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ABSTRACT

Our study presents a novel optimization framework dedicated to refining the swimming gaits of self-propelled articulated swimmers. The
approach integrates a fluid-structure interaction solver for multibody systems with a single-step deep reinforcement learning optimization
algorithm. To overcome the computational costs incurred by evaluations during parameter search, we introduced controlled transfer learning
to improve performance and efficiency. By leveraging pre-trained policies on low-fidelity models and adapting them to high-fidelity environ-
ments, the learning procedure can be accelerated with significantly less high-fidelity evaluations. Moreover, the optimization algorithm is
complemented by an intricate mapping procedure designed to enforce stringent constraints derived from prior knowledge within the expan-
sive high-dimensional design space. Then, this framework is applied to investigate the influence of segment length and number on the
optimal swimming kinematics of an articulated fish model. Findings reveal that the variable-length approach may yield more parsimonious
yet comparable models with fewer segments compared to the equal-length approach. This study contributes valuable insight into the design
and behavior of both natural and robotic swimmers, paving the way for future advancements in optimization algorithms and fish body

models.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0249580

I. INTRODUCTION

Fish have undergone millions of years of natural selection, honing
their shapes and movements to thrive in aquatic environments. The
physical and biological mechanisms governing fish locomotion offer
valuable insight for engineering applications,' hydrodynamically
efficient designs,2 autonomous underwater vehicles,”* and energy-
harnessing technologies.” The remarkable maneuverability and propul-
sion efficiency demonstrated by bio-inspired underwater robots have
ignited theoretical research for over half a century. Lighthill’s slender
body theory (SBT)® reignited interest in unraveling the physical princi-
ples underlying fish locomotion. Ongoing refinements to Lighthill’s
slender fish model” * have provided researchers with profound insight.
However, direct application of these models in optimizing and control-
ling underwater robots still faces challenges due to the lack of high phys-
ical precision and sufficient datasets, hindering the training of intelligent
behaviors in real environments that mimic or even surpass the capabili-
ties of these bionic creatures in accomplishing complex tasks.

Alternatively, numerical simulation stands out as a valuable
and essential tool for understanding optimal fish behaviors in diverse

scenarios. Two commonly used simplified models for simulating fish
locomotion are the continuum model and the articulated model. In
the continuum model, fish motion is generated by providing an analyt-
ical time-varying expression for the lateral displacement of the mid-
line. While the articulated model of an undulating fish is simplified to
a multi-rigid-body system, which is linked by hinges with either pre-
scribed or passive motions. In this study, we primarily concentrate on
the articulated model, and specific justifications will be provided in
Sec. II B Solid Solver. It is noteworthy that existing simulators still suf-
fer from significant limitations, such as high inaccuracy,'’ specializa-
tion to specific agents or environments,'"'” and prohibitively
expensive costs for generating training data.'” Presently, there is a
shortage of simulation platforms capable of delivering modular, effi-
cient, and precise results suitable for optimizing control policies for
underwater robots.

In recent years, gradient-free optimization algorithms have exhib-
ited remarkable efficacy in identifying optimal parameters for biologi-
cal functions.”'*""” Deep reinforcement learning (DRL), a typical
gradient-free algorithm, excels in scenarios characterized by multiple
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local minima or environmental uncertainty, leveraging unsupervised
learning through iterative trials (episodes). Viquerat et al.'” introduced
the concept of single-step DRL, applying it to the direct shape optimi-
zation of airfoils, while Ghraieb et al.'” extended its application to vari-
ous open-loop control problems featuring expansive parameter spaces.
Our prior work™ further investigated and improved this approach by
addressing the optimization problem of a splitter plate downstream in
the cylinder wake. However, to increase the chance of acquiring the
global optimum from the entire search space, DRL-based optimizers
usually operate at the expense of a costly trial-and-error process.

Although the accumulated engineering experience and physical
knowledge are beneficial in appropriate selection of initial configura-
tions (baseline designs), it is difficult to intelligently guide the search of
globally optimal solution by effectively embedding these priori knowl-
edge into the gradient-free optimization algorithms. However, the
recent developments in the DRL domain, especially in transfer learning
(TL),”" create the possibilities for the optimizer to imprint physical
knowledge. Yan et al.” integrates DRL and TL for efficient aerody-
namic shape optimization in missile control surfaces, where the
optimization experience is extracted from a semi-empirical model.
Bhola et al.”’ proposed a multi-fidelity framework using controlled
transfer learning (CTL) for efficient airfoil shape optimization in high
Reynolds numbers. They primarily focused on the generalization
across multi-fidelity environments without explicating the underlying
working mechanism. Anyway, such multi-model training scheme,
which can also be referred to as physics-informed reinforcement learn-
ing, involves enhancing the learning process by incorporating physical
information extracted from the surrogate model.

Therefore, we aim to develop a physics-informed reinforcement
learning optimization framework integrated with an in-house fluid-
structure interaction (FSI) solver. The fluid solver is based on the lat-
tice Boltzmann method (LBM), with rigid bodies modeled using the
immersed boundary method (IBM). The dynamics of multibody sys-
tems are addressed using rigid multibody dynamics™* due to its com-
patibility and generalization. This framework aims to optimize the
kinematic gaits of a self-propelled articulated swimmer while adhering
to specific goals. To expedite policy convergence, we introduce two
techniques that significantly boost the performance of our framework:
(1) We extend the CTL to the swimming problem, rather than the
extensively researched shape optimization problem; (2) For DRL-
based algorithms originally suitable for box-constrained optimization,
we add a mapping network layer to enforce hard linear inequality con-
straints based on the known relationships between the parameters.
This adaptation helps prevent non-compliant evaluations, reducing
redundant efforts and resource wastage.

We demonstrate the effectiveness of our framework by discovering
the optimal joint motion that achieves a desired locomotion goal (ie.,
joint motion leading to the fastest or most energy-efficient locomotion)
for an articulated swimmer. Our results are compared with a prior
experimental study, where segmented fish models are derived from
actual fish data.”” We elucidate how segment length and number influ-
ence actual performance, aspects not directly addressed by experimental
data. The paper is organized as follows: In Sec. II, we provide detailed
information on the numerical methods, along with the optimization
algorithm. Section 11T introduces the problem formulation and algorithm
setup. Section IV presents the optimized results and includes rational
mechanism explanation. Finally, the paper is concluded in Sec. V.

pubs.aip.org/aip/pof

Il. METHODOLOGY
A. Fluid solver

The Navier-Stokes equations governing incompressible viscous

flow with solid bodies can be expressed as follows:

ou 1

—+u-Vu=-Vp+—Vu+F, V- -u=0, 1

ot PT Re + ’ (0
where u represents the velocity, p is the pressure, and F denotes
the Eulerian momentum force on the surrounding fluid, subject to the
no-slip boundary condition. According to lattice gas automata theory,
Eq. (1) can be written in the form of discrete lattice Boltzmann
equations:

Fulxt €0t 04+ 31) —fy(x,1) = —% [fu(x.t) — f9(x,0)] +0F,, (2)

where 7 is the non-dimensional relaxation time related to the fluid vis-
cosity and f, (x, t) is the distribution function associated with the o th
discrete velocity e,, where o = 0, ..., 8 for D2Q9 velocity model. The
equilibrium distribution function f,? and the forcing term F, are calcu-
lated as™®

L= poy |1+

e:m-ll_’_(eo(-u)2 u?
20t 2¢2|’

N N

1 e, —u (e, u)
Fx_(l_zr)wa|: C? + C? €y 'F7

where o, is the weighing factor and ¢; = s the lattice sound speed.

3)

The lattice speed c is given by ¢ = %, where Ax is the lattice size, and
At is the time step. The macrovariables such as density, velocity, and
pressure can be obtained by

8 8
1
= u= e,f, +—Fdt, = cp. 4
p=d fo pu=d efitzFoL p=dp @)

The direct-forcing immersed boundary method is employed to
handle fluid-structure interaction. While Eq. (2) are resolved on
Eulerian grids (x;;), the solid boundary is discretized into small ele-
ments by Lagrangian points (x;). The boundary force on a Lagrange
point can be calculated by

u? — u"F (xp,t + At
flnt)=2p U240 (5)

where the desired velocity u? is obtained from the solid solver
and the unforced velocity u™F is calculated by u™f(xp,t+ At)
= >y, WD(x;j — xp)Ax’. The force density F on the Eulerian

mesh is calculated by spreading the force density on the Lagrangian
points f(xp, t) to the surrounding area

F(x,-J-, t) = Z D(x,] — Xb)f(xh, t)ASb, (6)

where AS, is the boundary element length including the Lagrange
point x3,. D(+) represents a discrete 0 function,

1 Xi — X i —
Dl ) = (U5 ) (M5 ). @
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B. Solid solver

As highlighted in the Introduction, prior research has predomi-
nantly focused on two simplified physical models (the continuum
model and the articulated model) with a specific focus on the hydrody-
namic mechanisms underlying fish locomotion. In both models, the
fish’s motion is characterized by finite parameters linked to the model’s
degrees of freedom, offering the potential to identify optimal locomo-
tion patterns. The continuum model, initially proposed by Carling,”®
has gained considerable attention in research, encompassing optimiza-
tion studies across various hydrodynamic scenarios, such as steady-
state cruising, " accelerated starting,'” and collective swimming.” '
However, the hydrodynamic performance of the articulated model has
received less exploration, except for its application as a standard valida-
tion case.””

While optimization based on the continuum model yields pat-
terns more closely resembling actual fish swimming, the articulated
model boasts unique advantages. First, it has been previously
researched through potential flow theory,” which is highly suitable as
our surrogate model. Second, the use of the articulated model is
favored in the field of robotics, given constraints imposed by real-
world materials and mechanical structures.”®”” Third, hinges can be
configured as revolute joints with passively induced pitch motion, sim-
ulating passive appendages such as the alulae of flying animals and fins
of aquatic swimmers.” Finally, the internal dynamics (muscle behav-
ior from a biological standpoint and actuator design from a robotics
perspective) are also worthy of elucidation.

The most effective approach to address multibody systems is rigid
multibody dynamics.”* In a given rigid multibody model with
ngor € R" degrees of freedom, generalized coordinates are employed
to describe the system’s state. We use the symbols q(t), q(t), q(t),
7(t) € R™ to, respectively, denote the vectors of generalized posi-
tions, velocities, accelerations, and forces at time t. We will omit the
argument ¢ since the dynamics is considered at a given instant of time.
The dynamics of rigid multibody systems, which establishes the rela-
tionship between forces and induced accelerations, is expressed
through the following equation using generalized coordinates

5

M(q)q + C(qa q) = Tint + Text- 9)

Here, the matrix M(q) € R™”>"# represents the generalized
inertia matrix, and the term C(q, q) € R"* accounts for the general-
ized bias force, including the Coriolis and centrifugal forces. 7;,; and
Tex are vectors representing the generalized internal forces (including
spring forces, damping forces, and driving forces) and the generalized
external forces (resulting from gravity and surrounding fluids). This
second-order differential equation can be integrated using numerical
methods, such as the Runge-Kutta method.

Distinguished by the nature of motion actuation, hinges can
be broadly categorized into two types: passive and active. In a given

ARTICLE pubs.aip.org/aip/pof

rigid-body system, the algorithm for passive hinges involves calculating
the acceleration response to an applied force, a process known as for-
ward dynamics. On the other hand, for active hinges, the calculation
involves determining the force required to produce a given acceleration,
termed inverse dynamics. In this study, we utilize the articulated body
algorithm (ABA) for forward dynamics and the recursive Newton-
Euler algorithm (RNEA) for inverse dynamics computation.”*

As depicted in Fig. 1, for the floating-base system under investiga-
tion, the relative motions between each pair of adjacent hinge-linked
components are prescribed, while the global movement driven by
hydrodynamic forces remains unknown. To facilitate free swimming,
allowing unconstrained translational and rotational motion, two pris-
matic joints gy, gy, and a revolute joint g, are introduced between the
fixed base and the head segment, all of which are passive joints.
Subsequently, forward dynamics are applied to the passive joints, while
inverse dynamics are performed on the remaining active joints. The
use of generalized coordinates proves to be more efficient and adapt-
able, eliminating the need to rederive control equations even if the con-
figuration undergoes modifications, such as altering the structural tree
or changing hinge types. We validates this fluid-multibody interaction
system in Appendix B.

C. Surrogate model

As proposed in Ref. 35, the surrogate model only account for the
momentum exchange between the articulated body and the surround-
ing fluid in the context of a potential flow model, thus avoiding the
complexity of considering all the details of the fluid medium. The
articulated body is immersed in a perfect fluid, which means fluid par-
ticles will slip along the boundaries of the solid. Under this assumption,
the dynamic equations governing the body motion can be written
solely in terms of the body variables, without the explicit inclusion of
the fluid variables. This is appropriate in the case of not considering
the interactions between fishes, since we are mainly interested in the
swimming performance of the fish rather than the surrounding flow.

Here, we consider the general case of the n-link eel-like model
shown in Fig. 1. For the sake of clarity, supposing that the bodies
PBi,i=1,2,...,n are identical and made of a homogeneous material
with mass density equal to that of the fluid density p, = p;. They have
an ellipsoidal geometry with semi major-axis a and semi minor-axis b.
The joints are placed at a distance e away from the tips of the ellipses
along their major axes. Their angles, defined as ¢;,i = 1,2,..,n — 1,
are shape variables describing the rotations of the latter link %, rela-
tive to the previous one %;.

It is convenient to introduce a fixed inertial frame {e1, e} and
co-rotating body-fixed frames {b;, b, } attached at the center of mass
of each solid link. Let g denote the locomotion variables (4., gx gy ),

2e 2a
b, b, b, b,
. b, b, b, b,
s D > @D o > D+ =D 1
oA 9, 4, 9
q, e,
L.

FIG. 1. The diagram of n-link eel-like structure. The joints gy, gy, and g; are floating
base coordinates, while g1, g2, - - -, g,—1 are generalized coordinates of the multi-
body system. Elliptical bodies, each with major-axis 2a and minor-axis 2b, are sepa-
rated by a distance 2e.

—o— revolute joint

CB— prismatic joint

Phys. Fluids 37, 011919 (2025); doi: 10.1063/5.0249580
Published under an exclusive license by AIP Publishing

37,011919-3

8G:15:00 620z Aenuer gz


pubs.aip.org/aip/phf

Physics of Fluids

such that ¢ = (g, gx, 4,) represent the corresponding rotational and
linear velocities. It is obvious the net locomotion g is the results of the
variation of shape variables (q1, g2, ..., ¢»—1), and the configuration of
this fish system can be fully described by the combination of both.

In the absence of external forces and moments, the kinetic energy
of the whole system T can be written as the sum of the energies of the
solid links Tz, and the fluid T7,

T=Y Ty +Ty (10)
n=1
The kinetic energy of the ith link T, can be written in the fol-
lowing form:

1
T%,:iéfﬂsii7 i:1727"'7n7 (11)

where & = (w;, u;, v,—)T is the velocity of link %; expressed in the
A;-fixed frame. By coordinate transformation, each &; can be repre-
sented by a combination of the locomotion variables and the shape
variables.”* The solid inertia matrix [ is a 3 x 3 diagonal matrix with
diagonal entries (I,m,m), where I = m(a®>+ b*)/4 is the body
moment of inertia and m = p mab is the mass of the ellipse.

Since we assume the fish is immersed in an infinite domain of
incompressible and irrotational fluid, the velocity field can be obtained
by take the gradient of a potential function ¢, which is the solution to
Laplace’s equation V2¢ = 0. Previous studies’”” have shown that
following a standard procedure the kinetic energy of the fluid T; can
be written as

1
Ty =3 EllE, i=12m, (12)

where I[{- is the 3 x 3 added inertia matrix. Here, we make the assump-
tion that the three identical elliptical bodies are hydrodynamically
decoupled, implying that the presence of other bodies does not influ-
ence the added masses associated with a given body. Therefore, one
has diagonal added inertia matrixes I[fu = 1[22 = ]If33 = I with entries
(r, m{ , mé), where I/, m{ and mg are given by"

r= pfn(az — bz)/S, mq = pfnbz, m}; = pfnaz. (13)

Consequently, the total kinetic energy Eq. (10) can be simplified
to T :%éiT I¢&;, where T =1+ 1 is also diagonal with nonzero
entries (j,m,my) = (I+F,m+ m{, m+ m’;) For the neutrally
buoyant bodies, the Lagrangian L is equal to the total kinetic energy T,
which is a function of the aforementioned locomotion variables g and
shape variables q;,¢,,...,q,—1 and their corresponding velocities.
Therefore, the dynamic equations governing these variables can be
given by the Lagrange equations,

d (0L\ oL
4oLy oL _ 14
dt(c’?g) g 5 (14
d (0L\ 0L .
E(T&;i)*a?i—ﬁ’ i=1,2,..n—1, (14b)

where 7;,i =1,2,...,n — 1 are the forcing torques exerted on the
revolute joint g; [refer to Ref. 35 for the specific form of Eq. (14)].
According to Eq. (14a), we can obtain a first-order differential equa-
tion, which can be integrated to obtain net rigid fish motion given

ARTICLE pubs.aip.org/aip/pof

(41,92, -+, qu—1)- Also, the corresponding needed torques can be com-
puted based on Eq. (14b).

D. Deep reinforcement learning

DRL is a mathematical framework designed for solving sequential
decision-making problems.”' In this framework, an agent predicts an
action a; based on the observation from the current state s; to receive
some heuristic-driven reward r,. The ultimate objective of the agent is
to maximize the cumulative reward by learning a policy n(as|s;). The
optimization problems, which are essentially single-step decision-mak-
ing problems, can be similarly addressed by DRL. Here, the single-step
version of the policy-based algorithm, proximal policy optimization
(PPO), is implemented in the following chapters (details about PPO
are given in Appendix A).

1. Single-step PPO and its enhancement

In the context of the single-step version, the concepts of DRL and
the PPO algorithm can be simplified, as only one action (ie.,
the selected parameters) needs to be taken in the initial state.'” For
instance, the trajectory t now consists of (so, do, 1), where the initial
state sy is constant, and the initial reward ry precisely represents
the objective function. Consequently, the advantage function is also
independent of the initial state, and its formula can be reduced to

A"”(ao) ~ Ty — v (50) =1y — E-L—Nn”(ro). (15)

Here, V(s0) is equivalent to the expectation of the initial reward
ro following the policy my. Therefore, the critic network associated
with V(s) is unnecessary, as we can approximate it by averaging all
the evaluated rewards ry each time before the policy is updated. Thus,
we only need to update the actor network, denoted as a ~ my(-|so).
Essentially, the optimization procedure is equivalent to the conver-
gence process to the optimal actor network parameters 0, which
maps the initial state sy to the optimal action a,;.

Typically, the output of the actor network is normalized due to
the activation function of the output layer. It is subsequently scaled
into practical ranges of the specific problem, implying that the parame-
ter space will be box-shaped. However, for constrained optimization
problems, it is evident that rescaling alone falls short of addressing this
task. Traditionally, we can explicitly add a penalty term in the objective
function to enforce constraints in a soft manner, although this may
have some drawbacks in terms of numerical stability and interpretabil-
ity. Moreover, it means that the bound set for the problem may be vio-
lated when evaluating possible candidates.

Given the expensive simulation cost, our goal is to allocate as
many computational resources as possible to evaluate solutions within
the feasible domain. In this way, during the exploration phase, the
agent can take more feasible actions to gain an overall understanding
of the objective function and identify the most likely regions where the
optimal solution may exist. To impose generic linear constraints on
the output of the actor network in a hard manner, we borrow ideas
from geometry, specifically the concepts of polyhedra and polytopes.
The set of solutions to k linear inequality constraints in 7 dimensions
is called a polyhedron, denoted as follows:

¢ = {x|Ax < b,A € R®" b e RF} c R™. (16)
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This is the halfspace or H-representation by defining a polyhe-
dron as the intersection of halfspaces represented by linear inequalities.
However, a polyhedron can also be described in terms of points (verti-
ces) and generating vectors (rays) according to the Minkowski-Weyl
theorem, which is called the vertex or V-representation. Its mathemati-
cal form reads

¢ = {x|x = conv(V) + cone(R) }, (17)

where conv(-) is the convex hull of a set of vertices V =
{V1,V2,...,v,} and cone(-) is the conical hull of a set of rays
R = {rl, T2y eeey rm}

n, ny ny
conv(V) = Z/liv,-,)v,- > O,ZZ,- =1, cone(R) = Zujrj,,uj >0. (18)
i—1 i=1 =

Algorithmic switching between these two representations can be
achieved using the double description method.”” While checking
whether x € € (corresponding to a linear programing problem) is
straightforward in the H-representation, the V-representation is better
aligned with our requirements, particularly in its ability to sample
points inside the constraint set ¢

The specific implementation of enforcing hard constraints is
outlined as follows: we need to perform some mapping to the output
layer of the actor network, as depicted in Fig. 2. First, the actor network
outputs #, coefficients /; for the convex combination of the vertices
and n, coefficients 1 for the conical combination of the rays. Second,
activation functions (i.e., softmax function and absolute function) are
applied to these coefficients, respectively, to ensure compliance with
the requirements in Eq. (18). Finally, through linear combination, we
obtain the tuning parameters x € R™ that satisfy specific linear
constraints.

It is noteworthy that the second step can be regarded as a
specially tailored network layer. However, its coefficients (i.e.,
vertices V and rays R) are precomputed based on the specific
linear inequalities and do not participate in the process of
updates and backpropagation. In other words, this treatment
only requires a finite time using the double description method
at initialization, with no additional time expenses at training
and test time.

softmax function abs function

Fixed layer parameters

are pre-computed
RG]

FIG. 2. Network architecture and details of the mapping procedure of our modified
single-step DRL algorithm.
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2. Controlled transfer learning

In addition to constraining parameter space to save exploration
time, TL can serve as a technique to facilitate more effective learning.
It offers a framework for transferring knowledge gained from solving a
source task (a low-cost environment based on surrogate model) to
enhance the performance of a related target task (a high-cost environ-
ment based on high-fidelity solver).

Previous work™ which proposed CTL mainly focused on the
application of CTL on multi-fidelity environments and did not deepen
our understanding of its working mechanism when it is applied to
single-step DRL. Although the environment of the source task utilized
both in our work and theirs are the potential flow model, it is evident
that this model is more suitable for the high Reynolds numbers flow
considered in their work and differs significantly from our actual situa-
tion (fish swimming under moderate and low Reynolds numbers
flow). However, in Sec. I1I, we will demonstrate that these qualitative
similarities are sufficient to guide the agent from an initialized random
policy to an intermediate sub-optimal policy. Furthermore, our contri-
bution lays in developing a framework to combine the DRL algorithm
and the LBM solver and allow to apply to complex dynamic control
tasks without much modification.

As illustrated in Fig. 3, our study adopts the parameter-based
approach transferring the knowledge by copying the weights of the
policy from the source task (potential flow model) to the target task
(LBM solver). It is noticed that excessive learning on the source task
may lead to overfitting, which may hinder the generalizability and lead
to negative transfer for the target task. Hence, a variance ratio o is
defined to determine when to conclude training on the source task and
proceed with weight transfer

Oi

o= ; (19)
max(0j, 0i—1, ..., 01)

where g; represents the variance of chosen actions outputted by the
policy network. Different from Ref. 23, the variance of rewards is not
used for the construction of the criterion. Because we find the limita-
tion of the number of parallel environments leads to inaccurate estima-
tion of the variance of rewards, especially for cases with drastically
changing reward functions. It is apparent that the variance of the
actions decreases during the training process as long as the agent con-
verges to a global optimal policy. Predictably, the variance ratio will
decrease from o = 1 initially and approach o = 0 gradually when the
optimal results are determined. Therefore, we define a cut-off value
o = 0.3, under which we assume the agent has gathered enough
knowledge and learn a crude policy for the surrogate model. Then, this
policy will be transferred to the target task and fine-tuned based on
our high-fidelity environment. We reveal the working mechanism of
our optimization framework through an test problem in Appendix C,
where we also give intuitive optimization efficiency improvement in
terms of reduction in high-fidelity evaluations.

I1l. OPTIMIZATION
A. Problem formulation

Our optimization study is conducted based on the articulated
model described above. As illustrated in Fig. 1, the neutrally buoyant
fish is characterized by a kinematic chain comprising # elliptical bodies
interconnected by a sequence of revolute joints. Since in our study we
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FIG. 3. Incorporation of model-based knowledge into DRL-based optimizer via transfer learning.

mainly focus on the steady swimming, it is a common approach to use
a single sinusoid to describe the periodic motion of joint #,***

qi(t) = Aj cos(2mfit + ¢;),

where A;, f;, and ¢; denote the pitch amplitude, frequency, and phase,
respectively. Here, we arbitrarily designate the ellipsoid connected to
the inertia frame as the head segment, with a reference phase set to
¢, = 0. Furthermore, a consistent frequency is applied across all joints
to ensure synchronized body movements. This results in a total of
2n — 3 parameters needed to define a complete swimming gait.

Here, we select the 3-link equal-length configuration as the refer-
ence case, with a chord length of 2a = 1 and a density of p = 1 serv-
ing as the reference length and density scale, respectively. The
configuration parameters, such as the segment number and length,
will be varied in a series of parametric studies to examine their impact
on optimal swimming gaits. To maintain consistency with the refer-
ence case, we specify that all ellipsoids possess a minor axis of
2b = 0.1, with the sum of their major axes equating to 3. To adjust the
major axis length, the equidistant gap is set to 2e = 0.1 ensure that it
is sufficiently small relative to the major axes.

In the subsequent study, three grid levels are used in the
multi-block treatment. The coarsest grid covers the computational
dimension [—12, 12] x [—12, 36] (scaled by 2a) and two finer domains
are nested inside with dimensions [—8,8] x [—4,12] and [—4,4]
x [—2, 6], respectively. The grid spacing for each level is half of the
next coarser level and the finest grid resolution is Ax = 0.01. All simu-
lations are conducted with a constant viscosity of v = 2 x 107* and
undulation frequency f = 0.015. As our reference Reynolds number is
fixed at Reys = 2aU,s/v = 100, the velocity is non-dimensionalized
with Uyr = vReys/c = 0.02. This moderate Reynolds number is rep-
resentative for the free swimming of small fish and larvae*” and allows
for a relatively large parameter space.

i=1,2,...,n—1, (20)

The resulting propulsion Reynolds number Re, = U,c/v based
on the mean translational speed of the centroid of the fish Uy is in the
range 60-200 approximately. The undulation Reynolds number has
been deprecated, as it becomes challenging to determine its undulation
amplitude for models with more than three segments. The swimmer
accelerates from rest and gradually approaches an equilibrium state
where drag forces balance out the thrust produced by its gait. The opti-
mization cases are run for 30 cycles, and the objective function values
are computed using time-averaged values during the last cycle.

B. Algorithm setup

We primarily focus on maximizing two crucial performance met-
rics in an evolutionary scenario: swimming efficiency and cruising
speed. These objectives align with the practical biological functions of
aquatic creatures, such as migrating (for efficient swimming) or hunt-
ing and escaping (for fast swimming).

Before exploring the optimization process, it is essential to quan-
tify the consumed power to compare the performance of the mecha-
nism. Assuming no energy losses from internal friction, the total work
is input into the entire system through torques generated at each ideal
hinge. The mathematical formulation of the total input power is given
by P = 27;11 Tid;-

For the efficiency metrics,” it is typically evaluated using the
Froude efficiency 1, defined as the ratio of thrust power Py to input
power Pyo. There is no clear consensus on how thrust and drag should
be decomposed for undulatory swimming, as their producing regions
are distributed across the entire body and vary with time."® Hence, we
postulate that the time integral of Py is positively related to the
kinetic energy of translational motion E;. We do not explicitly calcu-
late the exact value of thrust itself but characterize the efficiency by the
ratio 1§ ~ Ex/W,y. We then define the objective function as the
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amount of input work W, transformed into Ej during an undulation
period T,

=2
B 05mU
Fy=—t =000 @1)

W, = t+T '
tot J Pyoydt

t

For the speed metrics, the objective function comprises the mean
translational velocity U, and a penalty term designed to constrain the
maximum input work in each period

FU - Utlo * H(Wtot - Wturget) * (Wtot - Wturget)zy (22)

where H(-) is the Heaviside function. The second term, motivated by
natural physiological limits, is essential. Early trials indicated that
directly maximizing U, led to rather unnatural motion patterns,
despite rapid swimming speeds. After adding the penalty term, the
algorithm converges to the fastest gait with the specified input work
limit. The input work threshold Wiy is chosen as 24 based on pre-
liminary computational experiments.

In addition, the strategy of parallel environments is adopted to
collect experiences concurrently. Data transfer between the agent and
the environment is facilitated using TCP/IP sockets to ensure real-time
interaction. Additionally, this approach allows for distributed comput-
ing on different devices, such as running multiple fluid environments
on CPU clusters and the single-step DRL optimizer on GPUs. The
other hyperparameter settings remain the same as in our previous
study™ if not stated.

IV. RESULTS AND DISCUSSION
A. The reference case

For the reference case, the control parameters consist of two
amplitude coefficients A; and A, one phase difference ¢,. To avoid
redundancy in the parameter space, we assume that the pitching
amplitude of ¢; is larger than that of ¢, and impose the constraints
¢ ={0<A, <A <1,-2n < ¢, <0} on the parameter space.
This choice is made because the pairs (A}, A, ¢,) and
(A, Ay, —2m — ¢,) represent identical swimming patterns with oppo-
site forward directions. Although the linear inequalities are not intri-
cate, the resulting design domain cannot be explicitly described by box
constraints. We optimize the kinematics of this 3-link equal-length
model with respect to the efficiency and speed metrics defined by
Egs. (21) and (22). The optimal solutions in Table I and its corre-
sponding motion presented in Figs. 4(a) and 4(b) are obtained using
eight parallel environments.

From Table I, we observe that A; converges to 1 (the maximum
allowed value) in both situations, suggesting that, for 3-link swimmers,
larger head motion is necessary for achieving efficient and fast swim-
ming. When combined with specific tail flapping motion simulta-
neously, it results in entirely distinct swimming performances. The

TABLE |. Optimized results and performance metrics of the 3-link equal-length
model.

Ay A, b, 2a U; Wiot F,

Efficient 1.00 079 —168 1.0 0.87 1025 1.75%
Fast 1.00 094 -114 1.0 118 2400 137%
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FIG. 4. Swimming kinematics of the optimal swimmers during two cycles as seen
from above in the laboratory frame. Top to bottom: (a) and (b) 3-link equal-length,
(c) and (d) 3-link variable-length, and (e) and (f) 5-link equal-length cases. Left
column: (a), (c), and (e) efficient mode; right column: (b), (d), and (f) fast mode. The
fish speed is magnified by two times for better clarity.

resulting two swimming patterns are visualized in Fig. 5 using velocity
vectors and vorticity contours. In general, both wakes consist of vorti-
ces of alternating sign shed at the tail per undulation cycle. This is
exactly the reverse Karman vortex street commonly observed in the
wake of fish and robotic swimmers.'

However, a notable distinction is observed in the alignment of
the downstream vortices’ centers between the efficient and fast modes.
In the efficient mode, the vortices align well, contributing to an orga-
nized wake, whereas in the fast mode, they tend to shed in pairs, induc-
ing deflected wakes. Similar behavior has been documented in studies
on the wake of a flapping foil at high Strouhal numbers.””** For a sta-
tionary flapping foil in a uniform flow, increased flapping frequency or
amplitude leads to a pronounced inclination of the reverse Karman
vortex street in the downstream wake. This is often accompanied by
the generation of sustained lateral forces and yawing motion. In our
study, the centroid motion of the free-swimming model typically traces
a zig-zag path in any direction due to the unpredictable yaw angle.
Our optimization objective is to maximize translational velocity (resul-
tant velocity combining longitudinal and lateral velocities). Therefore,
the presence of a non-zero lateral mean velocity is reasonable for the
fast mode, and this yawing motion aligns with conclusions drawn by
previous literature.

From a hydrodynamic perspective, we can analyze the corre-
sponding swimming mechanisms of both modes. In Figs. 4(a) and
4(b), it is evident that the undulation amplitude in the fast mode is
larger, corresponding to a higher flapping Reynolds number.
Previous studies have revealed a positive correlation between flapping
Reynolds number and propulsion Reynolds number.”””" Thus, a
larger undulation amplitude in the fast mode produces stronger
trailing-edge vortices, leading to a higher propulsion speed. The
properties of the trailing-edge vortices closely govern the symmetry-
breaking behavior of the deflected wake: Greater asymmetry, con-
tained in stronger trailing-edge vortex strength, creates a preference
for the deflected wake."’

In the efficient mode, besides the smaller undulation amplitude
of the posterior part, another significant feature is the distinct vortex
shedding mechanism at the head segment. Despite both modes having
identical head joint motion, the leading-edge vortices generated in the
fast mode are not effectively reabsorbed by the boundary layer along
the head segment. Instead, they directly detach and form secondary
vortices, resulting in some energy loss into the flow field. In contrast,
in the efficient mode, the fish synchronizes the body undulation to
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(a)Efficient mode (b)Fast mode

FIG. 5. Velocity field and contours of vorticity normal to the image plane (w,) for 3-link equal-length model in an entire swimming cycle after the fish has reached the asymptotic
mean swimming speed. Left column: (a) efficient mode; right column: (b) fast mode.

make full use of those leading-edge vortices, enabling more energeti-
cally efficient forward propulsion.

B. 3-link variable-length case

In this section, we explore the variations in the characteristics of
the most efficient and fastest swimmer when the lengths of the three
links are altered. In addition to the three kinematic parameters consid-
ered in Sec. IV A, the control parameters now encompass two addi-
tional geometric parameters, namely, 2a; and 2as, where 24, and 2as
represent the major axis lengths of the head and tail segments, respec-
tively. Consequently, the major axis length of the intermediate
segment can be calculated as 2a, = 3 — 2a; — 2as. The constraints on

TABLE 1. Optimized results and performance metrics of the 3-link variable-length
model.

A1 Az ¢2 2&1 2(12 2[13 U[ Wtot Fr’

. FIG. 6. Midline deformation of the optimal swimmers during one cycle. Top to bot-
Efficient 1.00 0.61 —153 0.94 146 0.60 095 6.40 3.29% tom: (a) and (b) 3-ink equal-length, (c) and (d) 3-link variable-length, and (e) and ()
Fast 1.00 0.71 0.00 0.40 1.72 0.88 1.52 24.00 2.26% 5-link equal-length cases. Left column: (a), (c), and (e) efficient mode; right column:
(b), (d), and (f) fast mode.
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the kinematic parameters remain consistent with Sec. IV A. For
the geometric parameters, it is ensured that the major axis lengths
of all segments fall within the interval [0.4, 1.8], expressed as
C = {04 < 2&1172027203 < 18}

From the results in Table II alone, it is noteworthy that the opti-
mal A; for both scenarios again converged to the maximum allowed
value of 1, indicating the persistence of employing large amplitude
oscillations at the head. However, a notable difference with Table I is
observed in that, with the allowance for variations in the length of each
segment, optimal performance can now be achieved not only by
adjusting the phase of tail flapping but also by altering the position of
body curvature. The kinematics and midline motion for both optimal
modes are reproduced in Figs. 4(c), 4(d), 6(c), and 6(d). Naturally, the
hydrodynamic performance shows a significant improvement com-
pared to the reference case after introducing additional geometric
degrees of freedom. For the efficient mode, adjusting the length by
properly shortening the head and lengthening the mid-section nearly
doubles the efficiency. This improvement is coupled with a 37.54%
reduction in the total input work and an 8.25% increase in cruising
speed. As for the fast mode, under the premise of Wy, = 24, not only
has the cruising speed increased by 28.12% but there has also been a
substantial increase in nearly 64% in terms of efficiency.

To explore the mechanism by which segment length influences
hydrodynamic performance, a detailed analysis of their motion behav-
iors and flow field is required. For the efficient mode (the variable-
length case), the phase lag of the tail joint is close to 7/2, and the
motion combination of the last two segments resembles that of a flexi-
ble flapping plate. In other words, the tail segment exhibits a slight
bending opposite to the motion direction of the intermediate one in
each half cycle. This functions similarly to bird feathers, where passive
bending effectively acts as a deflected trailing-edge flap of the wing,
introducing camber and thereby increasing total thrust. Additionally,
its optimal tail segment is shorter than that of the equal-length
model, which implies smaller greater mass and rotational inertia.
Consequently, the tail motion needs to overcome lower inertial forces,
leading to reduced input power and increased power extraction. From
the comparison of the consumed input power curve of each hinge in
Fig. 7, we are convinced that the restriction of equal segment length
may require more input power, thus resulting in worse efficiency.

Next, let us examine the optimized fast mode. Surprisingly, its
head and tail movements are nearly in phase, and the optimized head

0 (@ 10 ®)
—qQ —qQ
Q2 Q@

-20
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
/T /T

FIG. 7. The joint power curves for actuators g4 and g, during one undulatory cycle
for the efficient mode: (a) 3-link equal-length model and (b) 3-link variable-length
model.
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length reaches the lower limit we set at 0.4. The short head uses a larger
flapping amplitude to counterbalance the torque generated by the long
tail, which functions akin to a reaction wheel controlling the body’s
attitude. Consequently, the longest mid-section strives to remain paral-
lel to the forward direction, minimizing pressure drag as much as pos-
sible and thus facilitating high-speed swimming. This can also be
observed in the midline motion in the center-of-mass frame in
Fig. 6(d) and the instantaneous pressure contour in Fig. 8.

The midline motion of the fast mode exhibits characteristics rem-
iniscent of the carangiform mode. Lateral deformations are primarily
confined to the tail, with almost no deformations in the mid-section of
the body. However, it differs from the carangiform mode due to its
intense oscillating motion at the head. Although this type of head
motion is generally not encountered in nature, it is reasonable when
the morphological factor is considered. Most real fishes typically have
large and wide heads that gradually become thinner moving toward
the tail. This means that they alter their rotational inertia by concen-
trating mass toward the anterior part of the body, eliminating the need
for significant head oscillations to balance tail torque. Therefore, the
optimization results of the fast mode should be considered a compro-
mise due to the limited degrees of freedom in fish shape.

This inspires us that the morphological aspects of the fish body are
equally indispensable in the optimization process, with further potential
for enhancing hydrodynamic performance. Anyway, our results are
consistent with previous research on the optimal link-length ratio of a
robotic fish, which also showed that models with variable-length seg-
ments perform better than those with equal-length segments.”’

C. 5-link equal-length case

Finally, we aim to understand how the segment number affects
the hydrodynamic performance of the articulated model. We increased

Pressure -8 0 8

(b) UT=0.25

(c) T=0.5 (d) YT=0.75
FIG. 8. Snapshots of instantaneous pressure coefficients for the fast mode of the
3-link variable-length model. Four different instants within one cycle are presented:
(@)t/T =0.0,(b)t/T =0.25,(c)t/T = 0.5,and (d) t/T = 0.75.
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TABLE IlI. Optimized results and performance metrics of the 5-link equal-length model.
A Az As Ay o 0N N 2a U; Wiot E,
Efficient 0.92 1.00 1.00 1.02 —2.80 —3.92 —5.71 0.6 1.06 9.17 2.88%
Fast 0.25 1.00 0.89 1.00 —0.16 —1.05 —2.88 0.6 1.55 24.00 2.35%

the number of segments from three to five, guided by the previous
work suggesting that five segments are sufficient to describe the kine-
matics extracted from actual fish data with at least 99% accuracy.”

There are a total of seven control variables, including four ampli-
tude coefficients A;, Ay, A3, A4 and three relative phase differences
5, ¢3, ¢p4. This poses a challenge for optimization algorithms
in high-dimensional parameter exploration, and thus, ten parallel
environments are concurrently simulated. Moreover, the
constraints imposed on this high-dimensional space are &
={0<A,A, A3, A4 <1,-1/2< $py < p3 < p, <0}, grounded
in conclusions drawn from real fish data. The phases of each joint
motion lag successively as their respective positions shift back-
ward, ensuring that the undulatory traveling wave formed by the
whole system moves rearward.

From Table II1, it is evident that the optimal performance of 5-
link equal-length model for both modes is promoted to a certain extent
compared to the reference case. The maximal efficiency and cruising
speed of this 5-link model were superior to the reference case by
64.33% and 30.62%, respectively. Figures 4(e), 4(f), 6(e), and 6(f) illus-
trate the geometry and kinematics of the optimal swimmer more
intuitively.

With the presence of more joints in the current fish model, the
head segment no longer bears the sole responsibility of generating
thrust and provides more flexibility in motion. In the efficient mode, a
notable feature is the small lateral displacement of the head segment in
the center-of-mass frame. This is achieved by curving the head seg-
ment in the opposite direction to the tail, ensuring excellent alignment
of the head posture with the swimming direction. In the fast swimming
mode, the anterior half of the body hardly bends, and the first two seg-
ments almost form a unified entity. Additionally, the posterior part of
the body exhibits large curvatures in both modes, adjusting the angle
of the tail tip to facilitate smoother vortex shedding during changes in
the tail direction.

From a hydrodynamic perspective, the mechanism of efficiency
improvement by the 5-link model differs from that of the 3-link vari-
able-length model. In Fig. 9(a), we plot the evolution of the input
power of each hinge in one cycle for the 5-link model. The resulting
curves reveal several intervals of negative power for multiple joints,
indicating a better capacity to harness power from the flow field for
energy conservation. This phenomenon has been identified in earlier
experimental studies on specific fish species in nature.”””’ According
to these studies, fishes can capture negative work and exploit it to
reduce the overall cost of motion due to the elasticity of their muscles
and tendons.

It is noted that our definition of total input power suggests that
the negative work can offset the cost of positive work. Figure 9(b) illus-
trates the quantitative statistics of positive and negative work for each
model. We can observe that, the 3-link model, whether equal-length or
variable-length, shows a consistent positive-to-negative work ratio
around 3.5. In contrast, the 5-link model demonstrates a ratio close to

1.76, nearly halving the value. Although the negative work in the 5-
link model offsets over half of the positive work, the substantial posi-
tive work requirements result in a total input power even higher than
that of the 3-link variable-length model. In summary, the 3-link vari-
able-length model enhances efficiency by reducing the overall input
work required for hinge rotations, while the 5-link model, with the aid
of more hinges, allows the entire system to better recover energy from
the flow field to improve efficiency.

While for the fast locomotion of the 5-link model, explaining its
underlying mechanism is much more easier. As depicted in Fig. 6(f), its
midline kinematics resembles that of the C-start escape mechanism."”
With more revolute joints, the body can bend into larger curvatures,
capturing a significant amount of fluid that is subsequently accelerated
backward through body undulation, resulting in an acceleration of the
whole system in the opposite direction. Thus, by transferring more
momentum to the fluid, each stroke of this motion results in a burst of
acceleration to balance the drag-induced deceleration. The high average
speed is maintained by cyclically repeating this process.

In conclusion, the optimization results accord with our intuition
since the increased flexibility from additional joints enhances perfor-
mance in both scenarios. Surprisingly, the optimization results for the
3-link variable-length model even surpass those for the 5-link equal-
length model in certain aspects. This suggests that, for the studied parsi-
monious model, altering morphological parameters may be more cru-
cial to performance improvement than increasing the number of links.

V. CONCLUSION

While fish are flexible and have high degrees of freedom at the
same time,”" “° fish robots are often made from multiple segments
with rigid (to accommodate batteries, electronics, sensors, motors, and
cables) parts. Given technological limitations, our research provides
insights and generalizability regarding several key questions: the parti-
tioning strategy of the fish body and the optimal placement of actua-
tion points. We examine the most parsimonious robot design that can
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FIG. 9. (a) The joint power curves for actuators g1, gy, 93, and g4 during one undu-
latory cycle for the efficient mode of 5-link equal-length model; (b) integral results of
positive and negative work over one cycle for three models.
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accurately replicate the movements of the fish. However, since the
Reynolds number and the optimization objective of our research prob-
lem are fixed, our design cannot fit all fish species and should vary to
model different behaviors effectively.

The presented work introduces a novel computational framework
for optimizing the swimming gaits of a self-propelled articulated swim-
mer. This framework combines a fluid-structure interaction solver for
multibody systems with a customized RL-based optimization algo-
rithm. The dynamic equations of the multibody system in generalized
coordinates are advanced using the Runge-Kutta scheme. The fluid is
solved using the LBM, and the presence of the multibody system is
accounted for using the IBM. The resulting approach is benchmarked
on self-propulsion induced by active joint motion cases to validate the
coupled dynamics between the flow and the articulated structure.

Considering the intricacies involved in designing swimming gaits,
we choose the emerging single-step DRL technique combined with
controlled transfer learning as the optimization algorithm. For the
source task, the agent initially optimizes motion parameters in the
potential model environment and dynamically terminates to obtain a
sub-optimal policy. Then, it is transferred to the LBM environment for
fine-tuning to complete the final steps of training. This step-by-step
approach requiring fewer evaluations on the high-fidelity environ-
ments significantly reduces computational time, but more importantly
creates a physics-informed reinforcement learning framework. In addi-
tion, the previous statistical study on real fish data offers some reason-
able physiological constraints that can help exclude nonphysical
solutions and explore the design space more effectively. As the original
algorithm was only suitable for box constraints, we introduce the V
representation transformation which is capable of handling linear con-
straints in a strict manner.

The developed framework has been applied to gait optimization of
an articulated swimmer model at moderate Reynolds numbers. Within
the optimization study, a systematic investigation was conducted on two
key factors influencing the optimized results: the length and number of
linkages. By examining the impact of these two factors on the optimal
kinematics of the mechanism, a series of new insights are provided on
the design and behavior of both natural and robotic swimmers. Variable
segment lengths enable a subtle bending motion of the tail similar to
bird feathers, enhancing the total thrust generation for efficient swim-
ming. While for fast swimming, a short head with a large flapping
amplitude counterbalances torque from the tail to adjust the body pos-
ture, minimizing pressure drag and facilitating high-speed swimming.
The flexibility offered by more segment numbers is utilized differently
for efficient and fast swimming modes. In the efficient mode, the head
always bends in the opposite direction to the tail, in order to align well
with the swimming direction and exploit negative work from the flow
field. Conversely, for the fast mode, the whole body bends into large cur-
vatures, which resembles the C-start acceleration mechanism.

In terms of our future work, we can focus on improving the
DRL-based optimization algorithm by addressing nonlinear con-
straints and exploring the use of transfer learning from simulations to
experiments. Additionally, ongoing efforts involve refining fish body
models by incorporating the skin between each body and introducing
more degrees of freedom in morphology.”” It is noteworthy that the
present approach can be readily extended to three dimensions without
requiring many methodological changes. Our work has concentrated
on steady swimming motion, but fishes have different movements for

pubs.aip.org/aip/pof

other higher-level unsteady behavior control (e.g., path following,
acceleration, and sharp turn). Due to the modular structure of our
framework, simply replacing the DRL-based optimizer with the origi-
nal DRL algorithm enables our framework to readily explore these
diverse situations. This will provide a more comprehensive under-
standing of fish locomotion and contribute to the development of ver-
satile and adaptive robotic swimming systems.
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APPENDIX A: PROXIMAL POLICY OPTIMIZATION

In the original PPO formulation, an actor network is introduced
to approximate the policy 7y, where 0 represents the weights and
biases of the neural network.” Considering a trajectory defined as a
sequence of state-action-reward triples t = (so, o, 79, ..., ST, 4T, 7T),
its expected cumulative reward can be expressed as J(mp)
= E,r, [R(7)]. Here, R(t) =3/ ,7'r; represents a discounted
expected reward over T time steps, and y € [0, 1] is a discount factor
weighing the importance of present and future rewards. To enhance
the overall performance of the agent, the actor network can be updated
using gradient ascent, as follows:

0=0+aVyl(n), (A1)

where o is the learning rate and VyJ(my) is the policy gradient.
According to the policy gradient theorem and expected grad-log-
prob lemma, this term can be substituted in the form of an expecta-
tion by

T
Vol (mp) = Eir, Z log (mo(as|s:))A™ (st, ar) | - (A2)
=0
Note that A™ (s, a;) represents the advantage function, describ-
ing how much better or worse the action a, is than other actions on
average at state s; based on the current policy. To evaluate the expected
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value of the return in-state s, the state-value function V(s) is intro-
duced, typically predicted by another critic network. The advantage
function A™ (s, a;) can then be approximated as

A™ (St» at) ~ 1V (5r+1) — v (St)- (A3)

It is important to note that two challenges may arise if we
directly update the actor network using Eq. (A2). The first challenge
is the low efficiency of the data obtained from old policies, and the
second is the high sensitivity to the step size. However, PPO
addresses these issues by employing a clipped surrogate loss. To
ensure the ability to update with data from the old policy 7, and
maintain similarity between my and n’(,, Eq. (A2) is modified as
follows:™

”Io (aclse)
7o (alse)

clip(m,l -1 +6>A"f’(s,,at)>:|, (A4)

7T9(at|3r)

Vol (mg) = Err, [min< A" (st, ar),

where the clip function enforces the ratio between new and old pol-
icy within [1 — ¢, 1 + ¢] and ¢ is a hyperparameter determining how
far away the new policy is allowed to go from the old.

APPENDIX B: ENVIRONMENT SOLVER VALIDATION

We validate our environment solver using a representative
problem inspired by biological locomotion: the free swimming of an
articulated 3-link fish model.”” The model represents a special case
with #n = 3 in Fig. 1. Each elliptical body has a density of p, and an
aspect ratio of a/b = 10. The distance between each body is set to
2e = 0.4. We utilize the same prescribed motion to control the two
active revolute joints g; and g, as specified in”’

q1(t) = —cos(t — m/2), q2(t) = —cost. (B1)

While enforcing active motion on the revolute joint supplies
zero net force in the translation direction, the system successfully
moves in space due to motion planning. To maintain consistency
with the previous study,” the undulation Reynolds number
(defined from the peak angular velocity of the hinges and the ellipse
chord length, Re, = g, (2a)’ /v is adopted and set to be 200. All
quantities are scaled by the reference length 2a and velocity 2ag,,,,. -
The computation domain remains the same as in Sec. III A, and
the finest grid spacing Ax is set to be 0.005. The initial centroid
position of the intermediate ellipse is located at the origin.

Many studies have validated this case, but some literature
assumes bodies to be massless. Here, we treat them as neutrally
buoyant (ie., p; = p), consistent with the configurations reported
in Refs. 34 and 60. Therefore, we compare the resulting position
and velocity components of the central body over 20 time units to
both references in Fig. 10. Note that the downward tilt of the overall
trajectory is due to the initial bias of the hinges based on Eq. (B1):
one hinge is initially straight, while the other is deflected.

As depicted in Fig. 10, the consistency is noteworthy for the
rotation angle and y-direction marching distance, with our study
closely aligning with the results of Refs. 34 and 60. However, the
x-direction marching distance in our study lies between them.

ARTICLE pubs.aip.org/aip/pof
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FIG. 10. Time history of centroid position x», y» and rotation angle w, of the central
body: present results (solid), results in Ref. 34 (dashed), and results in Ref. 60
(dotted—dashed). This position plot depicts X, in green, y» in red, and w; in blue.

This discrepancy may be attributed to the utilization of different
numerical schemes: Ref. 34 employed the vortex particle method
in a weakly coupled scheme, whereas Ref. 60 utilized the finite dif-
ference method in a monolithic scheme. In general, the overall
results exhibit excellent agreement, particularly in the early
stages.

APPENDIX C: OPTIMIZATION TEST PROBLEM

For a better understanding of the underlying mechanisms
behind transfer learning and constraint handling, we consider a
simple test problem based on the problem formulation in Sec. IIT A.
Here, the oscillation amplitudes of both joints A; and A, to are be
optimized and the relative phase difference is fixed at 7/2 as in the
validation case. The coefficients A;, A, span a two-dimensional
design space corresponding to a range of swimming modes.

The optimization goal is to find an optimum fish mode that
maximizes the propulsive efficiency. Thus, the efficiency metric
defined in Eq. (21) is employed both for the source and target task.
To demonstrate how the algorithm guarantees strictly feasible can-
didates during evaluations, the following constraint set is imposed:
¢ ={0<A, <A, <1}. In terms of computational time, each
simulation using LBM to simulate /T = 30 takes approximately
5min on 18 cores in comparison to the surrogate model which
spends less than 1 s.

In the following, we aim to examine the convergence behavior
of our proposed algorithm. Figures 11(a) and 11(b) depict the dis-
tribution of sampled candidates over six environments for the
source task in the original and latent design spaces, respectively.
We can find that the V representation transformation essentially
applies a certain mapping from the two-dimensional A; — A,
plane into the plane defined by A, + 4, + /3 =1 in the three-
dimensional space. Actually, activation functions can also be
viewed as a kind of mapping to impose constraints. For instance,
softmax function encodes the simplex constraints and sigmoid
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FIG. 11. The trajectory of the sampled points denoted by filled circles in the (a) the
original design space for the source task, (b) the latent design space for the source
task, and (c) the original design space for the target task. The colors of each circle
represent the corresponding episode. The cloud diagram representing the normal-
ized objective function values in the background is interpolated using the scatter
grid data. (d) The action convergency of Ay and A, in the whole process. The lines
and shaded regions, respectively, denote the mean and standard deviations over
six environments of each variable.

function encodes the upper and lower bounds. Therefore, our con-
straint mapping process can be regarded as a specialized activation
function.

Here, Figs. 11(c) and 11(d) show the sampled candidates for
the target task and the average convergence during the whole pro-
cess. Compared with Fig. 11(a), it is noticed that our optimizer
explores in a wide range of the design space during the source task,
and after CTL, it efficiently marches toward the global optimum
during the target task in fewer than 30 episodes. Figure 12 illustrates
another optimization attempt conducted without CTL, from which
we can observe a significant reduction of episode evaluation by over

|
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Objective Function
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25 30

10 15 20
Generation

FIG. 12. (a) The trajectory of the sampled points denoted by filled circles in the orig-
inal design space for the case that directly interacting with the high-cost environ-
ment from a random policy. (b) The action convergency of Ay and A, in the whole
process. The colors and symbols are consistent with the legend of Fig. 11.
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30%. Our previous research has shown that sufficient sampling dur-
ing the exploration phase is crucial to gain an overall understanding
of the objective function.”” We achieved a substantial acceleration
in convergency since the training time consumed on the surrogate
model is significantly less than that consumed on the LBM solver.
This mitigates the significant computational burden associated with
the episode-hungry nature of DRL.

To some extent, training on the source task replaces part of the
exploration phase, and the perceived information about the region
where the optimum may exist will be imprinted into the agent as a
starting policy. From this policy, the agent can quickly find the opti-
mum on the target task, as long as the objective functions of the
source and target task share similar qualitative characteristics.
Significantly, due to the simplifying assumptions of the surrogate
model, the global optimum of the two tasks are qualitatively located
in the same region, but quantitatively located at different positions, as
shown in the contours of Figs. 11(a) and 11(c). However, by using
the variance ratio as a criterion for transfer learning, we succeed pre-
venting overfitting from occurring, since the source task training
automatically terminated at an appropriate episode without converg-
ing to the maximum value in the upper right corner of Fig. 11(a).

In conclusion, the agent can start from scratch, and good per-
formances can be achieved at the cost of enormous computational
load. However, a randomly generated initial policy can be too hard
to be optimized and it may never be improved particularly when
the objective function is highly nonlinear and multimodal. It is use-
ful to pre-train the policy so that agent can start from a robust and
reasonable initial policy. For the following optimization problems in
higher-dimensional parameter spaces, we will employ this physics-
informed RL framework to save computational time as much as
possible.
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