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Fish may take advantage of environmental vortices to save the cost of locomotion. The complex hydrody-
namics shed from multiple physical objects may significantly affect fish refuging (holding stationary). Taking
a model of a self-propelled flapping plate, we numerically studied the locomotion of the plate in wakes of two
tandem cylinders. In most simulations, the plate heaves at its initial position G0 before the flow comes (releasing
Style I). In the typical wake patterns, the plate may hold stationary, drift upstream, or drift downstream. The
phase diagrams of these modes in the G0-A plane for the vortex shedding patterns were obtained, where A is
the flapping amplitude. It is observed that the plate is able to hold stationary at multiple equilibrium locations
after it is released. Meanwhile, the minimum amplitude and the input power required for the plate seem inversely
proportional to the shedding vortex strength. The effect of releasing style was also investigated. If the plate keeps
stationary and does not flap until the vortex shedding is fully developed (releasing Style II), then the plate is able
to hold stationary at some equilibrium locations but the flapping plate has a very minor effect on the shedding
vortices. However, in Style I, the released plate is able to achieve more equilibrium locations through adjusting
the phase of vortex shedding. The effort of the preflapping in Style I is not in vain, because although it consumes
more energy, it becomes easier to hold stationary later. The relevant mechanism is explored.
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I. INTRODUCTION

The surroundings of swimming fish are always unpre-
dictable when they seek refuge. When fish swim in a fluid, the
motion of each fish may be influenced by others or physical
structures through the flow-mediated interaction among them.
Swimming fish may encounter unsteady wakes generated by
stationary objects or the schooling behavior. Fish schooling
has been extensively studied for many years [1,2]. Besides the
social and sensory factors, the hydrodynamic mechanism is
an essential factor which may promote swimming efficiency.
Fish in schools are supposed to obtain a hydrodynamic ad-
vantage by placing themselves in appropriate locations in the
wake of other swimmers. They may reduce the cost of loco-
motion by taking advantage of the wakes shed by neighbors
within the school [3–6].

However, little biological evidence of hydrodynamic ad-
vantage in the appropriate position patterns has been found
[2]. Abrahams and Colgan [7] pointed out the controversy
may be derived from ignoring the potential trade-offs involved
in school functions. Due to the difficulty of experimental mea-
surement on the energetic savings of schooling, only limited
experimental evidences [6,8,9] have shown that the individu-
als can obtain a hydrodynamic advantage from the collective
locomotion. Hence, whether there is a hydrodynamic benefit
experienced by biological propulsors in the school is still
an open question. Nowadays, more attentions were paid to
the swimming fish in the wake. Alben [10] formulated a
theoretical model for the swimming of a flexible body in
a vortex and got the relationship between the body shape
and resulting efficiency. Recently self-propulsion models are
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used to investigate this issue [11–13]. In the simulations and
experiments, the spacing between flapping plates is not fixed
but dynamically selected as a result of flow-mediated coupling
between the wings, which is close to the real situation. The
studies have shown that in the emergent configurations, the
follower may take advantage from the upstream shedding
vortices. In these studies, the shedding vortices encountered
by the following swimmers are reverse Kármán vortices.

Here we focus on whether the swimmer is able to hold
stationary in the Kármán vortex street instead of the reverse
Kármán vortex street, which is the situation of fish refuging
behind stationary physical structures. Previous studies have
shown that fishes often prefer to exploit turbulence associated
with physical structures to reduce locomotory costs [14–16].
Fishes may detect these vortices by their lateral line systems
and acquire energy from the fluid by bending their bodies to
synchronize with the vortices. The wake behind simple geo-
metric objects in a moving fluid has been well characterized
by fluid mechanists. Different Kármán vortex shedding modes
represent different consistent flow perturbations.

It is noticed that there have been some studies on the
interactions between the cylinder and fishlike undulating foil
or flexible plate, but they are not self-propelled cases [17–20].
In the literature, very few studies on the flow-mediated in-
teractions between the physical structures and self-propelled
flexible plate have been carried out. As far as we know, the
only relevant numerical study was conducted by Park et al .
[21], in which a self-propelled flexible fin is in the wake of a
circular cylinder at a fixed Reynolds number Re = 200. The
self-propulsion is induced by the prescribed heave motion at
the leading edge of the fin but whose longitudinal swimming
is free. It is shown that the fin is able to hold stationary po-
sition spontaneously with the help of the vortex street behind
the cylinder. A slaloming behavior between the vortex cores
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was observed when the fin flaps at the equilibrium position.
However, the wake behind the single cylinder at a fixed Re
may be too simple.

By altering the dimensions of a given object, Liao et al .
[22] systematically investigated the effect of vortical flows be-
hind the object on swimming fish. They observed the Kármán
gaits over a range of flow velocities and cylinder diameters.
The Kármán gait is a unique swimming style that fish refuging
behind the cylinder adopt. In the Kármán gait, the body
exhibits a low frequency lateral motions with a much larger
amplitude than that in the steady swimming. They found that
Kármán gait offers almost 50% energy savings for the fish as it
reduces the muscle activity and oxygen consumption required
to swim against a current [23,24]. Beal et al . [25] found even
anesthetized trout may maintain motion in the vortex street
behind the D-shaped cylinder. It qualitatively suggests that a
dead fish may be able to extract energy from the vortex street
to produce a thrust.

Recently to initiate a better understanding of how fish
refuge in more complex hydrodynamic environments, Stewart
et al . [26] characterized the interaction between fish and the
wake behind two tandem cylinders. The experimental results
showed that increasing gap spacing of the cylinders (Dx)
decreased the strength of the vortex street and the frequency
of the vortex shedding by approximately 53% and 20% for
all speeds, respectively. Trout were found able to Kármán
gait behind all cylinder arrangements in their study. How-
ever, they Kármán gaited over twice as often behind closely
spaced cylinders ( Dx

D = 0.7, 1.1, and 1.5, D is the cylinder
diameter). Their computational fluid dynamics simulations
showed that widely spaced cylinders produce weaker, more
widely spaced and less-organized vortices, which discouraged
Kármán gait [26]. However, in the computational fluid dy-
namics simulations, there are only two cylinders without any
self-propulsion object. How the vortex shedding affects the
Kármán gait is still unknown. Therefore, further numerical
investigation including a self-propulsion model is necessary
because numerical simulations are able to present more details
and relevant quantitative information, which may be difficult
to obtain in experiments.

In the present study, we carried out numerical simulations
on the locomotion of a self-propelled flexible plate in a
complicated vortical environment, which is generated by two
tandem cylinders. The purpose of this study is to explore the
fundamental mechanisms why the self-propelled flexible plate
is able to hold stationary in the wake of tandem cylinders.

The remainder of the paper is organized as follows: The
physical problem and mathematical formulation are presented
in Sec. II. The numerical method and validation are described
in Sec. III. Results are discussed in Sec. IV. and concluding
remarks are addressed in Sec. V.

II. PHYSICAL PROBLEM AND MATHEMATICAL
FORMULATION

We consider a uniform viscous flow passing two tandem
circular cylinders with diameter D and a flexible plate with
length L. The plate is introduced behind the downstream
cylinder. The schematic diagram is shown in Fig. 1. Two
tandem cylinders are stationary and fixed with a gap spacing
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FIG. 1. Schematic diagram of a self-propelled flexible plate be-
hind two tandem cylinders.

Dx and the Kármán vortex street may be generated in the
wake. The gap spacing between the flexible plate and the
upstream cylinder center in the horizontal direction is G. If not
specified, the flexible plate is kept flapping and released until
the vortical structures are fully developed. The leading-edge
of the plate is forced to heave sinusoidally with amplitude
A and frequency f laterally. Similar to the treatment of the
previous studies [13,27], the forced motion of the leading-
edge is described by

y(t ) = A sin(2π f t ). (1)

Meanwhile, the plate is unconstrained in the horizontal direc-
tion. It hints that only the leading-edge of plate is restricted
with the prescribed lateral heaving motion and due to the
deformation of the plate, the fluid-plate interaction drives
its longitudinal swimming. Here, a Lagrangian coordinate s
along the plate surface is defined to describe the configuration
and motion of the plate. The fluid flow is governed by the
viscous incompressible Navier-Stokes equations

∂v

∂t
+ v · ∇v = − 1

ρ
∇p + μ

ρ
∇2v + f , (2)

∇ · v = 0, (3)

where v is the velocity, p is the pressure, ρ is the density of
the fluid, μ is the dynamic viscosity, and f is the Eulerian
momentum force acting on the surrounding fluid due to the
immersed boundary, as constrained by the no-slip boundary
condition. The structural equation is employed to describe the
deformation and motion of plate [28],

ρsh
∂2X
∂t2

− Eh
∂

∂s

{[
1 −

(
∂X
∂s

· ∂X
∂s

)−1/2
]

∂X
∂s

}

+ EI
∂4X
∂s4

= Fs, (4)

where s is the Lagrangian coordinate along the plate, X =
(X,Y ) is the position vector of the plate, Fs is the Lagrangian
force exerted on the plate by the fluid, and ρs is the structural
linear mass density of the plate. Eh and EI denote the struc-
tural stretching rigidity and bending rigidity, respectively. At
the leading-edge of the plate, the clamped boundary condition
is adopted, i.e.,

−Eh

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
−1

)
∂X
∂s

+ EI
∂3X
∂3s

= 0, Y (t ) = y(t ),

∂X
∂s

= (1, 0). (5)
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At the free end of the plate, the boundary condition is ex-
pressed as

−Eh

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
−1

)
∂X
∂s

+ EI
∂3X
∂3s

= 0,
∂2X
∂s2

= 0. (6)

Moreover, X (s, 0) = [s, y(0)], Ẋ (s, 0) = (0, 0) is the initial
condition for the plate.

We choose the far-field velocity U = U∞, the cylinder
diameter D, the fluid density ρ as characteristic quantities
to normalize the above equation. Based on the nondimen-
sional analysis, there are several dimensionless parameters
in our problem: the Reynolds number Re = ρUD/μ, the
stretching stiffness S = Eh/ρU 2D, the bending stiffness K =
EI/ρU 2D3, the mass ratio of the plate and the fluid M =
ρsh/ρD, the heaving amplitude A/D, the distance of two
tandem cylinder center Dx/D, the horizontal gap between
the flexible plate and the upstream cylinder center G/D. In
the following descriptions, A, Dx, and G are used to repre-
sent the normalized quantities A/D, Dx/D, and G/D, respec-
tively. It should be noted that we set t = 0 as the releasing
moment.

III. NUMERICAL METHOD AND VALIDATION

A. Numerical method

The governing equations of the fluid-plate problem are
solved numerically by an immersed boundary-lattice Boltz-
mann method for the fluid flow [29] and a finite element
method for the motion of the flexible plates [30]. The im-
mersed boundary (IB) method has been extensively applied to
problems involving moving boundaries immersed in a viscous
fluid flow [31,32]. When the IB method is used to treat flow-
structure interaction, the Lagrangian interaction force Fs in
Eq. (4) between the fluid and the immersed boundary can be
calculated by the feedback law [31,32]:

Fs(s, t ) = α

∫ t

0
[V f (s, t ′) − V s(s, t ′)]dt ′

+β[V f (s, t ) − V s(s, t )]. (7)

The parameters α and β are large positive free constants (α =
103 and β = 1) to enforce the no-slip condition, Vs = ∂X

∂t is
the plate velocity and V f is the fluid velocity at the position
of the body obtained by interpolation:

V f (s, t ) =
∫

v(x, t )δ[x − X (s, t )]dx. (8)

In the IB scheme, the body force term f in Eq. (2) is used
as an interaction force between the fluid and the immersed
boundary to enforce the no-slip velocity boundary condition.
The body force f on the Eulerian points can be obtained from
the Lagrangian force Fs using the Dirac δ function [31], i.e.,

f (x, t ) = −
∫

Fs(x, t )δ[x − X (s, t )]ds. (9)

In this study, a four-point regularized δ function is used,

δh = 1

�x�y
φ

(
x

�x

)
φ

(
y

�y

)
, (10)

φ(r)=
⎧⎨
⎩

(3 − 2|r| +
√

1 + 4|r| − 4r2 )/8, |r| < 1,

(5 − 2|r| −
√

−7 + 12|r| − 4r2 )/8, 1 � |r| < 2,

0, |r| � 2,

(11)

where |r| is the distance between the Lagrangian point and the
nearby Eulerian grid points.

Furthermore, the lattice Boltzmann equation (LBE) has
been widely used to simulate complex flows as an alternative
to conventional numerical methods for the Navier-Stokes
equations [29,33–36]. The LBE with the BGK model is

fi(x + ei�t, t + �t ) − fi(x, t )

= − 1

τ

[
fi(x, t ) − f eq

i (x, t )
] + �tFi, (12)

where τ is the nondimensional relaxation time related to fluid
viscosity, �t is the time step, and fi(x, t ) is the distribution
function associated with discrete particle velocity ei. The
equilibrium distribution function f eq

i and the forcing term Fi

[33] are defined as

f eq
i = ωiρ

[
1 + ei · v

c2
s

+ vv :
(
eiei − c2

s I
)

2c4
s

]
, (13)

Fi =
(

1 − 1

2τ

)
ωi

[
ei − v

c2
s

+ ei · v

c4
s

ei

]
· f , (14)

where ωi is the weighting factor and cs is the sound speed. The
macrovariables velocity v and mass density ρ can be obtained
through the distribution functions,

ρ =
∑

i

fi, ρv =
∑

i

ei fi + 1

2
f�t . (15)

Equation (4) for the deformable plate is discretized by a finite
element method, and the deformation with large-displacement
of the plate is handled by the corotational scheme [30]. A
detailed description of the numerical method can be found in
our previous papers [13,36]. Based on our careful examina-
tions and validations shown below, the computational domain
for the fluid flow is chosen as −10 � x � 40 and −10 �
y � 10, which is large enough so that the blocking effects
of the boundaries are not significant. The boundary condition
v = (U, 0) is used on the inlet, top, and bottom boundaries,
where U represents the free-stream velocity, ∂v/∂x = 0 on the
outlet. At the initial time, the fluid velocity field is v = (U, 0)
in the entire computational domain. In the x and y direction
the mesh is uniform with spacing �x = �y = 0.02. The time
step is �t = 0.001 for the simulations of fluid flow and plate
deformation, with T = 1/ f being the flapping period.

B. Validation

To validate the numerical method used in the present study,
two typical cases are considered here. First, the flow passing a
cylinder was simulated. The parameters in the simulation were
identical to that in Park et al . [21]. The key parameters are
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FIG. 2. (a) Time histories of the drag and lift coefficients of the cylinder without the flexible plate and (b) the locomotion of the leading-edge
and trailing-edge of the flapping plate in the y direction as functions of time in the wake of a cylinder.

Re = 200 and Strouhal number St = 0.198. Figure 2(a) shows
the time-dependent drag and lift coefficients of the cylinder
without a flexible plate in the wake. It is seen that both the
drag and lift coefficients are consistent with those in Park
et al . [21]. Second, the flexible plate was “inserted” into the
wake of the cylinder with the heaving amplitude A = 0.3 and
frequency f = 0.2. After the plate reaching an equilibrium
state, we plotted the trajectories of the leading and trailing
edges of the plate (see Fig. 2). From Fig. 2(b), it is seen that
the trajectories agree well with those in Park et al . [21].

The gird independence and time step independence studies
were also performed. A typical case of a flexible plate flapping
behind the wake of two tandem cylinders was simulated. In the
case, the parameters were Dx = 1.1, G0 = 10, A = 0.3, f =
0.185, K = 0.5, and Re = 200. The streamwise forces on the
plate in simulations with different mesh size and time step size
were shown in Fig. 3. It is seen that �x/L = 0.02 and �t =
0.001 are sufficient to achieve accurate results. Here, in all our
simulations, �x/L = 0.02 and �t = 0.001 were adopted.

In addition, the numerical strategy used in this study has
been validated and successfully applied to a wide range of
flows, such as the interaction between a flexible filament and a
downstream rigid body [20], the self-propulsion of a flapping
flexible plate near the ground [36], and the collective locomo-
tion of two closely spaced self-propelled flapping plates [13].

IV. RESULTS AND DISCUSSION

A. The patterns of vortex shedding around tandem cylinders

Tandem cylinders in a flow may shed more complex vor-
tical structure than that of a single cylinder. Reviewing the
vortical structure in the wake is the first step to understanding
the mechanisms that affect the refuging behavior of fishes
behind multiple objects.

In the literature [37–39], the flow patterns were classified
into three distinct categories according to the flow structure,
the vortex shedding frequency and the forces acting on the
cylinders for Re > 100. The three flow patterns are single
bluff-body (SBB), shear layer reattachment (SLR) and syn-
chronization of vortex shedding (SVS). Their vortical struc-
tures are shown in Figs. 4(a)–4(c).

In the SBB pattern, two cylinders are closely-spaced
and behave hydrodynamically as a single bluff body [see
Fig. 4(a)]. The SLR pattern occurs at moderate spacings. The
shear layers separating from the upstream cylinder reattach
to the surface of the downstream one [see Fig. 4(b)]. In
the SVS flow pattern, the large gap spacing allows both
the cylinders to shed vortices at the same frequency. These
vortices interact to form the downstream wake [see Fig. 4(c)].
Hence, the structure of the downstream wake depends on Dx.
The characteristics of the three patterns are summarized in
Table I.
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FIG. 3. The grid independence (a) and time step independence (b) studies for the case of a flexible plate flapping behind the wake of
two tandem cylinders (Dx = 1.1, G0 = 10, A = 0.3, f = 0.185, K = 0.5, and Re = 200). The streamwise force experienced by the plate as a
function of time is presented.
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FIG. 4. Vorticity contours. (a) SBB pattern (Dx = 1.1), (b) SLR
pattern (Dx = 3.0), and (c) SVS pattern (Dx = 4.5).

B. Self-propelled plate in the wake of cylinders

To initiate a better understanding of how fishes refuge in
more complex hydrodynamic environments, here we present
typical results on the locomotion of a self-propelled flexible
plate in the wake of two tandem cylinders. The settings of all
governing parameters are shown in Table II.

Park et al . [21] have shown that if the plate is able to
hold stationary in the wake, the flapping frequency should be
identical to that of the shedding vortices. Our numerical tests
also confirmed this point. Hence, the flapping frequency of the
plate is set to be the vortex shedding frequency to achieve the
Kármán gait.

Wing or fin flexibility may dramatically affect the perfor-
mance of flying and swimming animals [40,41]. Moore [40]
developed a theory to shed new light on how flexibility can aid
performance, the importance of resonance, and the separate
roles played by wing and fluid inertia. Yeh and Alexeev [42]
found that the free swimming velocity is maximized when
the swimmer is driven near the first natural frequency. The
bending stiffness K = 0.5 is chosen for all simulations be-
cause it is the optimal stiffness to achieve the fast propulsion
for an isolated plate [13]. When K = 0.5, even the plate is
flapping with different frequency ( f = 0.13, 0.185, 0.2), it is
also able to achieve a large propulsive velocity. The following
three parameters are variables: gap spacing between two
cylinders (Dx), initial position (G0), and flapping amplitude

(A). Cases of Dx = 1.1, 3.0, and 4.5 represent three typical
flow patterns (SBB, SLR, SVS). The corresponding vortex
shedding frequencies are 0.185, 0.13, and 0.185, respectively.
In addition, the self-propelled flexible plate in the wake of one
cylinder is also simulated for comparison.

It is noted that in all simulations except for those in
Sec. IV D, initially U = U∞ is imposed everywhere in the
flow field and the plate that is located at G0 begins heaving
according to Eq. (1), but it is not allowed to move longitu-
dinally. After the shedding vortices have fully developed, the
flapping is released and the longitudinal movement is allowed.
Hence, at the beginning, the unreleased flapping plate would
interact with the oncoming vortical structures.

1. Self-propelled plate in the three flow patterns

In our numerical settings, the SBB pattern was first in-
vestigated. The initial configuration with G0 ∈ (3, 22) and
A ∈ (0.1, 0.9) were simulated. When the plate was released,
the plate may go forward, backward, or approximately flap
in an equilibrium position depending on the initial released
position. Hence, three typical modes are identified, i.e., drift
upstream (DU), drift downstream (DD), and holding station-
ary (HS).

The typical trajectories of the three motion modes are
shown in Fig. 5(a). It is seen that in the DU mode, the plate
continuously swims forward with decreasing G and finally it
may collide with the cylinder. One possible reason is that the
plate was too close to the cylinder and trapped in the suction
region on the back side of the cylinder. The other reason is
that the flapping amplitude is too large and the thrust is large
enough to push it forward continuously.

In the DD mode, the plate may be not able to overcome the
drag force acting on the plate and is drifted downstream (G
increases) continuously until it leaves the calculation domain.
The HS mode is preferred and we are particulary interested
in the mode. In the mode, the plate may adjust its location
through swimming upstream or downstream a little bit for a
while and then linger at an equilibrium G. Figure 5(b) shows
the trajectory of the leading edge in one period for the HS
mode, in the longitudinal direction, the leading edge of the
plate would continuously move back and forth around the
equilibrium location.

Our results indicate that the occurrences of the modes of
the plates depend mainly on the initial location G0 and the
flapping amplitude A. The general schematic phase diagram
for the three modes in the G0-A plane is shown in Fig. 6(a).
There are several critical points Gc1, Gc2, Ac1, and Ac2 defined
in the figure, which determine the motion mode distribution
in the G0-A plane. In different flow patterns, the values of the
critical points and the distribution will be slightly different.
The critical points in the phase diagram for each flow pattern

TABLE I. Characteristics of the three wake patterns behind the two tandem cylinders. f is the frequency of the vortices.

Flow pattern Dx f Vorticity Description of the vortices

SBB Small 0.185 Moderate The wake looks like that of a single bluff body
SLR Moderate 0.13 Weak The wavelength is longer, and vortices are less organized and weaker
SVS Large 0.185 Strong The vortices are more compact
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TABLE II. The parameters in the simulations.

Reynolds number Re 200

Mass ratio M 1
Stretching stiffness S 1000
Bending stiffness K 0.5
Flapping amplitude A [0.1,1]
Flapping frequency f 0.2, 0.13, 0.185
Separation distance Dx 1.1, 3.0, 4.5
Streamwise location G [−10, 40]
Initial location G0 [3,25]

are shown in Table III. It is also noticed that in our study, as
shown in Table II, the initial G0 is in the range of G0 ∈ [3, 25]
and A ∈ (0, 1).

From Fig. 6(a), it is seen that the DU motion occurs mainly
in both the top and left regions of the G0-A plane. The DU
mode appears in the left lower region because the plate is too
close to the cylinder and inside the suction region. However,
the DU mode appears in the top region because for a case
with a large A, there is more input energy, which is able to
drive it moving forward. The DD motion mode occupies the
lower right region of the G0-A plane, in which there is a small
A. When G0 and A are moderate, the HS motion mode may
occur due to the Kármán gait.

The detailed phase diagram for the SVS flow pattern is
shown in Fig. 6(b). Each point in the figure represents a case
we simulated. Overall the phase diagram has the feature of
the schematic one [Fig. 6(a)], except that in the small band
of G0 ∈ (9, 10) there are DU and DD modes. In other words,
the plate is not able to hold stationary at G0 ∈ (9, 10) for the
SVS pattern. When the plate is initially put in this region,
the unreleased flapping plate may inhibit the instability of the
velocity shear layer after the cylinder, making it impossible to
form a Kármán vortex street. When the plate is released, it is
not able to linger at a certain location.

To better understand the inherent mechanism for the HS
mode, the vortical structures and pressure distributions around
the plate are investigated in the following. A typical case with
G0 = 10 and A = 0.6 in the SBB pattern is chosen to analyze.

TABLE III. The critical points in the phase diagram.

Gc1 Gc2 Ac1 Ac2

SBB 3.0 7.0 0.3 0.9
SLR 5.0 5.0 0.5 1.0
SVS 6.0 6.0 0.1 0.85

Figures 7 and 8 show the vorticity contours and pressure
contours at four typical instants of one flapping cycle, respec-
tively. At t = 1

8 T , the plate is flapping upward, from Fig. 7(a),
it is seen that the negative vortex shed from the cylinders
extends to the upper surface of the plate. However, there is
a negative pressure behind the trailing end of the plate in
Fig. 8(a), which contributes to the drag force (Fx > 0).

At t = 3
8 T , Fig. 7(b) shows that at the downstroke, the

shear layer shed from the upper part of the plate intensifies
the negative vortical structures. Figure 8(b) shows that the
pressure below the plate is higher than that above the plate.
Due to the orientation of the plate, the pressure difference may
result in a large thrust force.

At t = 5
8 T , we can see from Fig. 7(c) that the plate is

flapping downward. The positive vortex shed from the cylin-
ders extends to the lower surface of the plate. As shown in
Fig. 8(c), the pressure distribution looks symmetric as that
in Fig. 8(a) along the line y = 0. Hence, similarly there is
a maximum drag force at the moment. At t = 7

8 T , Fig. 7(d)
shows that the shear layer shed from the lower part of the
plate intensifies the positive vortical structures. The pressure
distribution in Fig. 8(d) is similar to that in Fig. 8(b). Hence,
we have a maximum thrust force.

In the above, a typical HS case in the SBB flow pattern is
analysed. For the HS case in the other two flow patterns, the
situation is similar to the above SBB case. For the case of a
plate in the wake of a single cylinder, Park et al . [21] have
shown that the leading edge of the plate displays slaloming
behavior between the vortex cores around the equilibrium
location in the HS mode. Here in our study, the plate’s
slaloming behavior is also found in the SBB, SLR, and SVS
flow patterns.

t

G

0 20 40 60

5

10

15

20

suction zone

HS

DD

DUII

DUI

(a)

x

y

11 11.2 11.4 11.6 11.8
-1

-0.5

0

0.5

1(b)

FIG. 5. (a) Streamwise trajectory of the leading edge for the three movement modes. The initial locations and flapping amplitudes are
listed in the following: the DU mode (curve I) G0 = 3, A = 0.1, the DU mode (curve II) G0 = 10, A = 0.9, the DD mode G0 = 10, A = 0.1,
and the HS mode G0 = 10, A = 0.6. (b) The trajectory of the leading edge in one period for the HS mode.
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FIG. 6. (a) Schematic phase diagram for the three motion modes. Approximate critical points Gc1, Gc2, Ac1, and Ac2 are able to define the
motion mode distribution in the G0-A plane. For different flow patterns, these values are listed in Table III. (b) Phase diagram for the three
motion modes for SVS flow pattern. Symbols ◦, �, and � represent the HS, DU, and DD modes, respectively.

2. The minimum A to hold stationary

However, the stability of the HS mode may be related to
the vertical flow induced by the vortices [12]. According to
the vortex-dipole model, the y component of vortex-induce
velocity is V�,⊥ = (�/2πd ) sin α [see Fig. 9(a)] [43]. In
Fig. 9(b), we can see that the SLR pattern has the smallest V�,⊥
due to the weak shedding vortices and the required minimum
flapping amplitude for the HS mode is Amin ≈ 0.5. When
the shedding vortices are strong, e.g., in the SVS pattern,
Amin ≈ 0.1 is enough to keep the HS mode. Hence, the weaker
the shedding vortices are, the larger the minimum amplitude
required for the plate to keep the HS mode is.

3. Input powers

To further evaluate the performance of the plate in the HS
mode, we quantified the input power P, which is required to
actuate the leading edge of the plate. It is defined as the time

average of the work done by the surface of the plate on the
surrounding fluid during one flapping period T , i.e.,

P = 1

T

∫ t ′+T

t ′
P(t )dt

= 1

T

∫ t ′+T

t ′

[∫ 1

0
Fr (s, t )

∂X (s, t )

∂t
ds

]
dt, (16)

where Fr represents the force on the surrounding fluid by the
plates. The power has been calculated with an assumption
that any negative contribution is ignored [44,45]. Suppose
F = (Fx, Fy) is the force acting on the plate by the fluid, it is
the reaction force of Fr , i.e., F = −Fr . Actually, to maintain
the heaving motion of the plate, the head of the plate has to be
forced to oscillate up and down by an lateral external force.
The work in Eq. (16) is equal to the work done by the lateral
external force. Hence, the work is mainly contributed by
the Fy.

FIG. 7. Instantaneous vorticity contours at (a) t = 1
8 T , (b) 3

8 T , (c) 5
8 T , and (d) 7

8 T in the SBB pattern. Blue and red colors denote negative
and positive vorticity, respectively.
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FIG. 8. Instantaneous pressure contours at (a) t = 1
8 T , (b) t = 3

8 T , (c) t = 5
8 T , (d) t = 7

8 T in the SBB pattern (G0 = 10 and A = 0.6). The
inset in (b) represents an instantaneous longitudinal force Fx of the plate. Solid and dashed lines denote the positive and negative normalized
pressure contours, respectively.

As we know, due to dissipation, the shedding vortex street
becomes weak when it is far from the rear cylinder. Supposing
the wake speed decays exponentially in time and using the
approximation of viscous and turbulent dissipation [46,47],
we have the conclusion that the wake speed oscillates and
decays with downstream distance.

To make a comparison for the cases in the three different
flow patterns, we have to make sure that the gap spacing is
properly chosen, so that the vortex strength before the plate
could represent the wake characteristics of the flow pattern.
We found that G0 ≈ 10, 12, and 14 for the SBB (Dx = 1.1),
SLR (Dx = 3.0), and SVS (Dx = 4.5) flow patterns, respec-
tively, is proper because G0 − Dx ≈ 9.

In this way, our comparison of quantities in different flow
pattern is reasonable. The input power of the plate in the
HS mode as a function of A is shown in Fig. 10(a). It is
seen that the input power P in each flow pattern increases
as A increases. It can be easily understood because a flap-

ping with a larger amplitude usually requires more input
energy.

It is seen that when A < 0.5, the corresponding P in the
SVS pattern is smaller than that of the SBB. As we have seen,
to hold stationary the minimum flapping amplitude A in the
SVS is only about 0.1. Hence, to achieve the HS mode, the
plate in the SVS wake pattern could get more hydrodynamic
advantage and therefore consumes the least input power when
A < 0.5.

When A > 0.5, the plate in the SVS wake pattern still con-
sumes less input power than that in the SBB, because the SVS
pattern has a smaller Fy amplitude than the SBB pattern when
A = 0.6 [see Fig. 10(b)]. It is noticed in Fig. 10(b), T = 1

f of
the SLR is larger than those of the SBB and SVS patterns (see
Table I). It is also seen that when A > 0.5, the corresponding
P in the SLR pattern is usually the smallest among the three
patterns. It can be understood as follows. The vortex shedding
frequency of the SLR pattern is significantly smaller than

FIG. 9. (a) The schematic diagram of the vortex-induced velocity. (b) The minimum amplitude required for the HS mode in the three flow
patterns as a function of y component of vortex-induced velocity V�,⊥ (the case in the wake behind a single cylinder is also shown). Here,
α is the orientation angle between the dipole-induced velocity V� and the x axis, d is the distance between two vortex centers, and � is the
circulation of the vortex.
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FIG. 10. (a) Input power P as functions of A; (b) vertical force experienced by the plate (A = 0.6) as functions of times, where the black,
blue and red lines represent the SBB, SLR, and SVS flow patterns, respectively. It is noted that T = 1

f of the SLR is larger than those of the
SBB and SVS patterns (see Table I).

those of the SBB and SVS patterns. Hence, the plate’s flapping
frequency in the SLR pattern is the smallest among the three
patterns, which requires the least y-component velocity vy

when flapping. Although the difference of the Fy amplitude
in the three patterns is not significant when A = 0.6 [see
Fig. 10(b)], because P ≈ 1

T

∫ t ′+T
t ′ Fyvydt , the SLR needs the

least input power.

C. Equilibrium mechanism

Figure 11 shows the effect of the initial location of the
plate on the equilibrium location. We can see that except for
two cases in Fig. 11(c), when the plate is released at different
initial location G0, it will go back and forth for a while and
then it would linger at a certain equilibrium location, with a
small oscillating amplitude.

In the SBB flow pattern [see Fig. 11(a)], after t > 20, in
each case the plate almost reaches an equilibrium location. For
a initial location G0 ∈ (3, 16), there are four discrete equilib-
rium locations, i.e., Geq ≈ 4.5, 7.5, 11.0, and 14.5. The gap
spacings between neighboring discrete equilibrium locations
are approximately 3, while the corresponding wavelength of
the wake is about 5.

In the SLR flow pattern [see Fig. 11(b)], it is seen that
in the 9 cases, when t > 40, each plate almost reaches an
equilibrium location. The discrete equilibrium locations are
Geq ≈ 9.5, 16.0, and 22.0. The gap spacings between neigh-
boring discrete equilibrium locations are approximately 6,
and the corresponding wavelength of the wake is about 6.
In the SVS flow pattern [see Fig. 11(c)], the equilibrium
locations are much more scattered than those in the SBB and
SLR patterns. The equilibrium locations seem very close to
the corresponding initial locations. It is also seen that when
G0 ∈ (9, 10), the plate is drift forward and not able to hold
stationary [see the discussion on Fig. 6(b)].

Previous studies also observed that there are several equi-
librium locations in the vortical wakes. Ramananarivo et al.
[12] and Peng et al. [13] have presented explanations. They
found that the hydrodynamic force near Geq is a springlike
restoring force with Fx = −k(G − Geq

i ), where Geq
i is the

ith stable equilibrium location with a positive k, which is
analogous to the spring constant. When the initial location of
the plate is located close to an equilibrium point, it may finally
linger at the equilibrium point where Fx = 0.

Numerical simulations were performed to calculate the hy-
drodynamic forces on the plate [12,48]. In these simulations,

t
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f=0.185, A=0.3(a)
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25
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FIG. 11. Streamwise trajectories of the leading edge in cases with different G0 for the (a) SBB pattern, (b) SLR pattern, and (c) SVS
pattern. Each curve represents a case we simulated.
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FIG. 12. Streamwise location of the leading edge as a function of time for cases with different G0. In the cases, the releasing style in
Ref. [21] was adopted. (a) The plate is self-propulsive behind a single cylinder. The key parameters Re, M, K , A, f are identical to those in
Ref. [21]. (b) The plate is self-propulsive in the SBB pattern and (c) the SVS pattern of two tandem cylinders.

the plate is only flapping up and down and its longitudinal
location is fixed. In all of the three flow patterns, we observed
that the net horizontal force Fx acting on the plate as a function
of G0 is similar to those in Refs. [12,13], i.e., Fx near Geq is a
springlike restoring force (not shown).

Actually the releasing style may play a more important role
in the mechanism of the HS mode. In the following, we will
discuss this issue.

D. Releasing style

According to the study of Park et al . [21], when the
self-propelled flexible plate is behind the wake of a circular
cylinder, the gap spacing between neighboring discrete
equilibrium positions ζ is equal to the wake wavelength λ.
Since the SBB flow pattern is similar to the wake flow of the
single cylinder, it is expected that the corresponding ζ should
be equal to λ of the SBB pattern. However, in our SBB result,
ζ ≈ 3.0 = 0.6λ, where λ ≈ 5.0. Our result is different from
that in Park et al . [21].

We conjectured that the releasing style may contribute to
this difference. It is noticed that in the study of Park et al . [21]
the plate was initially kept stationary and began to flap once
the vortical structures were fully developed, which is different
from our present releasing style mentioned in Sec. IV B. In
the following descriptions, our releasing style is referred to as
Style I, and that in Park et al . [21] is Style II.

To confirm our conjecture, in this section the releasing
Style II is adopted in our simulations. The streamwise
trajectories of the self-propelled flexible plate in the wake of
a single cylinder, SBB pattern and SVS pattern of two tandem
cylinders are presented in Fig. 12 (The streamwise trajectories
of SLR pattern of two tandem cylinders is similar to that in
the releasing Style I.) It is seen that for one cylinder pattern
and the SBB pattern, the gap spacing between neighboring
discrete Geq is approximately 5 [see Figs. 12(a) and 12(b)],
which is close to the λ in the wake. For SVS pattern, Geq is
approximately 3.5 (λ ≈ 4) [see Fig. 12(c)], which is different
from that in Style I. Hence, by changing the releasing style,
we successfully reproduced the result in Park et al . [21].

Besides, we found that the releasing style indeed affects the
flow field much.

To explore how our releasing style affects the flow field,
four cases of the flexible plate in the wake of a single
cylinder with different releasing styles were simulated. For
the releasing Style II, we chose two cases with G0 = 9 and
14, the initial gap spacing between them is approximately
equal to one wavelength of the shedding vortices (λ ≈ 5). The
instantaneous vorticity fields at the moment when the plate
is released are shown in Fig. 13. In Figs. 13(a) and 13(b), the
releasing Style II [21] is applied. It is seen that at t = 0, phases
of vortex shedding in the two cases of G0 = 9 and 14 are
identical. They are also consistent with the case without the
plate [see the inset in Fig. 13(a)]. Hence, the releasing Style
II almost does not affect the vortex shedding of the cylinder.
Besides, the vortical flows around the two plates are identical.
After the plates are released, the flapping of the two plates
are also inphase. Hence, their locomotion and the surrounding
flows should be fully synchronized. We can imagine that the
gap spacing between the two plates in Figs. 13(a) and 13(b)
should always be equal to the initial gap spacing λ during the
dynamic evolution until they reach their equilibrium locations
with ζ ≈ λ = 5.

In Figs. 13(c) and 13(d), the releasing Style I is applied.
It is seen that phases of vortex shedding in the two cases of
G0 = 9 and 12 at t = 0 are different and not inphase. Hence,
compared to the releasing Style II, the releasing Style I seems
able to change the phase of vortex shedding significantly. It is
due to the fact that the plate is continuously flapping at G0

before the releasing moment (t = 0). It is noticed that the
simulations were performed from t = −20T . However, the
vortical flows around the two plates are identical in Figs. 13(c)
and 13(d). At the moment, the flapping of the two plates is
also inphase. Hence, the gap spacing between the two plates in
Figs. 13(c) and 13(d) should also be equal to the gap spacing
at t = 0 during the dynamic evolution until they reach their
equilibrium locations with ζ = 3 ≈ 0.6λ.

Hence, when the plate is released in Style I due to the
smaller ζ , it is able to achieve more equilibrium locations in
the same wake region compared to the situation of Style II.
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FIG. 13. Instantaneous vorticity contours at the releasing moment for four cases with different releasing styles, (a) the case of G0 = 9 with
releasing Style II [21], (b) the case of G0 = 14 with releasing Style II, (c) the case of G0 = 9 with releasing Style I, (d) the case of G0 = 12
with releasing Style I. The inset in (a) represents an instantaneous vorticity contour without the plate. Blue and red colors denote negative and
positive vorticity, respectively.

The inherent mechanism is that the phase of vortex shedding
behind the cylinder can be changed in Style I due to the con-
tinuously flapping before the releasing. Changing the phase of
vortex shedding is favorable because the plate becomes easier
to hold stationary. It seems that in Style I, the effort of the
pre-flapping is not in vain because although it consumes more
energy, it could hold stationary quickly in the longitudinal
direction after it is released. The Kármán gait becomes easier.

For the real fish, it may adopt a strategy like Style I.
Stewart et al . [26] have mentioned that Trout Kármán gait
is able to hold stationary anywhere in a certain area behind
the D-shaped cylinder, not a few discrete equilibrium loca-
tions, because the fish can adjust the gait timely according to
different flow condition. It is believed that if the fish changes
the flapping amplitude and phase in Style I, it may be able to
hold stationary at its initial location by adjusting the phase of
vortex shedding. Hence, our releasing style (Style I) is more
consistent with the real situation.

To quantify the effect of the two releasing styles, we
took the strategy of Son and Choi, [49] and measured the
vertical velocities (v) as functions of time at certain centerline

locations in the wake to describe the phase of vortex shedding
quantitatively. Specifically, the locations are chosen to be
(x, y) = (6, 0) and (G0 − 0.5, 0). The first point is behind the
cylinder and the second point is just in front of the plate (see
Fig. 14).

We suppose that the phase at point (6, 0) for the case G0 =
9 at the releasing moment (t = 0) is zero (the simulations
started at t = −30T ). In Style II, the time histories of v at (6,
0) in the cases with different G0 have identical phase of vortex
shedding [see Figs. 13(a) and 13(b), and the red triangles in
Fig. 14(a)]. It seems that in Style II, the stationary flapping
plate does not affect the vortex shedding. In this way, the
vortex shedding phase that the plate faces is only determined
by G0. When G0 increases 1, there is a 1

5 T phase advance at
(G0 − 0.5, 0). Hence, the points G0 = 9 and 14 have the same
phase (see Fig. 13).

However, in Style I [see Fig. 14(b)], when G0 increases
from G0 = 9 to 10, the phase of vortex shedding advances 2

15 T
at (6, 0) (see the red triangles). At (G0 − 0.5, 0), the phase of v

advances 1
3 T when G0 increases 1. In other words, the phases

in front of the plate in the cases of G0 = 9 and 12 are identical
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fig 13(c)
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FIG. 14. The phases of v at the releasing moment (t/T = 0) for fixed points with different releasing styles, (a) the phase at (6, 0) and
(G0 − 0.5, 0) with releasing Style II, (b) the phase at (6, 0) and (G0 − 0.5, 0) with releasing Style I, respectively. Every two points in a vertical
dashed line represents a case we simulated.
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FIG. 15. Instantaneous vertical velocity v before the releasing moment (t/T = 0) at fixed points (releasing Style I). The left and right
columns represent the time history of v at (6,0), and (G0 − 0.5,0), respectively. The upper, middle, and lower rows represent cases in the SBB,
SLR, and SVS wake patterns, respectively. For all cases, A = 0.6.

(see the green triangles). So we can conclude that the phase
of v in front of the plate is determined by the phase of vortex
shedding behind the cylinder and G0.

From the above analyses, we conjectured that the gap
spacing between neighboring discrete equilibrium locations
ζ depends on the wake wavelength λ, the increase of �G0,
and the corresponding time lag �θ . Here, a formula including
these factors are proposed to calculate ζ ,

ζ = 2π
�θ
�G0

+ 2π
λ

, (17)

where �G0 < ζ .
Although the formula is proposed from the flow pattern of

a single cylinder in Style I, we would like to check whether
Eq. (17) is applicable to flow patterns of two cylinders.

For the SBB pattern, time histories of v at locations (6,
0) and (G0 − 0.5, 0) are shown in Figs. 15(a) and 15(b) for
two cases with G0 = 10 and 11. At (6, 0), the phase of the
case G0 = 11 advances 2

15 T , i.e., 4
15π compared to the case of

G0 = 10 [see the dashed red line in Fig. 15(a)]. Hence, ζ =
2π

4/15π

1 + 2π
5

= 3. As a result, for the phase of v in front of the

plate, there is a time advance of T
3 [see Fig. 15(b)].

For the SLR pattern, time histories of v at locations (6, 0)
and (G0 − 0.5, 0) are shown in Figs. 15(c) and 15(d) for two
cases with G0 = 12 and 13. It is seen that at (6, 0) the vortex
shedding of the two cases is inphase. The possible reason is
that the vortices are too weak and the releasing Style I is not
able to change the vortex shedding phase. Using the formula,
we get ζ = 2π

0+ 2π
6

= 6 ≈ λ. As a result, in front of the plate,

there is a time advance of 1
6 T for the two cases with �G0 = 1.
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For the SVS pattern [see Figs. 15(e) and 15(f)], there is
a time lag 1

4 T when G0 increases 1, i.e., �θ = − 1
2π . In the

pattern, the wake wavelength λ ≈ 4. Using the formula, we
get ζ = ∞. So the vortical flows in front of the two plates are
identical [see Fig. 15(f)]. Therefore, the equilibrium locations
are very close to the corresponding initial locations. In other
words, the SVS pattern could hold stationary at any location
to some extent.

The above results of ζ coincide with those in Fig. 11.
Hence, Eq. (17) is valid for all three flow patterns. The
possible mechanism is that in the incompressible flow field,
the releasing Style I is able to adjust the vortex shedding
behind the cylinders in advance, and make it favorable for the
plate to reach the HS state. However, the adjustment ability of
the releasing Style II is limited because the vortex shedding
has been fully developed when it is released.

V. CONCLUDING REMARKS

The self-propelled flexible plate in the wake of two tandem
cylinders was investigated numerically. Adjusting the gap
spacing Dx of the cylinders, the SBB, SLR, and SVS flow
patterns would appear. Three typical locomotion modes of the
plate, i.e., the DU, DD, and HS modes, have been identified.
The mode distribution in the G0-A plane is presented. It is
found that usually when G0 and A are moderate, the HS mode
may occur due to the Kármán gait.

The interaction between the shedding vortical structure and
the plate helps the plate to hold stationary in the wake patterns.
Generally speaking, in the SBB, SLR, and SVS patterns,
stronger vortices may induce larger y-component velocity,
which is helpful to decrease the minimum amplitude required
for the plate to hold stationary at an equilibrium location. We
also found that to achieve the HS mode, the plate in the SVS
wake pattern consumes the least input power. The consumed
input power P of the plate in the three motion modes all
increases as A increases.

The influence of different releasing styles was discussed.
For different G0, in Style II the flapping plate has a very minor
effect on the shedding vortices. The gap spacing between

neighboring Geq is approximately equal to λ. When the plate
is released in Style I, we found that it is able to achieve more
equilibrium locations in the same wake region compared to
the situation of Style II. The inherent mechanism is that the
continuously flapping before the releasing may change the
phase of vortex shedding behind the cylinder in Style I. In
this way the plate becomes easier to hold stationary.

Finally, we measured the vertical velocity at a centerline
location in the wake as a sensing variable to quantify the phase
of vortex shedding behind the cylinder. Furthermore, Eq. (17)
using the time (lag or advance) information is proposed, which
is able to predict the gap spacing between neighboring Geq.
The formula is validated in all three flow patterns.

In our study, the simulations were limited to 2D cases
to save computational resources. Actually, our study is a
model study instead of the cases in reality. However, our 2D
self-propelled model is reasonable and it may scrap enough
physics. In our 2D flapping plate model, the head of the
plate is flapping and the other part of the plate passively
deforms due to the fluid-structure interaction. The character is
consistent with the observation of Liao et al . [22], i.e., when
trout adopts the Kármán gait, it only activates their anterior
axial muscles, act as a self-correcting hydrofoil. However, our
2D cases may share some common mechanisms with 3D cases
in reality. For example, the reproduced Kármán gait in the
2D simulation [21] is similar to that in the 3D experiment
[22,50]. Hence, the 2D study may reveal mechanisms of the
fluid-structure interaction problem.

There are some limitations in our study, such as the simple
actuation of the swimming and Reynolds number is not high.
Anyway, the present study may shed some light on a better
understanding of hydrodynamic effect on fish refuging in
complex hydrodynamic environments.
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