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Spreading and retraction dynamics of drop impact onto elastic surfaces
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In this study, we numerically investigate the impact of droplets on elastic plates using
a two-phase lattice Boltzmann method, with a particular focus on how vertical surface
movements influence the spreading and retraction dynamics of the droplet. The results
show that, during the spreading phase, the spreading diameter is smaller on elastic surfaces
compared to rigid ones due to the vertical velocity of the surface. A universal linear
evolution of the drop spreading is derived for the early stage across both rigid and elastic
substrates, accounting for the surface motion by rescaling time, and this relationship is
in good agreement with the numerical results. In the retraction phase, unlike the nearly
constant retraction speed observed on rigid surfaces, the retraction speed Vret oscillates
with the vibrations of the elastic surface, with the oscillation period remaining relatively
consistent. Further analysis reveals that the variation in Vret is not influenced by the
surface’s velocity but rather by its acceleration, as additional inertia is introduced during
surface acceleration. Based on this understanding, a predictive model for Vret during droplet
impacts on moving surfaces is proposed, which demonstrates strong agreement with the
numerical findings.

DOI: 10.1103/PhysRevFluids.10.053607

I. INTRODUCTION

The impact of a liquid droplet on a solid surface is a phenomenon important to both natural
occurrences and numerous industrial applications. Examples include raindrop interactions with soil
[1], spray coating processes [2,3], inkjet printing [4,5], pesticide application [6,7], self-cleaning
surfaces [8,9], anti-icing technologies [10,11], and bloodstain pattern analysis [12]. Given its
prevalence, droplet impact has become a significant research focus in fluid mechanics. Decades
of study have yielded extensive insights, with comprehensive reviews by Yarin et al. [13], Josserand
et al. [14], Cheng et al. [15], and Lohse et al. [16]. Upon impact, a droplet may deposit, rebound,
or splash [14], with outcomes depending on its intrinsic properties—such as viscosity (μH ), surface
tension (σ ), density (ρH ), and initial size (diameter D0 or radius R0) as well as its impact velocity
(U0) and the surface characteristics. When the droplet size is smaller than the capillary length,
gravitational effects are negligible, leaving the impact dynamics primarily governed by inertial,
viscous, and capillary forces. By comparing these forces, three key dimensionless parameters are
defined (the Weber number We, Reynolds number Re, and Ohnesorge number Oh):

We = ρHU 2
0 D0

σ
, (1a)

Re = ρHU0D0

μH
, (1b)
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Oh =
√

We

Re
= μH√

ρH D0σ
. (1c)

When a droplet impacts a solid surface without splashing, it spreads until reaching a maximum
diameter Dmax (or radius Rmax). Depending on the surface properties, the liquid may then recede
or remain near this maximum spread [17]. The dynamics of droplet spreading and retraction
on flat surfaces have been studied extensively [18–23]. In the initial stage of spreading for a
low-viscosity droplet, the growth of the wetted area over time, t , follows different scaling laws
depending on the impact velocity. For low-impact velocities (U0) or static drops, the spreading
radius scales as R(t )/R0 ∼ (t/τi )1/2, where τi = (ρH D3

0/σ )1/2 is the inertia-capillary timescale
[24–26]. At higher U0, the relation becomes R(t )/R0 ∼ (tU0/D0)1/2, with D0/U0 as the charac-
teristic timescale for inertia-driven impact [27,28]. For viscous drops, spreading instead follows
R(t )/R0 ∼ (t/τv ) ln(τv/t ), where τv = μH R0/σ is the viscous-capillary timescale [29–31].

Researchers have developed various models to predict the maximum spreading diameter ratio,
βmax = Dmax/D0. The literature primarily identifies two regimes: the viscous and capillary regimes
[19]. In the viscous regime, where capillary effects are minimal, βmax scales with Re1/4 [32] or Re1/5

[21,33], reflecting a balance between viscous and inertial forces. In the capillary regime, where
viscosity is negligible, βmax ∝ We1/4 is derived using momentum conservation [19]. However, this
force balance may assume a non-Galilean frame. Villermaux et al. [34] derived a We1/2 scaling using
a Galilean reference frame in the laboratory, supported by energy conservation between surface and
kinetic energy [35]. Additionally, Laan et al. [12] argued that when We and Re are similar, all three
forces (capillary, inertial, and viscous) contribute, resulting in a crossover scaling between Re1/5 and
We1/2. Lee et al. [36] further extended this model to incorporate surface wettability and roughness,
with additional insights provided by de Goede et al. [37]. Also, based on Laan, Ma et al. [38]
proposed a universal scaling taking the initial diameter into account.

While the dynamics of droplet spreading have been widely studied, the retraction behavior of an
impacted droplet has received comparatively less attention. Bartolo et al. [20] pioneered research
in this area, experimentally demonstrating that the droplet retraction rate, defined as ε̇ ≡ Vret/Rmax,
is independent of the impact velocity but is influenced by the Ohnesorge number and the receding
contact angle, where Vret represents the retraction velocity. They identified two distinct retraction
regimes: the inertial-capillary and viscous-capillary regimes, governed by timescales τi and τv ,
respectively. In cases where viscosity or inertia is negligible, the retraction rate scales as ε̇ ∼ τ−1

i
or τ−1

v . Eggers et al. [35] validated this theory, deriving the relation ε̇ = [3σ/(2ρH R3
0)]1/2 in the

inertial-capillary regime, where retraction follows R0Vret/(RmaxU0) ∼ We−1/2 in their dimensionless
formulation. However, subsequent studies by Bobinski et al. [39] and Wang et al. [40] revealed
that the retraction rate could indeed depend on impact speed, especially for droplets with smaller
diameters, indicating a more complex interplay of forces at smaller scales.

Interest in droplet impacts on complex substrates has grown, particularly with substrates like
curved surfaces [41–44], microstructured surfaces [45–47], and surfaces coated with thin-liquid
films [48–50]. Most research in this area has focused on rigid, static substrates. However, the
dynamics change significantly when droplets impact elastic or flexible surfaces, as observed in
natural scenarios like raindrops landing on leaves [51] or bird feathers [52], as well as in engineered
systems such as vibration-assisted droplet transport [53] and piezoelectric energy harvesters [54].
In such cases, surface deformation or movement, driven by the impact force [55], plays a key role
in altering the droplet dynamics.

Mangili et al. [56] experimentally showed that droplets impacting soft, dry substrates exhibit a
slower recoil phase and a larger final diameter compared to rigid substrates. Weisensee et al. [57]
found that elastic, superhydrophobic surfaces can reduce contact time by up to 50% relative to
rigid surfaces due to momentum transfer from the substrate’s vertical movement. Vasileiou et al.
[58] reported similar results, noting reductions in maximum spreading and increased resistance
to droplet impalement. Kim et al. [59] observed that flexible surfaces are deflected twice during
droplet impact: first by the impact force and then by the reaction force during recoil, leading to a
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FIG. 1. Schematic diagram of a droplet impacting an elastic surface. A spring is anchored to a rigid base
at the bottom, with its top attached to the center of a square plate. In the simulation, the plate is constrained to
vertical movement without deformation and remains stationary before the droplet impact.

reduced contact time. Upadhyay et al. [60] developed a spring-mass model to predict contact time
and maximum spread of droplets bouncing on an elastic cantilever beam. Numerical studies by
Xiong et al. [61] and Ma et al. [62] further examined droplet impacts on flexible plates, analyzing
maximum spread and contact time, with Ma et al. providing a universal scaling for βmax. Some
studies have also explored vibrating substrates with induced motion [63–66].

Despite extensive research on droplet impacts on elastic or vibrating substrates, most studies
have concentrated on metrics like maximum spread and bouncing behavior [58,62]. The effects
of elasticity on early-stage spreading dynamics remain less understood, even though this stage is
critical to droplet behavior. Furthermore, most studies focus on superhydrophobic surfaces, which
often induce early rebound in a pancake-like shape with minimal recoil [57,63] or cause the droplet
rim to lift off, eliminating interaction during retraction. These conditions differ from the specific
focus of this study.

In this work, we simulate droplet impact on elastic substrates at moderate Weber numbers
using the phase-field lattice Boltzmann method (LBM) to examine the effects of surface motion on
early-stage spreading dynamics. We provide a quantitative analysis by utilizing a neutrally wetting
surface to fully capture the recoil process, allowing us to investigate the impact of substrate elasticity
on droplet retraction behavior. In the absence of droplet bouncing, we further explore retraction
in the inertial-capillary regime, accounting for surface vibrations and explaining the underlying
mechanisms. Our goal is to offer a comprehensive understanding of droplet spreading and retraction
dynamics on moving surfaces.

II. METHODOLOGY AND VALIDATION

Figure 1 presents a schematic of a droplet impacting an elastic surface. The droplet, with an
initial diameter D0, descends toward the center of a square plate of side length L at an initial impact
velocity U0. The plate is supported by a spring with stiffness k, which introduces elasticity into
the system. In our simulations, we employ the phase-field method [67,68] to model the two-phase
fluid flow, using the conservative phase-field Allen-Cahn equation for precise tracking of the fluid
interface [61,62],

∂φ

∂t
+ ∇ · (φu) = ∇ ·

[
M

(
∇φ − 4

ξ
φ(1 − φ)n̂

)]
, (2)

where φ is the phase-field variable ranging from 0 to 1, representing the vapor (light fluid) and
liquid (heavy fluid) phases, respectively, with densities ρL and ρH . The macroscopic velocity vector
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is denoted by u, M represents the mobility, and ξ is the thickness of the interface. The unit vector
normal to the fluid interface, n̂, is defined as ∇φ/|∇φ| and points in the direction of the liquid phase.

The isothermal, incompressible Navier-Stokes equations are used to simulate the flow,
∂ρ

∂t
+ ∇ · (ρu) = 0, (3)

ρ

[
∂u
∂t

+ u · ∇(u)

]
= −∇p + ∇ · {μ[∇u + (∇u)T ]} + fs, (4)

where ρ is the local fluid density, μ is the dynamic viscosity, p is the macroscopic pressure, and fs

is the surface tension force, taking the form of f s = μφ∇φ [67], where μφ is the chemical potential
of binary fluids.

In our simulations, the LBM [61,67] is adopted to solve the interface tracking (2):

hα (x + eαδt, t + δt ) = hα (x, t ) − hα (x, t ) − heq
α (x, t )

τφ + 1/2
, (5)

where hα is the phase-field distribution function, τφ the phase-field relaxation time, eα the discrete
velocity, and heq

α the equilibrium phase-field distribution function, which is defined as

heq
α = φ�α + wα

M

c2
s

[
4

ξ
φ(1 − φ)

]
(eα · n̂), (6)

where

�α = wα

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− u · u
2c2

s

]
, (7)

and wα is the weight coefficient. The mobility M = τφc2
s δt , and the speed of sound cs = 1/

√
3. The

component variable φ is recovered by

φ =
∑

α

hα, (8)

and the density can be calculated by ρ = ρL + φ(ρH − ρL ).
The Navier-Stokes equations (3) and (4) are solved by

ḡα (x + eαδt, t + δt ) = ḡα (x, t ) + 
α (x, t ) + Fα (x, t ), (9)

where ḡα is the hydrodynamic distribution function, 
α is the multiple-relaxation-time collision
operator, taking the form of


α = −�βα

(
ḡα − ḡeq

α

)
, (10)

where �βα is the collision matrix, and

Fα = δt
[
(�α − wα )(ρH − ρL )c2

s + �αμφ

]
(eα − u) · ∇φ (11)

is the forcing term. The modified equilibrium distribution function is defined by ḡeq
α = geq

α − Fα/2
and geq

α = pwα + ρc2
s (�α − wα ). The macro variables are recovered through

u = 1

ρc2
s

∑
α

ḡαeα + δt

2ρ
f s, (12)

p =
∑

α

ḡα + δt

2
(ρH − ρL )c2

s u · ∇φ. (13)

In our three-dimensional simulations, we use the LBM velocity model, where the index α =
0, 1, . . . 18 represents one of the 19 discrete velocity directions. More detailed information about
the numerical method can be found in Xiong et al. [61].

053607-4



SPREADING AND RETRACTION DYNAMICS OF DROP …

In our previous work [61], we employed the finite element method [69] to model both the motion
and deformation of a flexible plate. In this study, we simplify the approach by introducing a spring
to simulate plate elasticity, allowing us to focus solely on the plate’s motion without modeling its
material elasticity in detail. This simplification not only reduces computational requirements by
enabling a coarser grid resolution for the solid but also preserves accuracy, significantly cutting
down simulation time. While this modification may slightly alter plate dynamics compared to a
fully elastic surface, the fundamental fluid-solid coupling mechanisms remain intact. With this
simplification, the motion of the plate is described by

mp
∂2Y
∂t2

= Ffluid + Fspring, (14)

where Y represents the position of the plate, and mp = ρshsL2 is the plate’s mass (ρs is the density,
and hs is the thickness). Ffluid and Fspring represent the external forces exerted on the plate by the
fluid and the spring, respectively. The spring force is given by Fspring = k(Y 0 − Y ), where Y 0 is the
initial position. The fluid force, Ffluid, is determined using the momentum exchange method [61].

To exploit the problem’s symmetry, we restrict the computational domain to one-quarter of the
full system. This cubic domain is bounded by six planes, with symmetric boundary conditions
applied on the two planes intersecting the symmetry axis. At the bottom moving plane, we model the
substrate’s wettability by implementing a Neumann boundary condition [70] to set the equilibrium
contact angle. For improved accuracy, a weighted least squares method is employed [71]. Detailed
information on the numerical method’s implementation can be found in Xiong et al. [61]. Outflow
boundary conditions are applied at the remaining three boundaries.

Previous studies [62] have demonstrated that the influence of plate motion on droplet dynamics
depends on the elasticity of the plate and the mass ratio between the drop and plate. In this study, we
focus on two key dimensionless parameters: the stiffness K = k/(ρHU 2

refL) and the mass ratio Mr =
ρshs/(ρH L), where Uref = √

σ/(ρH D0) represents the reference speed. When K → ∞ or Mr → ∞,
the plate behaves as if it is rigid. Other parameters are held constant.

Note that the geometric information of the droplet (i.e., its diameter D0) is not included in
the definition of Mr . Instead, the plate length L is chosen as the characteristic length scale. This
definition follows a convention commonly adopted in fluid–structure interaction problems involving
elastic plates, as seen in previous studies (see, e.g., Refs. [72,73]). Nevertheless, the droplet diameter
is implicitly embedded in the parametrization, considering that the length ratio Lr = L/D0 is kept
constant in our simulations. Based on this definition, the actual ratio of the droplet mass to the plate
mass can be expressed as

md

mp
= ρH

4
3π (D0/2)3

ρshsL2
= π

6L3
r Mr

, (15)

where md and mp denote the mass of the droplet and the plate, respectively. This formulation
illustrates how the actual droplet-to-plate mass ratio is inherently linked to Mr .

In our simulations, we set the Reynolds number to Re = 1000, contact angle θ = 90◦, density
ratio ρH/ρL = 1000, dynamic viscosity ratio μH/μL = 50, and length ratio L/D0 = 4.67. The com-
putational domain dimensions are set to 2.5D0 × 2.5D0 × 3.5D0 with a uniform Cartesian mesh.
To validate our numerical approach, we compared our simulation results with experimental and
numerical data from Lee et al. [74] for drop impacting rigid surfaces, achieving strong agreement
across both spreading and retraction phases, as shown in Fig. 2(a). For elastic cases, our results
also align closely with the numerical data from Dorschner et al. [75] [Fig. 2(b)]. These validations
confirm the accuracy of our method in capturing the interactions between impacting droplets and
elastic surfaces.
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FIG. 2. (a) Time evolution of the spreading ratio β = D/D0 during spreading and retraction for drop
impacting rigid surfaces: We = 12.8, Re = 241, θ = 107◦ for red ones; We = 103, Re = 685, θ = 107◦ for
green ones. Symbols represent experimental data from Lee et al. [74], while dashed and solid lines depict their
numerical data and the present result, respectively. (b) Numerical results of βmax for drop impact on a flexible
substrate from Dorschner et al. [75] and present simulations.

III. RESULTS AND DISCUSSION

A. Dynamic behavior of droplet impact on rigid and elastic surface

To explore how an elastic surface influences droplet impact dynamics, Fig. 3 presents snapshots
of a droplet impacting both rigid and elastic surfaces. Upon contact, a thin liquid film of thickness
h f forms and spreads across the surface. A rim forms as additional fluid flows into the film. On
the elastic plate, the surface begins to move downward as the droplet spreads. Notably, the droplet
spreads more slowly on the elastic plate compared with the rigid one.

To analyze this effect quantitatively, Fig. 4 shows the temporal evolution of the droplet diameter
ratio β = D/D0 and plate displacement z for both rigid and elastic surfaces. Prior to reaching
maximum spread, the diameter is smaller on the elastic plate, with this reduction becoming more
pronounced as stiffness K or mass ratio Mr decreases. This observation aligns with previous findings
[62], where energy analysis showed that the initial kinetic energy Ek0 of the droplet on a rigid surface
converts into surface energy Es and viscous dissipation Ed . On an elastic surface, however, part of

FIG. 3. Snapshots of droplet impact on (a) rigid and (b) elastic surfaces with K = 20 and Mr = 0.01 at
We = 80. The dimensionless times tU0/D0 from left to right are 0.5, 1, 2.3, 4, and 5.2, where maximum
spreading occurs at tU0/D0 = 2.3. Here, hf denotes the liquid film thickness, and D represents the droplet
spreading diameter or the contact line position. Red dashed lines indicate the plate’s initial position, with its
time evolution shown in Fig. 4(c). A consistent reference vector is used across all cases.
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FIG. 4. Temporal evolution of the droplet diameter ratio β = D/D0 and the dimensionless plate displace-
ment z/D0 during the spreading and retraction phases for both rigid and elastic plates at a Weber number
We = 80. In panels (a) and (c), the mass ratio is fixed at Mr = 0.01, while in panels (b) and (d), the stiffness is
set to K = 10. The term dmax denotes the maximum displacement of the plate.

Ek0 is transferred to the plate’s kinetic energy and the spring’s elastic energy, which increases as K
or Mr decreases according to Ref. [62]. While reduced velocity gradients on the elastic plate slightly
alter viscous dissipation due to mitigated inertial shock, these changes are minor compared with the
energy absorbed by the plate. Consequently, less kinetic energy is available for spreading, resulting
in a smaller spreading diameter with a lower K or Mr . Moreover, the part of the energy available for
spreading can be modeled by an effective Weber number based on a rescaled acceleration during
impact. This rescaled acceleration is related to the maximum displacement of the elastic surface.
The details can be found in Ref. [62].

After reaching maximum spread, the droplet enters the retraction phase, with the rim gradually
collecting fluid from the central film (Fig. 3). If retraction continues, a jet may form at the center,
causing the rim to dissipate [see Fig. 3(b) at tU0/D0 = 5.2]. This study focuses on the retraction
phase prior to jet formation. For a low-viscosity droplet where viscous forces are minimal, retraction
dynamics are governed by the balance between the rim’s inertia and the capillary force FC , expressed
as FC ∼ 2πσR(1 − cos θR), where θR is the receding contact angle [20]. In contrast to previous
studies involving superhydrophobic surfaces that lifted the rim via vertical vibrations [62], this
study uses neutrally wetting surfaces (θ = 90◦) to ensure continuous rim contact with the surface
throughout retraction.

Note that contact line pinning or dynamic contact angles due to a singular dissipation at
the vicinity of the contact line are not considered, which is crucial in most practical situations.
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The reason is that in the present study, their influence is minimal due to the specific physical regime
we focus on. First, regarding the spreading dynamics, the contact angle during the early impact stage
is relatively high, suggesting that the droplet spreads over the equivalent of a superhydrophobic
surface, as discussed in Ref. [37]. This observation is consistent with our results shown in Fig. 3. In
such cases, the dynamic contact angle plays a minor role. Second, for the retraction phase, viscous
effects are negligible for low-viscosity droplets as mentioned above. In this regime, the contact angle
at the rim is approximately equal to the receding contact angle [20], making the role of contact line
pinning negligible.

Figures 4(a) and 4(b) show that the droplet diameter D(t ) follows a roughly linear decrease
during retraction (3.5 < tU0/D0 < 7), indicating a constant retraction speed Vret = −Ṙ(t ) on rigid
surfaces. However, for elastic surfaces, the retraction speed may oscillate, especially at higher plate
vibration frequencies (e.g., cases with K = 20 and K = 40 at Mr = 0.01), as shown in Figs. 4(c) and
4(d). These findings indicate that the oscillations in Vret are driven by the vertical vibrations of the
plate. This phenomenon, explored further in Sec. III C, likely originates from the additional inertia
caused by the plate’s motion. This added inertia can alter the rim shape during retraction, making it
either sharper (e.g., tU0/D0 = 4) or flatter (e.g., tU0/D0 = 5.2) compared with rigid cases (Fig. 3).

Unlike retraction, droplet spreading shows no speed oscillations, even at high vibration frequen-
cies (e.g., K = 40). Spreading is primarily driven by the initial impact inertia, resulting in rapid
expansion at a much higher speed than during retraction. The strong initial inertia is essential
and mitigates the effects of inertia introduced by the vibrating plate. Although the elastic surface
absorbs some kinetic energy, slowing the spread slightly, it does not induce oscillations. By the
start of retraction, most of the droplet’s kinetic energy in low-viscosity cases has converted to
surface energy. In this phase, capillary forces govern retraction alone, as the initial impact inertia no
longer plays a role. Consequently, the vibrating plate readily induces oscillations in retraction speed
because there is no counteracting inertia from the initial impact.

B. Spreading dynamics at early stage

Previous studies [62] have primarily examined the maximum spreading of droplets impacting
flexible surfaces, leaving the dynamics of the early spreading phase largely unexplored. In that
research, energy conversion principles were applied, with an assumption that the change in viscous
dissipation on elastic surfaces was minimal. By focusing on energy at the maximum spread, the
analysis emphasized energy conversion from initial impact to maximum extension, avoiding the
need for a detailed investigation of early spreading dynamics and allowing a quantitative assessment
of elasticity’s effect on the maximum spread. For more details about the energy analysis, please refer
to Ref. [62]. In contrast, our study highlights the early spreading phase, focusing on the temporal
evolution of the droplet’s diameter on elastic surfaces.

In the early phase with a high impact velocity, mass conservation governs the relationship
between the thin film and the droplet bulk (see Fig. 3) [43]. The thin film expands with a mass
flux proportional to 2πρH Rh f

dR
dt , where dR

dt represents the spreading speed. This flux is supplied
by the droplet bulk, which maintains its initial impact velocity with minimal change. On rigid
surfaces, the mass flux is approximated as πρH D2

0U0/4. In contrast, on elastic surfaces, the plate
moves vertically with velocity Up, creating a relative velocity of U0 − Up. This relative motion
causes some of the droplet mass to follow the plate’s vertical movement, reducing the mass
available for lateral spreading. Or from an energy perspective, Up represents energy transferred
from the droplet to the plate with less energy available for spreading. For the elastic case, we have
2πρH Rh f

dR
dt ∼ πρH D2

0(U0 − Up)/4, i.e.,

β
h f

D0

dR

dt
∼ U0 − Up. (16)

We then determine the plate’s velocity evolution, Up. Assuming an inelastic collision, the droplet
and elastic plate share a common velocity immediately after impact [55,62]. The plate’s vibration
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FIG. 5. Temporal evolution of the dimensionless plate displacement, z/D0, and vertical plate velocity,
Up/Uref, for a plate with stiffness K = 40 and mass ratio Mr = 0.01 at a Weber number of We = 80. Here,
Tp denotes the plate’s vibration period, and the shaded area highlights the plate’s acceleration phase.

can be modeled as z(t ) = dmax sin(ωpt + π ), where dmax is the peak displacement, and ωp is the
angular frequency based on the resonance of a spring-mass system, defined as

√
k/(md + mp).

The velocity of the plate, Up(t ), can generally be expressed as Up(t ) = ż(t ) = Up0 cos(ωpt + π ),
where Up0 represents the initial velocity of the plate and droplet at the moment of contact. It is
determined by momentum conservation, i.e.,

mdU0 = (md + mp)Up0. (17)

In the inelastic collision model, the plate is assumed to instantly gain velocity upon impact, implying
Up(0) 	= 0 [55,62], while neglecting the acceleration phase observed in Fig. 5. This simplification
[Up(0) 	= 0] is often sufficient for analyzing later stages of spreading since the acceleration phase is
short-lived (e.g., tU0/D0 < 0.5 in Fig. 5). However, in our study, neglecting this phase can lead to
inaccuracies, particularly during the early spreading stage when a thin film forms (Fig. 3).

To more accurately capture the dynamics during early spreading with thin film formation, we
carefully examine Fig. 5. During the first oscillation cycle, if the vibration period of z(t ) is Tp =
2π/ωp, the variation period of Up(t ) is observed to be approximately 3

4 Tp rather than Tp. This occurs
because, when Up completes a cycle and returns to zero, the plate just reaches its highest position
at 3Tp/4 (Fig. 5). This discrepancy arises from the actual behavior of z(t ), which deviates from the
idealized sine function model. For instance, while the derivative of a sine function at t = 0 is finite,
the derivative of z(t ) at t = 0 is zero in this case.

To address this, we redefine Up(t ) as Up(t ) = Up0 sin(ω2t + π ), ensuring Up(0) = 0. Given that
the period of Up(t ) is 3

4 Tp, we derive ω2 = 4
3ωp. This adjustment reflects the altered dynamics and

better captures the early spreading behavior. Considering downward velocity as positive, the time
evolution of the plate’s velocity is given by

Up(t ) = −Up0 sin

(
4

3
ωpt + π

)
. (18)

To extend the analysis from Eq. (16), we incorporate the scaling law for h f . During the early
stages of spreading, the thin-film thickness h f remains uniform and constant over time. For rigid
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FIG. 6. Dimensionless thickness of the thin film hf /D0 versus (a) We and (b) We/(1 + md/mp). The circles
denote various Mr with a fixed K = 10, and the triangles denote various K with a fixed Mr = 0.01. (c) hf /D0

versus 1 + md/mp with various We and K , displayed on a log-log scale. The solid and dashed lines indicate the
−1/2 and 1/2 slopes, respectively. Here hf is the average film thickness measured at tU0/D0 = 0.5.

surfaces, h f scales with the Weber number as

h f /D0 ∼ We−1/2 (19)

at moderate We values [43]. According to Zhu et al. [43], this scaling law can be derived from the
momentum conservation as in Clanet et al. [19]. However, in our view, the momentum conservation
to describe the maximum spreading of a droplet in Clanet is global for the spreading phase, while the
scaling in Eq. (19) stems from a more localized momentum balance during the early stage. It may
not be totally rigorous to describe Eq. (19) using the momentum-based framework introduced by
Clanet. Therefore, we did not attempt to derive Eq. (19) from momentum balance directly. Instead,
we validated the scaling law by analyzing our simulation results over a broad range of parameters,
as shown in Fig. 6(a), confirming its robustness and physical consistency. Besides, we agree that a
more rigorous theoretical derivation of the scaling in Eq. (19) could be a valuable avenue for future
work.

For elastic surfaces, however, as discussed earlier, not all of the droplet’s initial kinetic energy
contributes to spreading; a portion is transferred to the plate. In our previous work [62], the
energy available for the maximum spreading was characterized by an effective Weber number,
Wee = We/(1 + δmax), where δmax = dmax/D0 accounts for the plate’s maximum displacement in
dimensionless form. This effective Weber number captures the effects of both stiffness K and mass
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ratio Mr . For more details about the derivation of the effective Weber number Wee, please refer to
[62].

However, in contrast to maximum spreading, Fig. 4(a) reveals that K has minimal influence on
early-stage spreading. This can be attributed to the plate’s small downward displacement during
the initial phase, where elasticity does not play a significant role until the spring is sufficiently
compressed. This observation is supported by Fig. 6, which shows negligible differences in h f across
various K values. Therefore, using Wee to characterize early-stage spreading on elastic surfaces
may lead to inaccuracies. Conversely, Mr has a pronounced effect on early-stage spreading, as
demonstrated in Fig. 4(b).

To better describe early-stage spreading, we adopt a modified Weber number proposed by
Vasileiou et al. [58], which depends solely on Mr . In the reference frame moving with the surface,
the droplet decelerates from U0 − Up0 to zero over a timescale of D0/U0, resulting in a mean
acceleration

ad = (U0 − Up0) − 0

D0/U0
= U0

D0

(
U0 − md

md + mp
U0

)
= U 2

0

D0

(
1 − md

md + mp

)
. (20)

Here Up0 = md
md +mp

U0 is used, which comes from Eq. (17). For the rigid case, the mean acceleration

is given by ad = U0
D0/U0

= U 2
0

D0
. In the elastic case, a modification factor 1 − md

md +mp
, i.e., mp

md +mp
, is

introduced to account for the interaction between the droplet and the plate. Accordingly, this factor
should also be applied to the Weber number to accurately represent the dynamics of elastic surfaces.
Thus, the modified Weber number is defined as Wem = We mp

md +mp
. Using this definition and Eq. (19),

the film thickness is expressed as h f /D0 ∼ ( We
1+md /mp

)−1/2. This scaling is supported by the numerical
results with various mass ratio Mr in Fig. 6(b). Considering a fixed Weber number, one can obtain

h f /D0 ∼
(

1 + md

mp

)1/2

. (21)

The numerical results of h f /D0 as a function of 1 + md/mp are plotted in Fig. 6(c), which align
well with the theoretical prediction for K = 10 and K = 20. However, for K = 40, discrepancies
arise, particularly as md/mp increases. This deviation occurs because plates with smaller masses
respond more rapidly, resulting in larger displacements. In such cases, elasticity becomes significant,
influencing the dynamics for higher stiffness (K = 40). It indicates that the scaling in Eq. (21) is
valid within the regime of relatively low K .

By substituting Eqs. (18) and (21) into Eq. (16) and integrating it from t = 0, we derive

(β2 − 1)

(
1 + md

mp

)0.5

∼ tU0

D0
− 3Up0

4ωpD0
{cos[(4ωp/3)t + π ] + 1}. (22)

Here Up0 is obtained by Eq. (17), and ωp is derived by
√

k/(md + mp), as discussed above. This re-
sult implies that early-stage spreading on elastic surfaces with different substrate properties follows
a single linear relationship with a dimensionless time scale: τ = tU0/D0 − 3Up0

4ωpD0
{cos[(4ωp/3)t +

π ] + 1}. Figure 7 presents the numerical results of (β2 − 1)(1 + md
mp

)0.5 as a function of τ for
various stiffness values K and mass ratios Mr with different Weber numbers. The data exhibit strong
agreement with the linear relationship described by Eq. (22) for τ < 1.

Furthermore, data from different elastic cases overlap at We = 80 and We = 100, while the
overlap is less accurate at We = 40. This discrepancy arises because the assumption of mass
conservation between the thin film and the droplet’s bulk is primarily based on high-impact
velocities, which are dominated by initial inertia. At lower Weber numbers, capillary forces also
become significant, leading to deviations from this assumption. This suggests that the time scale τ

can be treated as a universal parameter for droplet spreading in the early stages of impact on elastic
surfaces, particularly at high impact velocities.
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FIG. 7. Numerical results of (β2 − 1)(1 + md/mp)0.5 versus the dimensionless time scale τ for both rigid
and elastic cases, analyzed across different stiffness values K with a fixed mass ratio of Mr = 0.01, as well
as across varying mass ratios with a constant stiffness value of K = 10, at Weber numbers of (a) We = 40,
(b) We = 80, and (c) We = 100.

It’s noted that the nonscaled early-stage spreading on elastic substrates also appears approx-
imately linear [see Figs. 4(a) and 4(b)] similar to rigid-like cases. However, the slopes of those
linear behaviors on elastic and rigid surfaces are different. In other words, while the spreading
may appear linear in both scenarios, the spreading rate is systematically influenced by elastic
substrates. To provide a unified description of early-time spreading dynamics across both rigid
and elastic substrates, we developed the model expressed in Eq. (22). This model incorporates the
dependence on substrate properties and successfully collapses the spreading data onto a single curve,
as demonstrated in Fig. 7.

Additionally, the cases with K = 40 show a slight deviation, which is consistent with the previous
discussion. As the thin film spreads and absorbs more fluid, the assumption of a uniform film
thickness h f no longer holds. This shift leads to deviations from the linear relationship at later
stages of spreading, as shown in Fig. 7.

For rigid surfaces corresponding to mp/md → ∞, we set md/mp = 0. The surface remains
stationary, denoting Up = 0. Under these conditions, Eq. (22) reduces to the scaling law R(t )/R0 ∼
(tU0/D0)1/2 [27]. This scaling is consistent with the numerical results for rigid surfaces shown in
Fig. 7. Note that another rigid limit of K → ∞ was not incorporated into Eq. (22). The reason is
that the effect of K on early-stage spreading is weak when its value is relatively low, as discussed
above. As K increases further, the assumptions underlying Eq. (20) begin to break down, leading to
deviations in the high-K regime. Thus, the universality of Eq. (22) does not hold when K becomes
sufficiently large.

C. Retraction dynamics

As previously noted, Bartolo et al. [20] demonstrated that when a low-viscosity droplet
(Oh < 0.01) impacts a rigid surface, the retraction of the rim is driven by a capillary force,
FC ∼ 2πσR(1 − cos θR). Their experiments showed that the retraction rate Vret/Rmax remains in-
dependent of the initial impact speed but is influenced by the Ohnesorge number, following the
inertia-capillary timescale τi = (ρH D3

0/σ )1/2. This relationship is confirmed in Fig. 8(a), where
normalized retraction data for different Weber numbers align when time is scaled by τi. The results
suggest that the rim retracts at a consistent speed, effectively characterizing the retraction dynamics
through τi.

In contrast, when examining elastic surfaces, we observe (Fig. 4) that the retraction speed fluc-
tuates. Figure 8(b) further illustrates that these oscillations persist when the data are normalized by
τi. This indicates that the retraction dynamics on elastic surfaces differ from those on rigid surfaces,
warranting a closer investigation. Consequently, rather than focusing solely on the retraction rate
Vret/Rmax, we shift our emphasis to analyzing the time evolution of the retraction speed Vret.
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FIG. 8. (a) Variation of the dimensionless spreading ratio β = D/D0 with dimensionless time tU0/D0

for different Weber numbers We and Oh = 0.01 for droplets impacting rigid surfaces. The inset shows the
normalized β and t , scaled by the maximum spreading ratio βmax and the inertia-capillary time scale τi,
respectively. (b) Time evolution of the normalized spreading ratio β/βmax as a function of dimensionless time
t/τi for rigid and elastic surfaces with different stiffness values K , at a fixed mass ratio Mr = 0.01 and Weber
number We = 60.

To investigate this further, the time-dependent behavior of Vret = −Ṙ(t ) for various surface
stiffnesses K is shown in Fig. 9. The results reveal pronounced oscillations in Vret around the baseline
of the rigid case, with a pattern closely resembling the plate’s vertical displacement. This supports
the observation in Fig. 4 that higher vibration frequencies amplify these oscillations. To further
confirm this, we compared the oscillation periods of Vret and the plate motion at different We,
finding that they closely match [Figs. 9(d)–9(f)]. The periods were determined by averaging the

FIG. 9. Panels (a)–(c) denote time evolution of the dimensionless retraction speed Vret/Uref (solid lines) and
the plate displacement z/D0 (dashed lines) for droplets impacting rigid and elastic surfaces with various K and
We at Mr = 0.01. Panels (d)–(f) denote corresponding oscillation periods of the plate motion Tp and the droplet
retraction speed TV as a function of K . (a), (d) We = 40, (b), (e) We = 60, (c), (f) We = 80. The dotted lines
in panel (c) indicate the moments at t/τi = 0.416 and 0.595.
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FIG. 10. The difference in retraction speed, �Vret = Vret,r − Vret,e, between the rigid (Vret,r) and elastic
(Vret,e) surfaces as a function of plate velocity and plate acceleration for cases with various K and We. (a),
(d) Mr = 0.005, (b), (e) Mr = 0.01, (c), (f) Mr = 0.02. The solid lines represent a slope of 1/40. Each point
corresponds to a specific moment during the retraction process. Only the retraction phase prior to the formation
of a jet at the center of the drop, as shown in Fig. 3, is considered.

time intervals between successive peaks and troughs. The similarity in these periods suggests that
the periodic variations in retraction speed are driven by the plate’s vibration.

In Sec. III B, we discussed how the spreading phase on elastic surfaces is slower than on rigid
surfaces due to the vertical velocity Up of the plate. This raised the question of whether Up directly
affects droplet retraction, or if the plate’s velocity is primarily responsible for variations in retraction
speed. To investigate this, we examined the speed difference �Vret = Vret,r − Vret,e between rigid
and elastic surfaces in typical cases with varying stiffness K , Weber numbers We, and mass ratio
Mr . The results, shown in Fig. 10, are plotted as a function of Up. A negative �Vret indicates an
increase in retraction speed due to the elastic plates, while a positive �Vret indicates a decrease. The
data distribution across all four quadrants suggests that the direction of the plate’s motion does not
significantly influence retraction speed. For instance, data points in the first and fourth quadrants
show that an upward Up can either increase or decrease Vret. Additionally, no consistent correlation
is observed between �Vret and Up, indicating that, unlike the spreading phase, changes in retraction
speed are not driven by the plate’s vertical velocity.

To further investigate the underlying cause of retraction speed changes due to the plate’s motion,
we revisited the dynamics discussed in Sec. III A. During the spreading phase, a droplet’s motion is
driven by its initial inertia, while retraction is governed primarily by capillary forces. However, the
additional inertia exerted by the plate’s movement can influence the retraction phase. In the plate’s
noninertial reference frame, an additional inertial force Fi acts on the drop, which is related to the
plate’s acceleration ap = z̈(t ). To explore this, we plotted �Vret as a function of ap in Fig. 10 for the
typical cases. The results reveal a clear, almost linear positive correlation between �Vret and ap for
all cases. The data points are predominantly located in the first and third quadrants, indicating that
the direction of ap has a significant impact on retraction speed. Specifically, when ap > 0 (i.e., the
plate is accelerating upward or decelerating downward), Vret decreases. Conversely, when ap < 0,
Vret increases.

Figure 10 also shows that �Vret is approximately zero when ap = 0, even at maximum vibration
velocity. This further supports the idea that changes in retraction speed are driven by the plate’s

053607-14



SPREADING AND RETRACTION DYNAMICS OF DROP …

FIG. 11. Snapshots of drop impacts on (a), (d) rigid, (b), (e) elastic K = 20, and (c), (f) elastic K = 40
surfaces with Mr = 0.01 and We = 80 at two distinct moments, as shown in Fig. 9(c). Panels (a)–(c) correspond
to t/τi = 0.416, while panels (d)–(f) correspond to t/τi = 0.595. The contour plots on the left represent the
flow velocity in the horizontal direction. θR denotes the receding contact angle. The inner rim refers to the
section connected to the film, while the outer rim is the part near the contact line.

acceleration rather than its velocity. This finding is crucial for understanding the retraction dynamics
of droplets impacting vertically moving surfaces.

The effect of plate acceleration on retraction dynamics can be explored by comparing the rigid
and elastic cases for K = 20 and K = 40, as shown in Fig. 11. Snapshots at t/τi = 0.416 and 0.595
are presented for these cases. According to the plate displacement data in Fig. 9(c), the plate with
K = 40 is accelerating upward at t/τi = 0.416 [Fig. 11(c)], which corresponds to ap > 0. In this
reference frame, an inertial force Fi acts downward, primarily affecting the rim where most of
the fluid mass is concentrated. This downward force flattens the rim compared to the rigid case
[Fig. 11(a)]. As the rim flattens, Fi pushes the inner side inward and the outer side outward, which
slows down the retraction of the contact line and, consequently, the retraction speed. Similarly,
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at t/τi = 0.595 for K = 20, when ap is still upward, the rim appears flatter compared to the rigid
case [see Figs. 11(d) and 11(e)], and the contact line retracts more slowly [Fig. 9(c)].

In contrast, when the plate accelerates downward (i.e., when ap is negative), Fi acts upward and
pulls the rim upwards [Figs. 11(b) and 11(f)]. This sharpens the rim and draws the contact line
inward, increasing the retraction speed.

The impact of Fi on rim retraction is further demonstrated by the fluid velocity distribution shown
in Fig. 11. For rigid surfaces, where Fi is absent, the rim retracts at almost a uniform speed, with
minimal velocity differences between the inner and outer sides of the rim. However, when the plate
accelerates upward [Figs. 11(c) and 11(e)], the fluid on the inner side of the rim moves faster than on
the outer side. This observation supports the notion that Fi pushes the inner rim inward, accelerating
the flow, while the outer side is pushed outward, slowing it down.

Conversely, when Fi pulls the inner rim outward, as seen in Fig. 11(f), the inner side moves
at a slower speed compared to the outer side. However, in the case of K = 20 at t/τi = 0.416
[Fig. 11(b)], the rim retracts at nearly uniform speed, similar to the rigid surface. This may be
because the rim is narrow due to the upward force, and the outside fluid is compressed by the inner
side, slowing down the flow. So the velocity difference is less obvious than that in Fig. 11(f).

Besides, we also recognize that the introduced inertial force not only affects the early retraction
but may also have a strong effect on later-stage jet breakup in satellite droplet generation. As
discussed above, the retraction behavior of the inner rim is either enhanced or suppressed depending
on the direction of plate acceleration—upward or downward—which in turn modifies the strength of
fluid focusing into the central jet. This modulation may contribute to either promoting or inhibiting
satellite droplet expulsion. We consider the investigation of satellite droplet formation on elastic
substrates a promising direction, which will be pursued in future work.

Additionally, we explored the potential influence of θR on the retraction dynamics, particularly
when the rim is affected by the inertial force Fi. Such a change in θR could, in turn, modify the
capillary force FC ∼ (1 − cos θR), either increasing or decreasing it depending on the direction of
the angle change. The numerical results in Fig. 11 show that while θR for elastic cases differs slightly
from that of rigid cases, the variation is minimal. This suggests that the deformation of the rim does
not significantly impact the capillary force. Therefore, the changes in retraction speed are primarily
driven by the additional inertial force arising from the motion of the elastic surface.

As discussed earlier, the difference in retraction speed �Vret = Vret,r − Vret,e between rigid and
elastic surfaces exhibits a nearly linear dependence on the plate’s acceleration ap (Fig. 10). This
relationship can be represented by the following model:

�Vret = λapτi, (23)

where λ is a linear coefficient. The numerical results in Fig. 10 suggest that λ is approximately 1/40
for various K , We, and Mr .

Building on this, we propose a method to predict the retraction speed for drops impacting elastic
surfaces:

Vret,r = Vret,e − (−λapτi ), (24)

where −λapτi represents the speed change induced by the inertial force from the plate’s motion.
This term is zero for rigid surfaces. For elastic surfaces, Vret is influenced by both capillary and
inertial forces. By subtracting the inertial force effect using this equation, the retraction speed is
primarily driven by capillary forces, similar to rigid surfaces.

Figure 12 shows the time evolution of Vret + λapτi for drops impacting rigid and elastic surfaces
under different We. Comparing these results with Figs. 9 and 12, we observe that the oscillations in
retraction speed for elastic surfaces are almost eliminated, and the retraction behavior aligns closely
with the rigid case. This further validates the accuracy of the proposed equation (24).

The retraction speed for drops impacting rigid surfaces can be predicted using the model by
Bartolo et al. [20]: Vret/Rmax ∼ τ−1

i

√
π (1 − cos θR), which is confirmed in Fig. 8(a). Therefore,

with knowledge of the surface motion, specifically its vertical acceleration, the retraction speed for
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FIG. 12. Time evolution of Vret + λapτi for the drop impact on rigid and elastic surfaces with various K
and We at Mr = 0.01. Panels (a)–(c) denote We = 40, 60, and 80, respectively. Here λ = 1/40 is determined
by the results in Fig. 10. For the rigid case, ap = 0.

elastic surfaces can be accurately estimated using equation (24). This approach provides a reliable
method for predicting and measuring retraction speed on moving surfaces and also offers a way to
control retraction speed through the acceleration of the surface.

IV. CONCLUSION

The study numerically investigates the influence of elastic surfaces on the spreading and retrac-
tion dynamics of an impacting drop. During the early stage of spreading, mass conservation between
the thin film and the bulk of the drop governs the process. Based on this, a theoretical relation is
deduced for drop spreading on elastic surfaces, expressed as (β2 − 1)(1 + md/mp)0.5 ∼ τ , where
τ is a time scale that accounts for surface motion. This timescale is found to be universal across
various values of K and Mr for high Weber numbers.

For retraction dynamics, it is observed that the drop retracts with a vibrational speed when
impacting elastic surfaces and exhibits a variation period similar to that of the surface vibration.
In contrast to the spreading stage, where the surface velocity Up influences the spreading rate, Up

has a minor effect on the variation of Vret. Our key finding of this work is that the change in retraction
speed Vret is directly linked to the surface acceleration ap rather than Up.

This conclusion enhances our understanding of retraction dynamics for drops impacting moving
surfaces. The study further explains that the variation in Vret compared to rigid surfaces is due to
the inertial force introduced by ap. Building on this, a predictive solution for retraction speed on
moving surfaces is proposed, which aligns well with the numerical results.
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