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This work explores the variation of viscosity of capsule suspension during the process
of capsule rupture and polymer release using the immersed-boundary lattice Boltzmann
method. The variation of viscosity is classified into three stages in the rupture process: the
deformation stage, the rupture stage, and the stable stage. In the process of polymer release,
two new stages of the variation of viscosity emerge: the diffusion stage and the dilution
stage. Furthermore, the influence of viscosity ratio (λ) on the viscosity is investigated. We
find that the effective viscosity grows with λ and approaches the solid particle limit for
very large λ, reflecting a similar behavior in the capsule shape. Finally, an available law
that relates suspension viscosity to λ, capillary number (Ca), and volume fraction (φ) is
established. The findings of this research have potential applications in fields such as oil
exploration and capsule transportation.

DOI: 10.1103/PhysRevFluids.9.093602

I. INTRODUCTION

In the field of oil development, polymer flooding is a popular method for enhancing oil recovery
[1]. With the addition of polymers, the viscosity of the injected water is increased, while the
oil-to-water viscosity ratio is reduced. This helps inhibit viscous fingering and improve the sweep
coefficient, resulting in a significant improvement in oil recovery [2]. However, a higher injection
rate is required when using polymer flooding in offshore oil fields and low-permeability fields
[3,4]. On the one hand, the most commonly used polymers, for example, partially hydrolyzed
polyacrylamide (HPAM), present the problem of shear degradation in the wellbore and near-well
zone. Experimental studies have shown that the viscosity loss of a polymer due to shear degradation
can reach 50−70% during the injection process [5,6]. On the other hand, as the injection pressure is
proportional to the flow rate and fluid viscosity, the combined increase in viscosity (compared with
water) and the flow rate leads to a higher injection pressure. This results in poor polymer injectivity
because of facility constraints [7].

To address the issues of shear degradation and low injection efficiency, solutions have been
proposed from both chemical and mechanical perspectives. One approach involves the use of
associative polymers, which form supramolecular networks through the in situ assembly of high
molecular weight polymers, thereby increasing the viscosity [8–10]. These associative polymers
can be modified by adjusting the salinity and temperature. However, they remain susceptible to
shear damage and exhibit significant retention in porous media. Another option is the utilization of
biofilms instead of synthetic polymers. Biofilms are highly resistant to shearing but can be easily
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degraded by bacterial infection [11,12]. Mechanical methods involve the implementation of flow
control devices and innovative throttling geometries to minimize shear rates. However, the proposed
solutions either fail to completely eliminate shear degradation or involve costly retrofitting [13,14].

In this research, the idea of encapsulating polymers by synthesizing micronano capsules has been
proposed. This is similar to the approach used for medical enteric-coated capsules. This method
ensures that the polymer is not released, while also providing strong shear resistance and good
injectability. Once the capsule reaches its destination, it can rupture under specific conditions, such
as a high temperature or pH, resulting in the release of the polymer and an increase in the viscosity
[15–17]. However, during transportation, the capsules may rupture due to collisions and fluid shear,
which can reduce transportation efficiency. Therefore, it is crucial to investigate the motion of
polymer-encapsulated capsules and understand the factors that contribute to capsule rupture. In this
study, we aim to investigate capsule rupture under different mechanical properties of the capsule
membrane.

Previous studies have explored the rupture of capsules and the release of polymers. For instance,
research on nonspherical polysiloxane microcapsules in a rotating device has shown that capsules
tend to rupture first at their poles [18,19]. Coarse-grained molecular dynamics simulations con-
ducted by Liu et al. have demonstrated that large vesicles can break up into smaller vesicles or
fragments after rupturing [20]. Additionally, numerical simulations and experiments have been
conducted to study the deformation and rupture of capsules in shear flows, revealing various
morphologies after rupturing [21–23]. As for the encapsulation of polymers, previous studies have
examined possible preparation methods [15–17]. However, there is currently no research available
on encapsulating polymers and their subsequent release after capsule rupture.

The objective of this research is to investigate the transport and rupture processes of encapsulated
polymer capsules through numerical simulations. The study is divided into three main parts: (i)
an analysis of the rupture of the capsule and its impact on the flow properties of the suspension,
(ii) an examination of the release of the polymer and its effect on the viscosity of the suspension, and
(iii) an investigation of the effect of high λ on the viscosity of suspension. The article is structured
as follows. In Sec. II, we provide a description of the problem and introduce the numerical method
used. The results and discussion are presented in Sec. III. Finally, the conclusions are summarized
in Sec. IV.

II. PROBLEM STATEMENT AND METHODOLOGY

This study mainly investigated the effect of polymer encapsulated capsules on the viscosity of
suspensions in shear flow. A circular capsule with radius a is placed in a computational with height
h, see Fig. 1(a). The velocity of the wall is u and the shear rate γ is 2u/h. In this study, length,
velocity, and time are dimensionless by a, a/γ , and 1/γ , respectively.

A. Membrane dynamics

The capsule is assumed to be formed by a coarsed-grained membrane (composed of hundreds
of Lagrangian nodes) surrounding liquid and the membrane thickness is negligible. The elastic
model is mainly composed of two elastic forces: tensile force and bending force, which can prevent
excessive deformation and expansion of capsules. The tensile force Te is parallel to the membrane
surface:

Te = ks(ε − 1), (1)

where ε is strain, and ks is the shear modulus. The bending force Tb is perpendicular to the membrane
surface and can be defined as

Tb = d

dl
[kb(κ − κ0)], (2)
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FIG. 1. (a) The diagram of a capsule and the initial distribution of the polymer in a shear flow. Red region:
the high-concentration region inside the capsule. Blue region: the low-concentration region outside the capsule.
(b) The deformation of the capsule under fluid shear. O represents the center of the capsule. Lmax and Lmin

denote the lengths of the long and short axes of the capsule. θ indicates the inclination angle of the capsule.
The dashed line represents the horizontal line.

where κ and κ0 are the instantaneous and initial curvature, respectively. kb is the bending modulus.
The total elastic force T is the sum of tensile force and bending force:

T = Tet + Tbn, (3)

where t is the tangential unit vector, and n is the normal unit vector.

B. Numerical method

The lattice Boltzmann method (LBM) is used to simulate the fluid flow in the entire domain.
Macroscopically, it is able to solve the incompressible Navier-Stokes equations. The lattice Boltz-
mann equation is

fi(x + ei�t, t + �t ) − fi(x, t ) = −�t

τ

(
fi(x, t ) − fi

eq(x, t )
) + �tFi, (4)

with

fi
eq(x, t ) = ωiρ

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− u2

2c2
s

]
, (5)

where fi(x, t ) is the discretized distribution function at location x and time t , fi
eq(x, t ) is the

equilibrium distribution function, ei is the discretized velocity vector, and the D2Q9 velocity model
is adopted. ωi is the weighting factor. ωi = 4/9 for i = 0; ωi = 1/9 for i = 1, 2, 3, 4; and ωi = 1/36
for i = 5, 6, 7, 8. cs = 1√

3
�x
�t is the lattice sound speed, where �x and �t are the grid length and

time step, respectively. τ is the relaxation time. Fi is a source term accounting for external force
and will be used here to incorporate the forces exerted by the membrane on the fluid through the
immersed boundary method (IBM).

The macroscopic quantities can be obtained from the moments of the distribution function:

ρ =
∑

fi (6)
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and

u =
∑

fiei/ρ (7)

.
The immersed boundary method (IBM) is used for the fluid-membrane coupling. In the IBM, the

Lagrangian nodes of capsules are interacting with the Eulerian fluid nodes using an interpolation
function in a two-way coupling scheme: the velocity of a Lagrangian point is interpolated from the
surrounding fluid nodes, i.e.,

u(s) =
∑

f

δ(s − x)u(x), (8)

where s and x are the locations of the Lagrangian points and fluid nodes, respectively. δ is the
interpolation function. The location of each Lagrangian point and the new geometry of the capsule
at the next time step can be determined from the kinematic formula. The force obtained from the
constitutive equation should be spread to surrounding fluid nodes, i.e.,

F(x) =
∑

f

δ(s − x)T (s). (9)

It is noted that this force should be added to the lattice Boltzmann equation as an external force.
The interpolation function is chosen to be

δ(s − x) = δ(x − x(s))δ(y − y(s)), (10)

where

δ(r) =
{

1
4

(
1 + cos

(
π |r|

2

))
, |r| � 2

0, |r| > 2.
(11)

The IB-LBM is mature and widely adopted in the field of fluid-solid interaction, especially
in the simulation of capsule suspension. For a comprehensive understanding and validation, we
recommend referring to our previous studies [24–26].

For the polymer, we only consider the viscosity and concentration but not the chemical proper-
ties. The diffusion of polymer is simplified to a typical convective diffusion scenario. Hence, the
diffusion behavior of the polymers can be described using the convection-diffusion equation. The
general form of the convection-diffusion equation is as follows:

∂C

∂t
+ −→u · ∇C = D∇2C, (12)

where C is the concentration of the polymer and D is the diffusion coefficient. Both parameters are
all converted to the LB field and D = 0.001 in this study. The fluid velocities are obtained after
solving the LBM equation. The concentration convection-diffusion equation is mainly solved using
the finite difference method.

C. Key parameters and observables

Five main dimensionless parameters are included in the numerical simulation: the Reynolds
number Re = 4ργ a2/μ, which is set as 0.1 such that the inertia can be neglected. The capillary
number Ca = μγ a/ks, which is associated with the elasticity of the capsule. The dimensionless
bending modulus Eb = kb/(a2ks), and the viscosity ratio λ = μin

μout
, which is used to describe the

polymer concentration or viscosity inside the capsule. μin and μout are the fluid viscosity values
inside and outside the capsule. The volume fraction of capsules, φ = Npπa2/h2 where Np is the
number of capsules.
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The Taylor deformation parameter Dxy = Lmax−Lmin
Lmax+Lmin

is usually used to quantify the deformation of
capsules. Figure 1(b) shows the deformation of a capsule in a simple shear flow. Generally speaking,
a large Dxy denotes large deformation.

Suspension viscosity μa is another important parameter in this study. It can be calculated from
the wall stress in simple shear flows [27,28]

μa = μ

μ0
= 〈σ 〉

ρνγ
, (13)

where μ is the effective viscosity, and μ0 is the viscosity of suspension where the concentration of
polymer is 0. 〈〉 represents the statistical average in time and σ is the average shear stress on the
wall:

σ = ρν(∂yw + ∂xv) = −
(

1 − 1

2
τ

)∑
f neq
i eiyeix, (14)

where f neq
i = fi − f eq

i is the nonequilibrium distribution function, fi is the distribution function, and
f eq
i is the equilibrium distribution function. eiy and eix are the unit vectors of the lattice velocity.

The quantities involved in the above calculations are all from LBM, which can be referred to
Refs. [27,28]. The intrinsic viscosity of suspension is defined as

[μ] = μa − 1

φ
. (15)

III. RESULTS AND DISCUSSION

In the following subsections, we mainly investigate the influence of rupture of capsules and
release of polymers on the viscosity of suspension. What’s more, the effect of concentration of
polymers as well as the λ on the flow properties is then analyzed.

A. Effect of capsule rupture

When the strain of the capsule exceeds a strain limit, the capsule ruptures. Therefore, a simplified
capsule rupture condition is when the distance between two Lagrangian points on the capsule
membrane exceeds a specific threshold, the stress between the two points disappears, that is, rupture
occurs. The length threshold of adjacent Lagrangian points is 20%, which is the same as the setting
adopted by Rahmat et al. [21].

Figure 2 shows the deformation and rupture of a capsule at different times. As time progresses,
the deformation of the capsule increases gradually, from the initial round shape to an oval shape, as
shown in Figs. 2(a)–2(c). When the capsule is stretched to a certain extent, the capsule first ruptures
on the short axis where the stress is the largest, as seen in Fig. 2(d). The capsule then breaks up
into two parts, as seen in Figs. 2(e) and 2(f). Our results are similar to those found in previous
simulations and experiments [21–23], and the rupture criterium is set accurately.

Figure 3 quantitatively demonstrates the deformation and inclination of a capsule with and
without rupture. The dashed line represents the cases where the rupture model is not added. It can
be seen that Dxy increases first and then stabilizes to a constant value, that is, the capsule reaches
a steady state. When the rupture model is added (see the solid line), the deformation is the same
as that without the rupture model when t < t0. At t = t0, the capsule ruptures and then forms two
small segments. The two segments gradually move apart, so Dxy keeps increasing with time. In the
same way, the inclination angle θ of the capsule reaches a stable value in the absence of the rupture
model and the inclination angle continues to decrease when the rupture model is added.

We also conduct a mesh convergence verification for the capsule rupture process. We select
three grid lengths �x = 0.05, 0.04, 0.02, where �x is the unit mesh length. The distance between
two Lagrangian points is the same as or slightly smaller than the grid lengths, so the numbers
of Lagrangian points corresponding to the above three grid lengths were 160, 200, and 320,
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FIG. 2. The shape and rupture of capsules at different times. The color represents the tensile stress of
the capsules, where lg and lu is the unit of mass and lenght in LB field. Parameter setting: Re = 0.1, Ca =
0.1, Eb = 0.05.

respectively. It can be seen from Fig. 3 that the capsule deformations and inclination angles are
the same for the three grid lengths, no matter whether the capsule ruptures or not. It is noted that
Dxy and θ do not have any physical meaning after the rupture of capsules. The solid lines of t > t0
in Fig. 3 are only used to distinguish whether the capsule has ruptured. In subsequent calculations,
the grid length of the fluid is set to 0.04 and the number of Lagrangian points is set to 200.

FIG. 3. (a) Dxy and (b) θ as a function of time under different mesh densities. The solid and dashed lines
represent the conditions of the capsules with and without rupture models and t0 represents the initial rupture
time. Ca = 0.1, h = 10a, Eb = 0.05, λ = 1. The capsules do not include the polymer.
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FIG. 4. [μ] as a function of time during the rupture of the capsule. h = 10a, Eb = 0.05, λ = 1. The dashed
line is the variation of [μ] without capsule rupture. The vertical dotted lines are the dividing lines between
stages.

The complex mechanisms and numerical simulations of capsule rupture have not yet been fully
explored, which limits our ability to provide quantitative verifications. Therefore, we adopted a
relatively simple and previously used rupture criterion, followed by grid convergence verification.
This criterion, being straightforward, easy to understand, and consistent with physical laws, serves
our purpose effectively. On the other hand, the primary focus of our research is the variation in
viscosity before and after capsule rupture. The rupture process itself is merely an intermediate stage.
The rupture criterion is set to facilitate polymer release, and its impact on the viscosity changes
before and after rupture is minimal. Therefore, while a more detailed quantitative comparison would
enhance the rigor, it does not significantly affect the main findings related to viscosity changes.

The effect of capsule rupture on the intrinsic viscosity [μ] is first investigated. Figure 4 shows the
change of [μ] with time when the capsule rupture model is added. It can be seen that the changes of
[μ] under different Ca are the same, and can be divided into three stages. Stage I is the deformation
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FIG. 5. [μ] as a function of time at λ = 10. The red dashed and solid blue lines represent the cases with
and without capsule rupture, respectively. The dotted lines are the dividing lines between stages. The parameter
settings ara Re = 0.1, Ca = 0.5.

stage. The capsule has not yet ruptured, the deformation of the capsule increases with time, and [μ]
also gradually increases. Stage II is the rupture stage. The deformation reaches the threshold and the
capsule begins to rupture. After the capsule ruptures, the stress of capsule decreases (see Fig. 2) and
the effect of the capsule on the fluid is weakened. Due to this reason, [μ] decreases and becomes
lower than that when the capsule is not ruptured, see the dashed line at Ca = 0.1. Stage III is called
the stable stage. The rupture of the capsule is complete. The effect of the broken part on the fluid
does not change and [μ] does not change. The viscosity of suspension at stable stage is lower than
the viscosity of suspension when the capsule is not ruptured.

When the polymer is contained inside the capsules, the rupture of the capsules is often accom-
panied by the release and diffusion of the polymer. In the next section, we mainly investigate
the effect of the release of polymer on [μ] of suspension. The concentration or viscosity of
the polymer inside the capsule can be measured through the viscosity ratio λ. The larger λ, the
higher the polymer concentration. The viscosity of the polymer suspension is closely related to the
concentration and can be described by a viscosity-concentration curve. The polymer studied in this
paper is hydrolyzed polyacrylamide (HPAM), whose viscosity concentration curve conforms to the
following exponential relationship: μ = μ0e0.88C .

After the capsules rupture, the polymer diffuses with the fluid into the surrounding medium.
Figure 5 shows the change in [μ] during the rupture of a capsule containing polymer. It can be
seen that the viscosity change process of the suspension can be divided into four stages. Stage
I [Fig. 6(a)] is the deformation stage. The capsule is not ruptured, the deformation increases
with time, and [μ] increases. Stage II [Fig. 6(b)] is the diffusion stage. The capsule ruptures and
the polymer diffuses to the outside of the capsule. The polymer concentration in the suspension
surrounding the capsules increases, resulting in an increase in [μ]. Stage III [Fig. 6(c)] is the
dilution stage. The polymer is completely released into the surrounding fluid. At this stage, the
effect of the rupture begins to manifest. The effect of the capsule on the fluid is weakened and
the viscosity of the suspension is reduced. Stage IV [Fig. 6(d)] is the stable stage. The effects of
the polymer diffusion and capsule rupture disappear and μa stabilizes. Unlike in the rupture of
capsules that do not contain polymers, the viscosity change has a regrowth stage (Stage II) due to
polymer diffusion. The diffusion stage is the main stage that causes the viscosity growth of capsule
suspension.
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FIG. 6. The forms of the capsule and the contour of the concentration after the rupture at Re = 0.1, Ca =
0.5, λ = 20. (a)–(d) correspond to the four regimes of viscosity change. The color represents the concentration
of the polymer. When the color is close to red, the concentration is high. When the color is approaches blue,
the concentration is low.

B. Effect of λ on μa

During the actual polymer injection process, in order to protect the polymer and reduce viscosity
loss, the capsule should not rupture before being transported to its destination. Therefore, in this
section, we focus on the impact of λ on μa when the capsules are not ruptured. Figure 7 shows the
structures of capsules under different λ in equilibrium state. It can be seen that the deformation of
the capsule becomes smaller as λ increases. In the case of high λ, such as λ = 100, the capsules

FIG. 7. The stable forms of capsules under different λ at Re = 0.1, Ca = 0.5, Eb = 0.05, φ = 44.18%.
(a) λ = 6.4, (b) λ = 20, (c) λ = 40, (d) λ = 100.
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FIG. 8. (a) Dxy as a function of Ca at different λ. (b) The change in Dxy with redefined Caeff . The dashed
line represents the curve fitted through Eqs. (11) and (12).

hardly deform. This is the same effect as that of a large shear modulus (small Ca). Aouane et al.
studied the universal law of μa as a function of Ca, φ, and the bulk modulus C [29]. λ is also an
important factor that affects the morphology of capsules.

Figure 8(a) shows the change in Dxy under different Ca and λ. Dxy shows a similar variation trend
with Ca under different λ. Aouane et al. points out that the change in Dxy with Ca satisfies the log
function [29]:

Dxy = D(Ca, φ, λ) = Ag

(
Ca

Ca∗(φ, λ)

)
, (16)

where A is a constant and Ca∗ is a function of φ and λ. From data fitting, we can determine that
A = 0.1. Values of λ = 1, 5, 10, 20, and 50 correspond to Ca∗ = 2.0 × 10−7, 1.3 × 10−3, 4.0 ×
10−2, 1.8 × 10−1, and 8.0 × 10−1, respectively.

FIG. 9. (a) μa as a function of Ca at different λ. (b) μa as a function of φ. The slope of the long dashed line
is 2.5, and the line represents Einstein’s viscosity formula μa = 1 + 2.5φ, that is, the μa of a dilute solution of
rigid particles. The slope of the short dotted line is 0.8.
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FIG. 10. (a) μa as function of the redefined volume fraction φeff . The dashed line is drawn according to
Eq. (18). (b) Comparison of viscosity when capsules are in random or regularly arranged state in equilibrium
state, the solid line is a simple fitting of circular dots. The two small images inserted in (b) represent the typical
forms of random and regular cases, respectively.

When λ = 1, Ca = μγ a/ks. Through the self-similarity of the formula, we can redefine Ca to
include information on λ. We replace ks with e−λ+1ks. Therefore, the redefined Ca (Caeff ) is

Caeff = μγ a

e−λ+1ks
, (17)

Figure 8(b) shows a plot of Dxy and Caeff . It can be seen that the data points for different λ all
fall on the same line. Therefore, the above redefinition of Ca is valid.

Now we consider the rheology of suspension. Figure 9(a) shows μa as a function of Ca and
λ. It can be seen that the larger λ is, the greater μa is. When λ increases to a certain extent,
for example, when λ = 50, for Ca = 0.3, 0.5, 0.8, 1.0, μa is about 1.025 and does not change
[see the blue pentagons in Fig. 9(a)]. When λ is relatively small, μa decreases with Ca [see the
red squares in Fig. 9(a)]. Figure 9(b) shows the variation of μa with φ at different λ. It can be
seen that with an increase in λ, μa as a function of φ gradually approaches that of rigid particle
suspension. When λ = 100, the change in μa is nearly the same as that of a solution of rigid
particles.
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FIG. 11. μa as a function of time when the capsules rupture and do not rupture at φ = 44.18, λ = 100. The
red and blue lines represent the cases with and without rupture, respectively.

According to the formula by Eilers [30], μa can be expressed as

μa(φeff ) =
[

1 + Bφeff

1 − φeff

φm

]2

, (18)

where B is constant coefficient and φm is the maximum packing fraction. φeff is

φeff = 1 − D

1 + D

⎛
⎝ 1 + b2

1 + (
1−D2

1+D2

)2
b2

⎞
⎠

3/2

φ, (19)

where D = Dxy and is given by Eq. (16).
Next, we substitute the data in Figs. 9(a) and 9(b) into φeff as defined by Eq. (19), take φeff as

the abscissa, organize the data for different φ, and redraw the curve in Fig. 10(a). It can be seen
that all the data are normalized on the same curve, which conforms to Eq. (18). When the strutures
of capsules are random in equilibrium state, μa is slightly higher than that of the regular array, see
Fig. 10(b). This can be understood since capsules in a random arrangement move more irregularly
and have a greater impact on the flow field, resulting in higher viscosity. The variation in viscosity
for both cases is consistent when φeff is low. As φeff increases, a slight difference between the two
cases emerges, with the viscosity of the randomly arranged capsules being higher than that of the
regular array. The chaotic arrangement of capsules lacks obvious patterns, making it challenging to
summarize effective rules. This phenomenon warrants further exploration in future studies.

So far, based on previous work, we have preliminarily included λ in the formula of μa to obtain
the universal μa − φeff (Ca, λ, φ) relationship. This may be helpful for predicting the viscosity of
capsule suspension.

Finally, we compare the viscosities of the suspension with and without capsule rupture at high
λ. From Fig. 5, we can see that the capsule does have a viscosifying effect after rupture, and the
increase in the viscosity is less than 10% when λ and φ are small. We then increase the λ and φ of
the capsule suspension [as shown in Fig. 7(d)]. Figure 11 shows that, after imposing these settings, if
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the capsules do not rupture, μa is about twice that of a pure solution. If the capsule ruptures, μa rises
rapidly to about ten times the value of the original solution, which meets experimental requirements
[14,31]. The final μa depends on λ. The greater λ, the greater μa after the rupture of the capsule.
The idea of encapsulating the polymers by synthesizing micronano capsules is an effective way to
transport the polymer. So far, we have successfully numerically modeled the rupture of the capsule
and the release of the polymer.

IV. CONCLUSION

In this research, the variation of viscosity of capsule suspension during the process of capsule
rupture was first studied. During the process of the rupture of capsules, the variation of viscosity
can be classified into three stages: the deformation stage, the dilution stage, and the stable stage.
Then the model of polymer release was established through the concentration convection-diffusion
equation. The diffusion process of the polymer and the change in viscosity after the rupture of the
capsule was studied. Depending on the variation of viscosity, there are four stages: the deformation
stage, the diffusion stage, the dilution stage, and the stabilization stage. After the capsule ruptures,
the diffusion of the polymer can rapidly increase viscosity.

The effect of λ on the rheological properties of the suspension was also investigated without
the rupture of the capsule. It is found that when λ is large enough (>100), the variation trend of
viscosity approaches that of a rigid particle suspension. Through redefining the shear modulus ks and
φeff , which depends on λ, Ca, and φ, all viscosity data can be normalized on the same curve, which
conforms to the previous viscosity formula. Finally, we compared the viscosity of the suspension
with and without the rupture of capsules at high λ. This work can guide related work in capsule
transportation, oil exploration, and other industrial fields.
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