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Inertial migration of spherical and oblate particles in a triangular microchannel
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The. inertial migration of both spherical and oblate particles within an equilateral triangular channel is studied
numerically. Our study primarily focuses on the effects of fluid inertia, quantified by the Reynolds number (Re)
and particle size (β). Our observations reveal two distinct equilibrium positions: the corner equilibrium position
(CEP) is situated along the angle bisector near the corner, while the face equilibrium position (FEP) is located
on a segment of the line perpendicular from the triangle’s center to one of its sides. Spherical particles with
varying initial positions predominantly reach the FEP. For oblate particles initially positioned along the angle
bisector with a specific orientation, meaning the particle’s evolution axis is inside the plane bisecting the angle,
they will migrate along the angle bisector to reach the CEP while rotating in the tumbling mode. Conversely,
for particles with different initial orientations and positions, they will employ the log-rolling mode to reach the
FEP. Notably, we identify a dual-stage particle migration process to the FEP, with trajectories converging to
an equilibrium manifold, which bears a resemblance to the cross section of the channel. To further illustrate
the transition between FEP and CEP under general initial conditions, except for those along the angle bisector,
we construct a phase diagram in the (Re, β) parameter space. This transition is often triggered by the size of
larger particles (as the FEP cannot accommodate them) or the influence of inertia for smaller particles. For the
FEP, especially for medium- or small-size particles, we notice an initial outward movement of the FEP from the
center of the cross section as Re increases, followed by a return towards the center. This behavior results from
the interplay of three forces acting on the particle. This research holds potential implications for the design of
microfluidic devices, offering insights into the behavior of particles within equilateral triangular channels.
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I. INTRODUCTION

Inertial migration, also referred to as inertial focusing, is an
incredibly powerful technique for manipulating particle mo-
tion within microchannels [1,2]. Understanding the principles
of inertial focusing is crucial in the design and optimization
of efficient microfluidic devices used for particle separation,
counting, detection, and sorting in suspensions [1,3]. The
migration dynamics of particles in this phenomenon are in-
fluenced by a multitude of factors, including fluid properties,
channel geometry, and particle characteristics.

The phenomenon of inertial migration of particles in a
tube Poiseuille flow was initially reported by Segre and Sil-
berberg [4]. In their experiment, particles accumulated at a
specific radial position approximately 0.6 times the tube ra-
dius, forming what is known as the Segre-Silberberg annulus.
Subsequent studies were conducted to explain the existence
of the Segre-Silberberg annulus [5–8]. Ho and Leal [7] and
Vasseur and Cox [8] used regular perturbation methods to
identify a force called shear gradient lift force, which acts
towards the walls of the channel. This force, along with the
wall-induced center-directed force, establishes an equilibrium
position in Poiseuille flow [1,9,10].

For plane or tube Poiseuille flow, analytical studies by
Asmolov [11] and Matas et al. [12] revealed that the
equilibrium position shifts towards the wall with increasing
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Reynolds number (Re = UL/ν), where U and L represent
characteristic velocity and length, respectively, and ν denotes
fluid dynamic viscosity. However, experimental results have
shown the existence of additional equilibrium positions close
to the channel center (inner annulus) in addition to the outer
Segre-Silberberg annulus. The discrepancy between experi-
mental and theoretical findings is attributed to the finite-size
effect of particles [13]. More recently, Nakayama et al. [14]
utilized experimental and numerical methods to further iden-
tify the presence of the inner annulus in tube Poiseuille flow.

In addition to circular tubes, curved and rectangular tubes
have also been utilized to enhance particle focusing. Di Carlo
et al. [15] were among the first to experimentally employ
curved microchannels to concentrate randomly distributed
particles into a single streamline. Rectangular ducts have also
garnered attention in studies aiming to isolate particles in
specific positions due to the presence of four face-centered
equilibrium positions [16]. Under low to moderate Reynolds
numbers (Re), particles in rectangular ducts migrate towards
the four face centers [15–17]. However, when Re surpasses a
critical value Rec, new equilibrium positions near the corners
emerge [18].

The control of particles in microchannels is significantly
influenced by the cross-sectional shapes of the channels.
In addition to circular and rectangular tubes, various other
cross-sectional shapes have been investigated. Kim et al. [3]
connected channels with circular, half-circular, and triangular
cross sections to manipulate accessible focusing positions,
successfully achieving particle focusing to a single stream
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with 99% purity. Mukherjee et al. [19] focused particles into a
single stream using low aspect ratio triangular microchannels
with a tip angle of 120◦. Subsequently, Kim et al. [20] ex-
perimentally studied the impact of particle size and Reynolds
number (Re) on the number and location of inertial focusing
positions in triangular microchannels with different tip angles.

For triangular cross sections with a tip angle of 60◦, small
particles were focused near the center of the wall, while stable
focusing positions at the corners were observed for larger
particles at Re = 20. As Re increased, the corner focusing
positions disappeared. In the case of 120◦ channels, there were
two focusing positions near the top corner and the center of
the bottom wall, respectively. With increasing Re, the top and
bottom focusing positions split and shifted towards the bottom
angle along the side wall and bottom wall, respectively. These
experiments demonstrated intriguing variations in inertial fo-
cusing positions, highlighting potential applications in various
microdevices [3,19,20].

However, it is important to note that there are certain
limitations in these experiments, particularly in terms of mea-
suring the comprehensive migration dynamics of individual
particles, including their trajectory, velocity, and rotation. Ob-
taining such measurements is challenging, yet it is essential
for revealing the underlying fluid mechanism. Additionally,
the reasons behind the variations in the equilibrium position
of particles in triangular channels with respect to particle size
and Reynolds number (Re) remain an open question.

Furthermore, in many practical applications, nonspherical
particles are commonly encountered [2], such as cell separa-
tion. Red blood cells (RBCs) are a major component of human
blood cells and their innate shape is closer to oblate spheroids.
Motivated by this, our study is dedicated to investigating
the migration of oblate particles within triangular channels.
Given the biological relevance of oblate shapes and the lack
of prior comprehensive studies on their migration dynamics,
we expect our focus on oblate particles to provide insights that
can help advance techniques for the separation and control of
biologically important cells such as RBCs.

In this study, we numerically investigate the inertial migra-
tion of single sphere or oblate particles in triangular channels.
The primary focus of this work is to examine the influence of
Reynolds number, particle size, and shape on the migration
dynamics and distribution of equilibrium positions. The paper

is organized as follows: Section II introduces the simula-
tion method and describes the physical problem. Section III
presents the results and discussions regarding the migration
of sphere and ellipsoid particles. Finally, the conclusions are
summarized in Sec. IV.

II. NUMERICAL METHOD AND PROBLEM

A. Lattice Boltzmann method

The lattice Boltzmann method (LBM) is used to solve
the incompressible Navier-Stokes equations and the immersed
moving boundary (IMB) method [21] is used to deal with the
fluid-particle coupling.

The popular Bhatnagar Gross Krook (BGK) model with
single relaxation time τ is used and the evolution equa-
tion with an external force term is

fα (x + eαδt, t + δt ) − fα (x, t ) = �BGK
α + δt fα,

where fα (x, t ) is the particle distribution function, and �BGK
α

and f eq
α (x, t ) are the collision term and equilibrium particle

distribution function, respectively. They are written as

�BGK
α = −δt

τ

[
fα (x, t ) − f eq

α (x, t )
]

(1)

and

f eq
α (x, t ) = ρωα

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− u2

2c2
s

]
. (2)

The last term fα represents the effect of external force and is
calculated as [22]

fα =
(

1 − 1

2τ

)
ωα

[
eα − u

c2
s

+ (eα · u)

c4
s

eα

]
· F, (3)

where F is the macroscopic external force term. The macro-
scopic density ρ and macroscopic velocity u can be obtained
through

ρ =
8∑

α=0

fα, ρu =
8∑

α=0

eα fα + Fδt

2ρ
. (4)

In our three-dimensional LBM simulations, the D3Q19
velocity model is adopted. The 19 discrete velocities eα are
defined as

eα =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0, 0)c, α = 0

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c, α = 1 − 6

(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c, α = 7 − 18.

(5)

The corresponding weighting parameters ωα are ω0 =
1/3, ω1−6 = 1/18, ω7−18 = 1/36.

The lattice speed c is given by c = δx
δt , where δx is the

lattice size and δt is the time step. c2
s = c2/3 is the lat-

tice sound speed. In our simulations, we use the lattice
units, i.e., δx = 1 lattice unit (lu) and δt = 1 time step
(ts).

B. Solid particle dynamics and fluid-solid boundary interaction

The translational motion of the particle is controlled by
Newton’s second law, which is described as

m
d2xc

dt2
= Fh, (6)
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FIG. 1. Sketch of an oblate particle with the symmetric axis
(x′ axis). Oxyz and Ox′y′z′ denote the space-fixed and body-fixed
frames, respectively. (φ, θ, ψ ) represents the Euler angles.

where m is the mass of the suspended particle. The rotation of
the particle is determined by the Euler equation and is written
as

I
dωp

dt
+ ωp × [I · ωp] = T h, (7)

where I is the inertial tensor and ωp is the angular velocity of
the particle.

The above equation governing the particle rotation is
solved in a body-fixed coordinate system and the coordinate
transformation matrix is needed. As shown in Fig. 1, in a
body-fixed coordinate system, the oblate ellipsoid is described
by

x′2

a2
+ y′2

b2
+ z′2

c2
= 1. (8)

In the body-fixed coordinate system, the inertial tensor is
diagonal and the principal moments of inertia are

Ix′x′ = m
b2 + c2

5
, Iy′y′ = m

a2 + c2

5
, Iz′z′ = m

a2 + b2

5
.

(9)

In this study, Euler angles (φ, θ, ψ ) are used to describe the
rotation of the particle. Suppose that initially, the body-fixed
coordinate system coincides with the space-fixed coordinate
system Oxyz, and the symmetry axis of the spheroid aligns
with the x′ direction. The particle undergoes a series of rota-
tions: first around the z′ axis by an angle φ, then around the
new x′ axis by an angle θ , and finally around the z′ axis again
by an angle ψ .

In our simulation, we employ the immersed moving bound-
ary (IMB) method to handle fluid-structure coupling. The
IMB method was initially proposed by Noble and Torczynaski
[21] and has been used for simulating particle flow with the
discrete element method (DEM) by Cook et al. [23]. This
method has been widely employed in various engineering
problems involving particles, such as erosion [23], dredging
[24], and electromagnetic excitation of particle suspensions
[25].

In the IMB approach, an additional collision term �s
i is

incorporated into the standard evolution equation of the LBM,
accounting for the interactions with solid obstacles within the
computational cell [23]. To enforce the no-slip condition, the

TABLE I. The dimensionless equilibrium position r∗ and the
particle velocities u∗ and ω∗ at the equilibrium position. r, u, and
ω are normalized by R, um, and um/R, respectively.

r∗ u∗ ω∗

LBM (Present) 0.597 0.619 0.580
ALE (Yang et al.) 0.601 0.620 0.581
DLM (Yang et al.) 0.606 0.610 0.579

modified evolution equation is expressed as follows [21,23]:

fα (x + eαδt, t + δt )

= fα (x, t ) + [1 − Bs]�
BGK
α + Bs�

S
α + δtFα, (10)

where Bs is a weighting function. Bs is calculated as

Bs = ε(τ/δt − 1/2)

(1 − ε) + (τ/δt − 1/2)
, (11)

where ε is the local solid fraction on the lattice cell.
�s

α , which is based on the concept of bounce-back of the
nonequilibrium part of the particle distribution, is used [21],

�s
α = f−α (x, t ) − fα (x, t ) + f eq

α (ρ,U s) − f eq
−α (ρ, u),

(12)

where f−α denotes the particle distribution function along the
reverse α direction, and U s is the particle’s velocity.

The total hydrodynamic force and torque acting on the
particle are calculated by

Fh = δx2

δt

∑
n

Bn
s

∑
α

�s
αeα, (13a)

T h = δx2

δt

∑
n

(xn − xc) × Bn
s

∑
α

�s
αeα, (13b)

where xc is the center of mass of the solid particle.

C. Validation of the numerical method

Our simulation code was validated using a sphere mov-
ing in a tube Poiseuille flow, as depicted in Fig. 2(a). In
these simulations, the sphere and tube have radii a and R,
respectively, with a ratio of a/R = 0.15. The Reynolds num-
ber is calculated as Ret = 8a2um

νR = 9, where um represents the
maximum flow velocity. Two types of simulations were con-
ducted: unconstrained and constrained. In the unconstrained
simulation, the particle is free to move and migrates towards
an equilibrium position. Table I presents the dimensionless
final equilibrium position and particle velocities. Our simula-
tion results align well with those obtained using the arbitrary
Lagrangian-Eulerian (ALE) moving mesh and the distribution
of Lagrange multipliers (DLM) methods [26]. In the con-
strained simulations, the lateral migration of the particle is
suppressed and the radial position remains fixed. The particle
is allowed to move solely along a line parallel to the tube’s
axis, while being able to rotate freely. Figure 2 illustrates
the particle velocities and the hydrodynamic lift force expe-
rienced by the particle as functions of the radial position once
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FIG. 2. (a) Sketch of a sphere in a tube Poiseuille flow. Dimensionless steady-state values of velocities (b) u∗, (c) ω∗, and (d) the lift force
F ∗ with different radial positions. F is normalized by ρu2

mR2.

the particle reaches a steady state. Our results exhibit good
agreement with the findings presented in [26].

D. Flow problem

In this study, we investigate the inertial migration of neu-
trally buoyant particles in triangular microchannels. The focus
is on particles moving within a microchannel that has an
equilateral triangular cross section, as illustrated in Fig. 3. The

FIG. 3. Sketch of a particle in a triangular channel Poiseuille
flow. Here, h and w are the height and width of the equilateral
triangular cross section, respectively. Lz is the channel length.

equilateral triangle is characterized by its height h and width
w. The length of the channel is Lz.

In our analysis of nonspherical particles, we specifically
focus on oblate particles. An oblate particle is characterized
by having the inequality a < b = c, where a represents the
major semi-axis and b = c denotes the minor semi-axes. The
aspect ratio (Ar) is defined as the ratio of the minor semi-axis
(b) to the major semi-axis (a). Additionally, we define the ef-
fective radii of oblate particles as re = (abc)1/3. This implies
that the oblate particle has the same volume as a sphere with a
radius of re. The corresponding effective diameter is given by
de = 2re.

In our investigation, we introduce the blockage ratio (β) to
quantify the degree of obstruction caused by the presence of a
particle within the channel,

β = de

Dt
, (14)

where Dt is the hydraulic diameter of the equilateral triangle.
In this study, the size of the channel remains constant, and the
parameter β represents the size of the particle. The range of
β is set to be between 0.115 and 0.46. Figure 4 illustrates the
cross-sectional sketches of small, medium, and large particles
within the channel.

The Reynolds number Re is defined as

Re = UaDt

ν
, (15)

where Ua is the average velocity.
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FIG. 4. The sketches of small, medium, and large spherical particles (from left to right, β = [0.23, 0.35, 0.46], respectively).

In the subsequent analysis, we investigate the influence of
β and Re on the migration dynamics of both spherical and
oblate particles in the triangular microchannels. The channel
walls are subject to no-slip boundary conditions implemented
using the interpolated bounce-back method [27]. To induce
Poiseuille flow, a constant body force in the z-axis direction
is applied, while periodic boundary conditions are employed
in the flow direction. To ensure the reliability of our results,
we conduct a grid independence study and examine the effect
of the channel length in the flow direction, as illustrated in
Fig. 5. Our findings indicate that using w = 150 lu and Lz =
20de yields grid- and channel-length-independent results.
Hence, these parameter values are utilized in the subsequent
investigations.

III. RESULTS AND DISCUSSION

A. Migration of a spherical particle

In this section, we will examine the migration of a sphere
in the triangular channel. The particles will undergo migration
and settle into equilibrium positions due to the fluid-particle

interaction. Two equilibrium positions, i.e., corner equilib-
rium position and face equilibrium position, will be discussed
in detail. The effects of the initial position, Re, and particle
size (β) will be investigated.

1. Effect of initial position

First, we investigate the effect of different initial positions
of the particle on the final equilibrium within the channel.
Figure 6 illustrates several representative trajectories of par-
ticle migration, considering five typical initial positions. In
these cases, Re = 20 and β = 0.23.

Our observations reveal the presence of two types of equi-
librium positions within the channel. The corner equilibrium
position (CEP) is situated along the angle bisector near the
corner, which is denoted by the green hollow triangle, while
the face equilibrium position (FEP) is located close to the
middle of each face, along the mediator of that face, which
is represented by the red hollow triangle. Due to symmetry,
in total, there are six equilibrium positions within the chan-
nel. The result aligns with conclusions obtained in previous
studies [20].

FIG. 5. Effects of (a) grid size and (b) channel length on the migration of an oblate particle (Ar = 0.5, β = 0.23 and Re = 200). For
simulations in (a), Lz = 20de is used, and in (b), δx/w = 1/150 is used.
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FIG. 6. Inertial migration of particles in an equilateral triangle
channel (Re = 20, β = 0.23). Solid lines with different colors rep-
resent particle trajectories. The hollow circles indicate the initial
positions of the particles, and the hollow triangles represent the equi-
librium positions. The black dash-dotted lines denote the contours
of the shear rate at the equilibrium position. Contours traversing the
CEP are not depicted for the sake of clarity. The blue dashed line
corresponds to the particle equilibrium manifold.

For particles initially exactly located on the angle bisector
(‘TRK1’, ‘TRK2’, ‘TRK3’ in Fig. 6), they migrate towards
equilibrium positions along the angle bisector, under the in-
fluence of vertical forces. However, particles initially situated
in other positions (‘TRK4’, ‘TRK5’) exhibit nonlinear migra-
tion trajectories. These nonlinear trajectories can be divided
into two stages: the first stage involves migration towards
the wall, followed by the second stage where the trajectories
become parallel to the wall. Remarkably, in the second stage,
the trajectories of particles originating from different initial
positions collapse onto the equilibrium manifold, depicted by
the blue dashed line. This equilibrium manifold bears a re-
semblance to the cross section of the channel and tangentially

intersects a certain shear rate contour represented by the black
dashed line. It is noted that the particle migration behavior
in rectangular channels exhibits similarities to the two stages
mentioned above [28].

We would like to discuss the mechanism in the two stages.
Figure 7 provides an overview of the migration of the sphere
for ‘TRK2’, as shown in Fig. 6. In the first stage, the particle’s
motion is primarily influenced by the shear-induced lift force
(FS) and the wall-induced lift force (FW). Notably, due to the
unequal distances between the particle and the three walls,
the wall forces acting on the particle do not align perfectly
in the vertical direction. Under the influence of FS and FW,
the particle moves toward the wall and eventually becomes at-
tracted to the equilibrium manifold [28], where FS and FW are
balanced. The first stage is rapid and it takes approximately 10
times less than the second stage in our simulations.

In the second stage, owing to the large shear experienced
by the particle while being close to the wall, the contribution
of the rotation-induced lift force (F�) becomes significant. A
previous study by Cherukat and McLaughlin [29] confirms
this observation. The direction of F� is determined by the
cross product of the rotation vector and the relative particle ve-
locity vector, represented as F� = � × U r. The directions of
� and U r are labeled in the figure. According to this formula,
F� points towards the negative x axis, causing the particle to
migrate parallel to the wall and reach its equilibrium position.

To demonstrate that the second stage is primarily a result
of F�, we have conducted further investigations. Figure 8(a)
illustrates two distinct cases, denoted as case I and case II.
In both cases, we initiated particle positions at point A on the
manifold. In case I, the particle was allowed to move and ro-
tate freely, while in case II (the nonrotating case), the particle
could only translate but was constrained from rotating.

Our findings unequivocally reveal that the free particles
migrated to point B, which corresponds to the FEP, whereas
the nonrotating particles moved to point C. This stark contrast
signifies that nonrotating particles were unable to migrate
along the manifold towards the FEP, while the free particles,
influenced by F�, exhibited lateral motion during the second
stage.

FIG. 7. The particle experiences the shear-induced lift force FS and the wall-induced force FW during the first stage, and the rotation-
induced lift force F� becomes significant in the second stage.
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FIG. 8. (a) The migration trajectories of nonrotating and rotating cases. Point A is the initial position. The blue and red solid lines represent
the trajectories of rotating and nonrotating particles, respectively. Points B and C represent their final equilibrium positions. Re = 20, β = 0.23.
(b) Forces on the rotating particle during its migration toward the FEP. The red curve represents the Magnus force and the blue dashed line
represents the lift force.

There is one more thing that needs to be clarified, which is
why the leftward lift force is mainly “rotation induced” during
the second stage. We conduct a comparison of the magnitudes
of the lift force and the Magnus force. This comparison is
presented in Fig. 8(b), in which both the lift force and the
Magnus force acting on the particle during its migration to-
ward the FEP are illustrated. The Magnus force (red curve)
is calculated theoretically based on the angular velocity ω

obtained from our LBM simulation and the Magnus formula
FL = Sω × v, where S is the average coefficient of fluid re-
sistance and v is the relative velocity vector. The blue dashed
curve depicts the lift force directly obtained from our LBM
simulation. We note a consistent alignment in the trends of
these two forces. That means the lift force is mainly con-
tributed by the Magnus force, i.e., the lift force is truly rotation
induced. The minor discrepancy between the two curves is
attributed to the two other forces (FS and FW ). Therefore, we
confirm that the lift force is mainly rotation induced.

In the following sections, we will concentrate on quantita-
tively examining the effects of β and Re on the CEP and FEP.

2. The corner equilibrium position

In this section, we first examine the impact of β and Re
on the equilibrium position. Subsequently, to gain a deeper
understanding of particle behavior, we analyze the forces act-
ing on particles. During this analysis, particles are allowed
to move along a line parallel to the flow direction and rotate
freely, while lateral migration is suppressed.

In this section, we will investigate the variation of the CEP
in response to changes in Re and β. It should be noted that
at a specific Re, the CEP remains independent of the initial
locations along the angle bisector. The subsequent analyses
are based on trajectories similar to ‘TRK2’ in Fig. 6.

Figure 9(a) presents the variation of y∗
p (normalized y

coordinate of the equilibrium position) with β for different

Re values. The movement of the equilibrium position with
changes in Re and β displays an opposite trend: the equi-
librium position moves further away from the center of the
channel as Re increases at a specific β, and it gets closer to
the center as β increases at a specific Re.

To gain a better understanding of this particle behavior, we
examined the lift coefficient of the particles during their mo-
tion. The lateral forces exerted on the particle were calculated.
In these simulations, the particles were allowed to move along
a line parallel to the flow direction and rotate freely, while the
lateral migration was suppressed. The situation is similar to
the cases in the above numerical validation part (Sec. II C).

The lift coefficient CL = (CLx,CLy) is defined as

CL = FL

ρ ¯̇γ 2a4
, (16)

where FL is the lateral force on the particle in the opposite
direction of its crossflow velocity, ρ is the fluid density, and a
is the particle radius.

As shown in Fig. 10 (cases of β = 0.23), we have ex-
amined the maps of the lateral force coefficient FL on the
channel cross section. Each arrow represents a case in which
particles can solely move along the z direction and rotate.
In our simulated cases, the initial position of the particles is
below the CEP. First, we observe that the CEP is a saddle
point; even a minor disturbance applied to the particle will
cause it to move away from this equilibrium position. It is
indicated by an empty triangle symbol near the apex of the
triangle in Fig. 10.

Second, through this figure, we can elucidate the move-
ment of equilibrium positions. Now, it is important for us to
consider the three forces acting on the particle, namely, FS,
FW, and F�. Figure 11(a) illustrates the orientations of the
rotations and forces experienced by particles migrating to the
CEP and FEP, respectively. It is evident that the directions of
FS and F� are consistently aligned and opposite to that of
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Re
Re
Re
Re
Re
Re

Re
Re
Re
Re
Re
Re

FIG. 9. The effect of Re and β on the CEP: (a) Dimensionless vertical equilibrium position y∗
p as a function of blockage ratio β under

different Re. The initial position of each point is (x∗
p, y∗ p) = (0, 0.28). (b) Dimensionless vertical position yp as a function of focusing length

(dimensionless stream length z∗
p) under different Re with β = 0.29.

FW. Therefore, we can evaluate the magnitudes of FS + F�

and FW.
In the region below the CEP in Fig. 10, the net force is up-

ward and is dominated by FS + F�. The local shear-induced
lift force FS is significantly influenced by Re. As Re increases,
the region where |FS + F�| > |FW| moves up, leading to
the equilibrium position being pushed further away from the
center.

Conversely, as β increases, the particle’s border becomes
closer to the walls. Here, FW, which pushes the particle away
from the wall, grows significantly. The region where |FW| >

|FS + F�| moves down. As a result, the CEP becomes closer
to the center.

FIG. 10. Net lift force coefficient CL over triangular channels.
The arrows represent the direction, and the colors denote the mag-
nitude of CL. The background represents the shear rate contour. The
hollow triangle represents the saddle point, and the solid represents
the stable equilibrium position. Re = 20 and β = 0.23 are fixed.

To demonstrate the validity of the above conclusion,
we conduct two representative simulations, as shown in
Fig. 11(b). The first simulation aimed to investigate the impact
of particle size (β) on the CEP. In this simulation, we initially
placed a larger particle at position A, which is the terminal
equilibrium location for a smaller particle, and then released
it to observe its trajectory. It was observed that the larger
particles moved towards point B, away from the wall. This
indicates the dominance of FW, i.e., |FW| > |FS + F�|. The
second simulation involved increasing the Reynolds number
(Re) while particles initially moved from equilibrium posi-
tion A at Re = 20. As we increased the Reynolds number to
Re = 100, the particle gradually moved away from the center
towards point C, suggesting the dominance of FS + F�, i.e.,
|FS + F�| > |FW|. A similar analysis is also applicable to
the FEP. We believe that this explanation will facilitate better
reader comprehension.

In summary, for the CEP, a larger particle tends to be closer
to the center of the cross section, while increasing Re pushes
it away from the center.

In a previous study [28], an optimal value of Re was identi-
fied, which corresponds to the minimum focusing length (the
length of particle migration along the flow direction, i.e., z
direction). Figure 9(b) illustrates the variation of the focusing
length for particles with β = 0.29 at different Re. Among
these, when Re = 200, it is considered the optimal Re that
provides the minimum focusing length.

3. The face equilibrium position

Most particles from diverse initial positions (excluding the
angle bisector) tend to migrate towards the FEP (see Fig. 6).
Depending on Re or β, the particles may also migrate to
the CEP, which will be discussed in the next section. In this
section, our primary focus is on the FEP, which serves as a
stable equilibrium position, unlike the CEP.

Figure 12(a) presents the variation of y∗
p with Re for differ-

ent β. As β increases with fixed Re, the equilibrium position
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Re

FIG. 11. (a) Directions of the rotations and forces acting on particles in the triangular channel. These two particles migrate to the CEP and
FEP, respectively. (b) Trajectories of particles with increased β and Re. Point A represents the equilibrium position of the particle at β = 0.23
and Re = 20. Point B represents the equilibrium position when β is increased to β = 0.35. Point C represents the equilibrium position when
Re is increased to Re = 100.

moves closer to the center of the channel. This observation
aligns with the explanation from the previous section, where
the wall-induced lift force increases faster and pushes it closer
to the center as β increases.

However, with a fixed β, the equilibrium position is ini-
tially far away from the center and then moves closer as Re
increases. For all β values, the closest distance to the wall is
observed at Re = 100. To understand this phenomenon, we
should pay attention to the position of FEP in Fig. 10 at this
specific Re. Near the FEP, the closer the particle is to the
wall, the larger the lift coefficient pointing toward the center
(indicated by the red arrow at the bottom).

At the beginning of increasing Re, FS + F� dominate,
leading to the equilibrium position being away from the cen-
ter. However, as Re increases further, the particles can no

longer get close to the wall due to the high lift coefficient
pointing towards the center. This results in an upward move-
ment of the equilibrium position.

Next, we would like to discuss the focusing length. Fig-
ure 12(b) illustrates the variation of the focusing length for
particles with β = 0.35 at different Re. It is seen that there is
an optimal Re ≈ 60, which has the shortest focusing length.
It appears that there is no correlation between the optimal Re
case and the case with the closest distance to the wall.

4. The transition between the FEP and CEP

When the particle’s initial position lies on the bisector of
the angle, the equilibrium position (CEP) remains unchanged.
However, for particles located at other positions in the chan-

Re
Re
Re
Re
Re
Re

Re

FIG. 12. The effect of Re and β on the face equilibrium position: (a) Dimensionless vertical equilibrium position y∗
p as a function of

blockage ratio Re under different β. The initial position of each point is (x∗
p, y∗

p) = (0, −0.18). (b) Dimensionless vertical position y∗
p as a

function of focusing length under different Re with β = 0.35.

065105-9



XIONG, LIU, FENG, AND HUANG PHYSICAL REVIEW E 108, 065105 (2023)

Re

FIG. 13. Phase diagram of particle equilibrium positions in the
(Re, β) parameter plane. The red diamond represents the corner
equilibrium position (CEP), and the blue inverted triangle represents
the center-edge equilibrium position (FEP). The initial position of
each point is (x∗

p, y∗
p) = (0.23, −0.2).

nel, the final equilibrium position is influenced by both Re and
β. In this section, we take cases such as ‘TRK2’ (that share the
same initial position) as an example to explore the migration
of particles in general positions within the channel.

Figure 13 illustrates the variation of the particle’s equilib-
rium position with respect to Re and β. For large particles
(β = 0.46), the equilibrium position transitions from the CEP
to the FEP. This is because as Re increases, the FEP first
approaches and then moves away from the wall, allowing it to
accommodate larger particles. For larger particles (β > 0.46),
they can only stay at the CEP since the FEP can no longer
accommodate excessively large particles.

For medium particles (0.15 < β < 0.4), the equilibrium
position remains at the FEP. This is because these particles
initially tend towards the FEP and maintain this state due to
inertia.

For small particles (β = 0.12), the equilibrium transitions
from FEP to CEP around Re ≈ 120. As fluid inertia escalates
with increasing Re, the particle’s inertia remains constant. As
a result, particles primarily align with the flow direction. If a
small particle resides in the FEP at higher Re, the rapid flow
velocity and significant shear gradient (refer to Fig. 9) might
disrupt the equilibrium. Consequently, these particles are
carried towards the CEP, characterized by lower flow velocity
and milder shear gradient, ensuring a more stable equilibrium.

B. Migration of an oblate particle

In previous studies on inertial migration in channels, the
assumption was predominantly that particles were rigid and
spherical. However, in real suspensions, particles often exhibit
nonspherical shapes. The rotation and migration of nonspher-
ical particles in microfluidics are more complex than that of
spherical particles. For example, nonspherical particles may
display various modes such as kayaking, log rolling, and

tumbling[30]. In this section, the inertial migration of oblate
particles (Ar = 0.5) in a triangular channel is investigated.

1. Oblate particles in triangular channels

For cases of oblate particles in triangular channels, not
only the initial position but also the initial orientation may
affect their equilibrium positions. Overall, eventually, there
exist two rotational motion modes. Figures 14(a) and 14(b)
show the log-rolling and tumbling modes, respectively. In
our simulation, when particles are initially positioned along
the angle bisector with a specific orientation, meaning the
particle’s evolution axis is inside the plane bisecting the angle,
they migrate along the angle bisector to the CEP and rotate in
the tumbling mode. On the other hand, for most other initial
orientations and positions (excluding the angle bisector), par-
ticles reach the FEP with the log-rolling mode.

In fact, only the initial orientation condition that ultimately
leads to the CEP is more sensitive (it only allows the ini-
tial appearance of tumbling, which means its symmetric axis
should be inside the y − z plane). For other cases that ulti-
mately lead to the FEP, particles are independent of the initial
orientation, as shown in Fig. 14(c). The orientation of the par-
ticles is described by the unit vector n = [nx, ny, nz] parallel
to the particle’s symmetry axis. Here, to obtain more gen-
eralized conclusions, an initial orientation of (φ0, θ0, ψ0) =
(80◦, 0◦, 0◦) is adopted.

In Fig. 15(a), we present the migration trajectories of
particles from different initial positions. Four representative
positions are selected due to the symmetry of the triangular
cross section. Unlike spherical particles, oblate particles tend
to migrate toward the FEP and exhibit log-rolling motion.
Interestingly, we observe a similar equilibrium manifold as
shown in Fig. 5, but it appears more rounded compared to
the manifold of spherical particles. This curvature is corre-
lated with the tumbling motion during the migration of oblate
particles.

Figure 15(b) illustrates the time evolution of the x com-
ponent of the oblate symmetry vector, nx, for different
trajectories. Taking the blue and red curves as examples, nx

initially exhibits an oscillatory upward trend, indicating a
tumbling motion. After a short time (t < 200), it stabilizes
and the particle gradually approaches the FEP in log-rolling
mode.

Finally, we compare the focusing length for spherical and
oblate particles in Fig. 15(c). Although the trajectories of these
two particles look similar, oblate particles require a longer
focusing length than spherical particles. This difference may
be attributed to the rotary motion of oblate particles during
migration, which may effectively reduce the lateral forces
acting on them, resulting in a longer focusing length.

2. Effect of particle size

In this section, we focus on the influence of particle
size on inertial migration while maintaining Re = 20 and
Ar = 0.5. Our investigation encompasses three distinct sizes
denoted as small, medium, and large particles, corresponding
to β = 0.23, 0.35, 0.46, respectively. Notably, Figs. 16(a)–
16(c) present representative migration trajectories and motion
modes for each particle size category. It is evident that the
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FIG. 14. Evolution of an oblate particle from its initial state to equilibrium states: (a) Log-rolling mode. (b) Tumbling mode. (c) Variation
of equilibrium positions and x, y components of the orientation vector (nx , ny) (nz = 0) with particle migration for different initial orientations.

small particle migrates toward the FEP, characterized by log-
rolling rotation. Conversely, the medium and large particles
follow a trajectory that initially brings them closer to the wall,
followed by migration parallel to the wall towards the CEP.
This motion is also coupled with log-rolling rotation.

Figures 16(d) and 16(e) present the variations of focus-
ing length and nx over time for the cases with different β.
Interestingly, the medium particles seem to exhibit a special
state. In Fig. 16(d), before z∗

p < 600, the migration process
of the small and medium particles is same. At this point,
the medium particles are in a transient equilibrium state.

However, when z∗
p > 600 and t < 1000, the medium particles

start to rotate with an inclination to the original rotation axis,
but still in log-rolling mode, moving along the trajectories
parallel to the wall towards CEP. Eventually, the major axis of
the particles coincides with the angle bisector, corresponding
to nx = 0.5. But for the large particles, there is no pause
process like medium particles before t < 1000.

3. Effect of Reynolds number

In this section, we focus on the influence of Re on the
migration dynamics of oblate particles. We consider a range of

FIG. 15. (a) Inertial migration of oblate particles in an equilateral triangular channel from different initial positions. The dashed ellipses
represent the initial states of the particles, while the solid ellipses represent typical snapshots at the final states. Re = 20, β = 0.23,
(φ0, θ0, ψ0 ) = (80◦, 0◦, 0◦). (b) The x component of the orientation vector, nx , as a function of time for the different initial positions. (c) The
nondimensional position x∗

p of the particle during the migration process as a function of the nondimensional focusing length. The black dashed
line represents the x∗

p at the equilibrium position.
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FIG. 16. (a)–(c) The lateral migration trajectories (thick solid lines) of oblate particles with different sizes. The solid ellipses represent the
final states of the particles. In all cases, Re = 20. (d) The nondimensional position y∗

p of the particle during the migration process as a function
of the nondimensional focusing length. (e) The x component of the orientation vector, nx , as a function of time for the different β. In all figures,
pink, yellow, and blue represent the cases of β = 0.23, 0.35, and 0.46, respectively.

Re values from 20 to 200 with an increment of 20. Throughout
our analysis, β is held at 0.23, and Ar is maintained at 0.5.
The initial position of each case is (x∗

p, y∗
p) = (0.23,−0.2),

which is a typical general initial location. Remarkably, our
observations reveal that oblate particles exhibit migration to-
wards the FEP across all Re values. Additionally, irrespective
of the circumstances, oblate particles consistently engage in
log-rolling motion, aligning their long axis parallel to the x
axis.

Figure 17(a) graphically depicts the dimensionless equilib-
rium positions of both spherical and oblate particles in relation
to Re. Notably, for oblate particles, their equilibrium positions
decrease when Re < 120, indicating closer proximity to the
channel wall. This trend shifts as Re surpasses 120, leading
to a gradual increase in equilibrium positions, albeit with
less pronounced significance. A similar curve for spherical
particles is superimposed on the graph, demonstrating an
analogous growth pattern. Both curves exhibit a pivotal in-
flection point at approximately Re ≈ 120. This phenomenon
has been previously addressed in our discussion on the dis-
tribution of the lift coefficient on particles within the pipeline
(Sec. III A 3). However, owing to the log-rolling motion in-
herent to oblate particles at equilibrium, the upward shift of
the FEP is marginally slower when compared to spherical
particles.

Turning our attention to Fig. 17(b), we present the tem-
poral evolution of the x-component symmetry vector, nx, for
particles at Re = [40, 120, 200]. At varying Re levels, oblate
particles undergo a brief period of tumbling motion during
their migration, occurring within the time interval t = 0–130.

Subsequently, they gradually transition into log-rolling mode.
It is worth noting that the frequency of tumbling motion
diminishes at higher Re, evident in the smoother fluctua-
tions depicted in the curves. Importantly, the time required
for particles to achieve stability lengthens with increasing
Re, indicating an extended duration for nx to approach
unity (1).

4. The transition between the FEP and CEP of oblate particles

However, the transition Reynolds number increases from
120 to 140 for oblate particles. We deduce that this delay in the
transition is due to the tumbling motion of the particles during
migration, which weakens the effect of fluid on particles.

The investigation addressed in this section is aligned with
Sec. III A 4. When particles are in general initial positions,
the ultimate equilibrium can be influenced by β and Re. This
transition phenomenon will be explored within the context of
oblate particles in triangular channels, with Ar = 0.5 being
considered.

Figure 18 illustrates the phase diagrams within the (Re,
β) parameter space. It is evident that larger particles (β >

0.4) tend to migrate toward the CEP. This can be geometri-
cally reasoned as these particles undergo log-rolling motion
at the FEP. Eventually, the particle’s long axis becomes
perpendicular to the wall, rendering the FEP less accom-
modating for larger particles. For particles of medium size
(0.15 < β < 0.4), the sole equilibrium position remains at
the FEP.

For smaller particles (β = 0.12), an equilibrium position
shift from FEP to CEP occurs around Re ≈ 140. We have pre-
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Re
Re
Re

Re

FIG. 17. (a) The nondimensional equilibrium position y∗
p of the particle as a function of Re. The red curve represents the oblate particles.

The blue represents the sphere. (b) The x component of the orientation vector, nx , as a function of time for Re = [40, 120, 200].

viously examined this phenomenon in the context of spherical
particles, offering a coherent explanation based on inertia and
stability considerations.

IV. CONCLUSION

In this investigation, we employ the IMB-LBM method
to explore the inertial migration of both spherical and oblate
particles within an equilateral triangular channel. For spher-
ical particles, two distinct equilibrium positions emerge: the
corner equilibrium position is situated along the angle bi-
sector near the corner, while the face equilibrium position
is located on a segment of the line perpendicular from the
triangle’s center to one of its sides. In the majority of cases

Re
FIG. 18. Phase diagram of particle equilibrium positions in (Re,

β) parameter plane, Ar = 0.5. The initial position of each point is
(x∗

p, y∗
p) = (0.23, −0.2), which is a typical general initial location.

under investigation, particles that are initially situated along
the bisector ultimately converge towards the CEP, whereas
those with initial positions not aligned along the angle bisector
typically demonstrate migration towards the FEP.

Shifting our focus to oblate particles, similar to spherical
counterparts, they display two equilibrium positions. How-
ever, their behavior is characterized by distinct rotational
modes: log rolling and tumbling. The stability of the CEP
depends on the particle’s initial position and orientation. To
achieve equilibrium at the CEP, the particle must commence
its motion positioned along the angle bisector, with an ori-
entation facilitating tumbling around an axis parallel to the x
axis. Alternatively, particles will migrate toward the FEP and
undergo log-rolling rotation.

Examining the ultimate equilibrium configurations of
particles with general initial positions, we construct a com-
prehensive phase diagram within the parameter space defined
by Re and β. Significantly, the insights derived from our
study are universally applicable to both spherical and oblate
particles. In the case of larger particles, a tendency is observed
wherein they migrate towards the CEP. This phenomenon can
be rapidly comprehended through geometric reasoning: given
the proximity of the FEP to the wall, it becomes impractical
for larger particles to occupy this position. Consequently, their
migration is inevitably directed towards the CEP.

Smaller particles undergo an inertia-driven transition from
the FEP to the CEP equilibrium state. As Re rises, fluid
inertia becomes more influential. The movement of these
smaller particles is predominantly governed by the fluid flow.
Consequently, the fluid guides these particles towards the
CEP, characterized by reduced flow velocity and a gentler
shear gradient.

In the cases of a specific particle with different Re, we ob-
served an initial retreat of the FEP position from the channel
center as Re increases, followed by a subsequent return to-
wards the center. This phenomenon can be elucidated through
forces. As Re increases, the region where the shear-induced
lift force and rotation-induced lift force dominate moves up.
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Consequently, particles are drawn nearer to the wall. However,
with a further elevation of Re, the proximity between particles
and the wall diminishes, leading to a pronounced surge in the
wall-induced lift force, thereby propelling particles away from
the wall. Our findings have the potential to illuminate particle
manipulation within microchannels and offer insights that
could contribute to the design of a wide range of applications.
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