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Hydrodynamic benefits of intermittent locomotion of a self-propelled flapping plate

Kui Liu, Haibo Huang ,* and Xi-Yun Lu
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China

(Received 22 June 2020; accepted 5 November 2020; published 30 November 2020)

Intermittent locomotion is a widely used behavioral strategy for fish and birds to reduce the cost of movement.
The intermittent locomotion performance of a self-propelled flapping plate is investigated numerically. Two
intermittent swimming modes, namely, the multiple-tail-beat mode (MT mode) and the half-tail-beat mode (HT
mode), as well as the continuous swimming mode (CT mode), are considered. Performance is evaluated from
propulsive speed, efficiency, and cost of transport. The hydrodynamic performances of the intermittent modes are
found to be better than the hydrodynamic performance of the CT mode when the bending stiffness K is moderate
[i.e., K ≈ O(1)] and the duty cycle is not too small. For the two intermittent modes, the performance of the HT
mode is better than that of the MT mode when K is small or moderate, while the situation is opposite when K is
large. It is found that compared to the asymmetric wake of the MT mode, the symmetric wake of the HT mode
is favorable to generate more thrust force and therefore achieve better performance. Besides, at moderate K , the
largest bending deformation of the plate in the HT mode, as well as the large normal force, produces the largest
thrust during the flapping. The present results can help us to better understand the intermittent locomotion of
animals and may be helpful for bionic design.
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I. INTRODUCTION

Intermittent locomotion is a widely adopted strategy for
animals to save energy, especially when they are in long-
distance migration. Birds use interspersed periods of flapping
and gliding to reduce the mechanical requirements of level
flight while undergoing cyclical changes in flight altitude,
which is known as undulating flight [1–3]. Similarly to birds,
lots of fish and marine animals swim in a special way where
the whole cycle consists of an active burst phase and a passive
coast phase, known as burst-and-coast swimming or inter-
mittent swimming [1,4,5], which is quite different from the
continuous swimming.

Evidence has shown that hydrodynamic benefits generate
from the intermittent swimming style. Dynamical models pro-
posed by Weihs [6,7] predicted that, to swim a given distance,
more than 50% energy will be saved by adopting the inter-
mittent swimming gait. Besides, compared with continuous
swimming at the same mean speed, the burst-and-coast swim-
ming style could save 14% to 19% energy [6]. Based on the
Bone-Lighthill boundary layer thinning hypothesis, the above
predictions showed that skin friction drag on a fish body may
increase when it undulates [8]. Under the circumstances, a fish
may then reduce its overall skin friction drag by interspersing
an undulation phase with a coasting phase [9].

In experiments and observations, many results also have
shown the superiority of an intermittent swimming gait. Ribak
et al. [10] analyzed the swimming gait of cormorants, which
swam underwater at shallow depth in a controlled research
setup, by using kinematic analysis of video sequences. They
estimated the resultant drag of the birds during the entire pad-
dling cycle and concluded that the burst-and-glide gait may
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be beneficial even at lower speeds as the birds dive deeper.
Wu et al. [11] observed the differences between two burst-
and-coast modes, namely, the multiple-tail-beat mode (MT
mode) and the half-tail-beat mode (HT mode) by quantifying
the swimming kinematics and the flow patterns generated by
the carps. Besides, it is estimated from digital particle image
velocimetry experiments that the energy saving may be 45%
when burst-and-coast swimming is adopted by the koi carps
compared with steady or continuous swimming at the same
mean speed. Gleiss et al. [1] experimented on four marine
vertebrate species of sharks and pinnipeds and found that gait
patterns resemble undulating flight. A direct comparison of
continuous and intermittent swimming seals indicated that,
during intermittent swimming, less locomotory effort was ex-
pended than during continuous swimming at corresponding
velocities [1].

The experimental studies of living fish play an important
role in deepening our understanding of the mechanics and
mechanisms of the locomotion of fishes and birds. How-
ever, to control the movement of animals is very hard. Some
important physical quantities, such as force and torque, are
very difficult to measure. Besides, it may be difficult to fig-
ure out the effect of each control parameter on performance
by operating corresponding experiments independently [12].
One way to overcome these difficulties is to replace live
fish with mechanical devices or fish robotics in the research
of fish locomotion [13]. Another efficient way is numerical
simulation, which is extremely convenient to obtain critical
information and details about the body and the flow field,
such as power and vorticity. Results of two-dimensional nu-
merical simulation by Chung [14] showed that intermittent
swimming can save 56% energy compared with continuous
swimming, which is comparable to the experimental result of
Wu et al. [11]. Recently, through a simulation of the inviscid
flow of a self-propelled swimmer, which consists of a virtual
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FIG. 1. Schematic diagram of the locations and shapes of a flex-
ible plate during one cycle period (Tcyc = Tc + Tb) in the (a) MT,
(b) HT, and (c) CT modes. The head of the plate is forced to heave
up and down (the forcing is stopped during the coast period Tc). Due
to the interaction of the plate and the surrounding fluid, the plate may
deform passively and move forward (from right to left). Tb is the burst
period, which is a constant in our study.

body and a two-dimensional hydrofoil pitching intermittently
about its leading edge, Akoz and Moored [9] discovered an
additional inviscid Garrick mechanism that can save intermit-
tent swimmers as much as 60% of the energy. Dai et al. [12]
numerically studied the intermittent locomotion performance
of a fishlike elastic swimmer whose mass ratio and bending
rigidity vary along the body. Their results indicated that, when
the cruising Reynolds number (Re) was large enough and the
duty cycle (DC) was moderate, the intermittent style was more
economical than the continuous style, where DC is the ratio of
the burst period (Tb) to the total cycle period (Tcyc), i.e., DC =
Tb/Tcyc. Numerical simulation of a self-propelled plate at low
Re (Re = 100) also showed some kind of superiorities of
intermittent locomotion [15], because the maximum average
cruising speed and the maximum swimming efficiency arises
at DC = 0.9 and 0.3, respectively. However, it is ambiguous
whether intermittent swimming is more energy efficient than
continuous swimming because there is no direct comparison
between them in the literature.

In the present study, the locomotion of a self-propelled
flexible plate is systematically studied through numerical
simulations. We consider three different swimming modes
including the continuous mode (CT mode) and two intermit-
tent modes, i.e., the MT and HT modes. We investigated the
propulsion performance of the plate with the change of bend-
ing stiffness and the duty cycle. Our aim is to find out which
mode is the optimal one and explore the inherent mechanisms.

II. PHYSICAL PROBLEM AND MATHEMATICAL
FORMULATION

The schematic diagrams of the locations and shapes of a
plate within one period for the three swimming modes are
shown in Fig. 1. The leading edge of the plate is forced

to heave intermittently [Figs. 1(a) and 1(b)] or continuously
[Fig. 1(c)] in the lateral direction. In each mode, the plates are
in chronological order from right to left.

For the intermittent modes [the MT mode in Fig. 1(a) and
the HT mode in Fig. 1(b)], Tb = 1/ f0 is the burst period,
where f0 is the base frequency, which is a constant. Hence,
Tb is also a constant in our study. The total cycle period Tcyc

is composed of burst and coast periods, i.e., Tcyc = Tb + Tc,
where Tc is the coast period.

An important adjustable parameter in the intermittent
modes, the DC is introduced. It is a period ratio between the
burst period and the total cycle, i.e,

DC = Tb

Tcyc
. (1)

Since the burst period is less or equal to the total cycle,
we have DC � 1. Through adjusting the DC, Tcyc and Tc

are changeable. We have Tcyc = Tb
DC and Tc = Tb( 1

DC − 1). If
DC = 1, it is a continuous flapping with Tcyc = Tb and Tc = 0.

For the MT mode [Fig. 1(a)], the heaving motion of the
leading edge is prescribed by

y(t ) =
{

A cos(2π f0t ), 0 � t � Tb,

A, Tb � t � Tcyc,
(2)

For the HT mode [Fig. 1(b)], the heaving motion of the
leading edge is prescribed by

y(t ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A cos(2π f0t ), 0 � t � Tb
2 ,

−A, Tb
2 � t � Tcyc

2 ,

A cos{2π f0[t − (Tcyc−Tb)/2]}, Tcyc

2 � t � Tcyc

2 + Tb
2 ,

A,
Tcyc

2 + Tb
2 � t � Tcyc.

(3)
For the CT mode [Fig. 1(c)], the forced motion of the

leading edge is

y(t ) = A cos (2π fct ), (4)

where A is the amplitude and fc is the heaving frequency. Here
an adjustable frequency ratio for the CT mode, fr = fc/ f0, is
introduced. Equation (4) can be written as

y(t ) = A cos (2π fr f0t ). (5)

It is noticed that fr � 1 in our study of the CT mode. The
total cycle period Tcyc = Tb/ fr is larger or equal to Tb, which
is a constant. In the continuous mode, f0 = 1

Tb
is the largest

flapping frequency in our simulations. Due to the largest en-
ergy input of the fastest flapping, it may achieve the highest
cruising speed. The plate may decrease its frequency ( fr < 1)
to achieve a lower cruising speed.

In these actuation modes, only the leading edge of the
plate is restricted with the prescribed lateral heaving motion.
There is no active pitching. Due to fluid-structure interaction,
the plate may deform and pitch passively, which results in
horizontal locomotion. The heaving flexible plate has been
used to model the general self-propulsive swimming [16–19]
because it not only includes the active heaving motion but also
includes the passive pitching motion. Despite its limitations
of the simple actuation, we feel that the results obtained from
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this model may incorporate enough physics to contribute to a
better understanding of the problem.

To simulate the fluid flow, the incompressible Navier-
Stokes equations are adopted:

∂v

∂t
+ v · ∇v = − 1

ρ
∇p + μ

ρ
∇2v + f b, (6)

∇ · v = 0, (7)

where v is the velocity, p is the pressure, ρ is the density of
the fluid, μ is the dynamic viscosity, and f b is the Eulerian
momentum force acting on the surrounding fluid due to the
immersed boundary, as constrained by the no-slip boundary
condition.

The structural equation is employed to describe the defor-
mation and motion of the plate [20,21],

ρl
∂2X
∂t2

− ∂

∂s

[
Eh

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
−1)

∂X
∂s

]
+ EI

∂4X
∂4s

= Fs, (8)

where s is the Lagrangian coordinate along the plate, ρl is
the structural linear mass density, X (s, t ) = [X (s, t ),Y (s, t )]
is the position vector of the plate, and Fs is the Lagrangian
force exerted on the plate by the surrounding fluid. E is the
Young’s modulus of the plate, h is the thickness of the plate,
and I is the moment of inertia of the plate section. Eh and EI
denote the structural stretching rigidity and bending rigidity,
respectively. At the leading edge of the plate, the clamped
boundary condition is adopted, i.e.,

− Eh

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
−1)

∂X

∂s
+ EI

∂3X

∂3s
= 0,

Y (t ) = y(t ),
∂X
∂s

= (1, 0). (9)

At the free end of the plate, the boundary conditions are
expressed as

−Eh

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
−1)

∂X
∂s

+ EI
∂3X
∂3s

= 0,
∂2X
∂s2

= 0. (10)

In addition, X (s, 0) = [s, y(0)] and ∂X/∂t (s, 0) = (0, 0) are
the initial conditions for the plate.

To normalize the above equations, the characteristic quan-
tities ρ, L, and Uref are chosen where ρ is the fluid density, L is
the dimensional length of the plate, and Uref is the maximum
flapping velocity of the leading edge in the lateral direc-
tion, i.e., Uref = 2πA f0. Therefore, the characteristic time is
Tref = L/Uref . Based on dimensionless analysis, the follow-
ing dimensionless governing parameters are introduced: the
duty cycle DC, the frequency ratio fr , the Reynolds num-
ber Re = ρUref L/μ, the heaving amplitude A, the mass ratio
of the plate to the fluid M = ρl/ρL, the stretching stiffness
S = Eh/ρU 2

ref L, and the bending stiffness K = EI/ρU 2
ref L

3.

III. NUMERICAL METHOD AND VALIDATION

The governing equations of the fluid-plate problem
are solved numerically by an immersed boundary-lattice
Boltzmann method for the fluid flow and a finite element
method for the motion of the flexible plate. The immersed
boundary method has been widely applied to problems re-
lating to moving boundaries immersed in a viscous fluid

FIG. 2. Validation for the case of a self-propelled plate flapping
continuously with the nondimensional governing parameters: Re =
200, A = 0.5, M = 0.2, K = 0.8, and S = 1000 (Zhu et al. [16]).
The streamwise velocity of the leading edge as a function of time is
presented.

flow [22,23], while the lattice Boltzmann method has been
extensively used to simulate complex flows as an alterna-
tive to conventional numerical methods for the Navier-Stokes
equations [19,24–27]. Here we combine these two methods to
solve the fluid-structure problem. The body force term f b in
Eq. (6) represents an interaction force between the fluid and
the immersed boundary to enforce the no-slip velocity bound-
ary condition. Equation (8) for the plate is discretized by a
finite element method, and deformations with a large displace-
ment of the plate are handled by the corotational scheme [28].
More details on numerical methods can be found in our previ-
ous papers (Tian et al. [29], Hua et al. [21], Huang et al. [30]).

To validate the numerical method, a single plate in iso-
lated swimming [16] was simulated with Re = 200, A = 0.5,
M = 0.2, K = 0.8, and S = 1000. In the simulation, the com-
putational domain for fluid flow is chosen as [−15, 25] ×
[−15, 15] in the x and y directions, which is sufficiently
large so that the blocking effects of the boundaries are not
significant. A constant pressure with v = 0 is imposed at
all boundaries except for the outlet where ∂v/∂x = 0 with
constant pressure is imposed [31]. Initially, the fluid velocity
field is zero in the entire computational domain. In the x and
y directions the mesh is uniform with spacing �x = �y =
0.01L, where L is the dimensional length of the plate. The
time step is �t = Tb/10 000 for the simulations of fluid flow
and plate deformation. Besides, a finite moving computational
domain [21] is used in the x direction to allow the plate to
move for a sufficiently long time. As the plate travels one
lattice in the x direction, the computational domain is shifted;
i.e., one layer is added at the inlet and another layer is removed
at the outlet [21].

Figure 2 shows the streamwise velocity of the leading
edge as a function of time. It is seen that the present re-
sult is consistent with that of Ref. [16]. The results of
grid independence and time step independence are shown
in Fig. 3. It is seen that �x/L = 0.01 and �t/Tb = 0.0001
are sufficient to achieve accurate results. Therefore, �x/L =
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FIG. 3. The grid independence (a) and time step independence (b) studies for the HT mode with K = 1 and DC = 0.5. The cruising speed
U as a function of time is presented, and Tb = 1/ f0 is the burst period.

0.01 and �t/Tb = 0.0001 were adopted in all of the present
simulations.

Besides, the numerical strategy used in this study has been
validated and successfully applied to a wide range of flows,
such as the coupling performance of tandem flexible inverted
flags in a uniform flow [30] and the effect of the trailing-edge
shape on the self-propulsive performance of heaving flexible
plates [32].

IV. RESULTS AND DISCUSSION

All key parameters in this study are shown in Table I.
Among them, four parameters are fixed: Re, A, M, and S,
which are identical to those in Refs. [16,18,19]. While other
parameters are variable: the bending stiffness K , the duty cy-
cle DC, and the frequency ratio fr . In addition, the stretching
stiffness (S) is equal to 1000, which is large enough so that the
stretching deformation is negligible. It is noted that the case
with DC = 1 for intermittent swimming (including the MT
and HT modes) and the case with fr = 1 for the CT mode are
identical.

A. Performances of the three swimming modes

First, three typical cases with identical rigidity (K = 1) but
different swimming modes are tested. In the cases of the MT
and HT modes, the typical DC is set to be 0.5. In the CT mode
fr = 1. Typical instantaneous cruising speeds as functions
of time in the three cases with K = 1 are shown in Fig. 4.
Among the three cases, it is seen that the mean cruising speed
U of the CT mode is higher than those of the intermittent
swimming modes. U of the HT mode seems a little bit higher
than that of the MT mode, although it has the same value of
DC. The Re of the CT mode based on the cruising speed is
about 350.

TABLE I. The key parameters in the simulations.

Reynolds number Re 200
Heaving amplitude A 0.5
Mass ratio M 0.2
Stretching stiffness S 1000
Bending stiffness K 0.1, 1, 10
Duty cycle DC 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Frequency ratio fr 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95

From the zoom-in view [Fig. 4(b)] we can see that, in the
CT mode, u(t ) is a sinusoidal function with two surging os-
cillations of about the average speed in one period, which has
been observed in many previous self-propelled studies [9,17].
For the HT mode, the pattern of u(t ) sharpens near peaks and
turns into the sawtooth-shaped wave form [12]. For the MT
mode, there are two successive peaks during the burst period.
When it comes to the coast period, the speed drops rapidly and
nonlinearly due to the drag force.

To further evaluate the performance of the swimming, the
cost of transport (COT), the mean swimming power Pave, the
input work W , and the efficiency η are introduced. The COT is
a useful performance metric, which is widely used in biology.
The physical meaning of the COT is the amount of energy that
it takes to swim a unit distance. The COT is reported on a per
unit mass basis and has the dimension of acceleration. Hence,
generally speaking, a swimmer with the smaller value of the
COT is preferred. Specifically, it is defined as

COT = Pave

mU
, (11)

where m is the mass of the swimmer and U is the mean
cruising speed. Pave and U are defined as

P =
∫ 1

0
F · ∂X

∂t
ds, Pave = 1

Tcyc

∫ t ′+Tcyc

t ′
a(t )Pdt, (12)

U = − 1

Tcyc

∫ t ′+Tcyc

t ′

(
∂X

∂t

∣∣∣∣
s=0

)
dt, (13)

where P is the instantaneous power, F represents the force on
the surrounding fluid by the plate, and a(t ) is the shielding
function [12], i.e.,

a(t ) =
{

1, if t ∈ active burst period,
0, otherwise. (14)

It is noted that, for the CT mode, Tcyc = Tb
fr

, with fr � 1. U
in the case with fr = 1 may be the largest. In the following,
COT and U are normalized by the corresponding quantities in
the CT mode with fr = 1 [12], i.e.,

COT∗ = COT

COT| fr=1
, (15)

U ∗ = U

U | fr=1
. (16)
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FIG. 4. (a) The instantaneous cruising speeds of the plate as functions of time (K = 1). In the intermittent modes (the MT and HT modes),
DC = 0.5, while in the CT mode, fr = 1. (b) The zoom-in view of the speed within one period.

Second, we would like to discuss the performances of the
three swimming modes, under the circumstances of different
bending rigidity. Figure 5 shows the normalized cost of trans-
port (COT∗) as a function of U ∗ for K = 0.1, 1, and 10. It can
be seen that the results are very different. For small K , i.e.,
K = 0.1 [Fig. 5(a)], the CT mode has the best performance
in general because the COT∗ of the CT mode is smaller than
that of the other two modes at the same U ∗ when U ∗ < 0.9.
Meanwhile, the performance of the MT mode is not as good as
that of the HT mode. It is noted that for the MT and HT modes,
the maximum U arises at DC = 0.9 instead of at DC = 1 [see
the points A and B in Fig. 5(a)], which is similar to the results
of Ryu and Sung [15]. The reason may be that the presence of
the short coast period can avoid a strong tension in the flexible
plate in the longitudinal direction so that the flapping motions
of the flexible plate are enhanced for DC = 0.9 [15].

Figure 5(b) shows the results of moderate K (K = 1). It is
seen that the performance of the HT mode is the best because
the COT∗ of the HT mode is the lowest. Besides, the MT
mode also outperforms the CT mode for DC > 0.3. In other
words, generally speaking, the intermittent swimming modes
perform better than the CT mode at moderate K . The largest
discrepancy of the COT between the HT and CT modes arises
at DC ≈ 0.4 with an energy saving of 22% approximately,
while that between the MT and CT modes arises at DC ≈ 0.6
with an energy saving of 9% approximately.

At a large K , i.e., K = 10, as shown in Fig. 5(c), the COT∗

of the HT mode is completely larger than that of the CT mode
at any U ∗. Besides, the COT∗ of the MT and CT modes are
almost the same when DC � 0.5. When DC < 0.5, the COT∗

of the MT mode is larger than that of the CT mode. Hence,
the intermittent swimming modes have no obvious advantage
over the CT mode at large K .

Third, we would like to directly compare the two intermit-
tent swimming modes. The mean cruising speed U , the input
work W , and the propulsive efficiency η are further used to
quantify the propulsive performance of the plate [16,19]. The
input work W during one period is

W = PaveTcyc. (17)

The propulsive efficiency η is the ratio of the kinetic energy
of the plate and the input work, i.e.,

η = 1
2 mU 2/W. (18)

The results for the MT and HT modes are shown in Fig. 6.
It is seen from Fig. 6(a) that the cruising speeds in cases of
K = 0.1 are close to those of K = 10. Besides, U of K = 1 is
significantly higher than U of K = 0.1 and 10. Figure 6(b)
shows that the input works of K = 1 are slightly higher
than those of K = 10, and the input works of K = 0.1 are
significantly lower than those of K = 1 and 10. From the per-
formances of the cases of K = 1, it seems the higher cruising
speed is due to the larger input work. However, for the rigid
cases (K = 10), the input work is large, but the cruising speed
is low. Therefore, it is expected that the efficiency would be
low for the cases of K = 10. The propulsive efficiency as a
function of DC is shown in Figure 6(c). It is confirmed that
η of the cases K = 10 is the lowest among the cases with
different rigidities.

From Figs. 6(a) and 6(c), we can see that the open squares
(the HT mode) are generally above the triangles (the MT
mode) at cases of K = 0.1 and 1. Hence, in terms of the
cruising speed and efficiency, the propulsive performance of
the HT mode is better than that of the MT mode at K = 0.1
and 1. It is also seen that the situation is the opposite at
K = 10; i.e., the MT is better. These results are consistent
with the results of COT (Fig. 5). It is conjectured that the
MT mode is not preferable at moderate and small K because
it generates an asymmetric time-averaged velocity field and
leads to nonzero averaged lateral forces [12]. The details are
discussed in Sec. IV C.

B. Forces and powers

In the following, we try to reveal the propulsion mechanism
through contributions of the forces exerted on the plate. Here
three typical cases are analyzed. The key parameters of the
three cases are shown in Table II. It is noted that the three
cases achieve almost an identical cruising speed, which is
U ∗ ≈ 0.58 [see points C, D, and E in Fig. 5(b)].
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FIG. 5. The normalized cost of transport (COT∗) as a function of
the normalized mean cruising speed (U ∗) for (a) K = 0.1, (b) K = 1,
and (c) K = 10, respectively.

The Lagrangian force Fs, exerted on the plate by the sur-
rounding fluid, can be decomposed into two parts: one is the
normal force F n, in which the pressure component dominates,
and the other is the tangential force F τ , which mainly comes
from the viscous effects. These forces at the ith Lagrangian
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FIG. 6. Propulsive speed U (a), input work W (b), and propulsive
efficiency η (c) as functions of DC for the MT and HT modes with
K = 0.1, 1, and 10.

TABLE II. Key parameters in cases M, H, and C.

Case Mode Bending stiffness K DC or fr

Case M [C in Fig. 5(b)] MT mode 1 DC = 0.5
Case H [D in Fig. 5(b)] HT mode 1 DC = 0.5
Case C [E in Fig. 5(b)] CT mode 1 fr = 0.8
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FIG. 7. (a) Schematic diagram for force decomposition. The black curved line represents the plate. The red dot represents the ith
Lagrangian node. τ and n denote the local tangential and normal vectors, respectively. θ is the angle between τ and the positive direction
of the x axis. The local slope is calculated by tan θ . (b) The total x-component of F n and F τ (i.e., F n

x = ∑
i F n

x,i and F τ
x = ∑

i F τ
x,i) for the

three cases as functions of time within one cycle period. Thick and thin lines represent F n
x and F τ

x , respectively. The forces are normalized by
Fref = 1

2 ρU 2
ref L.

node are defined as follows [19]:

Fs,i = [−pI + T ] · n = F n
i + F τ

i , (19)

F n
i = (Fs,i · n)n = (

F n
x,i, F n

y,i

)
, (20)

F τ
i = (Fs,i · τ)τ = (

F τ
x,i, F τ

y,i

)
, (21)

where I is the unit tensor, T is the viscous stress tensor, τ is
the unit tangential vector toward the trailing edge, n is the
unit normal vector as shown in Fig. 7(a) in the schematic
diagram, and [·] denotes the jump in a quantity across the
immersed boundary. The power Pi can also be decomposed
into two parts: Pn

i and Pτ
i , which are contributed by F n

i and
F τ

i , respectively, i.e.,

Pi = Fs,i · u = Pn
i + Pτ

i , (22)

Pn
i = F n

i · u = Pn
x,i + Pn

y,i, (23)

Pτ
i = F τ

i · u = Pτ
x,i + Pτ

y,i, (24)

where Pn
x,i = F n

x,iu, Pn
y,i = F n

y,i v, Pτ
x,i = F τ

x,i u, and Pτ
y,i =

F τ
y,i v.

Figure 7(b) shows the total x-component of F n and F τ (i.e.,
F n

x = ∑
i F n

x,i and F τ
x = ∑

i F τ
x,i) along the whole plate for the

three cases as functions of time. It seems that F n
x contributes

much to a thrust because F n
x < 0, while F τ

x contributes to a
drag since F τ

x > 0 within one cycle period. It is also noted that
the time average of the total force in the x direction (F n

x + F τ
x )

is zero for all cases. The time averages of |F n
x | for cases M,

H, and C are 0.194, 0.224, and 0.129, respectively. So, U ∗
values of the cases are 0.58, 0.60, and 0.56, respectively [see
Fig. 5(b) or 6(a)].

The generation and distribution of F n
x are mainly induced

by the bending deformation of the flexible plate [19], which
can be quantitatively described by the local slope. Figure 8
shows the time-averaged absolute local slope and the time-
averaged F n

x along the flexible plate for the three cases. It is
seen that, compared to the MT mode, the bending deformation
for the HT mode is larger, which would lead to a larger thrust
F n

x . Although the bending deformation of the CT mode is
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FIG. 9. Instantaneous pressure contours for case M (the MT mode, DC = 0.5, K = 1). The time interval between two adjacent contours is
Tcyc/8.

close to that of the MT mode, the thrust F n
x of the former is

significantly smaller than that of the latter. Hence, the inter-
mittent swimming styles do enhance the thrust.

Pn
x,i is the power produced by F n

x,i (Eq. 23). Integrating Pn
x,i

with time along the whole plate within one period, we can
obtain the values of the useful work done by F n

x in cases M,
H, and C, which are 0.707, 0.789, and 0.249, respectively.
The corresponding total works are 3.890, 3.985, and 2.406,
respectively. The corresponding ratios of the useful and total
works are approximately 0.18, 0.20, and 0.10, respectively.
Hence, the HT mode achieves the lowest COT [Fig. 5(b)] and
the highest propulsive efficiency [Fig. 6(c)]. In other words, at
moderate K , the performance of the HT mode is the best.

C. Flow structure

The propulsive behaviors of the flapping flexible plate are
closely associated with the flow structure; thus, the pressure
distribution and the vortical structures around the plate as well
as the time-averaged streamwise velocity field are explored.
First, the three cases in Table II are taken as examples to
illustrate the influence of flow field on thrust and power.
Figures 9–11 respectively show the instantaneous pressure
contours of the three cases in one cycle period, and the time
interval between two adjacent contours is Tcyc

8 . It is seen that,

for the three cases, at t = 0, the pressure around the leading
edge of the plate is higher and the deformation of the plate
is small [Figs. 9(a)–11(a)]. At this time, the plate experiences
net drag force. Figure 12(a) shows that Fx > 0 for the three
cases when t = 0.

At t = Tcyc

8 , the pressure on the upper surface is low while
it is high on the lower surface [Figs. 9(b)–11(b)]. For cases
M and H, due to the large bending deformation of the plate,
the pressure difference leads to the thrust, i.e., Fx < 0 [see
Fig. 12(a)]. However, for case C, the bending deformation
and the pressure difference are both small, thus Fx ≈ 0 [see
Fig. 12(a)]. At t = 2Tcyc

8 , for cases M and H, because of the
small bending deformation of the plate and the high pressure
in the leading edge of the plate [Figs. 9(c) and 10(c)], the plate
experiences a drag force [Fig. 12(a)]. While for case C, since
the increase of the deformation and the pressure difference
[Fig. 11(c)], the horizontal force for the plate is the thrust
force, as shown in Fig. 12(a).

At t = 3Tcyc

8 , Fig. 9(d) shows that the deformation of the
plate and the pressure difference across the plate are both large
for case M, which leads to the thrust force [see Fig. 12(a)]. For
case H, it is noted that the plate is experiencing that the coast
period, the deformation, and the pressure difference are very
small [see Fig 10(d)], thus the horizontal force for the plate is
the drag force [see Fig. 12(a)]. As for case C, the deformation

FIG. 10. Instantaneous pressure contours for case H (the HT mode, DC = 0.5, K = 1). The time interval between two adjacent contours
is Tcyc/8. The contours are identical to those in Fig. 9.
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FIG. 11. Instantaneous pressure contours for case C (the CT mode, fr = 0.8, K = 1). The time interval between two adjacent contours is
Tcyc/8. The contours are identical to those in Fig. 9.

and the pressure difference are also small [see Fig. 11(d)],
which leads to Fx ≈ 0 [Fig. 12(a)].

When t � 4Tcyc

8 , the plate is in the coast period for case M,
so it is predictable that the plate experiences net drag force
[Fig. 12(a)], which also can be seen from Figs. 9(e)–9(h). For
cases H and C, the pressure distribution and deformation of
the plate look symmetric with respect to those at t <

4Tcyc

8
(Figs. 10 and 11), which results in the same Fx as that in the
first half period [Fig. 12(a)].

As can be seen from the above analysis and Fig. 12(a),
the plate experiences net drag force in the coast period for
intermittent modes, during the period the speed of the plate
decreases dramatically (see Fig. 4, the instantaneous speed
reduces 70% and 50% in the MT and HT modes, respectively).
Hence, despite the speed increases during the burst period,
the overall cruising speed in the intermittent modes may be
similar to that in the CT mode.

Figure 12(b) shows the time history of power for the three
cases. For the intermittent modes (cases M and H), there
are two peaks during the burst phase, corresponding to the
down-stroke and the up-stroke respectively, similar to those in
the continuous mode (case C). It can be seen that, for the
intermittent modes, although the power is high during the
burst phase, it is almost zero during the coast phase. In other

words, the intermittent swimmers save the input power during
the coast phase. In this way, the average power (or the COT) of
the intermittent mode may be lower than that of the CT mode
within one cycle.

The vortex shedding behind the plate for various swim-
ming modes and bending stiffness are compared in Fig. 13.
Here the results with DC = 0.5 for the intermittent modes
and fr = 0.8 for the CT mode are presented. The results of
K = 0.1 are very similar to those of K = 1 and they are
not shown here. Results indicate that four vortices are shed
from the tail of the plate within one period for both intermit-
tent modes, but the vortex streets behind the plate are very
different.

For the MT mode, when K is moderate, i.e., K = 1
[Fig. 13(a)], two strong vortices (A and B1) form a strong
vortex dipole, while a weaker vortex B2 and a strong vortex
C form a pair. The vortex B2, which decays rapidly, generates
from the broken effect of B1. There is a much smaller and
weaker vortex D shedding from the tail finally, which dissi-
pates quickly. Thus, only vortices A, B1, B2, and C are visible
in the downstream. The vortex dipole and the “weak-strong”
vortex pair travel along two straight lines which compose two
vortex streets. When K is large, i.e., K = 10, the results are
similar to those of K = 1, but the vortices become chaotic
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FIG. 13. Vorticity contours for three swimming modes. The left
and right columns are cases of K = 1 and K = 10, respectively. From
top to bottom, the rows are the cases of the MT (DC = 0.5), HT
(DC = 0.5), and CT ( fr = 0.8) modes, respectively. A, B, C, D, E,
F, B1, and B2 are the marks of vortices.

in the downstream [Fig. 13(b)]. In the MT mode, the motion
itself is asymmetric [see Fig. 1(a)], and it is not surprising that
an asymmetric flow field occurs [9].

For the HT mode, when K = 1 [Fig. 13(c)], four vortices
[see vortices A, B, C, and D in Fig. 13(c)] form two strong
vortex dipoles, which travel along two straight lines and com-
pose two identical vortex streets. That is consistent with the
result in the experiments about the HT-mode swimming of koi
carps [11]. But when K = 10, the vortices become chaotic in
the downstream [Fig. 13(d)]. The situation is similar to that
in the MT mode. It is noted that the vorticity dissipation is
significant in Figs. 13(b) and 13(d), and the vortex streets
cannot keep their structures up to a long distance in the wake.

For the CT mode, there is a classic reverse Karman vortex
street in the wake when K = 1 [Fig. 13(e)]. However, for the
large K , the wake deflects downwards [Fig. 13(f)], which is
referred to as “the symmetry breaking” [17,33–35]. Hence, it
seems that the foil flexibility is helpful to preserve the sym-
metry of the reverse Karman vortex street, which is consistent
with the results of Marais et al. [34] and Zhu et al. [17].

Here, we give a brief explanation in terms of vortex-
induced velocity. As shown in Fig. 13(e), the movement of
vortex B is mainly determined by the nearby vortices (A and
C). Vortices A and C that have identical strength look almost
symmetric about vortex B. So the induced velocities V A and
V C are symmetric up and down, and the velocity of vortex B
V B = V A + V C is horizontal. Hence, the vortex street does
not deflect. While in Fig. 13(f), the induced velocities by
vortices D and F, i.e., V F and V D are not symmetric. Thus,
the movement of vortex E is deflected, so is the vortex street.
Similar analysis is applicable to other cases in Fig. 13.

Figure 14 shows the time-averaged streamwise velocity
field for different swimming modes and bending stiffness. The
results of K = 0.1 are very similar to those of K = 1 and
they are not shown here. It is seen that, for all three rigidity
cases, the velocity field of the MT mode is always asymmetric
[Figs. 14(a) and 14(b)], because the motion of the MT mode
is asymmetric. However, the HT mode has a symmetric jet
structure when K is small or moderate [Fig. 14(c)] but the jet
becomes irregular and asymmetric at large K [Fig. 14(d)]. The

FIG. 14. Time-averaged streamwise velocity field for the three
swimming modes. The left and right columns are cases of K = 1
and K = 10, respectively. From top to bottom, the rows are the cases
of the MT (DC = 0.5), HT (DC = 0.5), and CT ( fr = 0.8) modes,
respectively.

situation of the CT mode looks similar to that of the HT mode
[Figs. 14(e) and 14(f)].

The symmetry of wake has a significant effect on propul-
sion performance. In the study of Marais et al. [34], the
average thrust is up to three times greater for the flexible foil
(symmetric wake) than for the rigid foil (asymmetric wake).
Zhu et al. [17] showed that the propulsive efficiency of the
cases with asymmetric wakes is much lower compared with
the cases with symmetric wakes. As we know, the plate moves
forward by pushing the fluid backward. In the HT mode, the
wake is symmetric. The backward momentum of the fluid or
the reverse Karman vortex, and therefore the generated thrust
force, would be totally in the x direction. However, in the
MT mode, because the wake is asymmetric, the backward
momentum of the fluid would not fully be used to propel
the plate forward. In other words, part of the backward mo-
mentum of the fluid is wasted in the lateral direction. Hence,
the asymmetric time-averaged streamwise velocity field in the
MT mode has a negative effect on the propulsive performance.

Generally speaking, the plate achieves a better propulsion
performance when the jet inclination angle is smaller [19,36].
For example, in Fig. 14 the jet inclination angle of the left
column (K = 1) is smaller than that of the corresponding right
column (K = 10), so the thrust and cruising speed are larger
in the cases of K = 1 (see Fig. 6).

However, the connection between jet structure and propul-
sion performance is only applicable to the cases of the
same swimming mode, which has identical vortex shedding
patterns. When vortex shedding patterns are different, the
connection may be not applicable. For example, in the HT
mode, there are two vortex streets in the wake, while in the
CT mode there is a single vortex street. Two vortex streets
generally have a larger jet inclination angle. Nevertheless, it
does not necessarily mean that the case with two vortex streets
must have a smaller thrust force than that of the single vortex
street. It is also noticed that, in the studies of Dong et al. [36]
and Peng et al. [19], the connection between jet structure and
cruising speed is only applicable to the cases in which the flow
structures (vortex shedding patterns) are similar.

053106-10



HYDRODYNAMIC BENEFITS OF INTERMITTENT … PHYSICAL REVIEW E 102, 053106 (2020)

V. CONCLUSIONS

The propulsive performances of intermittent and con-
tinuous swimming of a self-propelled flapping plate are
investigated numerically. It is found that when K is moderate
[i.e., K ≈ O(1)] and the duty cycle is not too small, the inter-
mittent swimming modes, including the HT and MT modes,
are more economical than the CT mode. Besides, in terms of
the mean speed U and propulsive efficiency η, the HT mode
is better than the MT mode when K is small or moderate.

We analyze the bending deformation and decompose the
forces and the power of the plate to explain the above results.
Three cases with moderate K (Table II) are taken as examples.
The results show that the bending deformation of the HT mode
is the largest, which may result in the largest thrust. The useful
work done by the thrust and the total work are calculated, it
is found that the ratio of useful work and total work for the
HT mode is the largest. Therefore, the HT mode achieves the
highest propulsive efficiency and the lowest cost of transport
among the three cases.

The flow fields of three swimming modes are explored. Re-
sults show that four vortices are shed from the tail of the plate
within one total period in the cases of the HT and MT modes,
while two vortices are shed per period in the case of the CT
mode. It is found that at the moderate K , the time-averaged
streamwise velocity of the MT mode is asymmetric, while that
of the HT mode is symmetric. Since the symmetric wake is
favorable to generate more thrust force, the performance of
the HT mode is better than that of the MT mode.

In the study, the mass ratio M is fixed to be 0.2 and the
result may be only applicable to the situation of fish fins.
The present results may be helpful to further understand the
intermittent locomotion of fish and may be useful for bionic
design.
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