
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Research papers

Entry pressure for the rough capillary: Semi-analytical model, Lattice
Boltzmann simulation

Bei Weia, Jian Houa,b,⁎, Haibo Huangc, Michael C. Sukopd, Yongge Liua, Kang Zhoua

a School of Petroleum Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
b State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, China
c Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
d Department of Earth and Environment, Florida International University, Miami, FL 33199, USA

A R T I C L E I N F O

This manuscript was handled by C. Corradini,
Editor-in-Chief, with the assistance of Rao S.
Govindaraju, Associate Editor

Keywords:
Rough surface
Capillary entry pressure
MS-P method
Lattice Boltzmann method

A B S T R A C T

We develop a semi-analytical model to calculate the entry pressure in rough capillaries based on an energy
balance principle and wetting theory on rough surfaces. During the drainage process, we assume fluids form arc
menisci at corners of capillary cross-sections depending on the apparent angle, and that there is a wetting phase
film adsorbed on the rough surface depending on the wetting condition. A Logistic model is proposed to explain
the contact angle dependence on the structure of rough surfaces. Then the capillary entry pressure is calculated
by extended MS-P (Mayer, Stowe and Princen) method. We verify the model using the pseudopotential Lattice
Boltzmann model and obtain good agreement between the analytical and simulated pressures. Taking capillaries
with triangular sections with pillar pillar-type rough surfaces as example, we discuss how rough structures and
contact angles influence capillary behaviors. The results reveal that both the wetting phase saturation and entry
pressure of rough capillaries are larger than those in smooth capillaries under the same conditions. Moreover,
the entry pressure is not sensitive to the roughness factor under strong wetting conditions and is much more
sensitive to the pillar asperity height than the other structure parameters.

1. Introduction

The phenomena of flow through porous media are ubiquitous in
nature and artificial materials. Some examples include the oil flow
underground, microcirculation of blood in animals and gas migration in
packed bed. The pore scale ranges from nanometers to micrometers in
porous media, such as tight sandstone and shale, which requires re-
searchers to pay more attention to pore scale flow to further reveal flow
mechanisms.

The shape of the pore space in porous media is irregular and the
connectivity is complex. Also, the flow often involves multiple fluids.
One popular tool used to model multi-phase flow at pore scale is pore-
network modeling, where the porous medium is described as a network
of pores connected by capillaries using an idealized geometry (Blunt
et al., 2002) that in the simplest case are considered either completely
full or completely empty depending on the capillary pressure. However,
there will always be some fluid remaining in the corners both after
drainage (a non-wetting fluid displaces a wetting fluid) and imbibition
(a wetting fluid displaces a non-wetting fluid) processes. So pores or
throats in such networks are usually assumed to have angular cross-
sectional shapes, such as triangle, square, and star, to hold the fluid

phase in a mathematically tractable way. We focus on a quasi-static
primary drainage process controlled by capillary pressure in the fol-
lowing discussion, i.e., the flow rate is very low and the capillary
number is small (Hanspal et al., 2013).

No matter whether in experiments or simulations, capillary beha-
vior is the basis for getting the capillary pressure curve and the relative
permeability curve (Zhang and Yu, 2016; Ye et al., 2017). An important
property of capillary behavior is the value of the capillary entry pres-
sure (or threshold pressure), i.e., the minimum pressure difference re-
quired for the non-wetting fluid to penetrate a capillary filled with a
wetting fluid. The most popular theoretical model to calculate the ca-
pillary entry pressure is the so-called MS-P method, which was origin-
ally proposed by Mayer and Stowe (1965) and further developed by
Princen (1969a,b, 1970). Based on the MS-P method, Oren et al. (1998)
derived the threshold pressures of triangular tubes under different flow
conditions (Oren and Bakke, 1998) and Lago et al. (2001) derived the
threshold pressure in a capillary with a polygonal cross-section (Lago
and Araujo, 2001).

However, most of the works ignore pore surface roughness in pore
scale modeling, though it influences the contact angle and contact angle
hysteresis significantly (Hecht et al.,2013, Mortazavi et al., 2013), as
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well as affecting energy consumption due to interface contact between
fluids and solids during flow. The surface roughness plays an important
role in many flow processes, for example, with nanoparticles injection
into porous media, particles would be adsorbed onto the surface driven
by DLVO forces, forming a rough surface (Rao, 2010; Chowdhury et al.,
2011). Consequently, both the contact angle and microstructure of the
surface would change during the flow process. The influence of surface
roughness on the apparent contact angle of the droplet is generally
understood as lying between two theoretically extreme situations, i.e.,
the Cassie-Baxter (C-B) state and Wenzel state (Cassie, 1948; Wenzel,
1949; Whyman and Bormashenko, 2008). In the C-B state, the droplet
remains suspended above the asperities in the surface. In the Wenzel
state, the droplet fills the grooves between the roughness elements.
Admittedly, these two classical models are not always accurate since
they fail to capture the effect of many interactions occurring during
wetting, such as the heterogeneity (Lundgren et al., 2007), hierarchical
structure (Badge et al., 2013), and geometry of bumps or cavities on the
surface (Afferrante and Carbone, 2014). In addition, the wetting state
could change under certain conditions, for example, there would be a
transition from Cassie to Wenzel state when the drop is acted on by an
external force or the structure of the rough surface is modified (Guo
et al., 2014). Thus, some more accurate state equations have been de-
veloped but mainly are extensions of these two models (Bormashenko,
2015). In this study, we also derive a new equation for the Wenzel
wetting state and verify the model by Lattice Boltzmann (LB) simulation
results. Rather than from physical mechanisms, we propose the new
equation from the perspective of mathematical modeling using a Lo-
gistic model.

Extrand (2007) studied retention forces of a liquid slug in a rough
capillary tube with symmetric or asymmetric features and the im-
balance of capillary forces that leads to directionally biased wetting was
examined. A model was described by Butt (2008) to calculate capillary
forces between solid surfaces analytically using the Kelvin equation, in
which roughness is considered with an asperity distribution function.
There were also many other numerical methods reported to study ca-
pillary behavior in rough capillaries (Liu et al., 2007; Rostami and
Streator, 2017); however, these methods are generally complex and do
not offer straightforward linkages between capillary behavior and flow.
As to the theory on capillary entry pressure considering rough surfaces,
though Tsakiroglou and Payatakes add pore-wall roughness features to
a network model using concepts from fractal geometry (Tsakiroglou
and Payatakes, 1993), they did not give an analytical model to enable
calculation of the capillary entry pressure exactly based on the micro-
structure of pore shapes.

In this work, we present a semi-analytical expression for the capil-
lary entry pressure for the case of rough capillaries with polygonal
cross-sections using the MS-P method, and verify the model using LB
simulation. Capillary entry pressures in smooth capillaries are com-
pared with those in rough capillaries. A study of the dependence of the
capillary behavior on the shape factor, contact angle, groove width, and

asperity width and height is done for triangle shapes. The study is not
only useful for revealing flow mechanisms at micro- and nano-scales,
but also attractive for a variety of industry applications such as oil
development, wastewater treatment, and MEMS-based fluidic devices.

2. Theory background

In this section, we will introduce MS-P method and its application to
calculate capillary entry pressure in capillaries with polygonal cross-
section.

2.1. MS-P method

Capillary forces prevent non-wetting fluid from spontaneously en-
tering wetting fluid filled throats when the non-wetting fluid invades
the wetting fluid in a non-circular capillary. Non-wetting fluid can only
enter an available throat if the capillary pressure exceeds the threshold
capillary pressure, at which point the wetting phase will be displaced
from the central region leaving some residual in the corners. The in-
vading meniscus is referred to as the main terminal meniscus (MTM),
while the menisci formed in the cross-sectional plane are referred to as
arc menisci (AMs) (Mason and Morrow, 1991). In the absence of
gravity, the MS-P method for calculating the capillary entry pressures
relies on equating the curvature of the AMs to that of the MTM. There is
a critical contact angle for the occurrence of AMs in the corner. That is
to say, only when the contact angle is smaller than the critical contact
angle of the corner, can the MTM and AMs appears simultaneously.
Fig. 1 shows a three dimensional example where non-wetting fluid in-
vades wetting fluid in a square capillary, in which there is a co-occur-
rence of AMs and MTM in strong wetting conditions while there is no
AM in poor wetting condition.

The capillary pressure Pc is calculated as follows:

= −P P P ,c n w (1)

where the subscripts w and n refer to the wetting and non-wetting
phases, respectively.

If the AMs are displaced a small distance dx, the work of the dis-
placement must be balanced by the change in surface free energy,

= + −P A dx L γ L γ L γ dx( ) ,c eff nw nw ns ns ns ws (2)

where the subscript s indicates the solid, Aeff is the effective area oc-
cupied by the non-wetting phase, Lns is the length of the solid wall in
contact with the non-wetting phase, Lnw is the perimeter of the AMs,
and γ is the interfacial tension. When the contact angle is θ, Young’s
equation yields the following:

− =γ γ γ θcos ,ns ws nw (3)

and the energy balance equation can be simplified as follows:

Fig. 1. Schematic of the liquid distributions when non-wetting fluid invades wetting fluid in a square capillary, the green color represents non-wetting fluid: (a) co-
occurrence of AMs and MTM under strong wetting condition for wetting fluid (b) only MTM appears under poor wetting condition. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

B. Wei et al. Journal of Hydrology 562 (2018) 17–29

18



= + =P
γ

L L θ
A

L
A

cos .c

nw

nw ns

eff

eff

eff (4)

If the radius of the threshold drainage curvature is rd (threshold
radius), the Young-Laplace equation yields the following:

=P
γ
r

.c
nw

d (5)

The capillary entry pressure and the threshold drainage radius are
then obtained by solving Eqs. (4) and (5); the wetting phase saturation
is calculated based on the geometrical characteristics of the cross-sec-
tion.

2.2. Capillary entry pressures in smooth polygonal capillaries

Lago and Araujo (2001) studied the capillary entry pressure in ca-
pillaries with polygonal cross-section when the wettability of capillaries
is uniform. During primary drainage, the threshold pressure is equal to
the capillary pressure.

A cross-section of an arbitrary polygon is shown in Fig. 2, where the
contact angle is θ, the corner angle is denoted by εi, and the drainage
radius is rd. With some geometric calculations, we can get:
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Then the MS-P method gives:

− + =f r P θr Acos 0,T d d
2 (11)

where fT is an intermediate variable, A is the area of the polygon, p is
the perimeter,γ refers to the interfacial tension between wetting phase
and non-wetting phase, and δi is a dimensionless coefficient.

The wetting phase saturation can be calculated further as,

=S
r f

A
.w

d T
2

(12)

3. Model description

3.1. Model assumption

The rough surface used in the model is homogeneous and the pillar
of the surface is square, as shown in Fig. 3, in which a, b, d, and h are
the groove width, groove length, asperity pillar width, and pillar height
respectively. There are a few ways to measure the surface roughness
parameters of real porous media, such as the experiment methods of
scanning electron microscopy (SEM) (Quéré, 2008), field emission
scanning electron microscopy (FE-SEM) (Monfared et al., 2015), 3D
laser scanning(Hoła et al., 2015), and Atomic force microscopy (AFM)
(Al-Anssari et al., 2016). For some regular arranged porous media, FEM
or FE-SEM images can provide enough information to estimate the
roughness parameters. While for irregular arranged porous media, 3D
laser scanning (μm-mm) or AFM (nm-μm) images can help, depends on
the pore scale. To construct an equivalent rough surface similar with
Fig. 3, we need measure the average groove width, groove length, as-
perity pillar width, and pillar height of porous media surface. Obtaining
the surface morphology surface by experiment methods stated above,
the roughness parameters in different cross sections then could be
calculated averagely.

The geometrical parameters that characterize the roughness are as
follows (Chandra and Yang, 2011):

= + + +
+ +

r d a d b dh
d a d b

( )( ) 4
( )( )

,f (13)

Fig. 2. Arbitrary polygonal cross-section, the corner can be regarded as a wedge.

Fig. 3. Rough surface used in the model, and can be assembled to rough ca-
pillaries with different polygonal cross sections; y direction is the drainage di-
rection.
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=
+

=
+

f d
d a

f d
d b

, .lx ly (14)

where rf is the roughness factor, which is the ratio of actual surface area
to its horizontal projection. flx and fly represent the ratio of the sum of
asperity length to the side length along the groove in the x and y di-
rections, respectively.

The underlying assumptions are that the drainage is along the y-axis
direction and that the non-wetting phase would suspend above or fill in
the grooves according to the wetting condition. In fact, the non-wetting
phase usually stays in a transition state wherein the non-wetting phase
only partly penetrates the grooves and there is a wetting fluid film on
the base of grooves.

When the non-wetting phase begins to occupy the polygonal cross-
section, the cross-section can be divided into two regions: the central
region inside the shape and the border region including grooves and
asperities. Taking the triangle as shown in Fig. 4 as an example, one
region is the triangle inside the blue line, the other region is the area
between the blue line and red line. In the central region, the corners still
hold the wetting phase but depend on the apparent contact angle rather
than Young's contact angle on the rough surface. Denote the film height
of wetting phase in a groove as hw. Then the wetting phase border re-
gion holds the can be described by hw. The outlines of the two regions
(the blue and red lines in Fig. 4) are two similar polygons; no matter the
polygon is concave or convex. Denote the perimeter, area, and corner
angle of the polygonal cross section (outer polygon) as P0, A0, and εi,
and the perimeter and area of the central region (inner polygon) as P
and A respectively. The similarity ratio of the inner polygon to the outer
polygon k satisfies:

∑= = −k P P P h ε P/ ( 2 cot
2

)/i
0 0 0 (15)

In addition, the model does not consider contact angle hysteresis,
however readers can use the receding contact angle instead of the static
contact angle if necessary, and we will also give some supplementary
information on contact angle hysteresis based on Lattice Boltzmann
simulation results.

3.2. Capillary entry pressures in the rough capillary

As shown in Fig. 5, in the rough capillary, the non-wetting phase
mainly exists in the central region; the rest of the non-wetting phase
fills the grooves of the border region except the corners. The triangle is
just an example, and the model can be applied to all polygons.

We first calculate the effective area occupied by the non-wetting
phase Aeff (i.e., Anw) and the effective length Leff (i.e., +L L θcosnw ns )
based on Fig. 6, because they are needed to obtain the entry pressure
according to MS-P method in Eq. (4).

According to similarity principle, the inner polygon area and peri-
meter are,

= =P kP A k A, .0
2

0 (16)

The cross-sections in a rough capillary are not always like the
structure shown in Fig. 5(b), and there are also some smooth cross-
sections in one certain direction. That means that along the long axis of
a pore perpendicular to these cross-sections, roughness of the pore walls
will be present over some fraction of the total pore length and absent
everywhere else, as shown in Fig. 6. In Fig. 6, Lns can be divided to two
parts, one part is the length of asperity tops and the other part is the
immersed height of non-wetting fluid in grooves, so
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−P r S( 2 )d 1 is dashed line length in Fig. 6(b). As rough cross-sections and
smooth cross-sections arrange alternately along the y-axis direction and
the non-wetting phase only contacts the solid in rough ones, the length
is multiplied by fly here to capture this feature. And the other part of Lns
is

= − −
+

L h h P r S
d a

f2( ) ( 2 ) ,ns w
d

ly2
1

(18)

Then the total Lns is the sum of these two parts,

= + = − = + −
+

L L L v P r S v f F h h h
d a

( 2 ), ( ( ) 2( ) ).ns ns ns d ly w
w

1 2 1 (19)

Similarly, Lnw includes the length of AMs and the wetting phase
film,

∑= ⎛
⎝

− − ⎞
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∗L r π ε θ δ2
2 2

,nw d
i

n
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i1
1 (20)

= − − + − −L P r S f f P r S f f( 2 ) (1 ) ( 2 )(1 ) ,nw d ly lx d ly lx2 1 1 (21)

= + = + −L L L r S u P r S2 ( 2 ),nw nw nw d d1 2 2 1 (22)

where = ∑ − −=
∗( )S θ δ,i

n π ε
2 1 2 2

i and = −u f f1 .lx ly The length of dashed line
is approximately equal to the red line of border region in Fig. 6(b) in
calculating the film length of the smooth capillary cross-section.

Next, we calculate the non-wetting phase area in the inner and
border regions, respectively:

= − −∗A A r θ S S(cos ),nw d1
2

1 2 (23)

= − = − −A L h h u P r S h h( ) ( 2 )( ),nw nw w d w2 2 1 (24)

= + = − − + −∗A A A A r θ S S w P r S(cos ) ( 2 ).nw nw nw d d1 2
2

1 2 1 (25)

where = −w u h h( ).w From Eq. (4), the MS-P method finally gives,

+ − + −
− − + −

=∗
r S u P r S v P r S θ

A r θ S S w P r S r
2 ( 2 ) ( 2 )cos

[ (cos ) ( 2 )]
1d d d

d d d

2 1 1
2
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And we can simplify it to the form of Eq. (11):

+ − − − + + + + =∗u v θ θ S S r u v θ P wS r wP A[(2 2 cos cos ) ] [( cos ) 2 ] ( ) 0d d1 2
2

1

(27)

When the surface is smooth, = = = =r f f h h1, 1, 1, ,f lx ly w then
= ∗θ θ , =u 0, =w 0, and =v 1. It follows that Eq. (27) reduces to,

+ − − = − =∗u v θ θ S S θS S f[(2 2 cos cos ) ] cos ,T1 2 1 2 (28)

+ + = + =u v θ P wS P θ wP A A[( cos ) 2 ] cos , ( ) .1 (29)

Comparing Eq. (27) with Eq. (11) in such case, we find they are
equivalent, which means that, for smooth capillaries, Eq. (11) can be
recovered from Eq. (27). By solving Eq. (27), we can obtain the
threshold drainage radius and calculate the capillary entry pressure by

Fig. 4. Triangle cross-section with rough surface.
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Eq. (5). Moreover, the saturation can be calculated by:

= − − + −S A A f f A f P h1 /[( (1 ) ( )].w nw ly ly lx0 0 0 (30)

4. Model verification

To solve Eq. (27), we first have to identify two parameters: i.e., the
apparent contact angle and the wetting phase film height. In this sec-
tion, we obtain these two parameters by the Lattice Boltzmann method
(LBM) simulation. Moreover, the capillary entry pressure in rough ca-
pillaries are analyzed using LBM simulation and then we compare the
semi-analytical model against numerical simulation results.

4.1. Shan-Chen multicomponent Lattice Boltzmann model

The Lattice Boltzmann method is a pseudo-molecular method that
tracks the evolution of the particle distribution function of an assembly
of molecules. For single-phase flow, it follows the LBGK evolution
equation derived from the Boltzmann equation (Bhatnagar et al., 1954),

+ + = − −f t t t f t
τ

f t f tx e x x x( Δ , Δ ) ( , ) 1 ( ( , ) ( , )),i i i i i
eq

(31)

where f tx( , )i
eq is the density distribution function, x is the spatial po-

sition, ei is the discrete velocity along the ith lattice direction, τ is the
relaxation time, and f tx( , )i

eq is the corresponding equilibrium dis-
tribution function.

The equilibrium distribution functions depend on the particular
velocity model and can be calculated as

= ⎡
⎣⎢

+ + − ⎤
⎦⎥

f t ω ρ
c c c

x e u e u u( , ) 1 · ( · )
2 2

,i
eq

i
i

s

i

s s
2

2

4

2

2 (32)

where wi s are weights and cs is the sound speed. ρ and u are the
macroscopic density and the macroscopic velocity vector respectively,
which can be calculated from:

∑ ∑= =ρ f
ρ

fu e, 1 .
i

i
i

i i
(33)

The Shan-Chen multiphase Lattice Boltzmann model (or the pseu-
dopotential multiphase model) was originally proposed by Shan and
Chen (Shan and Chen, 1993; Shan and Chen, 1994), and its inter-
molecular interactions are represented by a density-dependent pseu-
dopotential. It includes two kinds of models, namely single-component
multiphase (SCMP) model and multicomponent multiphase model
(MCMP) (Sukop and Thorne, 2006). As the MCMP model is used in later
verifications, here we only introduce the MCMP model for the sake of
conciseness.

In the MCMP Lattice Boltzmann model, each fluid component fol-
lows a similar LBGK evolution equation (Eq. (31)) as in single-phase
flow. The equilibrium velocity of the σ th component is modified to
carry the effect of the interactive and adhesive forces:

= ′ +
+τ F F

ρ
u u

( )
,eq σ σ σ

σ

int, ads,

(34)

where F σint, is the fluid-fluid interactive force between different com-
ponents, F σads, is the fluid-solid interactive force, and ′u is a composite

macroscopic velocity defined as ′ = ∑ ∑ ∑u ( )/( )σ i
f

τ i
ρ
τ

ei
σ i

σ
i
σ

σ
.

In order to simulate separation between different components in
multicomponent fluids, non-local interactions between fluid particles
are incorporated via the following fluid-fluid interactive force,

∑= − +t ρ t G ω ρ t tF x x x e e( , ) ( , ) ( Δ , ) ,σ σ σσ
i

i σ i iint, int,

where σ and σ represent different components and G σσint, is a parameter
that controls the interaction force between the different components.

The adhesive or solid surface force on the σ th component can be
computed as follows (Martys and Chen, 1996):

∑= − +t G ρ t ω s t tF x x x e e( , ) ( , ) ( Δ , ) ,σ σ σ
i

i i iads, ads,
(35)

where the +s t tx e( Δ , )i is an indicator function that is equal to 1 or 0 for
a solid or fluid domain node, G σads, is a parameter that controls the
strength of the interfacial tension between the solid and σ th compo-
nent.

Fig. 5. Phase distribution in different cross-sections during drainage, the blue block means the wetting phase and the white means the non-wetting phase (a) cross-
section in a smooth capillary (b) cross-section in a rough capillary, ∗θ . is the apparent contact angle. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. Fluid configurations in a rough capillary, (a) rough capillary cross-section; such a cross-section appears along the y-axis direction with a probability of fly (b)
smooth capillary cross-section; such a cross-section appears in a probability of 1-fly.
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4.2. Wetting theory on rough surfaces: Logistic model

The well-known Wenzel model and Cassie-Baxter model have been
reported to only be applicable to certain conditions (Morrow, 1975;
Milne and Amirfazli, 2012; Carmeliet et al., 2017). For example, the
drop size must be sufficiently large compared with the surface rough-
ness scale for the Wenzel equation and the Cassie–Baxter equation is
only correct for the case of flat topped pillar geometry without any
penetration of the liquid. Based on previous understanding of physical
mechanisms on rough surface wetting theory, we propose a new
equation for Wenzel state from the perspective of mathematical mod-
eling.

As the Young’s contact angle is always smaller than 90° when non-
wetting phase invades the wetting phase in the described semi-analy-
tical model, we only need to model the wetting behavior of hydrophilic
rough surfaces, on which the droplet always stay in Wenzel state (Bico
et al., 2002). Logistic population growth is a famous model to predict
population. In the Logistic model, the carrying capacity restricts the
population from growing infinitely, and population regulation is a
density-dependent process, meaning that population growth rates are
regulated by the density of a population (Verhulst, 1845). Denote the
maximum value of Young’s contact angle θ that makes the apparent
contact angle decrease to 0 as θc on a rough surface, i.e., when Young’s
contact angle is smaller than this critical value, the apparent contact
angle is always 0. When θ > θc, assuming θ∗ increases with roughness
factor rf on a rough surface, and the growth rates are related to θ and
the “carrying capacity” θ∗max= 90°, then the Logistic model is,

=
+

>∗
−

−
−

θ
e

θ θ90
1

,θ
θ θ

m r c90 ( 1)
c

f
(36)

where m is the growth rate, θc is the critical contact angle, and they
both depend on the design of the rough surface.

We design three rough surfaces according to Fig. 3, namely h=1,
a= b= d=2; h=2, a= b= d=2 and h=4, a= b= d=2. The
roughness factors are 1.5, 2, and 3, respectively. The Shan-Chen mul-
ticomponent Lattice Boltzmann model is initialized to mimic wetting
behaviors on both smooth and rough surfaces. The D3Q19 velocity
model is used and the major density for wetting phase or non-wetting
phase is 8.0, =G 0.225σσint, and different wetting conditions are
achieved by adjusting G σads, . The simulation domain size is
120×120×80 and the initial droplet size is 30. Bounce-back
boundaries are applied to the solid walls and the other boundaries are
periodic. Three simulation results when rf = 3 are shown in Figs. 7 and
8 summarizes data concerning all the results for the three rough sur-
faces. We also do curve fitting between Young’s contact angles and the
apparent contact angle based on Eq. (36); the curves match well with
simulation results. Further, the growth rate and critical contact angle on
this type of rough surface are given by:

= + − =m r r θ r(0.55ln 0.016)/( 1), 30.5ln .f f c f (37)

4.3. Fluid distribution in rough capillaries under quasi-static

In this section, we observe the steady fluid distribution in rough
capillaries using the Shan-Chen LB model. A half-rough and half-
smooth tube with a solid bottom is designed, as shown in Fig. 9. In
simulation, the smooth half is initialized with wetting phase and the
rough half with non-wetting phase. The redistribution of fluid is then
calculated by LBM, similar to a capillary-rise process.Fig. 10 compares
two different fluid configurations from simulations. In Fig. 10(a), the
AMs appear in corners while this would never happen for the smooth

Fig. 7. Young’s contact angles on smooth surfaces and the corresponding apparent contact angles on rough surfaces with rf = 3.

Fig. 8. Relation between Young’s contact angles on a smooth surface and the
corresponding apparent contact angles on a rough surface.

Fig. 9. A half-rough and half-smooth tube used to mimic a capillary-rise like
process. The cross section can be arbitrary and square is just an example.
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capillary when θ=45° (see Eq. (9)). This is because the rough surface
decreases the contact angle so that AMs can form with an apparent
contact angle smaller than 45°. It is also notable that there are wetting
phase films around the wall surfaces, which is consistent with the as-
sumption in Section 3. In Fig. 10(b), we give an example of the fluid
distribution in a pore of isosceles right triangular cross-section where
the upper angle is 90°; the roughness factor is smaller and the apparent
contact angle is not small enough to form AM in the right angle, but it is
wetting enough to form AMs in the 45° base angles. Meanwhile, there
almost no wetting phase films on the walls for the poor wetting con-
dition.

We can also measure the wetting phase film height by calculate the
density in grooves of the tube slice. As the density profile in the tube is
continuous in the LBM simulation results, the film height can be esti-
mated by the quotient of the wetting phase density in one groove di-
vided by the major density of the wetting phase (around 8.0) in the
equilibrium state. Fig. 11 gives an example of wetting phase density
profile of tube slices when h=4. Similar with the results in Fig. 10,
there are almost no wetting film in grooves when θ=62.37°, while the
films exist when θ=45°. We also fit a curve between Young’s contact
angle and film height based on LBM simulation, which demonstrates
that it is a sigmoid-like curve as shown in Fig. 12. The wetting film
height as a function of Young’s contact angle satisfies

= ⎛
⎝

−
+

⎞
⎠− −h

e
h1 1

1
.w θ0.12( 45) (38)

Note that in a vapor-fluid system in capillaries, there are also film
adsorption on surfaces (either in smooth surface or rough surface), but
mainly determined by disjoining pressure. We cannot consider this
feature in this model and Tuller et al. (1999) gave more details on the
adsorption and capillary condensation in porous media.

4.4. Capillary entry pressure in rough capillaries

As oblique lines in the regular lattice grid system leads to zigzag
boundaries during LB simulation, we use square capillary rather than
triangular capillary to verify the semi-analytical model in this section. A
whole-smooth or whole-rough capillary tube with domain size of
64×64×120 (note that the inscribed circle radius of cross section is
31 because the edge is solid) is designed as shown in Fig. 13. The ca-
pillary is full of wetting phase at the simulation beginning with density

of 8.0, and we meanwhile add non-wetting/wetting phase reservoirs on
the top/bottom consisting of additional three layers. By droplet test, the
interface tension γnw was calculated by Laplace’s law and the value is
0.9458 when the major density is 8.0 for each phase. Pressure boundary
conditions (equivalent to densities) are applied to the first layer of the
non-wetting phase reservoir and the last layer of the wetting phase
reservoir. To simulate the primary drainage process, we started from
zero capillary pressure, which was achieved by fixing non-wetting
phase and wetting phase densities in the first layer and last layer of the
reservoir, respectively (Pan et al., 2004, Zhang et al., 2016). The den-
sity on the bottom was fixed at 7.95 and the density on the top was
increased from 7.95 to 8.40. The driving pressure increased gradually
and non-wetting phase began to enter the tube and displace the wetting
phase in the initially wetting-phase-saturated capillary.

Finally, we obtain a series of Pc/γnw-Sw curves for the smooth and
rough capillaries, under different wetting conditions and with different
roughness factors. Then we can compare the simulated and analytical
entry pressure, and here we take the rough one when rf = 3 (h=4,
a= b= d=2) as an example. When θ= 32.52°, hw=0.725 h and
apparent angle θ ∗=0, the analytical entry pressure Pc/γnw calculated
from extended MS-P model from Section 3 for a rough capillary is
0.0695 and that for a smooth capillary calculated from general MS-P
method is 0.0536. Primary drainage curves obtained by LBM simula-
tions under the same conditions are shown in Fig. 14, in which we can

Fig. 10. Fluid configurations simulated by Shan-Chen LB model in rough capillaries, (a) square cross section with θ=45° and rf = 3. Except the AMs in the corner,
there are also wetting phase films on the wall surfaces. (b) cross-section of isosceles right triangle with θ=62° and rf = 1.6. There almost no wetting phase films on
walls and AMs only appear in the 45° base angles.

Fig. 11. Density profile of wetting phase in tube
slices for different wetting conditions.

Fig. 12. Wetting film height as a function of Young’s contact angle, LBM si-
mulations and curve fitting.
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make a tangent line at the inflection point (not the point where the
second derivative is equal to 0 but the point where the curve become
much steeper) of the capillary pressure curve; the intersection point
between the tangent line and y-axis is the capillary entry pressure, the
value is 0.0720 and 0.0560, for the rough capillary and the smooth one,
respectively. The relative error is smaller than 5% and we obtain good
agreement of the simulated and analytical entry pressure.

Fig. 15 summarizes another five pairs of simulation results against
the semi-analytical model, though the relative error is larger than 5% in
some cases, there is good agreement overall. We also give three dis-
placement processes driven by the entry pressure in a rough capillary
under different wetting conditions (corresponding to the cases in Fig. 7)
to show the differences. It can be seen from Fig. 16 that the non-wetting
phase enters the middle channel for low flow resistance, then the non-
wetting phase tries to penetrate into the grooves on the rough surface.
However, due to the wetting film adsorbed on the walls, the non-wet-
ting phase can only penetrate partly under strong wetting conditions
(Fig. 16(a)). While in the case when the wetting condition is not strong
enough, the non-wetting phase can fill most grooves on the surface, and

the displacement process like a two-step layered flow: fill the middle
first and then the surface (Fig. 16(b)). Moreover, when the wettability
becomes poorer, the non-wetting phase even can penetrate the grooves
at the first step (Fig. 16(c)).

4.5. Contact angle hysteresis in rough capillaries

The contact angle hysteresis is influenced by many mixing factors,
such as the droplet size, flow velocity, as well as the surface roughness
and it’s hard to illustrate it separately. In this section, we will only
discuss the contact angle hysteresis in few rough capillaries under small
pressure difference.

There are usually three ways in literatures to study the contact angle
hysteresis (usually measured by the difference between the advancing
contact angle and receding contact angle):

(1) Slowly increasing the volume of a drop or sucking the liquid and
observing contact lines (Gao and McCarthy, 2006). During the in-
crease of drop volume, the contact line first remains stuck before it
suddenly jumps above a critical volume. The maximum observed
angle is the so-called advancing contact angle θA. If we afterwards
decrease the volume of the drop and determine the contact angle
just before the wetting line is receding, we measure the so called
receding contact angle, θR.

(2) Droplet moving driven by the body force or external force. The

Fig. 13. Rough and smooth capillaries with square cross section designed for verifying the analytical model.

Fig. 14. Primary drainage curves obtained by fluid displacement simulations
when θ=32.52°, the rough capillary was designed with a rough surface when
rf = 3. The curve can be divided into three stages, i.e., the two steeply in-
creasing stages at the initial and end of the drainage and the middle steady
growth stage. The dashed tangent lines are made at the end of middle steady
growth stage.

Fig. 15. Comparison of entry pressure between LBM simulations and analytical
models.
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contact angle is different at the front and at the rear of the drop.
Contact line always stays stationary and the droplet only deforms if
the instantaneous receding contact angle and advancing contact
angle don’t arrive certain critical values. Ba et al. (2016) studied the
contact angle hysteresis on topologically structured surfaces using
LBM and analyzed the critical capillary number for droplet slipping.

(3) Liquid column motion due to capillary force, such as measuring the
contact angles by Wilhelmy plate method. The measure of receding
contact angle or advancing contact angle depends on the relative
movement direction of the plate.

In our study, we focus on the contact hysteresis in a capillary, so we
construct a similar model according to Joanny and De Gennes (1984),
i.e., a wetting phase column is initialized in the middle of a capillary,
while the other space is filled with non-wetting phase. Pressure
boundary conditions are applied to inlet and outlet and the pressure
difference is relatively small than the capillary entry pressure (elim-
inate the effects of large flow velocity.), so that the non-wetting phase
will invade the wetting phase from both capillary ends, forming the
advance receding contact angle and advancing contact angle, as shown
in Fig. 17(a). In the following simulation, we only consider the similar
capillaries in Section 4.4, the domain size of the capillary is
64×64×128, the inlet and outlet are non-wetting reservoir con-
sisting of 20 layers, the 21th layers-108th layers along the z axis is the
capillary. Before simulation, the 40th–90th layers are filled with wetting
phase, and the first layer density of inlet and outlet are fixed at 8.03 and
8.0, respectively, as shown in Fig. 17(b).

Contact angle hysteresis under different wetting conditions
(θ=78.9°, 62.3°, and 32.5°) in different rough capillaries (rf =1, 1.5,

2, and 3) are simulated by LBM, the results are shown in Fig. 18. Firstly,
it can be seen that the roughness decreasing the advancing and receding
contact angle simultaneously. Then by measuring receding contact
angle in rough capillaries, we find that the receding contact angle is
close to the corresponding apparent contact angle in strong wetting
conditions. While the receding contact angle in poor wetting conditions
seems tend to larger than the corresponding apparent angle, which
maybe is due to the limited simulation time step. In addition, the dif-
ference between the advancing contact angle and receding contact
angle (contact hysteresis) stays relative stable and do not show a clear
changing pattern. In brief, in our simulations, we can say that the
roughness can decreasing the receding contact angle further, but it does
not mean the roughness is bound to promote the contact hysteresis.
Moreover, if the contact angle hysteresis is ignored in the new proposed
model, the accuracy may be influenced in poor wetting conditions.

5. Results and discussion

Define the dimensionless capillary entry pressure as:

=P P P/ ,cnorm cr cs

where Pcs is the capillary entry pressure in a smooth capillary and Pcr is
the capillary entry pressure in a rough capillary of the same size (refer
to capillaries in Fig. 5).

Introduce five dimensionless variables to describe how the rough-
ness influences the capillary entry pressure in different wetting condi-
tions:

= = = = =α a d β b d ω d P λ h r G A P/ , / , / , / , / ,in0 0 0
2

Fig. 16. Displacement process driven by the entry pressure in a rough capillary under different wetting conditions. The green color represents the non-wetting phase.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where rin is the inscribed radius of the polygon and G is the shape factor.
We take triangles as examples to analyze the influencing factors in

this section. The triangles can be constructed using method Patzek’s
(2001). For convenience, the inscribed radius of the triangle is set to
one. Also, readers can refer to Wei’s (2015) method if n-sided polygon
construction is needed (Wei et al., 2015). The apparent angles and film
height are calculated by Eqs. (36)(38).

5.1. Analysis of influencing factors: groove length and groove width

Let h=0.1, b=0.05 (or a=0.05), d=0.05, G=0.024, then
construct various shapes with different groove length (or groove
width), leading to various values of α (or β). After this, calculate

capillary behaviors using the proposed model in Section 3. α and β can
indicate the impact of groove length and groove width on the capillary
behavior respectively. Fig. 19 gives the information concerning how
Pcnorm changes with groove length and contact angle. Overall, Pcnorm is
larger than one, which means that the rough capillary entry pressure is
always larger than the smooth one under the same conditions. More-
over, Pcnorm shows a dramatic rise with the increase of contact angle;
however it remains stable at different values of α when the contact
angle is smaller than 40°. This is because the reciprocal of θcos is
greater when the contact angle is bigger. Meanwhile the rough surface
would make the contact angle smaller and the range of the drop is much
bigger under poor wetting conditions than that in good wetting con-
ditions; that is to say, ∗θ θcos /cos plays a key role in this rising trend and

Fig. 17. Simulation initialization of contact angle hysteresis in a capillary.

Fig. 18. Contact angle hysteresis in capillaries with different roughness factor (simulation time step at 50000). Each case is modified with three different wetting
conditions, the Young’s contact angle from left to right is 78.9°, 62.3°, and 32.5° respectively. The green block represents non-wetting phase and the slices closest to
the solid walls are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the rough surface can’t decrease the apparent angle significantly. Pcnorm
also decreases a little with the increase of α for the gradually declining
roughness factor. However, it is clear from the subgraph of Fig. 19 that
there is a dramatic decline in rf with the increase of α, which means
that α has little influence on Pcnorm, even under poor wetting conditions.
Though there is a subtle difference due to the drainage direction (i.e.,
the influence of fly), our results indicate that the influence of groove
width on the capillary behavior is similar to that of groove length, for
they exert the similar impact on rf according to the subgraph in Fig. 19.

5.2. Analysis of influencing factors: Asperity width

Similarly, let a=0.05, b=0.05, h=0.1, G=0.024, then construct
various shapes with different asperity width, leading to various values
of ω. Thus ω illustrates the influence of asperity width. Fig. 20 sum-
marizes the simulation results in terms of how Pcnorm changes with ω
under different wetting conditions. Pcnorm grows noticeably with the rise
of contact angle at small ω while it declines with ω when the contact
angle is large enough. It increases gradually at its initial stage and then
peaks at a certain point with the increase of ω. After the peak point, it
decreases gradually. This is because the roughness factor fluctuates
with ω in a similar pattern, as shown in the subgraph of Fig. 20. In
addition, the degree of decrease is larger than the influence of α in
Section 4.1. Pcnorm is still not sensitive to the roughness factor under
strong wetting conditions.

5.3. Analysis of influencing factors: Asperity height

Construct various shapes with different asperity height, making sure
that a=0.05, b=0.05, d=0.05 and G=0.024. Fig. 21 compares the
statistics regarding the capillary behaviors in rough capillaries when
the asperity height and contact angle vary. Then λ can illustrate the
influence of asperity height. In general, Pcnorm increases with λ and
contact angle. However, there is a slight drop for Pcnorm with the in-
crease of λ under poor wetting conditions. This can happen when the
roughness factor is large enough and decreases the apparent angle
significantly under poor wetting conditions. Moreover, it seems that λ
exerts more impacts on this upward trend than α and ω, for it decreases
the effective radius of capillary directly.

5.4. Analysis of influencing factors: Shape factor

Shape factor has an important influence on the wetting phase sa-
turation. Construct different shapes making sure that a=0.05,
b=0.05, d=0.05 and h=0.1. Fig. 22 provides statistics concerning
the performance of the wetting saturation of these shapes in rough and
smooth capillaries. As shown in Fig. 22, the wetting saturation in rough
capillaries is larger than in smooth capillaries. Two combined factors
contribute to this: on the one hand, the rough surface narrows the pore
space, and the grooves are filled with wetting phase film; on the other
hand, the rough surface would make the apparent contact angle
smaller, which means more wetting phase could exist in the corners. In
addition, the wetting saturation in rough capillaries shows a similar
trend with that in smooth capillaries, i.e., the wetting saturation de-
creases with the shape factor and the contact angle. This is because the
bigger the shape factor is, the more regular the shape is, and as a result,

Fig. 19. Influence of asperity length on the dimensionless capillary entry
pressure under different wetting conditions.

Fig. 20. Influence of groove width on the dimensionless capillary entry pres-
sure under different wetting conditions.

Fig. 21. Influence of asperity height on the dimensionless capillary entry
pressure under different wetting conditions.

Fig. 22. Influence of shape factor on the wetting saturation under different
wetting conditions.
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there would be less corner space to hold wetting phase. Also, the in-
creasing contact angle would narrow the space of wetting phase in the
corners, which is stated clearly by Wei et al. (2015). There is a slight
difference in that the wetting phase in rough capillaries would decrease
more quickly after a certain point with the increase of the contact angle.

To conclude, both the wetting phase saturation and entry pressure
of rough capillaries are always larger than those of smooth ones under
the same conditions, and Fig. 14 show good evidence of this point.
Furthermore, the capillary entry pressure is not sensitive to the
roughness factor under strong wetting conditions. As to the magnitude
of their relative effects on rough capillary entry pressure under middle
or poor wetting conditions, the contact angle ranks first, then the as-
perity height, followed by the asperity width, and groove length/width
is last.

6. Conclusions

To sum up, we propose a semi-analytical model based on the MS-P
and wetting theories of rough surfaces to calculate the capillary entry
pressure in rough capillaries with polygonal cross-sections. We provide
a new Logistic wetting equation to calculate the apparent contact angle
in the Wenzel state and to verify the model with Lattice Boltzmann
method simulations. Using this model, we discuss capillary behavior
under different conditions.

First, both the wetting phase saturation and entry pressure of rough
capillaries are larger than those of smooth ones under the same con-
ditions. The effective radius of the capillary would decrease and the
contact angle would be smaller in the rough capillary. Meanwhile the
rough surface would also change the phase distribution, for example,
there would be a wetting phase film adsorbed on surface.

Moreover, the contact angle and asperity height have a more sig-
nificant influence on capillary entry pressure than any other factors,
followed by asperity width and groove length/width. In general, the
capillary entry pressure changes only slightly with the roughness factor
under strong wetting conditions.
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