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The free locomotion of a two-dimensional flapping flexible plate near the flat ground is studied by the
lattice Boltzmann method for fluid flow and a finite-element method for the plate motion. The fluid
flow and plate deformation are coupled through the immersed boundary scheme. When the leading
edge of the plate is forced to oscillate sinusoidally near the ground, the plate may move freely in
the horizontal direction due to the fluid-structure interaction. The mechanisms underlying the ground
effect are elucidated. Besides a moderate rigidity, it is found that an appropriate density ratio between
the plate and surrounding fluid (M) can improve the propulsive efficiency of the plate. When M is
relatively small, the lateral force is enhanced, and the input work is increased when the plate is near
the ground; when M is large, the deformation of the plate is inhibited and the input work is decreased
when the plate is close to the ground. Usually the closer the plate flapping is to the wall, the more
efficient the propulsion is, provided that the tail of the plate would not touch the wall. On the other
hand, when the plate is close enough (within a critical lowest distance), the efficiency reaches a plateau
with the highest efficiency. The vortices pattern and pressure field are also analyzed to explore the
mechanism. This study may shed some light on mechanism for self-propulsion of a flexible plate near
the ground. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4981778]

I. INTRODUCTION

When an aircraft or an animal flies or swims closely
above a flat ground, aerodynamic or hydrodynamic benefits
may be achieved due to the “ground effect.”1–3 The effect
may include reducing induced drag and increasing lift. For
example, a demersal teleost requires less power when hovering
above the substrate,1 a steelhead trout can reduce the expendi-
ture of energy when swimming near the wall.2 However, the
mechanisms of such an unsteady ground effect remain still
unclear,4,5 and they are notable topics due to their biological
and engineering applications.

In recent years, studies about free locomotion of a rigid
foil have been performed.6,7 In these studies, the rigid foil
is actuated by heaving and pitching oscillations, which may
result in a freely horizontal locomotion due to the interac-
tion between the foil and surrounding fluid. On the other
hand, a rigid plate model oscillating near the ground has been
employed to understand the ground effect. For example, the
ground effect on an elliptic foil hovering was studied numer-
ically.8 It is also investigated experimentally.9 The ground
effect on the flight of a bird is studied numerically with a
rigid three-dimensional foil model.10 A flapping foil towed
at a constant propulsive speed oscillating near a solid wall
is investigated experimentally.11 Moreover, a rigid aerofoil
undergoing pitching in the ground effect is studied experimen-
tally and numerically,12 and the result shows that the thrust can
be enhanced by almost 40% in the ground effect.

On the other hand, the insect wings are usually flex-
ible and they do not have an internal actuation mecha-
nism; thus, the wings have to be passively deformed by the

a)Author to whom correspondence should be addressed. Electronic mail:
huanghb@ustc.edu.cn

inertial-elastic or the fluid-dynamic force during flight.13 If
the leading edge of a flexible foil is actuated by heaving oscil-
lations, or pitching oscillations, or both, the plate will end up
developing deformations in the foil. Then the foil may move
forward or “self-propelled”14,15 due to the fluid-structure inter-
action. A self-propelled flexible foil undulating near a wall is
studied experimentally.16 In the study, the self-propulsion of
the foil along a rectilinear trajectory was actuated by pitching
oscillations at the leading-edge. The experimental data show
that the wall can enhance the speed and thrust. The hydrody-
namic benefits in the ground effect for a flexible panel have
been investigated experimentally by Quinn et al.,4 in which the
panel is actuated by heaving oscillations at the leading-edge
without pitching. The panels with three different bending stiff-
nesses were used. The study shows that the ground effect can
increase the thrust and propulsive efficiency as the result of that
the ground can suppress three-dimensional modes. The sim-
ilar research topic was also studied numerically.5 The study
shows that the propulsion of the plate with a suitable degree
of flexibility can be improved near the ground. Recently, Ryu
et al.17 numerically investigated a flexible flag heaving near
the ground in a Poiseuille flow. It mainly focused on the effect
of heaving frequency. In the study, only two different flapping
amplitudes were investigated and the mass ratio was fixed.
Dai et al.18 also investigated the self-propelled swimming of
a flexible plunging foil near the ground with a small flapping
amplitude. In the study, effects of bending rigidity and gap
distance are explored.

However, in the above self-propulsion studies, the inertial
effect of the plate may play a critical role. The issue was usu-
ally ignored or was paid less attention. There are some studies
on the inertial effect on other flapping problems instead of
the self-propulsion problem. For example, the contributions
of the inertial-elastic and aerodynamic forces to the bending
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of the wing in the hawkmoth Manduca sexta have been exam-
ined by an experimental approach.19 In the test, the wing flaps
around the wing hinge with a sinusoidal motion. The inertial
effect of the wing on hovering flight has been performed.20,21

Hence, to the best of our knowledge, the inertial effect on the
self-propulsive performance of the plate near a wall has never
been carried out.

In this study, the self-propulsion of a flapping flexible
plate is used to mimic the swimming of a fish near the ground.
The plate is forced to oscillate sinusoidally at the leading-edge
near a solid ground in a stationary fluid, which is similar to
those in Refs. 4 and 5. The effect of density ratio between the
plate and surrounding fluid (M) is investigated in detail. The
ground effect on the propulsive speed, propulsive efficiency,
the vortical structure and pressure distribution around the plate,
and the deformation of the plate is studied.

This paper is organized as follows: The physical prob-
lem and mathematical formulation are presented in Sec. II.
The numerical method and validation are described in Sec. III.
Results are discussed in Sec. IV and concluding remarks are
addressed in Sec. V.

II. PHYSICAL PROBLEM AND MATHEMATICAL
FORMULATION

As shown in Figure 1, we consider a flexible plate with
length L which is placed in proximity to a planar ground. The
surrounding fluid is stationary. The leading-edge of the plate
is forced to perform a vertical oscillation described as

y(t) = A0 cos(2πft), (1)

where A0 and f are the oscillating amplitude and frequency,
respectively. The average distance between the leading-edge
of the plate and the ground is d. Here, a Lagrangian coordinate
s along the plate surface is defined to describe the configuration
and motion of the plate.

Due to the interplay of the plate elasticity, the leading-edge
forcing, and the forces exerted by the surrounding fluid, the
plate starts to move freely and passively in the stationary fluid.
The active pitching angle is zero in this model; it means that
only the leading-edge of the plate is restricted with a prescribed
vertical motion and the remainder of the plate can move freely
in the entire fluid domain.

FIG. 1. Schematic of a flapping flexible plate near the ground.

To investigate this system of the fluid and flapping flexible
plate interaction, the incompressible Navier-Stokes equations
are solved to simulate the fluid flow,

∂v

∂t
+ v · ∇v = −

1
ρ
∇p +

µ

ρ
∇

2
v + f, (2)

∇ · v = 0, (3)

where v is the velocity, p the pressure, ρ the density of the
fluid, µ the dynamic viscosity, and f the body force term.

The structural equation is employed to describe the plate
deformation and motion,22–24
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(4)

where s is the Lagrangian coordinate along the plate, X= (X, Y )
is the position vector of the plate, Fs is the Lagrangian force
exerted on the plate by the fluid, and ρsh is the structural linear
mass density of the plate. Eh and EI are the stretching and the
bending stiffnesses of the plate, respectively.

For the plate, the following boundary conditions:

y(t) = A0 cos(2πft),
∂X
∂s
= (1, 0), (5)

and (
∂X
∂s
·
∂X
∂s

)−1/2

= 1,
∂3X
∂s3
= 0,

∂2X
∂2s
= 0, (6)

are imposed at the leading-edge and the trailing-edge, respec-
tively.

The characteristic quantities ρ, L, and f are chosen to
normalize the above equations and key parameters. Here ρ is
the fluid density, L the length of the plate, and f the heav-
ing frequency. The characteristic speed is defined as Uref = Lf,
the characteristic time T ref = L/Uref , and the flapping period
T = 1/f. The normalized governing parameters are described as
follows: the heaving amplitude A = A0/L, the Reynolds num-
ber Re= ρfL2/µ, the stretching coefficient S =Eh/ρf 2L3, the
bending coefficient K =EI/ρf 2L5, the mass ratio of the plate
and the fluid M = ρsh/ρL, and the ground distance between
the mean location of leading-edge of plate and the ground
D = d/L.

III. NUMERICAL METHOD AND VALIDATION

The fluid flow is solved by the lattice Boltzmann
method24,25 and the motion of the flexible plate is solved by the
finite element method. The immersed boundary (IB) scheme
is used to couple the two solvers.26,27 In the IB scheme, the
Lagrangian force Fs in Eq. (4) can be calculated by the penalty
method,24,28–30

Fs(s, t) = α
∫ t

0
[Vf (s, t ′) − Vs(s, t ′)]dt ′ + β[Vf (s, t) − Vs(s, t)],

(7)

whereα and β are penalty parameters which are selected based
on the previous studies,8,15,31 Vs =

∂X
∂t is the plate velocity and
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V f is the fluid velocity at the Lagrangian position X, which is
obtained by interpolation

Vf (s, t) =
∫

v(x, t)δ(x − X(s, t)]dx. (8)

In the IB scheme, the body force term f in Eq. (2) is used
as an interaction force between the fluid and the immersed
boundary to enforce the no-slip velocity boundary condition.
The body force f on the Eulerian points can be obtained from
the Lagrangian force Fs using the Dirac delta function, i.e.,

f(x, t) =
∫

Fs(s, t)δ(x − X(s, t)]ds. (9)

Eq. (4) for the deformable plate is discretized by a finite
element method, and the deformation with large-displacement
of the plate is handled by the co-rotational scheme.32 A detailed
description of the numerical method can be found in our
previous studies.15,24

The numerical strategy used here has been successfully
applied to a wide range of flows, such as dynamics of an
inverted flexible plate,33 dynamics of fluid flow over a circu-
lar flexible plate,24 locomotion of a flapping flexible plate,15

and vorticity dynamics of fluid flow over flapping plate.34 To
further validate the numerical method, a flapping flag in a uni-
form flow29 was simulated with parameters Re = 200, M = 1.5,
K = 0.001, and S = 1000. Figure 2 shows the time history of the
lateral displacement of the trailing-edge of the flag. It is seen
that the displacement magnitude is consistent with that from
Ref. 29 but with a small phase shift after it reaches a periodic
state ( t

T > 20).
Since in our study the length is normalized by L, the

nondimensional length of the plate is unity. Moreover, a finite
moving computational domain15,35 is used in the x-direction
to allow the plate to move in the x-direction for a sufficiently
long time. As the plate travels one lattice in the x-direction,
the computational domain is shifted, i.e., one layer being
added at the inlet and another layer being removed at the
outlet.15,35

FIG. 2. The lateral displacement of the trailing-edge of a flag in a uniform
flow as a function of time. The solid line and points represent the present result
and that from Ref. 29, respectively.

For the grid independence study, cases with ∆x = 0.005,
0.01, and 0.02 were tested and in the three cases ∆t = 0.0001.
In the time step independence study, cases with ∆t = 0.000 05,
0.0001, and 0.0002 were tested and in the three cases
∆x = 0.01. The results for grid independence and time step
independence studies are presented in the left and right
columns of Figure 3. In the figure, the upper and lower rows
represent the propulsive velocity of the flapping flexible plate
U and the vorticity at point (�4.5, �3.9) as a function of time,
respectively.

For the grid independence study, Figure 3(a) shows that
the velocity curves for ∆x = 0.01 and ∆x = 0.005 are very
close. Figure 3(c) shows that the vorticity curves for ∆x = 0.01
and ∆x = 0.005 also agree very well. On the other hand, the
curve of ∆x = 0.02 has significant discrepancies with those of
∆x = 0.01.

For the time step independence study, from both
Figures 3(b) and 3(d), it is seen that the curves for ∆t = 0.0001
and∆t = 0.000 05 agree very well but the curve for∆t = 0.0002
has significant discrepancies with them.

FIG. 3. The grid independence and time step indepen-
dence studies for the case with M = 0.2, A = 0.4, D = 0.6,
K = 5, S = 1000, and Re = 100. (a) and (b) are leading-
edge’s horizontal velocities as a function of time; (c) and
(d) are vorticities at one mark point (�4.5, �3.9). The
point is close to the ground which is located at y =�4.
When the plate passes by, this mark point is also close to
the lower surface of the plate.
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Hence, the results of the convergence tests show that
∆x = 0.01 and ∆t = 0.0001 are small enough to obtain accu-
rate results. In all of the following numerical simulations, the
mesh space ∆x = 0.01 and time step ∆t = 0.0001 are adopted.
In the simulations, the Dirichlet boundary condition v = 0 is
applied at the top and bottom boundaries, and the Neumann
boundary condition ∂v

∂x = 0 is used at the inlet and the outlet.
To minimize the effect of boundary condition, the nondimen-
sional computational domain for the fluid flow is chosen as
[−5, 25] × [−5, 10] in the x and y directions.

IV. RESULTS AND DISCUSSION

In our study, motivated by the investigation of the ani-
mal locomotion,19,36–43 the Reynolds number is fixed to be
Re = 100 and the plate is inextensible with a large stretch-
ing coefficient S = 1000. The bending coefficient is fixed
to be K = 5. The other parameter ranges in this study are
D ∈ (0.3, 4.0), the heaving amplitude A ∈ (0.1, 0.55), and the
mass ratio M ∈ (0.1, 1.5).

A. Propulsive performance in ground effect

The propulsive performance of the plate is shown in
Figure 4. Figure 4(a) shows the normalized time-averaged
propulsive speed U as a function of D. As D increases, the
speed U decreases monotonously if D ≤ 1.5; when D > 1.5,
the speed U is almost a constant. The ground effect increases
the propulsive speed for all flapping amplitudes considered
here.

The input work W as a function of D is shown in
Figure 4(b). The input work W is required to maintain the
self-propulsion of the flapping plate and computed as a time
integral of the power P performed by the surface of the body
on the surrounding fluid over one flapping period, i.e.,

W =
∫ t0+T

t0

Pdt =
∫ t0+T

t0

∫ 1

0
Fr(s, t) ·

∂X(s, t)
∂t

dsdt, (10)

where Fr represents the force on the surrounding fluid by the
flapping plate. It is seen that the trend of W is similar to that of
U. It is conjectured that the increase of the propulsive speed is
at the expense of the rising input power.18 This issue will be
discussed below after Figure 5 is described.

To quantify the propulsive efficiency of the plate, the
ratio of the kinetic energy of the body and the input work
has been employed.15,35,44 Therefore the propulsive efficiency
is η = 1

2 MU2/W . The propulsive efficiency as a function of D
is shown in Figure 4(c). It is seen that when D decreases from
1.5 to 0.5, the η increases rapidly, when D > 1.5 the propulsive
efficiency is almost a constant. Hence, it seems that more input
work was converted into the kinetic energy of the plate when
the flapping motion is closer to the ground (smaller D).

Figure 4(d) shows the mean lift coefficients CL as func-
tions of D. The variations of CL in all cases with differ-
ent D have a similar trend. Here we take the result of the
case A = 0.4 as a typical example to elucidate the propul-
sive behaviors. The variation has two distinct regimes. When
D ≤ 1.5, CL is positive and decreases with D, and it tends
to push the plate away from the ground; when D > 1.5, CL

is negative and tends to pull the plate towards the ground,
and it decreases with D first then increases and approaches
to zero as D→∞. The CL behavior is consistent with that
of the unsteady propulsion of a pitching rigid foil near the
ground.4

The effect of the density ratio M on propulsive behaviors is
shown in Figure 5 for M ∈ (0.1, 1.4). For cases with a larger M,
due to large inertia of the plate, the inertial force instead of the
fluid force (induced by pressure difference and viscous force)
acting on the plate may have a major effect on its deformation
and movement. Hence, M > 1.4 is not considered here. It is
also noticed that for D = 0.6 and D = 0.7, when M > 1.2, the
plate would touch the wall and the simulation is unable to
be performed. Therefore, there are less data for cases with a
smaller D in Figure 5.

Figure 5(a) shows the propulsive speed U as a function of
M. For cases D = 0.7, 0.8, 1.0, and∞, after the speed reaches a

FIG. 4. (a) Propulsive speed, (b) input work in one
flapping period, (c) propulsive efficiency, and (d) mean
lift coefficient as functions of distance D for M = 0.5.
The lines represent cases with A = 0.2, 0.3, and 0.4,
respectively.
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FIG. 5. (a) Mean propulsive speed, (b) input work in
one flapping period, (c) propulsive efficiency, and (d)
the bending energy as functions of density ratio M with
A = 0.4.

maximum at M ≈ 0.3, it decreases with the increasing M. For
the cases with D = 0.6, U decreases monotonically. Figure 5(b)
shows that the input work W increases monotonically with
M. For the propulsive efficiency (see Figure 5(c)), the max-
imum propulsive efficiency occurs approximately at M = 0.8
for cases with all distances.

Although U decreases with M, the kinetic energy of the
plate 1

2 MU2 generally increases with M. The increase of the
kinetic energy and the input work is convex (not shown here)
and concave (see Figure 5(b)), respectively. Hence, the propul-

sive efficiency η =
1
2 MU2

W as a function of M is convex and the
highest efficiencies are achieved at a moderate density ratio
(M ≈ 0.8). Figures 5(a) and 5(b) also show that at a larger M,
e.g., M = 1.0, W decreases but U increases as the flapping is
closer to the wall. Hence, the conjecture that the increase of U
is at the expense of the rising input power18 seems not correct
for cases with a larger M.

Figure 5(b) also shows that for a smaller M, the input
work W increases as the plate is flapping closer to the wall (at
a smaller D). The situation is reversed for a relatively larger
M, e.g., M = 1.2.

As the plate is flexible, it can store elastic potential energy
because of the fluid-plate interaction. It is noted that the elastic
potential due to the stretching effect is negligible due to the
large S. Thus the elastic potential energy is defined as

EB(t) =
K
2

∫ L

0

∂2X
∂s2
·
∂2X
∂s2

ds, (11)

where K is the normalized bending stiffness defined as
K =EI/ρf 2c5. Figure 5(d) shows the bending energy of the
plate increases monotonically with M, which may be due to
the inertial effect. Since the locomotion velocity U decreases
with increasing M (see Figure 5(a)), it seems that larger defor-
mation of the plate for large density ratio causes negative effect
on the locomotion.

The effect of the density ratio M on propulsive behaviors
is shown in Figure 6 for A = 0.1. Figure 5(a) shows that U

increases to a peak at M ≈ 0.7, then decreases with increasing
M. Figure 5(b) shows the input work W also increases first and
then decreases. For the propulsive efficiency (Figure 5(c)), η
increases monotonically with M for D = 0.3, but for other Ds,
the maximum ηs are achieved at M ≈ 1.2.

From Figures 5(a), 5(b), 6(a), and 6(b), it is also seen that
the conjecture that the increase of U is at the expense of the
rising input power18 seems only valid for a smaller M. For
a larger M, it is not valid. The possible mechanism will be
explored in Secs. IV B and IV C.

Then we would like to directly compare the propulsive
performances between the near-ground case and the corre-
sponding cases without the ground and isolate the role of the
ground. Here the influence of flapping amplitude A on propul-
sive performance of the plate is shown in Figure 7. From
Figure 7(a), it is seen that U increases monotonically with A for
both cases with and without the ground. The net increment of U
due to the ground effect (i.e.,∆U) increases with A and reaches
to its maximum at A = 0.45, then goes down. Figure 7(b) shows
that the input works in cases D = 0.7 and D=∞ are almost iden-
tical when A< 0.45. When A> 0.45, the increment of W is also
negligible with the maximum increment approximately 5% at
A = 0.55.

We would like to demonstrate that there is benefit from the
ground effect. Because∆U increases fast when A ∈ (0.3, 0.45)
and∆W is almost zero in the region,∆η increases in the region
and approaches its maximum at A = 0.45, which is shown in
Figure 7(c). That means at A ∈ (0.3, 0.45), the ground effect
significantly enhances the propulsive efficiency in the near-
ground cases, which is referred to as the “benefit-increase”
regime. When A> 0.45, the ground effect on the enhancement
of efficiency ∆η decreases and it is referred to as the “benefit-
decrease” regime. It is noticed that in the “benefit-decrease”
regime, the propulsive efficiency reaches a plateau with highest
efficiency.

From Figure 7(d), it is seen that for the bending energy
EB, the ground effect can also be classified into two regimes,
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FIG. 6. (a) Mean propulsive speed, (b) input work in
one flapping period, (c) propulsive efficiency, and (d)
the bending energy as functions of density ratio M with
A = 0.1.

A< 0.45 and A> 0.45. Here A = 0.45 is a critical value. When
A< 0.45, the ground inhibits the deformation of the plate
because ∆EB < 0, and the inhibition increases with A as
A ≤ 0.4; when A> 0.45, the ground enhances the deforma-
tion of the plate (∆EB > 0). It is noted that a larger oscillation
amplitude requires more vertical space (a larger D) for flapping
freely otherwise the tail of the plate may touch the ground. For
example, in the case D = 0.7, the largest flapping amplitude
allowed is about A = 0.55.

In summary, the propulsion of the plate is able to ben-
efit from the ground effect. However, for a specific distance
D, two distinct regimes which are separated by a critical flap-
ping amplitude Acr are identified, i.e., “benefit-increase” and
“benefit-decrease” regimes. In the two regimes, the defor-
mation of the plate is enhanced and inhibited, respectively.
When A> Acr , the propulsive efficiency reaches a plateau with
highest efficiency.

B. Unsteady dynamics and deformation of plate

In order to understand the propulsive behaviors in the
ground effect, unsteady dynamics and deformation of the plate
are further investigated. Figure 8 shows drag coefficients and
input powers as functions of time in one flapping period. Here
the flapping amplitude A is fixed to be 0.4 to investigate the
effect of D. Figure 8(a) shows CD curves for a relatively smaller
M (M = 0.3) and the curves of CD for cases with different D are
essentially similar. The minor difference is that the maximum
thrust, i.e., the magnitude of the negative drag increases as D
decreases. The input power P as a function of time is shown in
Figure 8(b). For the cases with a smaller D, e.g., D = 0.5 (the
solid red line), P increases in most period of one flapping cycle
compared to the case with a larger D. Hence, the input work
increases if the flapping is closer to the ground (smaller D),
which is consistent with the result in Figure 5(b) for M = 0.3.

FIG. 7. The influence of flapping amplitude A on the
propulsive metrics: (a) mean propulsive speed U, (b) input
work in one flapping period W, (c) propulsive efficiency
η, and (d) bending energy EB with M = 0.5. ∆ means the
value of D = 0.7 case minus that in the case of D=∞. The
dashed line in (d) presents ∆EB = 0.
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FIG. 8. (a) Drag coefficient CD and (b) input power P as
functions of time in one flapping cycle for M = 0.3 with
A = 0.4, (c) drag coefficient CD and (d) input power P as
functions of time in one flapping cycle for M = 0.9 with
A = 0.4.

For cases with a larger M, e.g., M = 0.9, the curves of
CD for cases with different D are shown in Figure 8(c).
Figure 8(c) looks similar to Figure 8(a). A minor difference
is that the thrust or negative drag increases with D, which is
different from that in Figure 8(a). Compared to Figure 8(a), the
amplitude of the drag coefficient is much larger in Figure 8(c)
for each D. Hence, the thrust force magnitude in the case
with M = 0.9 is larger than that in the corresponding case for
M = 0.3.

Figure 8(d) shows that the input power increases with
D especially in the period 0.7< t/T < 0.9; thus, the total
input work W in one period slightly increases with D for
M = 0.9, which is consistent with that in Figure 5(b) for
M = 0.9.

Then we would like to discuss the ground effect on the
deformation of the plate. The plate deformation shapes at eight
instances during one flapping cycle for four cases (see Table I)
are shown in Figure 9. For M = 0.3, compared with Case
1B, the deformation in Case 1A is enhanced at all instances
except t/T = 0, 0.125, and 0.625. It seems that the presence
of the ground also significantly modifies the phase of the
plate deformation. Hence, the vertical trailing edge displace-
ment relative to the leading edge during a steady period for
M = 0.3 is also plotted in Figure 9(c). It is seen that overall,
except for the phase of plate deformation, the deformation is
not sensitive to the distance for M = 0.3, which is consistent
with that in Figure 5(d). However, for M = 0.9, Figure 9(b)
shows that the plate deformation is overall inhibited except
at t/T = 0.875. Figure 9(d) also confirmed that the flapping is

TABLE I. Parameters for four specified cases.

Case M D A

Case 1A 0.3 0.6 0.4
Case 1B 0.3 ∞ 0.4
Case 2A 0.9 0.6 0.4
Case 2B 0.9 ∞ 0.4

inhibited due to the presence of ground. It is also seen that
without the ground, due to the inertial effect of the plate,
the deformation at a larger M (black lines in Figure 9(b))
is more significant than that at a smaller M (black lines in
Figure 9(a)).

The drag coefficient and input power as functions of time
in one flapping cycle for A = 0.1, 0.4, 0.45, and 0.5 are shown in
Figure 10. The ground effect on CD is shown in Figure 10(a).
It is noted that the integration of CD is zero for all cases due
to the horizontal free locomotion of the plate. When the flap-
ping amplitude A is small, e.g., A = 0.1, the ground effect on
CD is negligible. It is also seen that when A is larger, the
CD variation magnitude in the case of D = 0.7 is larger than
that in the corresponding case of D=∞. That means a larger
thrust and a drag are generated during the downstroke and
upstroke periods, respectively, when the flapping is close to the
wall.

Figure 10(b) shows that the input power P as a function
of time in one flapping cycle. When the flapping amplitude
A is small, e.g., A = 0.1, the ground effect on P is negligi-
ble. For a larger amplitude, e.g., A = 0.5, during most period
of the cycle, the power P of the case with D = 0.7 is larger
than that in the corresponding case with D=∞. That means
more input work is required due to the ground effect. On
the other hand, during most period of the cycle, the power P
increases with A for D = 0.7 and D=∞, respectively. Hence,
the overall input work (integration of input power) increases
with A for cases of D = 0.7, so do the cases of D=∞. All
these dynamic behaviors are consistent with the results in
Figure 7(b).

For cases with A = 0.4 and 0.5, Figures 11(a) and 11(b)
show the instantaneous shapes of the plate. It is seen that
compared to the corresponding case without the ground, the
deformation is inhibited overall in the whole flapping cycle
for A = 0.4 (left column) but enhanced for A = 0.5 (right col-
umn). Figures 11(c) and 11(d) also confirmed this point. It is
consistent with the results shown in Figure 7(d). It is noticed
that the deformation is still inhibited when the plate is
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FIG. 9. Plate deformation shapes at eight instances dur-
ing one flapping cycle for four cases (see Table I) with
(a) M = 0.3 and (b) M = 0.9. The red lines and black lines
represent the shapes at D = 0.6 and D=∞, respectively.
The solid and dashed lines represent the downstroke and
the upstroke periods, respectively. The vertical trailing
edge displacement relative to the leading edge during a
steady period for (c) M = 0.3 and (d) M = 0.9.

very close to the wall (e.g., t/T = 0.625) despite the overall
enhancement in the whole flapping cycle.

C. Vortical structure and pressure distribution

The propulsive behaviors of the flapping flexible plate are
closely associated with the vortical structures; thus, we further
discuss the vortical structures around the plate and the pressure
distribution on the plate.

Figure 12 shows the vorticity contours at four instants
of one flapping cycle for Case 1A and Case 1B (Table I).
Without the ground effect, the reverse Karman vortex street
is seen in the right column of Figure 12. The wake behind
the flapping plate with the ground effect becomes complex
(see the left column of Figure 12), and the vortical struc-
tures are no longer symmetric in the wake, resulting in lift
generation.

To investigate the connection of the vortical structures
and the forces on the plate, Figure 13 shows the pressure
contours corresponding to the four instants in Figure 12.
At t/T = 0, the pressure around the plate leading edge in Fig-
ure 13(a) is higher than that in Figure 13(e). Because the

plate in Case 1A moves faster than Case 1B as shown in
Figure 5(a), correspondingly it encounters a greater resis-
tance.

During the downstroke period, at t/T = 0.25, the pressure
between the plate and the ground increases in Figure 13(b)
compared to Figure 13(f). Hence, a more significant lift force
is generated in Case 1A than that in Case 1B. The deformation
of the plate is also slightly larger in Figure 13(b).

As the leading-edge flaps to the nearest location away
from the ground at t/T = 0.5, because of the ground effect, the
pressure below the plate in Figure 13(c) is higher than that in
Figure 13(g). At the time, the deformation in Case 1A is almost
identical to 1B but it has a reverse deflection. When the plate
flaps upwards at t/T = 0.75, the pressure in both the upper and
lower surfaces is reduced in Figure 13(d), compared to that in
Figure 13(h).

The vorticity contours for M = 0.9 (Case 2A and 2B) are
shown in Figure 14. It is seen that the wake behind the plate
for Case 2B, which is shown in the right column, is the reverse
Karman vortex street. The vortices distances in Case 2A and
2B (Figure 14) are smaller than those in Case 1A and 1B

FIG. 10. Time-dependent (a) drag coefficient and (b)
input power in one flapping cycle for A = 0.1, 0.4, 0.45,
and 0.5 with M = 0.5.
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FIG. 11. Plate deformation shapes at eight instances dur-
ing one flapping cycle with M = 0.5 for (a) A = 0.4 and (b)
A = 0.5. The red and black lines represent the shapes at
D = 0.7 and D=∞, respectively. The solid and dashed
lines represent the downstroke and upstroke periods,
respectively. The vertical trailing edge displacement rel-
ative to the leading edge during a steady period for (c)
A = 0.4 and (d) A = 0.5.

(Figure 12), respectively. That means the propulsive speed U
in Case 2A and 2B is smaller than that in Cases 1A and 1B,
respectively. This is consistent with the result in Figure 5(a).

The pressure contours at typical instants of one flapping
cycle for Case 2A and 2B are shown in the left and right
columns, respectively, in Figure 15. At t/T = 0, the pressure

FIG. 12. Vorticity contours at typical
instants of one flapping cycle for Case
1A (left column) and Case 1B (right col-
umn) with M = 0.3: ((a) and (e)) t/T = 0,
((b) and (f)) 0.25, ((c) and (g)) 0.5, and
((d) and (h)) 0.75.
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FIG. 13. Pressure contours at typical
instants of one flapping cycle for Case
1A (left column) and Case 1B (right col-
umn) with M = 0.3: ((a) and (e)) t/T = 0,
((b) and (f)) 0.25, ((c) and (g)) 0.5, and
((d) and (h)) 0.75.

FIG. 14. Vorticity contours at typical
instants of one flapping cycle for Case
2A (left column) and Case 2B (right col-
umn) with A = 0.4 and M = 0.9: ((a) and
(e)) t/T = 0, ((b) and (f)) 0.25, ((c) and
(g)) 0.5, and ((d) and (h)) 0.75.
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FIG. 15. Pressure contours at typical
instants of one flapping cycle for Case
2A (left column) and Case 2B (right col-
umn) with M = 0.9: ((a) and (e)) t/T = 0,
((b) and (f)) 0.25, ((c) and (g)) 0.5, and
((d) and (h)) 0.75.

below the plate in Case 2A is lower than that in Case 2B,
which prevents a large upward bending at the trailing edge in
Case 2A. As the plate flaps downwards (t/T = 0.25), the lower
leading part of the plate experiences a larger pressure shown in
Figure 15(b) compared to Figure 15(f) due to a larger resistance
that the plate encounters. At t/T = 0.5, the leading edge flaps
to the location closest to the ground. The pressure between the
plate and the ground in Figure 15(c) is much higher than that in
Figure 15(g) especially near the tail of the plate which prevents
the trailing-edge bending downwards too much. At t/T = 0.75,
the pressure distributions in Figures 15(d) and 15(h) are simi-
lar. A very minor difference is that a lower pressure region near
the trailing-edge in Figure 15(d) is closer to the middle upper
surface of the plate than that in Figure 15(h), which induces a
higher repulsive force near the tail. The higher repulsive force
prevents the trailing edge of the plate bending downward. Cor-
respondingly, the deformation in Case 2A is slightly inhibited
compared to that in Case 2B.

From the discussion above, the pressure distribution
around the plate, and therefore the deformation of the plate is
changed due to the ground. The most significant point is that
the pressure between the plate and ground is augmented by
the inertia-dominated deformation. For example, the augment
in Case 2A (M = 0.9) is larger than that in Case 1A (M = 0.3).
Hence, |CL | is increased significantly in Case 2A than that in
Case 1A.

From Eq. (10), the work done in the horizontal direction
is zero. Only CL and the deformation of the plate contribute
to the work W. From discussions about the deformation and

CL, it is seen that for M = 0.3, |CL | is enhanced and the defor-
mation is not sensitive to the distance in Case 1A, so the input
work of Case 1A is larger than that of Case 1B due to the
enhanced |CL |. For M = 0.9, the inertial force dominates the
hydrodynamic or aerodynamic behavior instead of the fluid
force. Although |CL | in Case 2B is smaller than that in Case 2A
(see Figure 15), the deformation of the plate in Case 2B is larger
than that in Case 2A (see Figure 9). The overall input work
W in one flapping cycle in Case 2B is still larger than that in
Case 2A.

Hence, in principle the mechanism can be understood as
follows: As we know, the input work is the product of force
and velocity. For large M, as the plate approaches the ground,
although |CL | is enhanced, the deformation of the plate is inhib-
ited. The effect of inhibited deformation is more prominent, so
the input work is reduced. By contrast, for small M, the defor-
mation of the plate is not sensitive to the distance, and on the
other hand the force (|CL |) is enhanced as the plate approaches
the plate, so the input work increases.

To study the effect of A on the wake structure, the instanta-
neous vorticity contours at the beginning instant of the down-
stroke is shown in Figure 16 for four typical cases. For the
near-ground cases (the left column in Figure 16), D is fixed to
be 0.7. As expected, when A = 0.1, the flapping amplitude is
relatively small, and the ground effect is very minor. Hence,
the wakes shown in Figures 16(a) and 16(b) are almost identi-
cal. In both cases, the shed vortices form a typical reverse von
Karman vortex street. The propulsive properties of the two
cases with A = 0.1 are almost identical (see Figure 7).
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FIG. 16. Vorticity contours at the
beginning instant of the downstroke
(t/T = 0) for D = 0.7 (left column) and
D = ∞ (right column) with M = 0.5:
((a) and (e)) A = 0.1, ((b) and (f)) 0.4,
((c) and (g)) 0.45, and ((d) and (h)) 0.5.

When A = 0.4, for the cases without the ground, the wake
behind the plate is still a typical reverse von Karman vortex
street, and the distance between the vortices increases (see
Figure 16(d)). That means U increasing with A. Under the
ground effect, small opposite vortices are induced on the
ground (see Figure 16(c)), and two counter-rotating vortices
in a vortex dipole shedding from the plate rotate as a whole.
Hence, the vortices induced on the ground would roll up and
shed from the ground to strengthen the original vortices shed
from the plate. In this way, the ground enhances the propulsive
performance of the plate.

When A ≥ 0.45, for the cases without the ground, the wake
behind the plate transits from “2S” pattern (Figure 16(f)) to
“2P” pattern (see Figure 16(h)). Figures 16(c) and 16(d) show
that for the near-ground cases, stronger vortices are produced
on the ground, and there are vortex interactions between them.
As mentioned in the end of Sec. IV A, there is an Acr separating
the “benefit-increase” and “benefit-decrease” regimes. The Acr

may be connected with the transition of the vortex shedding
pattern.

V. CONCLUDING REMARKS

In order to study the ground effect on the self-propulsion
of a flapping flexible plate, a series of numerical simulations
were conducted. The problem is parameterized by a nondi-
mensional ground distance, flapping amplitude, and density
ratio of the plate and the fluid. Aerodynamic performance

and the deformation of the plate due to the ground effect
were investigated; we summarize the results of the study as
follows.

First, for a specific bending rigidity K and flapping
amplitude A, two appropriate density ratios are found to
be able to optimize the propulsive efficiency and velocity,
respectively. At a relatively small M, as the plate flapping near
the ground, compared to the case without the ground, the input
work W increases due to the increased repulsive force. At a
larger M, as the plate flapping near the ground, the input work
W decreases mainly due to the inhibited deformation of the
plate.

Second, the ground effect does able to increase the propul-
sive speed and the propulsive efficiency. For a specific distance
D, two distinct regimes which are separated by Acr are iden-
tified, i.e., “benefit-increase” and “benefit-decrease” regimes.
In the two regimes, the deformation of the plate is enhanced
and inhibited, respectively. When A> Acr , the propulsive effi-
ciency reaches a plateau with the highest efficiency. Acr may
be directly connected with the transition of the vortex shedding
pattern in cases without the ground.

Alternatively, the second point can be concluded as the
following: When the flapping amplitude A is fixed, usually the
closer the plate flapping is to the wall, the more efficient the
propulsion is, provided that the tail of the plate would not touch
the wall. On the other hand, when the plate flapping is close
enough, with flapping amplitude A> Acr , the efficiency may
reache a plateau with the highest efficiency.
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This study may shed some light on mechanism for self-
propulsion of a flexible plate near the ground.
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