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ABSTRACT

The steady-state method, commonly utilizing periodic boundary conditions and constant volume force, has long been employed to measure
two-phase relative permeability using the lattice Boltzmann method (LBM). This study introduces the first application of LBM for unsteady-
state measurement of two-phase relative permeability curves, removing the restrictions imposed by periodic boundaries. By comparing the
results with steady-state measurements, we demonstrate that the proposed unsteady-state methods yield accurate relative permeability curves
while significantly enhancing computational efficiency. We detail the process of determining the driving pressure (Dp) and initial flow rates
(q) in unsteady simulations and analyze the characteristics of Kro in these simulations. Our study suggests that, while Kro should ideally be
plotted as a function of saturation within the porous media (Sw), Krw, calculated based on the flow at the exit, should be expressed as a func-
tion of Swe rather than Sw. To obtain an accurate Krw curve, it is essential to discard spurious data from unsteady LBM simulations, particu-
larly at higher Sw values approaching unity. Our findings show that both “constant-Dp” and “constant-q” unsteady simulations can produce
satisfactory relative permeability curves. However, the constant-q method is more predictable, with the measured flow flux closely aligning
with the specified value, making it more reliable and easier to manage. Overall, the unsteady-state method offers a robust and efficient frame-
work for future numerical research on relative permeability measurement in porous media.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0277525

I. INTRODUCTION

The measurement of two-phase relative permeability is crucial
for reservoir characterization and plays a vital role in optimizing oil
recovery strategies. Relative permeability curves provide essential
insights into the flow behavior of oil and water within porous media,
influencing reservoir simulation, enhanced oil recovery (EOR) techni-
ques, and production forecasting.1 Accurate determination of these
curves is fundamental to understanding multiphase flow dynamics
and improving hydrocarbon extraction efficiency.

Two primary methods are used to measure relative permeability
in rock samples: the steady-state method and the unsteady-state
method. In both method, it is assumed that the two-phase fluids are
immiscible and incompressible and the effects of capillary pressure
and gravity are neglected. The steady-state method involves injecting
oil and water simultaneously at a constant flow rate until equilibrium

is reached. At this point, fluid saturation and pressure stabilize, allow-
ing direct calculation of relative permeability using Darcy’s law. By
varying the injection ratio, a series of relative permeability values at dif-
ferent saturations can be obtained, enabling the construction of relative
permeability curves.2

In contrast, the unsteady-state method is based on the Buckley–
Leverett theory of two-phase flow.3 It begins by saturating the rock
sample with water, followed by oil displacement to achieve irreducible
water saturation. Waterflooding is then performed, and fluid produc-
tion rates and pressure differences are recorded over time. The “J.B.N.”
method (Johnson–Bossler–Naumann) is used to calculate relative per-
meability from the experimental data, generating curves that reflect
dynamic fluid displacement.4 While the steady-state method is straight-
forward, the unsteady-state method better captures transient flow
behavior, making it more representative of real reservoir conditions.
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With the advent of advanced imaging technologies, such as X-ray
computed tomography (CT), and the rapid development of computa-
tional capabilities, it has become possible to directly simulate fluid flow
within digital rock cores. These digital representations of porous
media, reconstructed from high-resolution CT scans, enable detailed
analysis of pore-scale phenomena and provide a bridge between labo-
ratory experiments and field-scale applications. This progress has
opened new avenues for understanding multiphase flow dynamics and
validating experimental results through numerical simulations.

Among computational methods, the lattice Boltzmann method
(LBM) has emerged as a powerful tool for simulating multiphase flow
in porous media.5–11 As a mesoscopic method, LBM excels in handling
complex wall geometries and is inherently explicit, making it highly
parallelizable. Unlike traditional macroscopic schemes, LBM does not
require solving the Poisson equation, significantly improving compu-
tational efficiency.

Among the various multiphase LBM models, the Rothman and
Keller (R–K) model stands out for its accuracy.5 Initially proposed by
Rothman and Keller12 and further refined by Gunstensen et al.,13 the
R–K model incorporates an additional binary fluid collision term into
the Lattice Boltzmann equation.13 Latva-Kokko and Rothman14 later
improved the recoloring step, reducing lattice pinning effects and spu-
rious currents.15,16 Reis and Phillips17 developed a two-dimensional
nine-velocity R–K model, which accurately accounts for surface ten-
sion in the Navier–Stokes (N–S) equations.

The R–K model simplifies the implementation of wetting condi-
tions by allowing the specification of fluid densities at solid nodes,
unlike the free-energy LBM, which requires imposing density gra-
dients near walls. This simplicity has facilitated its application in
porous media simulations.8,18 Additionally, the use of the multiple-
relaxation-time (MRT) collision model,19 in the R–K method has sig-
nificantly reduced spurious currents and improved numerical stability,
making it suitable for simulating capillary fingering phenomena in
two-phase flow.20

Therefore, the color-gradient (Rothman–Keller) LBM is widely
used for multiphase flow simulations due to its simplicity, robustness,
and ability to maintain sharp interfaces with relatively low spurious
velocities.5 It supports large viscosity ratios and ensures good numeri-
cal stability, making it suitable for simulating complex porous media.
Furthermore, it allows independent control over interfacial tension
and wettability. However, it lacks full thermodynamic consistency
compared to free-energy or pseudopotential models and has limited
ability to handle very high-density ratios, which may affect some
applications.

In the literature, LBM simulations of relative permeability under
steady-state conditions often rely on periodic boundary conditions,
which assume an infinitely long porous medium in the flow direction.
This setup can lead to unphysical results, such as slightly negative rela-
tive permeability values.11,21,22 To address this, non-periodic boundary
conditions have been explored. For instance, Huang et al.23 simulated
two-phase immiscible displacements under constant pressure differ-
ences, but the pressure outlet boundary condition showed limitations,
such as severe droplet deformation near the outlet.

In our previous work,24 we developed LBM simulations for
steady-state relative permeability measurements using convective out-
flow and inlet constant flux boundary conditions. We investigated the
effects of wettability, initial saturation, viscosity ratio, capillary number,

and micro two-phase distribution on permeabilities. The study
highlighted the importance of free outflow boundary conditions at the
outlet, which automatically determine phase distributions.25,26 These
boundary conditions are also applied in the current study.

Although the LBM has been applied to simulate two-phase rela-
tive permeability under steady-state conditions, there is a lack of sys-
tematic studies on using LBM for unsteady-state simulations to extract
relative permeability curves. To our knowledge, no prior work has
demonstrated unsteady-state relative permeability measurements
within the LBM framework. In practice, unsteady-state methods are
often significantly more efficient than steady-state approaches, espe-
cially for high-resolution simulations in complex porous structures,
making them highly attractive for practical applications.

In this work, we focus on unsteady-state simulations of two-phase
relative permeability curves using LBM. By leveraging the strengths of
the R–Kmodel and advanced boundary conditions, we aim to enhance
the understanding of dynamic oil–water interactions in porous media,
contributing to more accurate reservoir characterization and improved
oil recovery strategies. The paper is organized as follows: First, we
introduce the R–Kmodel and convective outflow boundary conditions,
followed by validation through benchmark problems. Next, we present
simulations in a 400� 400 porous medium, comprehensively investi-
gating unsteady LBM simulations for relative permeability under
constant-pressure and constant-flow-rate conditions.

A. R–Kmodel

In the Rothman–Keller (R–K) model, the particle distribution
function (PDF) for fluid k is denoted as f ki . For two-phase flows, two
separate distribution functions are defined: f bi and f ri , where b and r
represent the “blue” and “red” components, respectively. The
total PDF at a given position x and time t is then given by
fiðx; tÞ ¼

P
k f

k
i ðx; tÞ.

The Lattice Boltzmann Method (LBM) typically involves two pri-
mary steps: collision and streaming. However, in the R–K model, three
steps are involved for each component: streaming, collision, and recol-
oring. Suppose an iteration begins with the streaming step. We now
describe how these three steps form a loop. The streaming step is
given by17

f ki ðx þ eiDt; t þ DtÞ ¼ f kþi ðx; tÞ; (1)

where f kþi represents the PDF after the recoloring step. In this equa-
tion, ei (i ¼ 0; 1;…; b) are the discrete velocities in the velocity model.
For the D2Q9 velocity model (with b ¼ 8), the nine discrete velocities
are defined as

ei ¼

ð0; 0Þ for i ¼ 0;

cos ði� 1Þ p
2

� �
; sin ði� 1Þ p

2

� �� �
c for i ¼ 1; 2; 3; 4;

ffiffiffi
2

p
cos ði� 5Þp

2
þ p

4

� �
;

�

2 sin ði� 5Þp
2
þ p

4

� �r �
c for i ¼ 5; 6; 7; 8:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(2)

Here, c represents the lattice speed, defined as c ¼ Dx
Dt , where Dx is

the lattice spacing and Dt is the time step. In our study, we use lattice
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units where 1 lu ¼ 1Dx, 1 ts ¼ 1Dt, and the mass unit is denoted
as mu.

The collision step can be written as14

f k�i ðx; tÞ ¼ f ki ðx; tÞ þ ðXk
i Þ1 þ ðXk

i Þ2; (3)

where f k�i ðx; tÞ is the post-collision state. There are two collision terms
in the equation, i.e., ðXk

i Þ1 and ðXk
i Þ2. If the lattice Bhatnagar–Gross–

Krook (BGK) scheme is adopted, the first collision term is

ðXk
i Þ1 ¼ �Dt

s
f ki ðx; tÞ � f k;eqi ðx; tÞ
� �

; (4)

where s is the relaxation time.
The equilibrium distribution function f k;eqi ðx; tÞ can be calculated

using17

f k;eqi ðx; tÞ ¼ qk Ci þ wi
ei � u
c2s

þ ðei � uÞ2
2c4s

� ðuÞ2
2c2s

" # !
; (5)

where the density of the kth component is

qk ¼
X
i

f ki ; (6)

and the total density is q ¼Pk qk. The momentum is

qu ¼
X
k

X
i

f ki ei: (7)

In the above formula, the coefficients are defined as follows:17

C0 ¼ ak, Ci ¼ 1�ak
5 for i ¼ 1; 2; 3; 4, and Ci ¼ 1�ak

20 for i ¼ 5; 6; 7; 8,
where ak is a parameter that adjusts the fluid density.17,27 For simplic-
ity, a is assumed to be identical for both fluid components, i.e.,
ar ¼ ab ¼ 4

9. The initial densities of the red and blue fluids are consid-
ered identical qri ¼ qbi ¼ 5

9, which is a reasonable assumption since
the densities of water and oil are close in value. It is important to note
that when ar ¼ ab ¼ 4

9, Eq. (5) reduces to the standard formula used
in single-phase LBM. The other parameters are as follows: w0 ¼ 4

9,
wi ¼ 1

9 for i ¼ 1; 2; 3; 4, and wi ¼ 1
36 for i ¼ 5; 6; 7; 8.

The viscosity of each component is given by �k ¼ c2s ðsk � 0:5Þ,
where c2s ¼ 1

3 c
2. The viscosity ratio is defined as M ¼ �nw

�w
, where the

subscripts “nw” and “w” refer to the non-wetting and wetting fluids,
respectively. The R–K LBM is a diffusion–interface method. Due to
the diffusion, an interface region exists between the two components.
The viscosity in this interface region can be determined by

� ¼ q
qr
�r

þ qb
�b

: (8)

This formula is also applicable in the regions of pure red or blue
components. Accordingly, the relaxation time at a lattice node x can
be determined by

s ¼ �

c2s
þ 0:5: (9)

The second collision term is more complex and there are some
different forms found in the literature.11,17 An example is11

ðXk
i Þ2 ¼

A
2
jf jð2 � cos 2ðkiÞ � 1Þ; (10)

where ki is the angle between the color gradient f and the direction ei,
and we have cosðkiÞ ¼ ei�f

jei j�jf j. Here, A is correlated with surface tension,
i.e.,

A ¼ 9r=ð2sqriÞ: (11)

The color-gradient fðx; tÞ is calculated as14

fðx; tÞ ¼
X
i

ei
X
j

f rj ðx þ eiDt; tÞ � f bj ðx þ eiDt; tÞ
h i

: (12)

However, according to the study of Reis and Phillips,17 the correct
collision operator should be

ðXk
i Þ2 ¼

A
2
jf j wi

ðei � fÞ2
jf j2 � Bi

" #
; (13)

where B0 ¼ � 4
27, Bi ¼ 2

27 ; i ¼ 1; 2; 3; 4, Bi ¼ 5
108 ; i ¼ 5; 6; 7; 8. Using

these parameters, the correct term due to surface tension in the N–S
equation can be recovered.17

Then, the recoloring step is implemented to achieve separation of
the two fluids14

f r;þi ¼ qr
q
f �i þ b

qrqb
q2

f ðeqÞi ðq; 0Þ cosðkiÞ; (14)

f b;þi ¼ qb
q
f �i � b

qrqb
q2

f ðeqÞi ðq; 0Þ cosðkiÞ; (15)

where f �i ¼Pk f
k�
i .

After updating f ri ðx; tÞ and f bi ðx; tÞ, the streaming step [i.e., Eq.
(1)] should be applied to each component. By iterating through the
procedure outlined above, two-phase flow simulations can be
conducted.

In the model, A and b are the two key parameters that control
interfacial properties. While b does not affect surface tension directly,
it influences the interface thickness, isotropy, and the magnitude of
spurious currents.20 In our simulations, b is typically set to 0.7.20 The
pressure in the flow field is obtained from the density using the equa-
tion of state p ¼ c2sq.

For two components with identical densities, the equilibrium dis-
tribution function (DF) remains the same. Consequently, it is not nec-
essary to calculate the collision steps—Eqs. (4) and (13)—separately
for each component. The two collision steps can therefore be com-
bined as follows:

ðXiÞ1 ¼ �Dt
s

fiðx; tÞ � f eqi ðx; tÞ	 

(16)

and

ðXiÞ2 ¼ Ajf j wi
ðei � fÞ2
jf j2 � Bi

" #
; (17)

where fi ¼
P

k f
k
i .

B. Contact angle

To account for the effect of wettability on relative permeability,
the contact angle at the pore scale must be specified. This is achieved
by setting the values of qr and qb at the wall nodes, denoted as q0r and
q0b, respectively, which allows for the specification of different contact
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angles. The contact angle h can be analytically determined using the
following formula:14

h ¼ arccos
q0r � q0b
qri

� �
; (18)

where h is measured with respect to the red phase (water). By adjusting
q0r and q

0
b, the wettability of the wall can be controlled, as these param-

eters influence the color gradient near the wall, as described in
Eq. (12).

C. Boundary conditions

We will now introduce the inlet velocity (or pressure) boundary
condition and the outlet natural convective (flow-out) boundary con-
dition. First, the velocity inlet boundary condition and constant pres-
sure (or density) boundary condition applied to the upper inlet
boundary are discussed.

For the upper velocity boundary condition, the distribution
functions f4; f7; f8 are unknown after the streaming step for both
the majority and minor components. Using the non-equilibrium
bounce-back assumption,28 the density of the majority component at
the inlet boundary (assuming the inlet velocity ui is specified) can be
calculated as

qn ¼
f n0 þ f n1 þ f n3 þ 2ðf n2 þ f n5 þ f n6 Þ

1þ ui
: (19)

The unknown distribution functions can then be determined as
follows:28

f n4 ¼ f n2 � 2
3
qnui;

f n7 ¼ f n5 þ 1
2
ðf n1 � f n3 Þ �

1
6
qnui;

f n8 ¼ f n6 þ 1
2
ðf n3 � f n1 Þ �

1
6
qnui:

(20)

This velocity boundary condition can also be applied to the minor
component.

If we wish to apply the pressure boundary condition (assuming
qn has been specified) at the top inlet boundary, the procedure is simi-
lar to the velocity boundary condition, but Eq. (19) is modified as
follows:

ui ¼ f n0 þ f n1 þ f n3 þ 2ðf n2 þ f n5 þ f n6 Þ
qn

� 1: (21)

Then, the same equations for the unknown distribution functions in
Eq. (20) are applied.

Next, for single-phase flow, pressure boundary conditions for the
lower boundary can be handled similarly to the upper boundary. This
involves determining the unknowns f2, f5, and f6.

28 However, for two-
phase flow, it is challenging to determine whether a lattice node on the
outlet is occupied by the red or blue component. A reasonable
approach may be to perform an extrapolation. For example, if a node
one or two layers above the bottom boundary is occupied by the red
component, it can be assumed that the node at the boundary will also
be occupied by the red component. In this case, the red fluid density is
specified for that node, and the minor component’s density is specified

for the other fluid. However, this simple extrapolation may introduce
significant errors.

For the lower outflow boundary condition, a convective boundary
condition is applied,25,26 which is expressed as

@v
@t

þ Ui
@v
@y

¼ 0; (22)

where Ui is the convective velocity and v represents any physical vari-
able used in the simulations.26 In our simulations at the outlet (j ¼ 1),
the convective velocity at the lattice node ði; jÞ is specified as the value
in the upper neighboring layer, i.e.,Ui ¼ uyði; jþ 1Þ.

In the layer j ¼ 1, assuming that v ¼ fi when using the upwind
scheme, we obtain the following equation:

f nk ðjÞ � f n�1
k ðjÞ

Dt
þ Ui

f nk ðjþ 1Þ � f nk ðjÞ
Dy

¼ 0 for Ui < 0: (23)

This yields the solution

f nk ðjÞ ¼
Dy
Dt

f n�1
k ðjÞ � Uif

n
k ðjþ 1Þ

Dy
Dt

� Ui

; (24)

where k ¼ 0; 1; 2;…; 8 and j ¼ 1. On the other hand, if Ui > 0 and
the upwind scheme is applied, this implies that information is flowing
from outside the domain into the domain. Since the external informa-
tion is unknown, we set Ui ¼ 0 for this case. Therefore, the boundary
condition becomes

f nk ðjÞ ¼ f n�1
k ðjÞ for Ui > 0: (25)

The accuracy of the natural convection (flow-out) boundary condition
has been extensively tested in Ref. 24.

D. Validation

To validate our numerical method, we simulated a non-wetting
fluid (blue) displacing wetting fluid process (see Fig. 1) and compared
the results with experimental data (yellow lines) from Ref. 29. The
porous medium in the experiment consists of uniformly sized cylin-
ders with irregular spacing (see Fig. 1). The physical parameters of the
porous medium, as well as those of the wetting and non-wetting fluids
used in the experiment, are listed in the rightmost column of Table I,
alongside the corresponding simulation parameters.

In the simulation, the porous medium is discretized using a
600� 600 lu domain, with each cylindrical obstacle having a diameter
of 42 lu. The resulting porosity is 0.59. Both fluids (wetting and non-
wetting) are assigned a density of qa ¼ 5

9 lu
2=ts, with initial densities

at solid nodes set to qr ¼ 0:4 lu2=ts and qb ¼ 0:0 lu2=ts, yielding a
contact angle of �40� [see Eq. (18)]. The relaxation times are set to
sr ¼ 2:0, sb ¼ 0:7, giving both fluids identical viscosities. A surface
tension is set as r ¼ 0:05 mu=ts2.

In the simulation, the viscosity ratio lnon=lw is �0.135, whereas
in the experiment it is much lower, around 0.0053. Another key
parameter is the capillary number, defined at the pore scale as

Ca ¼ lwb
2U0

kr , where U0 is the average inlet velocity. The simulated Ca
is �5:8� 10�2, compared to 2:6� 10�5 in the experiment. While
using a higher Ca in simulations reduces computational cost, it can still
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capture relevant flow features. According to the phase diagram in Ref.
30, viscous fingering occurs over a broad range in theM-Ca parameter
space, particularly at low values of both, e.g., M � Oð10�1Þ and
Ca � Oð10�2Þ. Despite the higher Ca in our simulation, the resulting
flow pattern remains consistent with viscous fingering, enabling mean-
ingful comparison with the experimental results.

In the experiment, non-wetting fluid invasion is driven by a con-
stant rate. In the simulation, we apply a constant inlet velocity

boundary condition with Ua ¼ 10�4 lu=ts at the top boundary, and
an outflow boundary condition at the bottom. Initially, the non-
wetting fluid occupies at least 10 lattice layers near the inlet. As shown
in Fig. 1, the phase distributions from our LBM simulation [blue/red
interfaces in panels (a)–(h)] closely match those from the experiment
[yellow lines in panels (a)–(h)], confirming the accuracy of our simula-
tion setup and validating the numerical method and the effectiveness
of the convective boundary condition.

FIG. 1. Evolution of the two-phase flow in a porous medium. Comparison between the LBM results and experimental observations (yellow lines denote fluid interfaces) from
Ref. 29. Initially, the porous medium is fully saturated with the wetting phase (red), which is then displaced by an invading non-wetting fluid (blue).

TABLE I. Geometrical parameters and fluid properties in the LB simulation and experiment.

Symbol Simulation Experiment

Model length L 600 30mm
Model width W 600 30mm
Obstacle diameter b 42 2mm
Porosity / � 0:59 � 0:59
Single-phase permeability k � 17 2:1� 10�4 cm2

Contact angle hw � 40� < 70�

Wetting fluid viscosity lw 0.278 3:6� 10�3Pas
Non-wetting fluid viscosity lnw 3:7� 10�2 1:9� 10�5Pa s
Wetting fluid density qw 0.5556 1:10� 103kgm�3

Non-wetting fluid density qnw 0.5556 1:2kgm�3

Surface tension r 0.05 � 6:2� 10�2Nm�1

Capillary number Ca � 5:8� 10�2 � 2:6� 10�5
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To evaluate mesh independence, we conducted simulations using
three different grid resolutions: 200� 270, 400� 540, and 800� 1080.
These grids were applied to the same porous medium model to assess
the sensitivity of simulation results to spatial resolution.

The initial condition represents a post-oil-displacement sce-
nario in which a small amount of residual water remains.
Subsequently, water is injected from the top of the domain to dis-
place the remaining oil. The porous medium is specified to be oil-
wet, characterized by a contact angle of 45�, and the oil-to-water
viscosity ratio is set to 2:1. Water is injected at a constant flux of
q ¼ UaL ¼ 1:5 lu2=ts.

To ensure consistent flow regimes across all simulations, we
maintained the same Reynolds number, defined as Re ¼ UaL

� ¼ q
�, by

keeping the oil and water viscosities constant. To ensure the capillary
number, Ca ¼ Ual

r , remained consistent as well, we adjusted the oil–
water interfacial tension accordingly: r ¼ 0:006, 0.003, and 0.0015 for
the coarse, medium, and fine grids, respectively.

Figure 2 presents the oil–water phase distributions at a common
dimensionless time, t� ¼ t

L=Ua
¼ 40000

400=ð1:5=400Þ ¼ 0:375, for all three grid

resolutions. The results from the coarse grid (200� 270) differ signifi-
cantly from those of the finer grids, indicating insufficient spatial
resolution. In contrast, the phase distribution obtained with the
medium-resolution grid (400� 540) closely matches that of the high-
resolution case (800� 1080), demonstrating that the 400� 540 grid is
sufficient to accurately capture the key flow features.

We also monitored the dimensionless pressure drop across the
domain throughout the simulations. Figure 3 presents the evolution of
this pressure drop over time. The pressure curves for the medium and
fine grids are in excellent agreement, while the coarse grid shows
noticeable deviation. This further supports the conclusion that the
400� 540 grid provides a good balance between accuracy and compu-
tational efficiency, and is therefore adopted for all subsequent simula-
tions in this study.

II. RESULTS AND DISCUSSION
A. Steady-state measurement

The theoretical foundation for determining oil–water relative per-
meability using the steady-state method is based on the one-
dimensional Darcy’s law for fluid flow. Our LBM simulations follow
this experimental procedure.

First, irreducible water saturation is established. This is done
using the oil displacement method, where the oil phase is injected at a
low flow rate to displace the water phase. The displacement rate is

FIG. 2. Comparison of oil–water phase distributions for three different grid resolutions: 200� 270, 400� 540, and 800� 1080 in (a)–(c) at dimensionless time
t� ¼ t

L=Ua
¼ 0:375.

FIG. 3. Evolution of dimensionless pressure drop between the inlet and outlet over
time for three grid resolutions: 200� 270, 400� 540, and 800� 1080.
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then gradually increased until no more water is produced, indicating
the formation of irreducible water saturation.

Next, the oil phase permeability of the rock sample under irre-
ducible water saturation is measured. With a constant total flow rate,
oil and water are injected simultaneously into the rock sample at a
specified flow ratio. Once the inlet and outlet pressures stabilize and
the oil and water flow rates become steady, the water saturation in the
rock sample reaches equilibrium. At this point, the distribution of oil
and water within the rock’s pores becomes uniform, signifying a
steady-state condition. The effective permeability of oil and water
remains constant under these conditions.

By measuring the inlet and outlet pressures, as well as the oil and
water flow rates, the effective permeability and relative permeability of
oil and water can be directly calculated using Darcy’s law. Varying the
injection flow ratio of oil (qo) and water (qw) allows for the determina-
tion of oil–water relative permeability at different water saturations.
These data are then used to plot the oil–water relative permeability
curve for the rock sample.

The oil–water relative permeability using the steady-state method
is calculated as follows:

Kwe ¼ qwlwL
ADp

; Koe ¼ qoloL
ADp

; (26)

where Dp is the pressure difference between the inlet and outlet, L is
the length of test section, A is the cross-sectional area, and Kwe and Koe

are effective permeabilities of water and oil, respectively.
Then, the relative permeabilities of water and oil, Krw and Kro,

respectively, can be calculated as follows:

Kro ¼ Koe

Ko Swsð Þ ; Krw ¼ Kwe

Ko Swsð Þ ; (27)

where Sws is the irreducible water saturation.
The porous media simulated in our study consists of a 400� 400

grid, totaling 160000 grid points, with �123 600 pore lattice points,
resulting in a porosity of / ¼ 77:25%. To facilitate calculations and
the implementation of boundary conditions, blank grids were added to
the upper and lower edges of the porous domain. The entire computa-
tional domain is 540� 400, with the porous medium positioned
between Y ¼ 90 and Y ¼ 490. This region is used to automatically
calculate saturation during the simulation. The pressure statistics for
the inlet and outlet are located at Y ¼ 520 and Y ¼ 80, near the upper
and lower boundaries of the porous medium.

The absolute permeability of the porous media, K, is calculated
using the following data. In our LBM simulation, we assume a
single-phase flow with q ¼ 5

9, injected at a rate of q ¼ 1:56 lu2=ts into
the porous medium. The fluid viscosity is � ¼ c2s ðs� 0:5Þ
Dt ¼ 0:1667. At steady state, the measured pressure difference is
Dp ¼ c2sDq ¼ 1

3 � 0:00986 ¼ 0:00328. Using Darcy’s law, the perme-
ability is given by

K ¼ q�Lq
ADp

¼
5
9
� 0:1667� 440� 1:56

400� 0:00328
¼ 48:4 lu2:

In our two-phase flow simulations, we consider only density-
matched cases, with both water and oil having densities of 5

9 mu=lu2.
Assuming that the kinetic viscosities of the two fluids are different, we
set the relaxation times in the LBM as so ¼ 2 for oil and sw ¼ 1 for

water. Consequently, the kinetic viscosity of oil is �o ¼ c2s ðso � 0:5Þ
�Dt ¼ 0:5 lu2=ts, and the kinetic viscosity of water is �w ¼ c2s
�ðsw � 0:5ÞDt ¼ 0:1666 lu2=ts. The oil–water interfacial tension is
set as r ¼ 0:003mu=ts2.

In our steady-state measurements, the total flow rate is kept con-
stant. Oil and water are simultaneously injected into the porous
medium at a constant rate with a specific velocity: u ¼ 0 and
v ¼ �0:004 lu=ts. To mimic the actual experimental setup, 30 short,
identical narrow channels are set at the inlet, with either oil or water
injected into each channel. A velocity-in boundary condition is applied
at the top layer of the simulation, where u ¼ 0 and v ¼ �0:004 lu=ts
at each lattice node. Meanwhile, a natural flow-out boundary condition
is applied at the bottom boundary.

Regarding the wettability of the porous media and the inlet short
channels, we assume that these solid nodes are oleophilic, meaning the
contact angle of the oil phase is less than 90 degrees. The “wall densi-
ties” for water and oil are set as q0w ¼ 0:0 and q0o ¼ 0:2777, respec-
tively. According to Eq. (18), the contact angle of water is calculated as

h ¼ cos �1 0� 0:2777
0:5555

� �
� 120�:

This represents a hydrophobic case. In all cases presented in this paper,
the wettability is fixed.

Our simulations are initialized under the condition where the
pores are partially saturated with irreducible water, with the remaining
pore space occupied by oil. Specifically, we first use oil to displace the
water in the porous medium, leaving only the irreducible water. This
configuration is then used as the initial state, after which oil or water is
injected into the 30 small channels at the inlet.

To allocate different flow rates, we distribute the oil and water
across the 30 channels. For example, oil is injected into 5 channels,
while water is injected into the remaining 25. The corresponding water
saturation is roughly estimated as 25

30, or�84%. However, this is an esti-
mate, and the final saturation distribution may differ slightly due to
the viscous coupling effect between the two phases. It is important to
note that, when injecting oil into 5 of the channels, we aim to distribute
these inlets as evenly as possible across the inlet regions. This ensures
that the oil and water phases have the opportunity to mix fully before
entering the pores.

Once the flow reaches a steady state, we measure the average
pressures of the two phases at positions Y ¼ 80 and Y ¼ 520. Using
the pressure difference between these two points and applying Darcy’s
law, we can calculate the corresponding relative permeability. The dis-
tribution of the two phases in the pores at steady state for several typi-
cal cases is shown in Fig. 4. The relative permeability permeabilities for
the 11 cases are presented in Fig. 5 (indicated by discrete circles
and disks).

We observe that some cases, despite having very similar satura-
tions (e.g., two cases at Sw � 0:43), exhibit noticeable variations in
their relative permeability values. To better understand this, let us con-
duct a simple analysis.

As discussed in Ref. 24, even with the same injection ratio, the
distribution of phases across the 30 channels can significantly affect
the relative permeability.

To evaluate the impact of two-phase distribution at the inlet, we
performed two simulation cases (Cases A and B) with identical oil–
water injection ratios at the inlet. The phase distributions at the top of
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the 30 narrow channels for both cases are shown in Table II. The let-
ters “B” and “R” represent water and oil, respectively. It is clear that
the phase distributions in the inlet channels differ significantly between
Case A and Case B. Despite these differences, both cases result in

almost identical saturation values of Sw � 43% inside the porous
media at steady state [see Figs. 4(b) and 4(c)].

At t ¼ 200 000, Case A nearly reaches a steady state. The two-
phase distribution at steady state in the porous media is shown in
Fig. 4(b). The evolution of qw and qo, as well as the densities (qo and
qw) at Y ¼ 80 and Y ¼ 520, as functions of time, is shown in Fig. 6.

From Fig. 6(a), we observe that in Case A, both water and oil
reach a constant volumetric flow rate at steady state, with approxi-
mately qw ¼ 0:7809 and qo ¼ 0:6694. The flux curves are smooth.
The average densities of water and oil at the inlet (qw in and qo in) are
very close, both approximately qin ¼ 0:5775. Similarly, the average
densities of water and oil at the exit are close, with qout ¼ 0:560. From
the density difference, we can calculate the pressure difference using
Dp ¼ c2s ðqin � qoutÞ.

However, from Fig. 7(a), we see that in Case B, at steady state,
both volumetric flow rates of water and oil oscillate significantly. This
can be understood by comparing Fig. 4(b) with Sw ¼ 0:425 and
Fig. 4(c) with Sw ¼ 0:43. In Case B [Fig. 4(c)], the oil distribution near
the outlet appears more discrete than in Case A. As a result, the flow
flux of the oil oscillates dramatically. This oscillation also contributes
to the relatively large measurement error. Hence, even with the same
injection ratio, the distribution of phases at the inlet boundary may
influence the measured relative permeability, and this effect may
depend on the underlying structure of the porous medium.

Our findings show that while the inlet distribution can noticeably
alter internal flow patterns and cause oscillations in volumetric flow
rates (e.g., Fig. 7), here its effect on the computed relative permeability
is relatively minor. For example, in Fig. 5, two cases with nearly the
same water saturation (Sw � 0:25) exhibit different oil relative perme-
abilities (Kro), as indicated by the two nearby red disks—one around

FIG. 4. Measuring the relative permeability using steady flow method. Two-phase distribution inside the porous media close to the steady state at typical saturations
Sw ¼ 0:27, 0.425, 0.43, and 0.75, respectively, in (a)–(d).

FIG. 5. Relative permeability of oil Kro and water Krw as functions of water saturation
Sw . The discrete data points were obtained through steady-state simulations, while
the curves represent results from the unsteady-state method (constant-q policy).

TABLE II. The phase distributions at the inlet for cases with Sw � 43% (B: water, R: oil).

Case Distributions of inlet channels Inlet number (B:R)

A B B B B R R B B R R R B B B R R R B B B R R B B R R R R B B 16:14
B B B B R R B B R B R R B R B R B R B B B R R B B R R B B R R 16:14
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0.84 and the other around 0.93—highlighting the impact of spatial dis-
tribution at the inlet. The two cases differ in Kro by about 10% due to
different inlet configurations. A similar difference is observed at
Sw � 0:4. Overall, spatial variations at the inlet may cause moderate
deviations but do not significantly impact the accuracy of relative per-
meability results here.

B. Unsteady-state measurement

The unsteady-state method for determining oil–water relative
permeability is based on the Buckley–Leverett theory, which describes
the one-dimensional advancement of a two-phase waterflood front. It
assumes uniform oil and water saturation across any cross section of
the rock sample. Initially, the rock sample is saturated with water, and

oil is injected to displace the water until only irreducible water remains.
Unlike the steady-state method, the unsteady-state method does not
involve the simultaneous injection of two fluids into the core. Instead,
the oil-saturated rock sample, containing irreducible water, is subjected
to waterflooding. During this process, the distribution of oil and water
saturation within the porous medium varies with both distance and
time, which characterizes the unsteady-state process. Depending on
the simulation conditions, either constant pressure difference (con-
stant-Dp) or constant rate (constant-q) waterflooding experiments are
conducted on the reservoir rock sample. The production rates of each
fluid and the pressure difference across the sample are recorded at the
outlet as functions of time.

1. “Constant-q” policy

To neglect the effects of capillary pressure, when using the con-
stant-q policy, the flow velocity should be sufficiently high. We pro-
pose a normalized parameter, pq, to assess this condition, with the
criterion given by

pq ¼ Arow
ffiffiffiffiffiffiffi
K/

p
lqL

< 0:6: (28)

Here, row is the oil–water interfacial tension, and / is the porosity of
the porous media. In our case, A ¼ 400 lu and the distance between
the upper and lower “pressure sensors” is L ¼ 440 lu. Assuming an
inlet velocity of 0:004 lu=ts, the flow flux at the inlet is approximately
q ¼ 0:004� 400 � 1:6 lu2=ts. In our simulations, we estimate

pq ¼ 400�0:003
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48:4�0:77

p
5
9�0:1667�1:6�440 � 0:11 < 0:6.

The oil and water relative permeabilities using the unsteady-state
method are calculated as follows:

fo Swð Þ ¼ dVoðtÞ
dV ðtÞ ; (29)

Kro ¼ fo Swð Þ d 1=V ðtÞ� �
d 1=IV ðtÞ� � ; (30)

Krw ¼ Kro
lw
lo

1� fo Swð Þ
fo Swð Þ ; (31)

where foðSwÞ is the oil saturation and V0ðtÞ and V ðtÞ are the normal-
ized cumulative oil and liquid production, respectively, expressed as a
multiple of pore volume. Here, Kro and Krw are the oil and water phase
relative permeability, respectively; I is relative injectivity, also known as
the flow capacity ratio. In the above equation, qðtÞ is the liquid produc-
tion rate at the outlet face of the core sample at time t, for constant rate
tests, qðtÞ ¼ q0 and q0 is the initial liquid production rate at the outlet
face of the core sample. Here, Dp0 is the initial driving pressure differ-
ence and DpðtÞ is the displacement pressure difference at time t, for
constant pressure tests, DpðtÞ ¼ Dp0. The relative injectivity I is
defined to quantify the intake capacity which varies with cumulative
injection

I ¼ qðtÞ
qo

Dpo
DpðtÞ : (32)

From a physical viewpoint, the relative injectivity may be defined as
the ratio of the intake capacity at any given flood stage to the intake

FIG. 7. Result of Case B. (a) Volumetric flow rate of water (qw ) and oil (qo) as func-
tions of time step at exit (Y ¼ 80), (b) average densities of water and oil at the inlet
(qw in and qo in at Y ¼ 520) and outlet (qw out and qo out at Y ¼ 80) as func-
tions of time.

FIG. 6. Result of Case A. (a) Volumetric flow rate of water (qw ) and oil (qo) as func-
tions of time step at exit (Y ¼ 80), (b) average densities of water and oil at the inlet
(“qw in” and “qo in” at Y ¼ 520) and outlet (“qw out” and “qo out” at Y ¼ 80) as
functions of time.
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capacity of the system at the very initiation of the flood (at which
moment practically only oil is flowing through the system).

The water saturation at the outlet face of the core sample Swe can
be calculated through

Swe ¼ Sws þ VoðtÞ � V ðtÞfo Swð Þ; (33)

where Sws is the irreducible water saturation.
The simulated waterflooding procedure is shown in Fig. 8. As

seen in the figure, at t ¼ 10 000 ts, oil begins to invade the porous
media. Even by t � 40 000 ts, the oil front has not yet reached the
location Y ¼ 80. As the waterflooding continues, the oil is progres-
sively displaced, and by t ¼ 300 000 ts, only small oil residues remain
inside some narrow pores. The relative permeabilities obtained using
the constant-q method are shown in Fig. 5, and the results appear to
be consistent with those obtained from the steady LBM simulations.

We now discuss how to determine Dp0 and q0 in the relative
injectivity formula I, which are critical for obtaining Kro and Krw.

The evolution of the pressure drop (or Dq) and flow flux (q) during
the waterflooding process is shown in Fig. 9. As observed, Dq ini-
tially increases, then decreases dramatically, and eventually levels off
at a plateau with Dq � 0:0106 mu=lu2. The peak of Dq occurs at
t � 15 000 ts (see the dotted line). Similarly, the total liquid flux q
increases quickly during the first 15 000 time steps, reaches a
small peak, and after 70 000 steps, stabilizes at a plateau with
q � 1:51 lu2=ts. In the LBM simulation of flow with an inlet velocity
boundary condition, pressure is gradually established, and at the
peak value, we assume that the pressure drop is almost fully
developed. Therefore, for our calculation of Kro and Krw, we adopt
Dq0 ¼ 0:026 61 mu=lu2 and q0 ¼ 1:48 lu2=s. We conclude that the
initial pressure drop (Dp0) and flow flux (q0) in the LBM simulation
should correspond to the peak of Dp when the pressure drop has
been established.

It is also worth noting that in the constant-q policy, the flow flux
q stabilizes at a value of q ¼ 1:51 lu2=ts, which is close to the specified

FIG. 8. Evolution of two-phase flow inside the porous media after waterflooding. In the constant-q method, water (blue) is injected at a constant rate into the porous media,
which was initially flooded with oil (red), leaving only irreducible water behind.
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flow flux of q ¼ 0:004 lu=ts� 400 lu ¼ 1:6 lu2=ts. The small discrep-
ancy may arise from the confinement of the 30 small inlet channels.

We aim to analyze the evolutionary characteristics of Kro. Before
the oil front reaches Y ¼ 80 (i.e., t < 50 000), according to the defini-
tion of oil saturation [Eq. (29)], V ðtÞ ¼ VoðtÞ, meaning that fo ¼ 1
for t < 50 000. Based on the definition of Kro [Eq. (30)], we have

Kro ¼ fo

d
1

V ðtÞ
� �

d
1

IV ðtÞ
� � :

Thus, for t < 50 000, the relative injectivity I is the sole factor deter-

mining Kro. Since I ¼ qðtÞ
qo

Dpo
DpðtÞ, it depends on qðtÞ and Dq. We have

plotted qðtÞ and Dq as functions of time in Fig. 9. It can be observed
that when t 2 ð15 000; 50 000Þ, qðtÞ remains almost constant, while
Dq decreases dramatically. Consequently, the relative injectivity I
increases sharply from 1.0 to 1.7 during this period (see Fig. 10).
During this time, Kro decreases from 1 to 0.71 at t ¼ 50 000 with
Sw ¼ 0:59.

The oil saturation at the exit, fo, decreases significantly from 1 at
t ¼ 50 000 to 0.03 at t ¼ 150 000. The variation in Kro during this
period is largely governed by the variation in foðSwÞ. Therefore, we
conclude that initially (t < 50 000), the variation in Kro is determined

by
dð 1

V ðtÞÞ
dð 1

IV ðtÞÞ
, with the relative injectivity I being the dominant factor.

However, when t > 50 000, the variation in I becomes smoother, and
Kro decreases significantly with fo.

In the following, we will discuss which water saturation should be
used to plot the relative permeability curves. There are two possible
saturations to consider. One is the saturation at the exit, which is calcu-
lated using Eq. (33): Swe ¼ Sws þ VoðtÞ � V ðtÞfoðSwÞ. The other is the
actual water saturation inside the porous media, which is calculated as:
Sw ¼ Sws þ VoðtÞ:

Figure 11 shows the water saturation inside the porous media
(Sw) and water saturation at the exit of the porous media (Swe) as func-
tions of time under the constant-q simulation. It is observed that Swe is
slightly delayed compared to Sw. This can be explained as follows:
before the water front reaches the exit (e.g., at t ¼ 40 000), many pores
have already been occupied by water, and Sw has increased to
�0.5. However, at the exit, only oil flows out, so according to Eq. (33),
Swe ¼ Sws ¼ 0:127 (see Figs. 11 and 8). Therefore, Swe lags behind Sw.

In general, we should use the water saturation inside the porous
media, i.e., Sw, to plot the relative permeability curve. The plot of oil
relative permeability Kro as a function of Sw in Fig. 5 shows good agree-
ment with the data obtained from steady-state simulations (indicated
by the red disks). However, if Krw is plotted as a function of Sw, we
obtain the blue line in Fig. 12. It is evident that there is a large discrep-
ancy between this curve and the data (blue blocks) from steady-state
simulations. In fact, Krw should be plotted as a function of Swe rather

FIG. 9. Density difference (Dq) between the inlet and outlet, along with the total vol-
umetric flow rate of liquid (q ¼ qo þ qw ), as functions of the time step at the exit
(Y ¼ 80) in simulations with constant-q. The pressure drop between the inlet and
outlet can be calculated as Dp ¼ c2sDq.

FIG. 10. Oil fraction (fo) as a function of time (t) and relative injectivity (I) as a func-
tion of time (t).

FIG. 11. Water saturation within the porous media (Sw ), water saturation at the exit
(Swe), and Kro as functions of time under the constant-q policy.
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than Sw because the calculation of Krw is based on the flow at the exit
surface. Further details on this will be discussed below.

According to Eq. (31), we have

1� foðSwÞ
foðSwÞ ¼ Krw=lw

Kro=lo
: (34)

In this equation, fo should be a function of Swe rather than Sw because
fo is derived from the volume flow rates of water and oil at the exit.

Specifically, from Eq. (29), we have: foðSwÞ ¼ dV0 ðtÞ=dt
dV ðtÞ=dt ¼

qw
qwþqo

. As

shown in Fig. 10, the red dashed line is identical to the dotted line,

meaning that fo ¼ dVo ðtÞ
dV ðtÞ is equivalent to

qw
qwþqo

at the exit.

It is also observed that the foðSweÞ curve exhibits some oscilla-
tions, particularly around t � 100 000 ts, due to the possible disconti-
nuity between the two phases at the exit. Generally, the smoothed fo
curve in Fig. 10 is used for further calculations. Based on Eq. (34), we
confirm that Krw is calculated from the flow at the exit and should,
therefore, be a function of Swe, not Sw.

To generate more accurate relative permeability curves, we need
to discard spurious data from the unsteady simulations. From Fig. 11,
we can also see that the ranges of Sw and Swe are not identical. For
example, Swe at the exit sometimes exceeds Sw, as seen when
t > 300 000 ts. This is reasonable, as the exit may be nearly fully occu-
pied by water at certain moments. However, according to our unsteady
simulations, when Sw reaches a maximum of 0.885, with the remaining
oil saturation So ¼ 0:115, the flow of oil inside the porous media stops
(i.e., Kro ¼ 0). Therefore, any data for Kro when Swe > 0:885 is not
meaningful and should be discarded.

On the other hand, as Sw approaches 0.885, Kro becomes very
small, and, according to Eq. (31), Krw should become highly sensitive
to fo. Since the denominator in Eq. (31) is approaching zero, the

calculation of Krw becomes unstable, leading to oscillations. Even small
errors in measuring fo can cause significant errors in Krw. The dashed
blue line in Fig. 5, around Sw � 0:85, illustrates this instability.
Therefore, when Swe > 0:885, the data for both Kro and Krw should be
discarded. In Fig. 5, data for Swe > 0:885 has been omitted.

In conclusion, by plotting Kro as a function of Sw and Krw as a
function of Swe, and by excluding extraneous data, we can obtain rela-
tive permeability curves that are consistent with the results from
steady-state LBM simulations.

2. “Constant-Dp” policy

In this subsection, we discuss the measurement of two-phase rela-
tive permeability using the unsteady Constant-Dp policy. We aim to
maintain a constant inlet pressure in the unsteady “waterflooding”
simulation. In our simulations, the surface tension, wettability, and vis-
cosity ratio are consistent with the previously discussed unsteady con-
stant-q case.

At the inlet boundary, a pressure boundary condition is applied,
with a constant density q1 ¼ 0:572 mu=lu2. Initially, the fluid
density is set to q2 ¼ 0:555 mu=lu2. The expected average density
at the outlet (located at Y ¼ 80) is q2. Consequently, we expect
the density difference between the inlet and outlet to be
Dq ¼ q1 � q2 ¼ 0:017 mu=lu2.

To minimize the effects of capillary forces and end effects in the
unsteady simulation, the pressure drop across the porous media must
be sufficiently large. A criterion is provided for this judgment. When
constant pressure waterflooding is used, the initial displacement pres-
sure difference Dp0 is determined such that pp60:6, where pp is
defined by the following equation:

pp ¼ row
Dp0

ffiffiffiffiffiffiffiffiffiffi
K=/

p ; (35)

where Dp0 is the initial displacement pressure difference. In our simu-
lations, pp is calculated as

pp ¼ row
c2sDq

ffiffiffiffiffiffiffiffiffiffi
K=/

p ¼ 0:003
1
3
� 0:017

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48:4=0:77

p � 0:067 < 0:6;

which satisfies the criterion.
After performing the unsteady simulation and processing the

data according to Eqs. (29)–(31), we obtained the oil and water relative
permeabilities, Kro and Krw, as functions of Sw (see Fig. 13). The Kro

and Krw curves obtained from the unsteady simulation are found to be
consistent with the discrete data from the steady simulations.

For the constant. Dp case, we now discuss the details of the simu-
lation, focusing on the trends of the density difference Dq and flow
flux q. The variations of Dq and q as functions of time are shown in
Fig. 14. It can be observed that at the initial time of 2600 time steps,
both Dq and q rapidly evolve toward a quasi-steady state. They then
reach plateaus with Dq � 0:013 and q � 0:72. Therefore, in calculat-
ing relative injectivity I, we use Dp0 ¼ c2s � 0:013 and q0 ¼ 0:72.

However, it is also noted that after t ¼ 100 000 time steps, Dq
approaches a constant value of approximately Dq � 0:0117, which
significantly deviates from the expected specified value of 0.017. This
discrepancy arises because the convective outlet boundary condition
used in the simulation is not a pressure boundary condition, and thus,

FIG. 12. Applying an inappropriate Sw , relative permeability of oil (Kro) and water
(Krw ) as functions of (Sw ). Discrete data points were obtained from steady-state simu-
lations, while the curves represent results from the unsteady method (constant-q).
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it cannot restrict the variation of pressure as effectively as a true pres-
sure boundary condition would.

As a result, in simulations with the constant-Dp policy, the mea-
sured Dp shows a notable discrepancy from the expected value, while
in the constant-q case, the measured flow flux q remains close to the
specified value. Given this, the overall flow characteristics in the con-
stant-q policy are easier to predict. While both constant-Dp and con-
stant-q approaches can yield satisfactory relative permeability curves,

we recommend using the constant-q policy for improved
predictability.

III. CONCLUSION

We introduce the first application of the lattice Boltzmann
method (LBM) for unsteady-state measurement of two-phase relative
permeability curves, removing the restrictions of periodic boundaries.
In our unsteady LBM simulations, both the constant-q and constant-
Dp policies were employed. By comparing the results with steady-state
measurements, we demonstrate that the proposed unsteady-state
methods not only yield accurate relative permeability curves but also
significantly improve computational efficiency.

In this study, we have analyzed the characteristics of Kro in
unsteady simulations. At the early stage of the simulation, fo ¼ 1, and
the relative injectivity I is the dominant factor. As the simulation pro-
gresses, the variation in I smooths out, and Kro decreases significantly
with fo. While Kro should ideally be plotted as a function of saturation
inside the porous media (Sw), since Krw is calculated based on the flow
at the exit, it should be expressed as a function of Swe rather than Sw.

To obtain an accurate Krw curve, it is crucial to discard spurious
data from the unsteady simulations, particularly data corresponding to
a remaining oil saturation (Sw > 0:885), as this can lead to misleading
results.

While both the constant-Dp and constant-q methods yield satis-
factory relative permeability curves, we recommend the constant-q
approach. This policy is more predictable, as the measured flow flux q
aligns closely with the specified value, making it easier to manage the
overall flow characteristics in the simulation. In our follow-up studies,
we plan to extend the current framework to investigate the effects of
varying wetting properties and heterogeneous porous structures in
three-dimensional domains.
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