the chordwise direction is supposed to be the normal force distribution.
Here, a unified linear decreasing load distribution is used, where q0 is the
normal force value at the leading edge and 0 at the trailing edge. For the
beam, the boundary conditions at the leading edge are

x ¼ 0; w ¼ 0;
@w
@x
¼ / ¼ 0; (20)

where / is the deflection angle.
Integrating Eq. (19), we can obtain the tail deformed deflection

angle,

/ð1Þ ¼ dw
dx
¼
ð1
0

�MðxÞ
EðxÞIðxÞ dx þ C: (21)

Integrating Eq. (19) twice, we obtain the tail deformed deflection,

wð1Þ ¼
ð1
0

ðx
0

�Mðx0Þ
Eðx0ÞIðx0Þ dx

0
� �

dx þ Cx þ D; (22)

where C andD are integral constants.
For all stiffness distribution and shape parameters of flexible

plates, the bending momentM(x) is

MðxÞ ¼ � q0
6
ð1� xÞ3; x 2 0; 1½ �: (23)

For a rectangular plate with uniform stiffness, the moment of
inertia of the cross section is IðxÞ ¼ h3

12, and the analytical solution of
the tail’s deformed deflection is

wð1Þ ¼ q0
30�K

: (24)

For other plates with different shapes denoted by h, the moments
of inertia of the section are

IðxÞ ¼

h3

12
� 1� 1ffiffiffi

3
p þ 2xffiffiffi

3
p

� �
; h ¼ 60�;

h3

12
� 1� 1

2þ
ffiffiffi
3
p þ 2x

2þ
ffiffiffi
3
p

� �
; h ¼ 75�;

h3

12
� 1þ 1

2þ
ffiffiffi
3
p � 2x

2þ
ffiffiffi
3
p

� �
; h ¼ 105�;

h3

12
� 1þ 1ffiffiffi

3
p � 2xffiffiffi

3
p

� �
; h ¼ 120�:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(25)

For the non-rectangular flexible plate with non-uniform stiffness
distribution, two typical examples are selected to explain in detail.

For the typical DDmode and h ¼ 60� case (q¼ 1),

EðxÞIðxÞ ¼ �K

e�x 1� 1ffiffiffi
3
p þ 2xffiffiffi

3
p

� �
ð1
0
e�xdx

; x 2 0; 1½ �: (26)

It yields wð1Þ ¼ q0
33:4821�K .

Similarly, for the typical GD mode and h ¼ 60� case (q¼ 1),

EðxÞIðxÞ ¼ �K

e1�x 1� 1ffiffiffi
3
p þ 2xffiffiffi

3
p

� �
ð1
0
e1�xdx

; x 2 0; 1½ �: (27)

Then, w(1) can be derived as q0
17:9104�K . Therefore, the general form of a

tail deformed deflection of flexible plate with arbitrary shape is

wð1Þ ¼ q0
l�K

; (28)

where l is a coefficient for a particular shape and stiffness distribution
case. Now, suppose in all cases, the deformed deflection at the trailing
edge has the same formula as that of a uniform rectangular plate

wð1Þ ¼ q0
30K�

; (29)

where K� is the overall bending stiffness. It is noticed that for the uni-
form rectangular plate, K� ¼ �K . From Eqs. (28) and (29), it follows
that

K� ¼ l�K
30

: (30)

Through the parameter l, the expression of deformed deflection of a
flexible plate with arbitrary shape under all stiffness distributions is
transformed into the form of uniform rectangular plate. Therefore, K�

is a normalized overall bending stiffness, i.e., an effective bending
stiffness.

The corresponding relationship between the effective bending
stiffness K� and the arithmetic mean stiffness �K of flexible plates with
arbitrary shape under all non-uniform stiffness distributions is shown
in Table III. It is seen that for a specific shape of flexible plate, the
effective bending stiffness K� decreases gradually from the DD mode
to uniform plate and then to the GD mode. On the other hand, for
any specific stiffness distribution, the effective bending stiffness K�

increases with increase in the trailing edge angle of the flexible plate.

TABLE III. K� for typical non-uniformly rigid distributions and shape parameter
combinations.

Plate 60� 75� 90� 105� 120�

exp2 # 1:16460�K 1:49702�K 1:73250�K 1:93417�K 2:12789�K
exp1 # 0:79397�K 1:09403�K 1:32538�K 1:53814�K 1:76560�K
uniform 0:57978�K 0:81503�K �K 1:17336�K 1:36184�K
exp1 " 0:38384�K 0:54911�K 0:68111�K 0:80651�K 0:94447�K
exp2 " 0:08269�K 0:12272�K 0:15536�K 0:18757�K 0:22356�K
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Therefore, the effective bending stiffness K� is determined by both the
stiffness distribution and the shape parameters.

It is assumed that the maximum lateral displacement difference
DZ between the leading and trailing edges of the flexible plate during
flapping is proportional to the derived tail deformed deflection w(1) of
the plate. Through our numerical simulations, we obtain DZ as a func-
tion of �K and K� for different stiffness distribution and the shape
parameters. Figure 6 only shows the case of uniform stiffness, and the
results for non-uniform stiffness distribution are the same, which will
not be described in detail here. It can be seen that for a specific arith-
metic mean stiffness �K , the maximum lateral displacement differences
DZ for flexible plates with different shapes are quite different [see
Fig. 6(a)]. When �K is used, the curve is not well normalized. On the
other hand, for a specific effective bending stiffness K�, plates with dif-
ferent shape parameters correspond to the same DZ, and all the curves
almost collapse together [see Fig. 6(b)]. In addition, the maximum lat-
eral displacement difference DZ is inversely proportional to the effec-
tive bending stiffness K�, which corresponds to Eq. (29). Therefore,
the effective bending stiffness K� can well represent the overall bend-
ing stiffness of flexible plates with arbitrary shape and non-uniform
stiffness distribution combinations. In this paper, the effective bending

stiffness of rectangular plates with non-uniform stiffness in Ref. 34 is
successfully extended to non-uniform plates with arbitrary shape. In
the following discussion, the effective bending stiffness K� will be used
as an important parameter to analyze the propulsive performance of
flexible plates.

1. Propulsive performance with ~K

The variation trend of mean propulsive velocity and efficiency of
flapping plates with effective bending stiffness K� is shown in Figs. 7
and 8. It is seen that for flexible plates with arbitrary shape and differ-
ent stiffness distributions, the variation trend of propulsive velocity U
and the propulsive efficiency g with K� is basically consistent with that
of uniform case. When the effective bending stiffness K� is around 4,
the maximum propulsion speed U and efficiency g of flexible plates
with different stiffness distribution and shape parameters are achieved.
Among all the stiffness distributions, the GD mode with the largest
standard deviation (exp2 ") achieves the largest U and g at the optimal
effective bending stiffness K�. On the other hand, for any specific stiff-
ness distribution, the largest U and g of the flexible plate with an acute
trailing edge is better than that of obtuse angle. It should be noted that

FIG. 6. Maximum displacement difference
DZ as a function of (a) the mean bending
stiffness �K , and (b) the normalized bend-
ing stiffness K� for uniform flexible plates
with different shape parameters.

FIG. 7. Propulsive velocity U as a function
of K� of the plate under different stiffness
distributions and shape parameter combi-
nations: (a) h ¼ 60�, (b) h ¼ 75�, (c)
h ¼ 105�, and (d) h ¼ 120�.
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only the bending stiffness is normalized here, the difference of propul-
sive characteristics well reflects the influence of stiffness distribution
and shape parameters.

Now we can reasonably compare the propulsive performance of
flapping flexible plates with different stiffness distributions and shape
parameters under a specific effective bending stiffness K�. For the flap-
ping plate with a specific shape parameter, when K� is small, there is a
significant difference in the propulsion performance of flexible plates
due to the difference in stiffness distribution. When K� is large, the
propulsive performance curves of different stiffness distributions
almost collapse together. When the plate is rigid, the deformation of
the plate is almost zero, and the thrust is mainly caused by the leading
edge vortex,49 and the influence of stiffness distribution disappears.
On the other hand, for any specific stiffness distribution, when K� is
larger, propulsive velocity U and efficiency g of the flapping flexible
plate increases monotonically with increase in the area moment, which
increases the thrust on the plate.55,65 When K� is small, the propulsive
velocity U and efficiency g of the flexible plate with acute trailing edge
is better than that with obtuse trailing edge. Here, the propulsive per-
formance of the flexible plate is affected by the flexible deformation
and shape parameters. The variation trend of input workW with K� is
similar to that of the propulsive velocity U and efficiency g, which will
not be described in detail here.

Therefore, based on the optimal K�, we find the optimal combi-
nation of shape parameters and stiffness distribution. The plate with
the GD mode (exp2 ") and the trailing edge angle of 75� achieves the
best propulsion characteristics among all simulation parameters.
Compared with the uniform rectangular plate, the propulsive velocity
U and efficiency g are increased by 6.6% and 8.5%, respectively.
Compared with the flexible plate with exp2 # and 120� trailing edge
angle, the propulsive velocity U and efficiency g are increased by
43.4% and 56.4%, respectively. For rectangular plates, the propulsive
velocity U and efficiency g of case exp2 " are only 3% and 4% higher

than those of uniform plates, respectively. Compared with case exp2 #,
the propulsive velocity U and efficiency g of case exp2 " are only
increased by 8% and 4.2%, respectively. It can be seen that a change of
plane shape aggravates the difference in propulsion characteristics
between the plates.

Strouhal number (St) is an important dimensionless parameter
in flapping propulsion, which is defined as

St ¼ fAw

U
; (31)

where f is the flapping frequency, Aw is the width of the wake which
may be taken as the maximum excursion of the plate trailing edge or
twice the amplitude, i.e., Aw ¼ 2A, and U is the self-propulsive veloc-
ity.53 Based on investigations of 42 species (birds, bats, insects, sharks,
bony fish, and dolphins) in the cruise state, Taylor et al.66 statistically
estimated that St lies in the interval 0:2 < St < 0:4. In this range, the
cruise of the flying and swimming animals driven by the wing or tail is
likely to have high propulsive efficiency. It can be seen from Figs. 7
and 8 that when the plates have large propulsion speed and efficiency
under different parameters, the corresponding effective bending stiff-
ness range is approximately 2 < K� < 20. For comparison, Fig. 9
shows the variation of St number with effective bending stiffness K�

for each case. The Strouhal numbers of the majority of our simulations
fall into the range of 0:2 < St < 0:4, which is consistent with the
region of high propulsive characteristics of real flapping-based loco-
motion in nature.

2. Deformation and bending energy

In the process of motion and deformation of the flexible plate,
the elastic potential energy can be obtained due to the fluid–structure
interaction. In this problem, the tensile deformation of the plate is

FIG. 8. Propulsive efficiency g as a func-
tion of K� of the plate under different stiff-
ness distributions and shape parameter
combinations: (a) h ¼ 60�, (b) h ¼ 75�,
(c) h ¼ 105�, and (d) h ¼ 120�.
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neglected. The bending energy of a flexible plate is expressed as
follows:

EbðtÞ ¼ K=2
ð ðX2

i;j¼1
cij@

2X=@s2i � @2X=@s2j ds1ds2: (32)

Further, the forces acting on the plate and the bending energy of
the plate are investigated. Our research focuses on the comparison of
optimal propulsive performance for a typical combination of shape
parameters and non-uniform stiffness distribution. Some typical cases
are chosen to be those at K� � 4 since they achieve the best perfor-
mance. Among them, combination I consists of the plate with exp2 "
and a trailing edge angle of 75� and combination II consists of the case
with exp2 # and a trailing edge angle of 120�.

The deformation at four typical moments in a flapping cycle,
horizontal force, and bending energy of the flexible plate as functions
of time are shown in Figs. 10 and 11, respectively. The four typical
moments are the instants when the flexible plate is at its maximum
thrust or resistance. It can be seen from Fig. 10 that the flexible plate
in both cases is in the first-order chordal bending mode. The front
area of the plate moves along the front edge, and the rear area is pas-
sively deformed under the action of inertial force, elastic force, and the
surrounding flow force. Because the head is narrow and soft, and the
tail is wide and hard, during the whole flapping period, for the plate
combination I from the head, the deformation is larger and the defor-
mation amplitude decreases gradually. On the contrary for the plate
combination II, the head deformation is smaller, and the deformation

becomes larger along with the decrease in chord stiffness. From
Fig. 11(a), it can be seen that at t=T � 0:25, the horizontal force Fx of
the plate combination I is at the lowest point when the plate is at the
moment of maximum thrust. However, when t=T � 0:15, combina-
tion II reaches the maximum thrust, there is a phase difference
between the two cases and the thrust in combination I is greater than
that in combination II. In addition, combination I achieves greater
bending energy [Fig. 11(b)]. The bending energy contained in the
plates will be converted into the kinetic energy needed for the plates to
move forward. The deformation, force, and bending energy of the
upper stroke are similar to those of the lower stroke. Therefore, after a
flapping cycle, the plate combination I obtains a larger cruising veloc-
ity U, which is consistent with the previous conclusion. The results
show that the self-propulsion performance of the flexible plate is
closely related to the tangential deformation of the plate, which
directly depends on its own stiffness distribution and shape
parameters.

3. Vortical structure and pressure distribution

To better understand the inherent mechanism in plates of differ-
ent parameters, i.e., the above two typical cases with combination I
and combination II at optimal effective bending stiffness K� ¼ 4, the
connection between vortical structures and pressure distribution on
the plate is investigated.

Figure 12 shows the instantaneous vortices of four flexible plates
with equal time intervals in a flapping period, which are colored by
spanwise vorticity. The vortex structure in the figure is in the form of
Q criterion of Jeong and Hussain,67

Q ¼ 1
2
ðjjWjj2 � jjSjj2Þ; (33)

whereW is the rotation tensor and S is the stretching tensor. When Q
is positive, the rotation intensity of the region is higher. On a whole, it
can be seen from Fig. 12 that the wake of flapping flexible plate is
mainly divided into two discrete vortex structures, and each vortex
moves to the downstream independently.55,68,69 At the moment of
t=T ¼ 0 [Figs. 12(a) and 12(e)], the flexible plate is at the highest point
of heaving motion, and strong vortices are generated at the four edges
of the lower side of the plate (referring to the upper side of the plate
when t=T ¼ 0:5). The vortices induced by the leading edge evolve
into leading edge vortices and transport to the trailing edge.
Streamwise vortices at the side edge are generated from the upper side
of the plate first, and then around the bottom of the plate along the

FIG. 9. The Strouhal number St vs the effective bending stiffness K�.

FIG. 10. Plate deformation shape at four
instances during one flapping cycle. (a)
Combination I: exp2 "; h ¼ 75� and (b)
combination II: exp2 #; h ¼ 120�. The
selected moment is the instant when the
flexible plate is at the maximum thrust or
resistance, where Z0 ¼ Z � Zleading .
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side edges of both sides due to the pressure difference between the
upper and lower surfaces of the plate. In the half flapping period, the
side edge vortices are connected with the trailing edge vortices to form
a vortex ring, which is transported to the rear of the flow field in an
outward expansion trend relative to the propulsion direction, while
the upper surface of the plate will regenerate a new vortex structure.

Due to the symmetry of flapping motion, the evolution of the wake
vortex in the second half period is similar to that of the first half
period.

Now, we focus on the influence of the shape parameters of the
flexible plate on the wake vortex structure. Figure 13 shows the wake
vortex structure and spanwise vorticity (xy) of two groups of flapping
plates at t=T ¼ 0:5. Some typical structures, such as the leading edge
vortex, side vortex, and trailing edge vortex, are labeled as LV, SV, and
TV, respectively. Due to the small aspect ratio (AR¼ 1) of the flexible
plate in the parameter setting, the distance between the side edge vorti-
ces on both sides of the plate is close.

FIG. 11. (a) Evolution of the non-
dimensional horizontal force Fx and (b)
the bending energy Eb for cases of combi-
nation I (blue line) and II (red line) at
K� � 4.

FIG. 12. Snapshots of instantaneous vortical structures: [(a)–(d)] combination I
(exp2 "; h ¼ 75�), [(e)–(h)] combination II (exp2 #; h ¼ 120�) with optimal effec-
tive bending stiffness K� � 4. From top to bottom, it represents specific moments:
[(a) and (e)] t=T ¼ 0, [(b) and (f)] t=T ¼ 0:25, [(c) and (g)] t=T ¼ 0:5, and [(d)
and (h)] t=T ¼ 0:75. In all snapshots, the iso-surface of the Q criterion with Q¼ 3
is shown and it is colored by the spanwise vorticity.

FIG. 13. Snapshots of instantaneous vortical structures and spanwise vorticity (xy)
on the spanwise symmetry planes for plates with optimal effective bending stiffness
K� � 4 at the moment t=T ¼ 0:5, where LV, SV, and TV represent the leading
edge vortex, side edge vortex, and trailing edge vortex, respectively. [(a) and (b)]
Combination I and [(c) and (d)] combination II. In all snapshots, the iso-surface of
the Q criterion with Q¼ 1 is shown and the range of vorticity xy is [�5, 5]. Black
circle represents the equivalent vortex ring of vortex structure the equivalent vortex
ring of vortex structure.
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For combination I, the first-order area moment r̂ of the plate is
larger—which means narrow in the front and wide in the back [see
Fig. 13(a)]. The spanwise vorticity of the leading edge is easy to be
transferred to both sides, which weakens the strength of the leading
edge vortex, while the wide back enhances the strength of the trailing
edge vortex.70 After shedding from the trailing edge, the vortex mainly
appears as a ring structure. There is a strong attached spanwise vortex
tube outside the vortex ring, while the residual vortex structure is
weak. With the fusion, evolution, and fragmentation of vortex struc-
tures, the wake vortex of the flexible plate cannot maintain the ring
structure downstream and dissipates gradually. For combination II,
the first-order area moment r̂ of the plate is smaller, i.e., wide in the
front and narrow in the back [Fig. 13(c)]. It can be seen clearly that
the leading edge of the flexible plate induces a strong vortex structure.
At this time, the two sides of the leading edge vortex melt directly with
the side edge vortex at the front end and fall off from the upper side of
the flexible plate indirectly, while the side edge vortex at the rear end
directly connects and falls off on the plate, replacing the trailing edge
vortex and forming an approximate closed vortex ring directly. The
wake structure shows that there is no longer a strong spanwise vortex
tube outside the vortex ring due to the weak trailing edge vortex.
Meanwhile, the strength of the residual vortex tube at the end of the
vortex ring is very strong, which is equivalent to the strength of the
vortex ring structure at the trailing edge of the flexible plate. When
the wake vortex structure is transported backward, the spanwise vortex
tube disappears due to viscous dissipation, and only two transverse
vortex tubes are left. The spanwise vorticity (xy) on the corresponding
the spanwise symmetry plane is calculated from Figs. 13(b) and 13(d).
It can be seen that the angle between the vortex ring structure and the
horizontal direction is basically identical. Compared with combination
II, combination I has a larger vortex ring, longer vortex street, and
slower vortex dissipation, so the jet momentum generated by wake
vortex is larger. According to Newton’s third law, combination I would
obtain greater forward momentum, which is consistent with the previ-
ous results of propulsion characteristics.

Figure 14 shows the instantaneous pressure field along the span-
wise section of the flexible plate and the pressure distribution on the
upper and lower surfaces of the plate. The corresponding moment is
the instant when the maximum thrust appears in each case, i.e., t=T
¼ 0:25 and t=T ¼ 0:15 in the cases of combination I and II, respec-
tively. It can be seen that the pressure on the lower side of the plate is
higher than that on the upper side, and the low pressure area on the

upper surface looks similar. For the lower surface, the pressure distri-
bution is significantly different. The pressure in the middle and rear
regions of the plate in combination I is much higher than that of com-
bination II. Therefore, the pressure difference between the upper and
lower surfaces of combination I is much larger than that of combina-
tion II. On the other hand, the chordwise deformation difference fur-
ther enhances the forward thrust in combination I. Therefore,
combination I obtains better propulsion performance. In conclusion,
the change of shape parameters and stiffness distribution of the flexible
plate would directly change the deformation and vortex generation of
each part of the flexible plate, further affecting the strength of the cor-
responding parts of the pressure field and wake vortex structure in the
flow field, and finally change the stress of the flexible plate.

C. Force analysis

The propulsive performance of flexible plate is closely related to
the thrust. The forces experienced by the plates are analyzed to reveal
the deformation and propulsion mechanism. Previous studies on flap-
ping flexible wings and plates71,72 have indicated that flexible deforma-
tion plays an important role in determining the thrust and drag. Here,
the influence of shape parameters and stiffness distribution of flexible
plates on tangential deformation and thrust distribution is discussed
quantitatively.

The jump in fluid force across the plate on a Lagrangian point,
i.e., Fs, can be decomposed into two parts: one is the normal force Fn

in which the pressure component dominates, the other is the tangen-
tial force Fs which comes from viscous effects. These forces are defined
as

Fn ¼ ðFs � nÞ � n ¼ ðFn
x ; Fn

y ; Fn
z Þ; (34)

Fs ¼ Fs � Fn ¼ ðFs
x; Fs

y; Fs
zÞ; (35)

where n and s are the unit normal and tangential vectors, respectively,
as shown in Fig. 15(a). The normal force mainly comes from the pres-
sure difference between the upper and lower surfaces of the plate,
which provides most of the thrust of the plate forward.

Here the deformation and thrust of two typical examples of com-
bination I and combination II are analyzed for K� ¼ 4. In addition,
the rectangular plate is used for comparison. The local slope, normal
force, and x component of the normal force along the chord of plate
are shown in Figs. 15(b)–15(d), respectively. It should be noted that

FIG. 14. Instantaneous pressure field and
pressure distribution along the upper and
lower surfaces of a plate on the spanwise
symmetry plane at the moment when
each case achieves its own largest thrust,
where K� � 4. (a) Combination I and (b)
combination II.
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although the overall effective stiffness K� of the plate is the same, the
local effective bending stiffness is different for various cases. It can be
seen from Fig. 15(b) that the chordal local slope of the plate is mainly
affected by the stiffness distribution. On a whole, for the stiffness dis-
tribution exp2 #, in the front region, the local slope is the smallest, and
with increase in the chord stiffness, the slope growth rate increases,
and when it reaches the rear region, the local slope is the largest. For
the stiffness distribution exp2 ", the local slope is the largest in the
front area. With increase in the chord stiffness, the slope growth rate
gradually decreases until it reaches zero. On the other hand, the influ-
ence of shape parameters on the local slope is mainly reflected in the
region with small Young’s modulus, that is, the back of stiffness distri-
bution exp2 # and the front of stiffness distribution exp2 ". There is a
positive correlation between local effective bending stiffness and span-
wise length—for example, the rear part of the stiffness distribution
exp2 # and the front part of exp2 ". The spanwise length of plate h ¼
120� and h ¼ 75� is smaller than that of rectangular plate, and the
plate is more flexible and the slope is larger.

As the leading edge of the plate is forced to vibrate in the vertical
direction, a large load will appear on the head, resulting in a large nor-
mal force Fn [see Fig. 15(c)]. For the trailing edge, there is a low pres-
sure region near the vortex region (see Fig. 14), which produces a
small normal force Fn. It can be seen that the normal force jFnj along
the chord direction of the plate is mainly affected by the shape param-
eters. For plate h ¼ 120�, jFnj is the largest in the front region. With
decrease in the spanwise width, the normal force jFnj gradually
decreases to a minimum in all cases. On the other hand, for plate
h ¼ 75�, the variation trend of jFnj is just the opposite. In the front
region, jFnj is the smallest, and with increase in the spanwise width,
jFnj gradually increases until it reaches a maximum in all cases. The

horizontal thrust Fn
x is the combined result of local bending deforma-

tion and normal force [see Fig. 15(d)]. The total thrust is composed of
the accumulation of local thrust Fn

x . Therefore, under the same maxi-
mum lateral displacement difference DZ between the front and rear
edges, the larger bending deformation at the front and the stronger
normal force at the rear of plate combination I are accumulated and
converted into the maximum total thrust Fn

x , so as to obtain the opti-
mal propulsion performance. For plate combination II, the bending
deformation at the front is small and the normal force at the back is
weak, which lead to the minimum total thrust Fn

x .

V. CONCLUDING REMARKS

In this paper, the numerical simulation of immersed boundary
method (IB) coupled with fluid–structure solver is used to study three-
dimensional self-propulsive flexible plates, focusing on the influence of
shape parameters and chord stiffness distribution of flexible plates on
their propulsion performance. The major conclusions are briefly sum-
marized as follows.

First, based on the Euler beam model and normalized bending
stiffness of non-uniform rectangular plate, a more general definition of
effective bending stiffness K� including the shape parameters is
derived. This model is able to describe the overall bending stiffness
reasonably. It is verified that the maximum displacement difference
DZ between the trailing and leading edges is proportional to the ana-
lytical deflection w(1) of the trailing edge of plate. It is found that the
propulsion speed and efficiency of the flapping plate mainly depend
on the effective bending stiffness, or DZ. For the flapping plate with a
specific shape parameter, when the effective bending stiffness K� is
small, the stiffness distribution gradually transits from the DD mode
to uniform plate mode and then to the GD mode, the propulsion

FIG. 15. (a) Schematic diagram for force
decomposition, s and n denote the local
tangential and normal directions, respec-
tively. Inset represents the local deflection
angle / at the Lagrangian point on the
spanwise symmetric plane. (b) Time-
averaged absolute slope, (c) time-
averaged absolute normal force, and (d)
time-averaged Fnx .
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speed U and efficiency g all increase gradually. When the effective
bending stiffness K� tends to be rigid, the propulsive performance
converges gradually. For any specific stiffness distribution, when the
effective bending stiffnessK� is larger, the propulsion speedU and effi-
ciency g of flapping flexible plate increase monotonically with increase
in the area moment. When the effective bending stiffness K� is small,
the cruising speed U and efficiency g of the flexible plates with acute
trailing edge are better than those with obtuse trailing edge.

The shape evolution of wake vortices and the pressure distribu-
tion in the near field, upper and lower surfaces of the flexible plate
with different shapes and material properties are analyzed. The results
show that the shape parameters and stiffness distribution of the flexi-
ble plate would directly change the deformation and vortex generation
of each part of the plate, and then significantly affect the pressure dis-
tribution in the flow field and the strength of the corresponding parts
of the wake vortex structure, and finally change the stress of the flexi-
ble plate. The relationship between stiffness distribution and shape
parameters and local chordal deformation and normal force of flap-
ping plate is revealed, it is found that the flapping flexible plate with
increasing stiffness along the chord direction has better propulsive per-
formance when the area moment is larger. These results have signifi-
cance in guiding optimal design of flexible propulsion systems.
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