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Sedimentation of an oblate ellipsoid in narrow tubes
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Sedimentation behaviors of an oblate ellipsoidal particle inside narrow [R/a ∈ (1.2,2.0)] infinitely long circular
tubes are studied by the lattice Boltzmann method, where R and a are the radius of the tube and the length of
the semimajor axis of the ellipsoid, respectively. The Archimedes numbers (Ar) up to 70 are considered. Four
periodic and two steady sedimentation modes are identified. It is the first time that the anomalous mode has been
found in a circular tube for an ellipsoidal particle. The phase diagram of the modes as a function of Ar and R/a

is obtained. The anomalous mode is observed in the larger R/a and lower-Ar regime. Through comparisons
between the anomalous and oscillatory modes, it is found that R

a
plays a critical role for the anomalous mode.

Some constrained cases with two steady modes are simulated. It is found that the particle settles faster in the
unconstrained modes than in the corresponding constrained modes. This might inspire further study on why the
particle adopts a specific mode under a certain circumstance.
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I. INTRODUCTION

Motion of the particles in tubes are ubiquitous in nature
and many applications in industries, such as chemical, bio-
logical, and mechanical engineering. Examples include the
sedimentation of particles inside tubes, blood flow in the
microcirculation, and capsules flowing through tubes or pipes
[1,2]. Particle shapes play a critical role in determining the
motions. In the following, the studies on the motion of particles
are classified according to the particle shapes.

The motions of spherical particles have been studied exten-
sively. There are many numerical studies on the movement of
suspended spheres in the Couette flow [3] and tube flows [4].
There are also many experimental studies on spherical particles
in Poiseuille flows. For example, Segre and Silberberg studied
the migration of neutrally buoyant spheres inside tubes and
found the Segre-Silberberg effect [5]. It was observed that the
spherical particles migrate towards an equilibrium position
and equilibrate at a distance of 0.6 times the radius of the tube
from the tube’s center [5]. This finding may be important in ex-
plaining certain flow behavior of the suspensions and may find
application in the fractionation of particles of different size.

For the nonspherical particle, there are some studies on
motions of rodlike particle or thin disk [6]. For example, Russel
et al. investigated the motion of an inertialess rodlike object
falling near a flat wall in the Stokes flow. They found that
when the rod approaches a vertical wall, it rotates and thus
turns away from the wall. They concluded that the rod will
undergo a periodic oscillatory motion between two parallel
plates [7]. There are also many studies on free falling of a disk.
Zhong et al. [8] experimentally investigated the sedimentation
of a free thin disk and new types of free falling motions were
found for small moment of inertia values, including the spiral
mode and transitional mode.

More recently, Rahmani and Wachs investigated the free
falling of cubical and tetrahedral particles for different
Reynolds numbers [9]. They found that mechanisms of path
instabilities for angular particles are different from those for

*huanghb@ustc.edu.cn

spherical ones. The rotation of the particle plays a more signif-
icant role in the transition to chaos for angular particles. How-
ever, in the study, only periodic lateral boundary conditions is
applied. It suggested that the side wall effect is not considered.

For nonspherical particle, ellipsoidal particles attract more
attention. Jeffery investigated the rotational modes of an
ellipsoid in a Couette flow under Stokes flow conditions
[10]. Yu et al. [11], Huang et al. [12], and Rosén [13]
studied an ellipsoid in Couette flows with inertia. They
found several rotational modes. As an extension, Huang
et al. [14] investigated the intrinsic viscosities for prolate and
oblate spheroidal suspensions. These studies may enrich our
understanding of suspensions of ellipsoidal particles.

However, for more common cases in industry, particles are
usually inside a tube. For example, Sugihara-Seki numerically
studied the motions of an inertialess elliptical particle in tube
Poiseuille flow using a finite-element (FE) method [1]. Several
motion modes for prolate and oblate spheroids with Re = 0
are found.

There are also some studies on sedimentation of ellipsoidal
particle. Xia et al. studied the sedimentation of a non-neutrally
buoyant elliptical particle in a two-dimensional (2D) channel
with different block ratios at intermediate Re using the lattice
Boltzmann method (LBM) [15]. They found five different
modes: the oscillatory mode, the “anomalous” rolling mode,
the vertical mode, the inclined mode, and the horizontal
mode. For the oscillatory mode, the particle “wiggles” down
the channel, oscillating around the centerline of the channel.
For the vertical and horizontal modes, the particle sediments
vertically and horizontally along the center of the 2D channel,
respectively. For the inclined mode, the elliptical particle
sediments off-center along a vertical line with an inclined
orientation. For the anomalous rolling mode (or the anomalous
mode), the elliptical particle rotates as if it is contacting and
rolling up one of the walls when it travels down vertically.
Although the 2D simulations may provide some useful
information for the actually three-dimensional (3D) flows in a
tube, results of 3D simulations may be significantly different
from those of 2D simulations [16].

Swaminathan et al. studied the sedimentation of a
3D prolate spheroid inside an infinitely long tube at low
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and intermediate Reynolds numbers using the arbitrary
Lagrangian-Eulerian (ALE) based on the FE method [17].
They found the oscillatory, horizontal, and inclined modes.
However, in the 3D study, the tube diameter is fixed to be 8
times the lengths of semimajor axis of the ellipsoid. Like in
Ref. [17], previous investigations of sedimentation have mostly
considered the case of wide tubes. Hence, the side wall effect
or the particle-tube size ratio effect on the motion behavior of
the particle is unknown. In this paper, the effects of wall bound-
aries on the mode of sedimentation are investigated in detail.

To investigate sedimentation behaviors of a prolate ellipsoid
in narrow and infinitely long tubes, recently we carried out a
numerical study [18]. In the study, the particle-tube size ratio
effect was examined and two new modes: The spiral mode and
the vertically inclined mode were found. The phase diagram
of these modes for the prolate spheroid is also obtained.

In this paper we extend the numerical study to an oblate case
to further investigate the effect of the particle geometry. Here
the sedimentation behaviors of an oblate ellipsoidal particle
are examined, which is also a typical particle geometry. In the
meanwhile, the effects of wall boundaries are also taken into
account. In this paper, some undisclosed features of an oblate
particle sedimentation in a narrow tube are discussed.

Hence, the main emphasis in this work is to study the
effect of wall boundaries on the flow patterns observed during
sedimentation of an oblate ellipsoid. This study may shed some
light on the sedimentation behaviors of particles.

The numerical method used in our study is based on the
multiple-relaxation-time (MRT) LBM [19] and the dynamic
multiblock strategy [18]. The LBM have been well established
to study the motion of 3D ellipsoidal particle’s inside Couette
flow and sedimentation of 2D ellipsoid [12,15,20–22]. These
studies all demonstrate that the LBM is a powerful tool to study
the particulate movement in the fluids. The numerical methods

are validated in Ref. [18]. In Sec. II, the MRT-LBM and basic
equations for the motion of the solid particle are introduced
briefly. A further validation is given in Sec. II C. The phase
diagram is shown in Sec. IV A and the identified modes are
discussed in Sec. IV B. Further discussions for the mechanism
are presented in Sec. IV C. Finally, some concluding remarks
are stated in Sec. V.

II. NUMERICAL METHOD

A. MRT-LBM

The MRT-LBM [23] is used to solve the fluid flow governed
by the incompressible Navier-Stokes equations. The Lattice
Boltzmann Equation (LBE) [19] can be written as

|f (�x + �eiδt,t + δt)〉 − |f (�x,t)〉
= −M−1Ŝ[|m(�x,t)〉 − |meq(�x,t)〉], (1)

where Dirac notation of ket |·〉 vectors symbolize the column
vectors. |f (�x,t)〉 represents the particle distribution function
which has 19 component fi with i = 0,1, . . . ,18 because the
D3Q19 model is used in our 3D simulations. The collision
matrix Ŝ = M · S · M−1 is diagonal with

Ŝ ≡ (0,s1,s2,0,s4,0,s4,s9,s10,s9,s10,s13,s13,s13,s16,s16,s16),
(2)

where the parameters of Ŝ are chosen as [19]: s1 = 1.19, s2 =
s10 = 1.4, s4 = 1.2, s9 = 1/τ , s13 = s9, s16 = 1.98. |meq〉 is
the equilibrium value of the moment |m〉, where the moment
|m〉 = M · |f 〉, i.e., |f 〉 = M−1 · |m〉. M is a 19 × 19 linear
transformation matrix which is used to map the column vectors
|f 〉 in discrete velocity space to the column vectors |m〉 in
moment space. The matrix M and |meq〉 are same as those used
by D’Humiere et al. [19] and Huang et al. [12]. In Eq. (1), �ei

are the discrete velocities. For the D3Q19 velocity model,

�ei = c

⎡
⎣0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 −1 1 −1 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1

⎤
⎦, (3)

where c is the lattice speed defined as c = �x
�t

. In our study
�x = 1 lu and �t = 1 ts, where lu, ts, and mu represent
the lattice unit, time step, and mass unit, respectively. The
macrovariables of fluid flow can be obtained from

ρ =
∑

i

fi, ρuα =
∑

i

fieiα, p = c2
s ρ, (4)

where subscript α denotes three coordinates. The parameter τ

is related to the kinematic viscosity of the fluid: ν = c2
s (τ −

0.5)�t , where cs = c√
3

is the sound speed.

B. Solid particle dynamics and fluid-solid boundary interaction

In our simulation, the oblate ellipsoid particle is described
by

x ′2

c2
+ y ′2

b2
+ z′2

a2
= 1, (5)

where c, b, and a are the lengths of three semiprincipal
axes of the particle in x ′, y ′, and z′ axis of body-fixed
coordinate system, respectively (see Fig. 1). The body-fixed
coordinate system can be obtained by a combination of
coordinate transformation around the z′ − x ′ − z′ axis with
Euler angles (φ,θ,ψ) from space-fixed coordinate system
(x,y,z) which initially overlaps the body-fixed coordinate
system. The combination of coordinate transformation is
illustrated in Fig. 1. The evolution axis always overlaps the
x ′ direction. The migration and rotation of the particle are
determined by Newton’s equation and Euler’s equation,

m
dU(t)

dt
= F(t), (6)

I · d�(t)

dt
+ �(t) × [I · �(t)] = T(t), (7)

respectively, where I is the inertial tensor and �(t) and T(t)
represent the angular velocity and the torque exerted on the
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FIG. 1. (Color online) Schematic diagram of the combination of
coordinate transformation from (x,y,z) to (x ′,y ′,z′) with three Euler
angles (φ,θ,ψ). Line “ON” represents the pitch line of (x,y) and
(x ′,y ′) coordinate planes. Two coordinate systems are overlapping
initially. First, the particle rotates around the z′ axis with a recession
angle φ and then the particle rotates around the new x ′ axis (i.e., line
“ON”) with a nutation angle θ . Finally, the particle rotates around the
new z′ axis with a angle of rotation ψ .

particle in the body-fixed coordinate system, respectively. In
the frame, I is diagonal and the principal moments of inertial
can be written as

Ix ′x ′ = m
b2 + a2

5
, Iy ′y ′ = m

c2 + a2

5
, Iz′z′ = m

c2 + b2

5
,

(8)
where m = 4

3ρpπabc is the mass of the particle. ρp is the
density of the particle. It is not appropriate to solve Eq. (7)
due to an inherent singularity [24]. Thus four quaternion
parameters are used as generalized coordinates to solve
the corresponding system of equations [22]. A coordinate
transformation matrix with four quaternion parameters [22] is
applied to transform corresponding item from the space-fixed
coordinate system to the body-fixed coordinate system. With
four quaternion parameters, Eq. (7) can be solved using a
fourth-order accurate Runge-Kutta integration procedure [12].

In the simulations, the fluid-solid boundary interaction is
based on the schemes of Aidun et al. [20] and Lallmand and
Luo [23], which is an accurate moving-boundary treatment.
The momentum exchange scheme is used to calculate the force
exerted on the solid boundary. The forces due to the fluid nodes
covering the solid nodes and the solid nodes covered by the
fluid nodes [20] are also considered in the study.

To prevent the overlap of the particle and the wall, usually
the repulsive force between the wall and particle should be
applied [18]. Here the lubrication force model is identical to
that we used in Ref. [18] and the validation of the force model
has been tested extensively in Ref. [18].

C. Validation

Our LBM code has been validated in Ref. [18] by the cases
of migrations of a neutrally buoyant sphere in tube Poiseuille
flows [25] and a case of a prolate ellipsoid sedimentation in
a circular tube [17]. To further validate our LBM code, the
migration of a neutrally buoyant sphere in a tube Poiseuille
flow [26] is also performed.

In the simulations, two kinds of the simulations are per-
formed: unconstrained and constrained. In the unconstrained
simulation, the particle is allowed to move and rotate freely.
In the constrained simulation, the particle is allowed to rotate
freely but only allowed to move along a line parallel to the axis
of the tube [26].

In the simulations, the computational domain is 112 lu ×
11 lu × 160 lu. The radii of the tube and the sphere are
R = 53.333 lu and r = 8 lu, respectively (radius ratio 0.15).
To make the simulations more efficient, the multiblock strategy
is also used. The coarse and fine grids are 56 × 56 × 80
and 112 × 112 × 50, respectively. The fine grid is immersed
in the coarse grid. The nondimensional relaxation time is
τf = 0.8, and τc = 0.65. The pressure boundary conditions
are applied in the two ends of the tube with �p = pin − pout =
0.002107 mu/lu/ts2. In the Poiseuille flow, the maximum
velocity in the axis of the tube is Um = �pR2

4μL
= 0.09364 lu/ts,

where the tube length L = 160 lu. Hence, in our simulations,
Re = 8r2Um

νR
= 9.0, which is identical to that in Ref. [26].

The equilibrium position r/R and Uz, �x at equilibrium
state are compared with results of [26] in Table I. Here
the equilibrium position for the spherical particle inside the
Poiseuille flow is very close to those obtained through ALE
and DLM schemes. The velocity and angular velocity of the
particle (Uz and �x) and their normalized values (U ′

z and �′
x ,

which are normalized by Um and Um

D
, respectively) are also

illustrated in the table. It is seen that the normalized velocities
of the particle obtained from the LBM simulation agree well
with those obtained from the ALE and DLM schemes [26].

Figure 2 shows the results of the constrained cases. The
normalized sedimentation velocity (U ′

z), rotational velocity
(�′

x), and lift force of the LBM simulation are compared
with those obtained from the ALE and DLM. The lift force is
normalized by ρU 2

mR2. For U ′
z and �′

x , our results agree very
well with those obtained from the ALE and DLM schemes
[26]. For the lift force, our results are also well consistent with
those given in Ref. [26]. Near r/R = 0.6, the sphere is at its
equilibrium position, in which the resultant force is zero.

III. AN OBLATE ELLIPSOID SEDIMENTATION IN A TUBE

The sedimentation of an oblate ellipsoidal particle in
infinitely long tubes is illustrated in Fig. 3. In this problem,

TABLE I. The equilibrium position r/R, and Uz, �x at equilibrium state for unconstrained cases. The number in the square brackets
indicates the value of the power of 10.

Scheme r/R Uz �x Um D U
′
z �

′
x

LBM 0.600 0.0583 lu/ts 9.92[−4] ts−1 0.0936 lu/ts 53.334 lu 0.623 0.5640
ALE 0.601 12.4 cm/s 4.65 s−1 20 cm/s 2.5 cm 0.62 0.5813
DLM 0.606 12.2 cm/s 4.63 s−1 20 cm/s 2.5 cm 0.61 0.5788
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FIG. 2. (Color online) Constrained cases for a spherical particle
moving inside a circular tube, the particle is allowed to rotate freely
but only allowed to move along the line parallel to the axis of the
tube. (a) Normalized velocity U ′

z, (b) normalized rotational velocity
�′

x , and (c) normalized lift force as functions of radial position. The
ALE and DLM results come from Ref. [26].

D (D = 2R) denotes the diameter of the circular tube and only
cases with a = b = 2c are considered. The Reynolds number
(Re) is defined as Re = 2Uta

ν
, where Ut is the average terminal

sedimentation velocity in the −z direction. In the study, the
gravity is considered in the −z direction. The Archimedes
number is defined as

Ar =
√

ga3(ρp − ρf )

ρf ν2
, (9)

where g is the acceleration of gravity and ρf and ρp denote
the densities of the fluid and the particle, respectively.

FIG. 3. Schematic diagram for the sedimentation of an oblate
ellipsoid in a circular tube filled with viscous fluid.

In our study, we choose the oblate ellipsoid with a =
0.05 cm, ν = 0.01 cm2/s, and g = 980 cm/s2. We have

ga3

ν2
= 1225, (10)

which is fixed and Ar is only a function of ρp

ρf
. Hence, the

nondimensional parameters Ar and confinement ratio R
a

, are
dominated in this study. In the following cases, the oblate
ellipsoid may be released from the central axis of the tube
in the position (0,0, L

2 + ξ ), where L is the tube length and
ξ is a small distance. The initial velocities of flow field are
zero and the density of the fluid is set to be ρf = 1.0. In our
simulations, L = 20D is adopted and the ellipsoidal particle
is kept in the middle of the tube approximately all the times
so as to minimized the end effects [18]. In most cases, the
initial orientation of the ellipsoid is (φ,θ,ψ) = (90◦,90◦,60◦),
which means the angle between the evolution axis of the oblate
particle (x ′) and tube axis is 60◦.

Usually in our simulations, the semimajor axis of the oblate
ellipsoid is represented by 20 lu, i.e., a = 20 lu and τf = 0.6.
For example, when we simulate the case of R

a
= 1.2, the total

mesh is about 50 lu × 50 lu × 960 lu. The grid-independent
study and time-step-independent study have been performed
and it is shown that the mesh size and the time step is sufficient
to get accurate results.

IV. DISCUSSIONS

A. Phase diagram

A series of cases with different Ar and confinement ratio R
a

were simulated and several periodic or steady sedimentation
modes are identified. The phase diagram in the (R

a
, Ar) plane

is obtained.
For each case with a specific R

a
, and Ar, usually several

simulations with different initial orientations and positions
are performed. In all of our simulations, it is not found that
the terminal mode depends on the initial positions or initial
orientations of the particle. For example, eight simulations for
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TABLE II. Eight different initial conditions for the case R

a
= 1.6,

Ar = 40, and a = 20 lu. All initial position in the z direction is
z

R
= 20.02, see Sec. III and Fig. 3 for more details.

Case position ( x

R
,

y

R
) φ θ ψ

1 ( 0.1, 0.0) 90◦ 90◦ 60◦

2 (−0.15, 0.0) 90◦ 15◦ 20◦

3 ( 0.0, 0.1) 0◦ 45◦ 60◦

4 (0.0, −0.2) 15◦ 10◦ 20◦

5 (0.1, 0.3) 90◦ 90◦ 45◦

6 (0.2, 0.2) 20◦ 10◦ 45◦

7 (0.3, 0.2) 0◦ 45◦ 20◦

8 (0.1, 0.4) 15◦ 20◦ 20◦

the case R
a

= 1.6, Ar = 40 with different initial orientations
and positions are performed. The initial conditions are listed
in Table II. All eight cases finally reach the spiral mode.

Figure 4 shows the snapshots of five typical modes: spiral,
oscillatory, horizontal, inclined, and anomalous modes. More
details for each mode are described in Sec. IV B.

The phase diagram is shown in Fig. 5. Several regimes for
different modes are obtained. It is seen that the oscillatory
mode occurs at a small confinement ratio R

a
and lower Ar.

Hence, the oscillatory mode may be associated with strong
wall effect. When R

a
is large enough, due to diminishing of

the wall effect, the oscillatory mode may disappear. Instead,
the inclined mode, the horizontal mode and the anomalous
mode may occur. The critical Ar at which the oscillatory mode
transfers to the inclined mode becomes lower as R

a
increases.

The spiral mode appears mainly at moderate R
a

and high Ar.
The spiral mode for the oblate ellipsoid is only observed in
regime 1.2 > R

a
> 1.8. However, the spiral mode of the prolate

FIG. 4. (Color online) Snapshots of typical modes. (a) Spiral
mode: The particle settles spirally around the tube axis; the inner
green circular tube is drawn to guide the eye. (b) Oscillatory mode:
The ellipsoid approaches two sides of the wall periodically and always
settles inside an axis-symmetric plane. (c) Horizontal mode: The
particle settles down horizontally along the tube axis. (d) Inclined
mode: The ellipsoid settles off-axis with a constant inclination to the
horizontal. (e) Anomalous mode: The ellipsoid periodically contacts
one side of the tube wall and then approaches instead of migrates
across the tube axis.

FIG. 5. (Color online) Phase diagram in the ( R

a
,Ar) plane. The

dashed lines roughly show the borders of different regions.

ellipsoid occurs at R
a

< 1 and higher Ar number [18]. For a
larger R

a
, the sedimentation mode may become the horizontal

mode II, in which the ellipsoid settles down horizontally
with small-amplitude oscillation. The geometric effect plays
an important role in the mode transformation which will be
discussed in the following sections. For wider tubes (R

a
≈ 1.8),

the horizontal mode occurs mainly when Ar is moderate. As Ar
decreases, the inclined mode or the anomalous mode appears.

B. Details for sedimentation modes

For the spiral mode, the ellipsoid settles spirally around
the tube axis, i.e., the z-axis, periodically [see Fig. 4(a)]. The
angle γ between the x ′ axis and the z axis seems to be a
constant and the particle itself does not rotate around the
x ′ axis. The spiral mode occurs at a moderate confinement
ratio(1.3 � R

a
� 1.6) and a higher Ar(Ar � 35). Figure 6

shows the evolutions of normalized x and y positions of the
particle and the orientation of the x ′ axis. The length, time, and

velocities are normalized by R,
√

g

2a
, and

√
2ga, respectively.

In Fig. 6(a), the distance between the center of the ellipsoid and
the tube axis r =

√
x2 + y2 is also shown. It is seen that r is a

constant in the spiral mode, i.e., the projection of the particle’s
trajectory in the (x,y) plane is a circle. From Fig. 6(b), it is
also seen that the angle between the x ′ axis and the z axis, i.e.,
γ is almost a constant. For different cases, γ depends on R

a

and Ar. The angle γ increases with Ar but decreases with R
a

(see Fig. 7).
For the oscillatory mode, it seems that the ellipsoid

“wiggles” down the tube [see Fig. 4(b)]. In this periodic
mode, the ellipsoid approaches one side of the tube and then
rotates (counterclockwise for the left side and clockwise for
the right side) and migrates towards the other side when it
is settling. The ellipsoid settles in an axis-symmetric plane,
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FIG. 6. Spiral mode ( R

a
= 1.5, Ar = 35). (a) The normalized x and y positions of the center of the particle; (b) the orientation of the x ′

axis as functions of time.

which depends on the initial position and orientation. For
example, as shown in Fig. 8, the ellipsoid settles in the (y,z)
plane and the x ′ axis is always perpendicular to the x axis. The
oscillatory mode usually appears at R

a
� 1.6 and Ar � 31.3.

For the horizontal mode, the ellipsoid settles along the tube
axis, i.e., the x ′ axis overlaps with the z axis [Fig. 4(c)]. The
horizontal mode most likely appears in wider tubes, i.e., at
higher R

a
. The force acting on the particle by the flow field is

axis symmetric around the tube axis, so the total force is in the
z direction and the resultant torque is zero. For a higher Ar, due
to instability, the horizontal mode II may be observed. In the
mode, the ellipsoid settles down horizontally but with small-
amplitude oscillation. The ellipsoid may oscillate around tube
axis in both the x and y directions with small amplitude [see
Fig. 9(a)] and the x ′ axis no longer overlaps with the tube axis
[see Fig. 9(b)].

For the inclined mode, the ellipsoid settles off-axis with
a constant inclination to the horizontal [see Fig. 4(d)]. The
angle between the x ′ axis and the horizontal and the off-axis
amplitude are case dependent.

The anomalous mode is shown in Fig. 4(e) and Fig. 10. The
ellipsoid migrates to and almost contact the left side wall of
the tube and rolls counterclockwise when it is settling down.
The particle approaches one side of wall periodically but is
unable to across the tube axis to reach the other side. That
significantly differs from the oscillatory mode shown in Fig. 8.

Which side of the tube the ellipsoid will contact and which
direction it rotates depend on the initial condition of the
particle.

C. Further discussion on phase diagram

1. Inertia-induced mode transitions in a specific tube

As shown in Fig. 5, for a specific tube, e.g., R
a

= 1.9, with
Ar increasing, the anomalous mode, the inclined mode, the
horizontal mode, and the horizontal mode II may appear.

At a small Ar, both the inertias of the particle and the fluid
are small, so the particle is easier to oscillate in the tube and the
anomalous mode appears. At a moderate Ar, a larger inertia
of the particle may stabilize the movement of the particle. The
ellipsoid may stop oscillating in the anomalous mode and turn
to a more stable mode (the inclined mode). Further, with the
inertia increasing, the horizontal mode instead of the incline
mode may appear. For a higher Ar, for example, Ar � 60.54,
the inertia of the particle increases and the settling velocity
also increases. Hence, the Re of the fluid will increase and
the fluid flow becomes unstable. Then the force exerted on the
ellipsoid may be slightly not symmetric about the x ′ axis and
the torque is no longer zero. Hence, the particle may oscillate
with small amplitude [the horizontal mode II, see Fig. 11(a)].
It seems that the modes are determined by both the inertia of
the particle and Re of the fluid flow.
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FIG. 7. In the spiral mode, (a) the angle γ as a function of Ar ( R

a
= 1.6) and (b) γ as a function of R

a
(Ar = 35).
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FIG. 8. Oscillatory mode ( R
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= 1.2, Ar = 11.07). (a) The normalized x and y positions of the center of the particle as functions of time.

(b) The orientation of the x ′ axis as a function of time.
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FIG. 11. Top views of the trajectories of the particle’s center. (a) The horizontal mode II with R
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= 1.8,Ar = 60.62. (b) The intermediate
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a
= 1.7,Ar = 60.62, t∗ � 400 and (c) the terminal state (t∗ � 800) for case R

a
= 1.7,Ar = 60.62.

2. Transition from the horizontal mode II to the spiral mode

At a higher Ar and R
a

, the particle may settle down
horizontally with small oscillations (the horizontal mode II).
For the mode, the top-view of the trajectory in the (x,y)
plane is almost a line with small-amplitude oscillations in
the circumferential direction [see Fig. 11(a)]. For cases with
higher Ar and narrower tube R

a
≈ 1.7, the horizontal mode II

may transfer to the spiral mode due to the stronger wall effect.
Figure 11(c) shows the terminal top view of the trajectory
in the (x,y) plane for the spiral mode. It is a circle, i.e., the
particle only moves in the circumferential direction.

For the case R
a

= 1.7,Ar = 60.62, it may take long time
for the particle to develop to the perfect spiral mode. An
intermediate state is shown in Fig. 11(b). It is a top view
of the trajectory. At this intermediate state the ellipsoid not
only oscillates in the radial direction but also moves along the
circumferential direction. In both experimental studies for a
falling disk [8] and a rising disk [27], similar top views of the
trajectory were observed. Hence, the horizontal mode would
transfer to the spiral mode when the tube is narrower.

The transition can be understood in the following way.
When the particle settles down, there is a vortex that is attached
to the particle in the wake due to shear stress. In a wider tube
(R/a > 2), the wake regime is steady and axisymmetric in
the center of the tube. The wake is almost not affected by the
tube wall. The particle adopts the horizontal mode. However,
when the tube becomes narrower (R/a ≈ 1.8), the wake
interacts with two sides of the tube wall and triggers the radial
instability. The particle may move (oscillate) mainly in radial
direction with a negligible oscillation in the circumferential
direction. That is the horizontal mode II. When the tube is much
narrower (R/a ≈ 1.7), due to the strong interaction between
the wake and the tube wall, the circumferential instability and
movement become dominant, then the particle adopts the spiral
mode.

3. Comparison between the oscillatory mode
and the anomalous mode

The anomalous mode instead of the oscillatory mode
occurs when R

a
> 1.5 and Ar ≈ 10 (see Fig. 5). Although

the sedimentation pattern looks similar in the oscillatory and
anomalous modes (see Fig. 4), there are some differences. One

significant difference is that in the oscillatory mode instead of
the anomalous mode, the ellipsoid migrates and crosses the
tube axis from one side of the tube to the other side.

In the follows, the two modes that settle in the (y,z)
plane are compared. The position, velocity, and force in the y

direction for the anomalous mode and the oscillatory mode are
shown in Figs. 12(a)–12(c) and 12(d)–12(e), respectively. In
each subfigure, evolution of two periods of the sedimentation
is shown. In the anomalous mode, at point a, the velocity
is zero and the displacement between the tube axis and
ellipsoid center reaches a maximum value. In the moment,
the force acting on the particle reaches a maximum value
(in the −y direction). Due to the force, the particle moves
towards the tube axis with acceleration (the movement and
force directions are consistent). At point b, the velocity reaches
a maximum value and the force exerted on the particle is zero.
Although the force reverses its direction (the +y direction)
after point b, the particle still moves towards the tube axis
(the −y direction). However at time c, although the particle
is very close to the tube axis, it is unable to across the axis.
After time c, the particle migrates towards the wall where
it just comes from. As a result, the anomalous mode will
appear.

For the oscillatory mode [see Fig. 12(d), 12(e), and 12(f)],
the procedure from points d to e looks similar to that from
points a to c in the anomalous mode. However, at point e, the
particle is at the tube axis while at point c the particle is only
close to the tube axis. For the velocity, it is not zero at point
e but zero at point c. In the mode, after it crosses the tube
axis, it will continue to migrate towards the other side of the
tube. Then the oscillatory mode will appear. The geometric
effect of the tube may play an important role to determine the
sedimentation mode.

In the parameter regime, the oscillatory mode appears in
the left lower part of the phase diagram (smaller R

a
and smaller

Ar number) and the anomalous mode appears when tube is
wider with smaller Ar number. It seems straightforward to
understand the two modes in the phase diagram. For a narrow
tube, due to the inertia of the particle, the particle’s velocity
may not reduce to zero before it reaches the tube axis and it is
easy to cross the axis to the other side of the tube. However,
in a wider tube, the particle may be difficult to cross the tube
axis.
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FIG. 12. Anomalous mode and oscillatory mode. [(a)–(c)] Position, velocity, and force acting on the ellipsoid as functions of time in the
anomalous mode. [(d)–(f)] Those in the oscillatory mode.

D. Drag coefficient and terminal Reynolds number

To evaluate the drag force effect in the sedimentation, we
calculated the drag coefficient Cd , which is defined as

Cd = Fd

1
2ρf SU 2

t

= �ρVg
1
2ρf SU 2

t

=
4
3πabc�ρg

1
2ρf SU 2

t

, (11)

where Fd is the average drag force and V represents the volume
of the particle. Ut is the average terminal settling velocity
and S denotes the effective area, i.e., the projected area of

the ellipsoid in the (x,y) plane. Figure 13 shows the drag
coefficient Cd as a function of Ar. Each line represents a
specific confinement ratio. It suggests that for a specific R

a
,

Cd decreases with Ar. For a fixed Ar, Cd usually decreases
with R

a
. That is, usually the narrower the tube is, the larger the

drag force exerted on the ellipsoid. It also hints that usually
the particle settles slower in narrower tubes. However, there
is an exception. For example, when 31.3 � Ar � 39.9, Cds
calculated from cases R

a
= 1.4 are larger than those from

cases R
a

= 1.2. Hence, as shown in the region between the two

Ar
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FIG. 13. Drag coefficient Cd as a function of Ar with different confinement ratio 1.2 � R

a
� 1.8.
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FIG. 14. Terminal Re as a function of �ρ

ρf
.

dashed lines in Fig. 13(a), for the specific Ar ∈ (31.3,39.9),
the particle settles in narrower tube ( R

a
= 1.2) faster than it

settles in wider tube (R
a

= 1.4).
The exception may be due to the mode difference. For

example, in Case I [wider tube, R
a

= 1.4 and Ar = 31.0, see
Fig. 13(a)] and Case II (narrower tube, R

a
= 1.2 and Ar =

31.0), the particles adopt the inclined mode and oscillatory
mode, respectively. In the inclined mode, the orientation of
the particle is always almost horizontal. By contrast, in the
oscillatory mode, its orientation changes periodically from
vertical to inclined. In Case II, the average effective area SII

in a period is about 52.8% of the effect area SI in Case I, i.e.,
SII
SI

= 0.528. In the meanwhile, the average settling velocity in

Case II is 1.56 times higher than that in Case I, i.e., UII
UI

= 1.56.

Hence, according to Eq. (11), (Cd )I
(Cd )II

= (UII
UI

)2 SII
SI

= 1.29, i.e., the
Cd in Case I is 1.29 times larger than that in Case II. Hence,
the mode difference contributes to the bump in the plot, i.e.,
the region 31.3 � Ar � 39.9 in Fig. 13(a).

Figure 14 shows the terminal Re as a function of �ρ

ρf
and

Fig. 14(b) is a zoom-in view of Fig. 14(a) with R
a

= 1.2, 1.4.
From Fig. 14(a), it is seen that, on the whole, Re increases
with both �ρ

ρf
and R

a
. However, again there is an exception,

i.e., the Re for narrow tubes (e.g., R
a

= 1.2) is larger than that
for wider tubes (e.g., R

a
= 1.4) due to different modes. The

exception is consistent with the exception in the Cd curves
shown in Fig. 14(b).

It is also shown that at �ρ

ρ
≈ 0.75, R

a
= 1.4, the lighter

particle may settle faster than the heavy one, which is also
attribute to mode difference.

E. Settling velocities in unconstrained and constrained cases

To explore the mechanism why the particle adopts a
specific mode under a certain circumstance instead of the other
possible modes, some constrained cases with steady modes
(the horizontal and inclined modes) are simulated.

It is difficult to specify the periodic modes (the anomalous
mode, the oscillatory mode, the spiral mode, and the horizontal

II mode) due to the orbit and orientation of the particle
are complicated functions of time. Hence, in the constrained
simulations, only simple steady modes (the horizontal mode
or the inclined mode) are considered.

When a particle is supposed to follow the horizontal mode,
the particle is only allowed to move along the tube axis
horizontally. Its rotation and lateral migration are suppressed.
Then the constrained motion is the horizontal mode and the
particle will reach a constant settling velocity.

Six cases with different original modes and their corre-
sponding constrained cases are simulated. The parameters
R
a

and Ar are shown in the second and third columns in
Table III. For example, in Case A, R

a
= 1.6 and Ar = 35, the

unconstrained mode is the spiral mode and it is referred to as
the original mode. The details for specifying the corresponding
horizontal mode are illustrated in the last paragraph. To specify
the constrained inclined mode, it is not straightforward to
specify the inclined angle γ and the distance away from the
tube axis rd . The γ and rd come from the closest inclined
state with same R

a
in the phase diagram. For example, for Case

A (R
a

= 1.6 and Ar = 35), the closest case with the inclined
mode is approximately at R

a
= 1.6 and Ar = 20. The γ and rd

from the inclined case (R
a

= 1.6 and Ar = 20), i.e., γ = 18.4◦
and rd = 0.25 are adopted.

TABLE III. Normalized terminal settling velocities for uncon-
strained (terminal velocity U0 for the original mode) and constrained
cases (U1 for the horizontal mode and U2 for the inclined mode).
Velocities are normalized by

√
2ga.

Case R

a
Ar Original mode U0 U1 U2

A 1.6 35 Spiral mode 0.2865 0.2706 0.2793
B 1.8 11.07 Anomalous mode 0.0601 0.0467 0.0545
C 1.4 11.07 Oscillatory mode 0.0361 0.0158 0.0284
D 1.8 60.62 Horizontal II 0.7159 0.6917 None
E 1.9 11.07 Inclined mode 0.0615 0.0544 None
F 1.9 24.75 Horizontal mode 0.2397 None 0.2098
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We also observed that if the particle is constrained with the
x ′ axis perpendicular to the tube axis, i.e., it settles down with
smallest projected area in the (x,y) plane along the tube axis,
the settling velocity reaches the largest. However, this mode
is not observed. Here all of the possible modes do not include
this artificial mode.

The terminal settling velocities for these unconstrained
(U0) and constrained cases (U1 and U2) are shown in Table III.
It is seen that for all cases, the terminal velocity of its original
mode (U0) is larger than those of the constrained modes
(U1 for the horizontal and U2 for the inclined mode). With
limited observations (Cases A to F), we conclude that the
particle settles faster in the unconstrained modes than in
the corresponding constrained modes. It is conjectured that
the particle tends to adopt the mode with the largest settling
velocity among the six modes that we found.

V. CONCLUSION

The sedimentation of an oblate ellipsoidal particle inside
narrow tubes has been studied numerically. Several typical
periodic and steady sedimentation modes are identified. It is
not found that the modes depend on the initial orientation or
position. The phase diagram as a function of the confinement
ration R

a
and Ar is achieved. From the phase diagram, it is

observed that the anomalous mode appears in the region with

small Ar. Through comparisons between the anomalous and
oscillatory modes, it is identified that the geometric effect of
the tube plays a critical role in the anomalous mode.

Usually, an oblate particle settles faster in a wider tube;
in a specific tube, a heavier particle settles faster. However,
unusual cases are observed in our simulated results. In the
mode transitional region with R

a
= 1.4 and �ρ

ρf
≈ 0.8, a lighter

particle may settle faster than a heavier one. For Ar ≈ 35, the
particle settles faster in a narrow tube(R

a
= 1.2) than in a wider

tube (R
a

= 1.4) due to different modes.
Some constrained cases with two steady modes are

simulated. With limited observations, we found that the
particle settles faster in the unconstrained modes than in the
corresponding constrained modes. This might inspire further
study on why the particle adopts a specific mode under a certain
circumstance.
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