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This study presents a numerical investigation of wall-mounted tandem flexible plates
with unequal lengths in a laminar boundary layer flow, examining both two-dimensional
(2-D) and three-dimensional (3-D) configurations. Key parameters influencing the system
include the plate’s bending stiffness (K), Reynolds number (Re) and length ratio (L*).
Five motion modes are identified: dual collapse (DC), flapping collapse (FC), dual flapping
(DF), static flapping (SF) and dual static (DS). A phase diagram in the (K, L*) space is
constructed to illustrate their regimes. We focus on DF and SF modes, which significantly
amplify oscillations in the downstream plate — critical for energy harvesting. These ampli-
fication mechanisms are classified into externally driven and self-induced modes, with the
self-induced mechanism, which maximises the downstream plate’s amplitude, being the
main focus of our study. A rigid—flexible (RF) configuration is introduced by setting the
upstream plate as rigid, showing enhanced performance at high Re, with oscillation am-
plitudes up to 100 % larger than the isolated flexible (IF) plate configuration. A relation is
developed to explain these results, relating oscillation amplitude to trailing-edge velocity,
oscillation frequency and chord length. Force analysis reveals that the RF configuration
outperforms both IF and flexible—flexible (FF) configurations. Unlike frequency lock-in,
the RF configuration exhibits frequency unlocking, following a —2/3 scaling law between
the Strouhal number (St) and Re. Results from the 3-D RF configuration confirm that the
2-D model remains applicable, with the self-induced amplification mechanism persisting
in 3-D scenarios. These findings enhance understanding of fluid—structure interactions,
and offer valuable insights for designing efficient energy harvesting systems.

Key words: flow-structure interactions, vortex interactions

1. Introduction

The interaction between fluid and flexible structures is a fundamental phenomenon that
plays a crucial role in both natural systems and engineering applications. In nature,
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these interactions govern the behaviour of terrestrial and aquatic vegetation, enabling
organisms to adapt to varying flow conditions, and facilitating essential processes such
as nutrient transport and reproductive dispersal (Py et al. 2006; De Langre 2008; Luhar
& Nepf 2011). In engineering, a deep understanding of fluid—structure interactions is
critical for advancing technologies such as flow control systems (Kunze & Briicker 2012),
flow-induced energy harvesting devices (Nové-Josserand et al. 2018), and biologically
inspired flow sensors (Tao & Yu 2012). Despite their importance, the complexity of
these interactions — especially when involving multiple structures — remains a significant
challenge in multiphysics analysis, requiring sophisticated approaches to fully capture the
coupled dynamics between fluid forces and structural responses.

Systematic investigations under varying flow conditions have progressively deepened
our understanding of fluid—structure interactions, evolving from simple to more complex
configurations. Early studies focused on single flexible filaments in axial flows, revealing
rich flapping dynamics and bifurcation behaviours in leading-edge clamped set-ups
(Alben, Shelley & Zhang 2002; Huang et al. 2007; Alben & Shelley 2008). Flapping
of flexible plates in three-dimensional (3-D) axial flows has also been studied under
simplified settings, often using potential flow theory and added mass models (Eloy,
Souilliez & Schouveiler 2007; Yu & Eloy 2018). Inverted configurations have further
demonstrated distinct dynamic regimes (Kim et al. 2013; Huang, Wei & Lu 2018). More
recently, attention has turned to fully clamped configurations, where both ends of the plate
are fixed (Mao, Liu & Sung 2023; Chen, Liu & Sung 2024).

Compared to single-body set-ups, studies on multiple filament systems have revealed
more intricate coupling behaviours — such as synchronisation, symmetry breaking, and
diverse mode interactions (Ristroph & Zhang 2008; Uddin, Huang & Sung 2013; Ni et al.
2023).

The complexity of fluid—structure interactions increases significantly when wall-
mounting is introduced, as it brings about boundary effects and flow non-uniformities.
Theoretical studies by Henriquez & Barrero-Gil (2014) and Leclercq & de Langre
(2016) have provided valuable insights into how sheared incoming flow affects the
reconfiguration of flexible plates, leading to models that capture the impact of non-uniform
velocity profiles on structural response. These theoretical findings are further supported
by experimental and numerical investigations of equal-length plate configurations. For
example, Jin et al. (2019) identified three distinct modes of tip oscillations in wall-mounted
flexible plates subjected to inclined flows. Similarly, Wang et al. (2022) developed a
3-D numerical model to examine the interaction between flow and submerged flexible
vegetation, highlighting the significant influence of vegetation movement on flow structure
and resistance. Moreover, O’Connor & Revell (2019) investigated the response behaviour
of arrays of equal-length flexible plates, revealing a broad spectrum of response states,
from static configurations to regular and irregular oscillatory modes, and even chaotic
flapping.

On the other hand, in both natural and engineering contexts, it is often the case that
terrestrial and aquatic vegetation, or energy harvesting plates, are not of equal length.
Introducing unequal lengths into these configurations adds a new layer of complexity,
fundamentally altering the system’s behaviour due to asymmetric interactions. Research
on rigid cylinders with unequal heights has shown that the height ratio is a critical
parameter influencing wake interference patterns, as demonstrated by Hamed, Peterlein
& Randle (2019). Taller upstream cylinders generate distinct flow modifications that
influence downstream structures, while studies by Essel, Balachandar & Tachie (2023)
have highlighted complex interactions such as direct downwash and unique upwash effects
when shorter upstream cylinders are present. While most research on unequal-length
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systems has focused on rigid structures, the potential emergence of novel and intricate
flow phenomena in flexible systems remains largely unexplored.

In recent years, flow-induced vibrations of flexible structures have been widely studied
for energy harvesting. Michelin & Doaré (2013) developed a coupled model of a
piezoelectric plate in axial flow, and identified the key mechanisms governing energy
conversion under flutter-induced vibrations. Zhang & Nakamura (2024) numerically
studied a wall-mounted flexible plate in oscillatory flow, and observed scaling laws
describing fluid—structure force and energy interactions. More recently, Chen ef al. (2024)
found that a transverse oscillation mode of a buckled flexible filament can yield superior
energy-harvesting performance. These studies collectively demonstrate the wide variety
of mechanisms by which flexible structures can convert flow energy into usable power,
motivating the exploration of more complex and asymmetrical configurations, such as the
unequal-length tandem system studied here.

In this study, we systematically investigate the dynamics of wall-mounted tandem
flexible plates with unequal lengths using both two-dimensional (2-D) and 3-D numerical
simulations. We examine the various motion modes exhibited by the system under
different bending stiffness values. Through detailed analysis, we identify two distinct
mechanisms that lead to an enhanced oscillation amplitude of the downstream plate.
Particular focus is placed on one of these mechanisms, which reveals a novel self-
induced amplification behaviour. Additionally, we propose a simple yet effective tandem
configuration that optimises this self-induced amplification mechanism. To further support
our findings, we develop a relation to explain the amplitude variations of the downstream
plate, which is applicable to both 2-D and 3-D cases. The insights gained from this study
have broad implications, ranging from the design of flexible drag-reduction structures to
the development of efficient flow sensors and energy harvesting devices.

The paper is organised as follows. The physical problem and mathematical formulations
are described in § 2, the numerical method and validation are detailed in § 3, the results
are discussed in § 4, and concluding remarks are provided in § 5.

2. Physical problem and mathematical formulations

As depicted in figure 1, we consider 2-D and 3-D uniform incoming flows impacting wall-
mounted flexible plates in tandem. The length of the upstream plate is L, = L, while the
downstream plate has length L. In 3-D cases, both plates share the same width, denoted
as b. The distance between the fixed ends of the plates is Al. The uniform incoming flow
with velocity U, interacts with the wall, forming a boundary layer that interacts with the

flexible plates.
The flow is governed by the incompressible Navier—Stokes equations:
V-.-v=0, 2.1)
a 1
Vo ——Vp+ By g, 2.2)
at P P

where v is the velocity, p is the fluid density, p is the pressure, u is the kinematic
viscosity, and f represents the body force exerted by the immersed boundary on the
surrounding fluid.

The deformation and motion of the flexible plates are described using the Euler—
Bernoulli beam equation:

hazx_i o | A, (X ax\*lex 8 ( X CFAF
P AT Y% as T as; as;  as; \"asias,) [T

(2.3)
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Figure 1. Schematic diagrams of (a) 2-D and (b) 3-D unequal-length flexible plates in tandem in a uniform
incoming flow. Here, L, = L represents the length of the upstream plate, 05 and 0, represent the inclination
angles of the upstream and downstream plates, respectively, Us, represents the incoming flow velocity, and b
represents the spanwise width of the 3-D plates.

where X (s1, 52, ) = (X (51, 82, 1), Y (51, 82, t), Z(s1, 2, t)) represents the position vector
of the plate, with s1 and s> being the Lagrangian coordinates along the chordwise and
spanwise directions, respectively. Here, oy and & denote the density and thickness of the
plate, F is the force exerted by the surrounding fluid, and F, is the short-range repulsive
force to prevent collision between the tip of plate and the wall. Matrix ¢;; represents the
in-plane effect matrix, where @11 = @2 = ¢ is the stretching stiffness, and 12 = £ is the
shearing stiffness of the plate. Matrix y;; denotes the out-of-plane effect matrix, where
y11 =y is the bending stiffness. The Kronecker delta is represented by §;;. For the leading
edge of the plate, the fixed supported condition is used, i.e.
X

X = (0, 52, 0) y 8_51 0. (24)

For the trailing edge and two other edges of the plate, the boundary conditions are

(X ax\Tlex 8 (X \_ o PX 25)
bij | 0ij dsi  0s; ds;  0s; V”as,-as,- - 351‘35]'_. .

Here, the Einstein summation convention is not applied on i and j (i, j =1, 2).
For 2-D cases, the Euler—Bernoulli beam equation (2.3) simplifies to

32X 9 -1\ ax 34X
psh—a[2 oo |¢ 1— +y—F=F+F. (2.6)

as as*
It is worth noting that for short-range repulsive force F,, we adopt the scheme proposed
by Huang et al. (2007), and the expression is

0X
as

X-Xy

———ds/, 2.7
| X — Xy

L
Fe(s, 1) = / 8 (X(s, 1) — Xy (s, 1))
0
where X, (s, t) is the projection vector of the plate’s position vector X (s, ¢) on the wall,
and 4 is the three-point discrete delta function (Wang & Zhang 2011). Repulsive force is
applied when the distance between the tip of the plate and the wall is less than one grid
width.

To normalise the above equations, the characteristic quantities p, L and U,r are chosen,
where p is the fluid density, L is the length of the upstream plate, and U,er=ux/pL is
the characteristic velocity. In our study, p, L and u are fixed, and x =200 is a constant
(this value does not affect the results). Therefore, the characteristic time and force are
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Tref= L/ Uy and Frp= (1/2)pU rzefL, respectively. The key non-dimensional parameters
are the Reynolds number Re = pUsL/p, the mass ratio of the plate to the fluid
B = psh/pL, the stretching stiffness S = (p/,oUrzefL, the bending stiffness K = y/pUrze L3,
the aspect ratio A, = b/L, the length ratio L* = L4/L,, and spacing d = Al/L.

3. Numerical method and validation
3.1. Numerical method

The lattice Boltzmann method is utilised to solve the incompressible Navier—Stokes
equations (Chen & Doolen 1998), while the finite element method (Doyle 2013) is adopted
to solve the Euler—Bernoulli equation governing the motion of the flexible plate. The
immersed boundary method is used to deal with the fluid—solid interaction (Peskin 2002;
Taccarino & Mittal 2005).

3.1.1. Lattice Boltzmann method
The Bhatnagar—Gross—Krook model with single relaxation time t is applied, which in its
discrete form is given by

At e
fi e A+ A = fie, == [fie.) = [ @ 0]+ MFL (D)

where f;(x, t) is the particle distribution function, x gives the spatial coordinates, and # is
the time. Here, 7 is related to the fluid viscosity via v = (t — 0.5) A¢, where At is the time
step. The equilibrium particle distribution function is fl.eq, and the last term, Fj, represents
the effect of external force (Guo et al. 2002). These are defined as

. Cow)2 2
eq )= 1 e -u (e; - u) o ’ 32
f‘l (x ) PW; + C% + 2C? ch ( )
1 ei—u e -u
Fl‘: I—E w; C—2+C—4€l‘ °F, (33)
s s

where the lattice speed is ¢ = Ax/At, Ax is the lattice size, c; = ¢/ /3 is the lattice sound
speed, w; are the weighting parameters, and e; are the discrete velocities. For 2-D cases,
the D2Q9 model is employed, while for 3-D cases, the D3Q19 model is adopted. The
values of w; and e;, and more details, can be found in previous work (Huang & Lu 2017,
Xu et al. 2022). The macroscopic density p and macroscopic velocity u can be obtained
through
FAt
p=D_fi pu=) eifit - (3.4)
l l

3.1.2. Immersed boundary method

The Lagrangian force F; between fluid and plate can be calculated by the penalty scheme
(Goldstein, Handler & Sirovich 1993),

t
Fy=a / [Vi (s.2) = Vi (s, )] A" + B [V (s, 1) — Vi(s, D], (3.5)
0

where the parameters « and 8 are determined based on previous studies (Hua, Zhu &
Lu 2014; Zhang et al. 2020a). Here, Vy = 0 X /0t represents the velocity of the plate at the
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Figure 2. Validations for cases: (a) the lateral displacement of the flag’s trailing edge in a uniform flow with
B=15 S= 103, K=15x10"3, Re=200, Fr=0.5; (b) the lateral displacement of the centre of the
flag’s trailing edge with 8 =1.0, =103, K =10"*, Re=200, Fr =0, A, =1.

Lagrangian points, and V¢ denotes the fluid velocity obtained through interpolation,

Vi(s, 1) = / v(x, ) 6(x — X(s,1))dx. (3.6)

By applying the Dirac delta function, F; is converted into its Eulerian form:

fl, 1) =— f Fy(s, 1) 8(x — X (s, 1))ds. 3.7)

3.2. Validation

Our numerical strategy has been applied successfully to various fluid—structure interaction
problems, including the collective behaviour of multiple flexible plates (Peng, Huang &
Lu 2018), tandem flexible inverted flags in a uniform flow (Huang et al. 2018), and the
weighted flexible ribbons in a uniform flow (Liu & Huang 2024). Here, we have validated
the numerical method in both 2-D and 3-D cases. A 2-D flapping flag in a uniform flow
was simulated with B =1.5, S= 103, K =1.5x 1073, Re =200 and Froude number
Fr=gL/U?>=0.5, where g is the gravitational acceleration (Huang et al. 2007).
Figure 2(a) shows the time history of the lateral displacements of the flag’s trailing
edge. For the 3-D flapping flag, the parameters are f=1.0, S=10°, K =107
Re=200, Fr=0, A, =1 (Huang & Sung 2010). Figure 2(b) illustrates the variation
of the lateral displacement of the centre of the flag’s trailing edge over time. Both
figures 2(a) and 2(b) show that the simulation results are in good agreement with those in
the literature (Huang et al. 2007; Huang & Sung 2010).

To verify the grid independence and time-step independence, we test different sets of
Ax/L and At/ T for simulation. The results are depicted in figure 3. It is shown that for the
2-D cases, the choices Ax/L =0.01 and At/T =0.00025 are appropriate. Meanwhile,
for the 3-D cases, values Ax/L =0.025 and Az/T =0.000625 are sufficiently small
to ensure accurate results. In our simulation, the no slip-wall condition is applied on
the bottom boundary, while the slip wall condition is imposed on the top boundary. A
uniform velocity Ux in the x direction is imposed on the inlet, and a convective boundary
condition dv/dt + U dv/dx =0 is prescribed on the outlet. For 2-D cases, we adopt a
computational domain in the range [—10, 22] x [—5, 5] in the x and y directions, while
[-5, 10] x [—2.5, 2.5] x [—2.5, 2.5] in the x, y and z directions is adopted for the 3-D
cases. Initially, the velocity of the fluid is set to Uy in the x direction, and both the
upstream and downstream plates remain upright and stationary.
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Figure 3. Grid independence and time-step independence study for (a,b) the inclination angle of the 2-D plates
as functions of time with K =0.2, Re =500, and (c,d) the inclination angle of the 3-D plates as functions of
time with A, =0.25, K =0.2, Re =500. Here, 65 is the inclination angle of the upstream plate, while 8y is
the inclination angle of the downstream plate.

4. Results and discussion

To accurately describe the dynamics of the plates, it is necessary to define the mean
inclination angle 6,, and the amplitude of angular oscillation 6, during plate oscillation.
The definitions of 6,, and 6, are

1 to+T
On = — / 6(t)dr, “.1)
T Jy
Oa = max{6 (1) }ry<i<io+r — min{0 () }y<r<ip+7> (4.2)

where 6 is the inclination angle, defined as the angle between the chord line (the line
connecting the leading and trailing edges of the plate) and the horizontal direction. Here,
to represents the initial time, and the plate is assumed to have oscillation period 7. For
the 3-D cases, the inclination angle is defined as the spanwise-averaged angle between
the horizontal plane and the chord plane (the plane connecting the leading and trailing
edges of the plate). It is important to note that in our simulation, bending and twisting in
the spanwise direction are considered negligible. For clarity in the subsequent discussion,
fs and 61 represent the inclination angles of the upstream shorter plate and downstream
longer plate, respectively.

Furthermore, the following parameters are kept constant: the mass ratio of the plate to
the fluid B = 1.0, the stretching stiffness S = 10%, and the horizontal spacing d = 1.0. The
value of § is selected to ensure that the plates remain nearly inextensible. Meanwhile, the
spacing between the plates is set to this value, as it provides a balance between avoiding
collision during flapping and maintaining sufficient proximity for effective flow interaction
between the upstream and downstream plates. The primary parameters that we vary in this
study are the Reynolds number Re, bending stiffness K, aspect ratio A,, and length ratio
L*. Tt should be noted that the default length ratio is L* = 2.0 in most cases. Any changes
to L* will be mentioned specifically.

4.1. The 2-D cases study

4.1.1. Motion modes of the plates under different bending stiffnesses
In the 2-D cases with aspect ratio A, = oo, we begin by examining the typical motion
modes of the plates under varying bending stiffness values K to analyse the system’s
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(a) DC mode (b) FC mode (o) DF mode

() SF mode (e) DS mode
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Figure 4. Typical motion modes of the unequal-length flexible plates system: (¢) DC mode (K = 10~%),
(b) FC mode (K = 10_2), (¢) DF mode (K =5 x 10_2), (d) SF mode (K =0.3), and (¢) DS mode (K =5).
For all cases, Re = 400.

dynamic behaviour. A moderate Reynolds number Re = 400 is chosen for the simulations.
As shown in figure 4, the system of unequal-length tandem flexible plates exhibits five
distinct motion modes: dual collapse (DC) mode, flapping collapse (FC) mode, dual
flapping (DF) mode, static flapping (SF) mode, and dual static (DS) mode. Figure 5(a,b)
illustrate the variations in angular oscillation amplitude 8, and mean inclination angle 6,,
for both upstream and downstream plates as functions of K, providing quantitative insights
into these modes. Moreover, to uncover the energy harvesting potential associated with
each mode, figure 5(c,d) also show the corresponding variations in oscillation frequency
f and peak-to-peak bending energy variation AEj as K varies. Here, AE};, denotes the
difference between the maximum and minimum bending energies Ej within a cycle. The
bending energy E} is defined as

K (La%2x 9%x
/ - 4.3)
0

== | ZZ.
b=5 952 9s?

From figures 4 and 5, we observe the following trends.

(i) When the plates are highly flexible (K < 1073), the system enters the DC mode,
where the plates are blown over by the incoming flow, and the trailing edges press
against the wall. In this mode, both 6, and 6,, are zero, with negligible f and AE}.

(i1) As the flexibility decreases (1073 < K < 1072), the system transitions to the FC
mode, where the upstream plate flaps while the downstream plate remains collapsed.
This behaviour results from the energy transferred to the downstream plate by the
incoming flow and vortices shed from the upstream plate. The forces from these
interactions exceed the downstream plate’s elastic restoring force, causing it to
collapse.

(iii) In the moderate stiffness range (1072 < K <0.2), the system enters the DF mode,
where both plates flap simultaneously. Notably, the oscillation of the upstream plate
weakens as K increases, with 6,5 decreasing significantly. At the same time, the
oscillation of the downstream plate may strengthen as K increases. In this regime,
both fs and AEjg reach their peak values, indicating that this mode features the
strongest oscillation of the upstream plate.

(iv) As the plates become more rigid (0.2 < K < 5), the SF mode emerges. In this mode,
the upstream plate almost comes to a stop, or completely stops oscillating, due to its

1017 A39-8


https://doi.org/10.1017/jfm.2025.10505

https://doi.org/10.1017/jfm.2025.10505 Published online by Cambridge University Press

Journal of Fluid Mechanics

(a) )]
DC FC DF SF DS DC FC DF SF DS
40 901
+9aS — mS
~ 307 O = 60 '"L
2 2
T 20 )
S g 30}
> 10 )
(™ - . 0
104  102% 102 107! 100 10! 10* 103 102 10! 10° 10!

(d)

0% 102 102 107! 10° 10!

Figure 5. Dynamic variables of the upstream and downstream plates as functions of K at Re =400: (a)
oscillation amplitude 6,; (b) mean inclination angle 6,,; (c) normalised oscillation frequency f/ frs, where
Sref=Uyer/L; (d) peak-to-peak bending energy variation A Ej. Subscripts S and L refer to the upstream and
downstream plates, respectively.

rigidity, while the oscillation amplitude of the downstream plate, 6,7, may reach
its peak. Interestingly, both fr and AEj; reach their respective maxima in this
regime, highlighting this mode’s potential for efficient energy harvesting. This mode
is particularly novel and has not been reported in the literature.

(v) Finally, at very high stiffness values (K > 5), the system enters the DS mode, where
both plates exhibit static bending. In this regime, both the mean inclination angles
Oms and 6,1 increase with stiffness, while the angular oscillation amplitudes 6,¢ and
6,1 approach zero. Accordingly, oscillation frequency f and peak-to-peak bending
energy variation AE} of two plates decay to near-zero values, indicating a loss of
dynamic behaviour.

The above cases are all obtained with fixed length ratio L* =2.0. In fact, L* is an
important parameter that significantly influences the system’s dynamics. Therefore, we
construct a phase diagram in the (K, L*) space, as shown in figure 6. It can be seen that
at L* =1, we observe the cavity oscillation (CO) mode (see the lower right schematic
diagram in figure 6), which has been reported in a previous study (Zhang et al. 2020b). In
this mode, the two plates and the wall form a cavity-like structure that induces periodic
vortex shedding similar to that in open cavity flows. This leads to rigid oscillations of
the downstream plate, while the upstream plate remains nearly stationary. This mode
disappears as L* increases, since the cavity structure is disrupted by the elongation of
the downstream plate. Consequently, the vortex shedding pattern transitions to the DF
mode, characterised by constructive vortex merging. A key feature of the phase diagram is
that the region corresponding to the SF mode expands as L* increases. This trend can be
attributed to the fact that a longer downstream plate, even if relatively stiff, is more prone
to oscillation due to its greater fluid—structure interaction length.
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Figure 6. Phase diagram of plate motion modes in the (K, L*) parameter space. Each point in the phase
diagram denotes a simulated case. For all cases, Re =400. The schematic diagram at the lower right shows the
CO mode.
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Figure 7. Time histories of the inclination angles for the upstream and downstream plates in two representative
modes: (a) DF mode (K = 0.1), and (b) SF mode (K = 0.2), both at Re = 400. Here, 05 denotes the inclination
angle of the upstream plate, and 6, denotes that of the downstream plate.

Among the five modes, we focus on the DF and SF modes, as they exhibit the
richest dynamic behaviour of the system. Figure 7 presents the time histories of the
inclination angles for both upstream and downstream plates in these two modes, revealing
distinct periodic oscillations. It also shows that the upstream plate flaps at a frequency
approximately several times higher than that of the downstream plate, suggesting a form
of nonlinear synchronisation mediated by vortex interactions. Moreover, in the SF mode,
positioning a shorter flexible plate in front of a longer one maximises 6,7, offering
significant practical advantages. Notably, in our study, 8,7 in these two modes is greater
than that of a single long flexible plate subjected to the same incoming flow. Thus both
modes effectively amplify 6,7. In the following, we will investigate the amplification
mechanism for the downstream plate in these two modes.

4.1.2. Oscillatory amplification mechanism of the downstream plate

Here, we would like to explain the mechanisms behind the behaviours of the long plate in

the DF and SF modes by examining the system’s wake structure and vortex interactions.
Figure 8 presents the instantaneous vorticity contours around both plates at equal time

intervals within one oscillation period. Figure 8(a—d) illustrate the dynamics in the DF
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Figure 8. Instantaneous vorticity contours around the upstream and downstream plates at equal time intervals
within one period, for (a—d) the DF mode, and (e—h) the SF mode. The solid and dashed lines indicate positive
(anticlockwise) and negative (clockwise) vortices, respectively. For the DF mode, K =5 x 1072, Re =400,
and for the SF mode, K = 0.2, Re =400.
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Figure 9. Three different configurations of a flexible plate system: (a) isolated flexible (IF) configuration, (b)
flexible—flexible (FF) configuration, and (c) rigid—flexible (RF) configuration. Here, v, is the average velocity
of the long plate’s trailing edge, and L is the average chord length of the downstream plate. For all cases,
K =0.8, Re=400.

mode, while figure 8(e—h) correspond to the SF mode. In these figures, the primary
vortices are labelled. In both modes, it appears that vortices A and B originate from
the upstream and downstream plates, respectively. The negative vortex (A) is transported
downstream and interacts with the rear negative vortex (B). This interaction leads to
constructive vortex merging, as described by Kim, Huang & Sung (2010) and Uddin et al.
(2013). Such constructive merging enhances the oscillation amplitude of the downstream
plate in both the DF and SF modes.

However, there are notable differences between the two modes. In the DF mode
figure 8(a—d) the upstream plate actively oscillates, promoting vortex shedding. The
downstream plate, in turn, passively responds to the external excitation from the upstream
plate, leading to an increased oscillation amplitude. Thus the amplification of the long
plate’s oscillation can be attributed to both the upstream oscillation and the induced vortex
shedding. We refer to this process as the ‘externally driven amplification mechanism’,
highlighting the role of the upstream plate in exciting the downstream plate.

In contrast, in the SF mode figure 8(e—h) both the upstream and downstream plates
have higher bending stiffnesses than in the DF mode. This increased stiffness suppresses
upstream plate motion, causing it to remain nearly stationary. As a result, a long and stable
shear layer is produced instead of distinct vortex shedding. As illustrated in figure 8(e), this
shear layer extends downstream, inducing significant bending in the long plate. Due to the
plate’s flexibility, this bending generates a strong elastic restoring force, which causes the
rear portion of the plate to lift more forcefully, as shown in figure 8(f). This upward motion
obstructs the shear layer, prompting its transformation into a vortex (vortex A), which is
subsequently carried downstream to interact with vortex B. We term this process the ‘self-
induced amplification mechanism’, as the self-induced restoring of the downstream plate
plays a pivotal role in amplifying its oscillation.

4.1.3. Self-induced amplification mechanism

In the SF mode, the front plate is almost stationary. To simplify the analysis, we explore the
scenario where the front plate is treated as rigid. This situation is illustrated in figure 9(c),
which we refer to as the rigid—flexible (RF) configuration. In this case, the rigid plate can
maintain a stable shear layer, which in turn induces oscillations in the rear long plate.
Moreover, the RF configuration is more practically feasible because it avoids upstream
plate instability, and is mechanically simpler and more robust to fabricate and maintain. It
can better withstand high-Reynolds-number flows without deformation or fatigue, making
it a more viable solution for real-world applications. Figures 9(a) and 9(b) show the
other two configurations: the isolated flexible (IF) configuration, and the flexible—flexible
(FF) configuration, respectively. In this subsubsection, we compare the angular oscillation
amplitudes of the long plate across all three configurations.
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Figure 10. (a) Angular oscillation amplitude 6,,; and (b) mean inclination angle 6,,, of the downstream plate
as functions of Reynolds number under three representative configurations. In all cases, K =0.2.

Figure 10 shows how the downstream plate’s angular oscillation amplitude (6,7 ) and
mean inclination angle (6,,7) vary with Re for the three configurations at K =0.2. In
general, 6,7, increases with Re across all configurations. At lower Re, the RF configuration
exhibits a 6, value similar to that of the FF configuration. However, at Re > 300, the RF
configuration significantly outperforms both the FF and IF configurations in terms of 6,7 .
It is also seen that at Re =350, the oscillation amplitude of the long plate in the RF
configuration nearly doubles compared to that in the IF configuration. Due to differences
in upstream shielding, the variations of 6,7, differ significantly among the three configura-
tions. In the IF and FF configurations, 6,1 of the downstream plate decreases continuously
with increasing Re, whereas in the RF configuration, 6,,; remains nearly constant at high
Re, which is favourable for sustaining the oscillation of the downstream plate.

To further investigate why the RF configuration leads to superior oscillations, we
examine figure 11, which presents typical instantaneous vorticity contours within a
period. These contours resemble those in figure 8(e—#h), where the shear layer initiates
constructive vortex merging, resulting in strong oscillations. However, in the RF
configuration, the negative vortex shed by the front plate is noticeably stronger than in
the FF configuration. This may be due to the wider gap between the plates, which allows
the vortex to develop more fully. As a result, the constructive vortex merging is more
pronounced, leading to stronger oscillations of the downstream plate.

On the other hand, a direct comparison of vortex—vortex interactions between the FF and
RF configurations may be inappropriate, as the shear layer height and effective spacing
between the plates differ (see figure 8(e—h) and figure 11). These interactions are primarily
influenced by the position of the shear layer generated by the upstream plate, which is
more accurately characterised by the effective vertical height 4, and effective horizontal
separation [, — defined as the distance from the tip of the upstream plate to the root of the
downstream plate.

To ensure a fair comparison, we introduce an alternative configuration in figure 12(a).
Specifically, we compare (i) the RF configuration with a vertical rigid upstream plate, and
(i1) an inclined rigid plate, where the inclination angle matches the time-averaged angle
of the upstream plate in the SF mode at the corresponding Reynolds number. Both set-
ups maintain the same /4, and /., isolating the influence of plate orientation. Figure 12(b)
presents the downstream oscillation amplitude 6,7, as a function of Re. At lower Re, the
two configurations produce nearly identical amplitudes. However, at higher Re, the vertical
RF configuration consistently yields larger oscillations. These results validate our focus on
the RF configuration, as it reliably generates the strongest downstream response under the
fixed-root condition.
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Figure 11. In the RF configuration, instantaneous vorticity contours around upstream and downstream plates
at equal time intervals within one period. The solid and dashed lines represent the positive (anticlockwise) and
negative (clockwise) vortices, respectively. For all cases, K =0.2, Re = 400.
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Figure 12. (a) Schematic diagram of the tandem plates system when the rigid upstream plate is inclined or
vertical, where 6,,5 is the average inclination angle of the upstream plate in the SF mode. (b) Angular oscillation
amplitude of the downstream plate 6,7 as a function of Re in the RF configuration. The solid line represents
the situation where the upstream plate is vertical, while the dashed line represents where the upstream plate is
inclined. For all cases, K =0.2.

To better understand the flapping behaviour of the downstream plate in the RF
configuration, we have developed a simplified relation. Assuming that the oscillation of
the downstream plate follows simple harmonic motion, its inclination angle 6; can be
expressed as

0
0, = “TL SN2 f1) + O, 4.4)
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where f denotes the oscillation frequency of the downstream plate, 6,7 represents the
oscillation amplitude, and 6,,; is the mean inclination angle.

To determine the angular velocity of the trailing edge of the plate, we take the time
derivative of 6; :

01 = 7 f O, cos(2 f1). (4.5)

This equation provides a straightforward expression for the angular velocity, which plays
a critical role in characterising the dynamics of the downstream plate’s oscillation.
At this point, the average velocity of the trailing edge point v; can be approximated as

By )9}‘ L (4.6)

where L is the average chord length of the downstream plate. Substituting (4.5) into this
expression, we can obtain

1T, _
ﬁtoc—/ |Or|dr- L, 4.7
T Jo

which we substitute into the integral:

Tl:fgaL

T T
% / |7t f6ur cosm ft)|dt + L = / lcos(2m f1)| dt - L. (4.8)
0 0

Simplifying, we have

Uy & 6aLL’ (|9)
1.€.
o —=. 4.
al

From (4.10), it is evident that the oscillation amplitude of the long plate (6,r) is
directly proportional to trailing-edge velocity (v;) and inversely proportional to oscillation
frequency ( f) and chord length (L). To validate this relation, 6, is plotted as a function of
vy / fL in figure 13. Here, we supplement the dataset with additional cases where L* varies
from 2.0 to 2.6 in increments of 0.2. The data include results for different plate lengths
at various Re, with each point representing a simulated case. The numerical simulation
data closely align with the fitting line, which represents the relationship 6,7 o v;/fL. This
agreement confirms the validity of the proposed relation.

However, figure 13 shows that at lower Reynolds numbers (Re < 350), increasing
L* leads to larger oscillation amplitudes 6,; . This trend reverses for Re > 350, where
amplitude decreases with increasing L*. A clearer illustration of how 6, varies with Re
under different L* is provided in figure 14(a). For Re < 350, the flow remains largely
laminar and steady, with limited vortex shedding. In this regime, the rigid upstream
plate generates a shear layer with a low-pressure region beneath it. When L* increases,
the downstream flexible plate extends further beyond the shear layer, allowing its tip to
experience a stronger pressure differential — higher pressure above, and lower pressure
below. This pressure asymmetry enhances plate deformation, leading to larger oscillation
amplitudes, even in the absence of strong unsteady vortex forces.

At Re > 350, the dynamics changes as the SF mode emerges, characterised by
stronger vortex interactions and constructive vortex merging. These interactions enhance
the downstream plate’s oscillations. However, when L* is large, vortices must travel
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Figure 13. In the RF configuration, a plot of angular oscillation amplitude of the downstream plate 6,7, as a
function of the variable of the downstream plate v, /f L. The dash-dotted line is the fitting curve. For all cases,
K=02.

(@) 5, ®) o5
40 0.7
-~
o0 30 >
< 3 o6
o~
320 ~
Sa) 0.5
10
0.4
200 250 300 350 400 450 500 200 250 300 350 400 450 500
Re Re

Figure 14. (a) Angular oscillation amplitude 6,7, and (b) normalised oscillation frequency f/f.r of the
downstream plate as functions of the Reynolds number under different length ratios. In all cases, K =0.2.

farther to reach the plate tip, leading to greater dissipation and reduced energy transfer.
Consequently, the amplification effect weakens, and oscillation amplitudes decrease with
increasing L*. We also note that the L* =2.6 case deviates from the trend at high Re,
likely due to the onset of structural instability in long flexible plates under strong flow.

To further investigate the influence of the length ratio on system dynamics in the RF
configuration, figure 14(b) shows how the flapping frequency of the downstream plate
varies with Re for different values of L*. Unlike the typical frequency-locking behaviour
observed in single flexible plates or tandem systems with equal-length plates, our results
reveal that the oscillation frequency increases continuously with Re. This distinctive
behaviour is examined in more detail in § 4.1.5.

In addition, figure 13 shows that some data points deviate slightly from the fitting line
at high Reynolds numbers (Re = 500). This deviation occurs because the oscillation of
the downstream plate transitions from single-cycle motion to a more complex, two-stage
motion at higher Re, as illustrated in figure 15. In this case, the oscillation can be divided
into two distinct stages: stage 1 (A to B) features large-amplitude oscillations, while stage
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Figure 15. In the RF configuration: (a) flapping envelope of the downstream plate over one period, with stages
A-B and C-D highlighted to represent two distinct phases of motion; (b) time evolution of the downstream
plate’s inclination angle 6y, as a function of time. All cases are evaluated with Re =500, L* =2.2.

(@) (b)
0.025 _ 0.8 1.95
+U[
0.020} —— f 1.90
= 0.015 07 o o
v < Liso
0.010 0.6 ™ 175
0.005 170
0 0.5 1.65
200 250 300 350 400 450 500 200 250 300 350 400 450 500
Re Re

Figure 16. In the RF configuration: (a) the average velocity of the downstream plate’s trailing edge v, and
normalised oscillation frequency f/ fr.r as functions of Re; and (b) the average chord length of the downstream
plate L as a function of Re. For all cases, K = 0.2, L* =2.

2 (C to D) is characterised by smaller-amplitude oscillations. Under these conditions, the
assumptions underlying (4.4), and consequently (4.10), are no longer valid.

To explain why 6, initially increases and then decreases with Re in figure 10, we
examine the distinct trends of v;, f and L as functions of Re, as shown in figure 16.
For Re <400, v, increases more rapidly than f, while L decreases simultaneously. This
combination leads to a net increase in 6,;. However, for Re > 400, L remains nearly
constant (figure 16b), and v, stabilises (figure 16a), whereas f increases sharply. Since 6,1,
is inversely proportional to f, the sharp rise in f results in a reduction in the oscillation
amplitude.

4.1.4. Mechanism explanation based on force decomposition
We have compared the variation trend of the downstream plate’s oscillation amplitude
under the IF, FF and RF configurations. The RF configuration was particularly emphasised
due to its simpler structure and ability to achieve a larger amplitude for the downstream
plate. We have proposed a relation to explain the variation in the downstream plate’s
amplitude under the RF configuration. Next, we will conduct a force analysis on the
downstream plate to explain why the RF configuration leads to the maximum amplitude
for the downstream plate.

The force Fy exerted by the surrounding fluid on the plate can be decomposed into
two components in different directions: one is the tangential force Fy, caused by viscous
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Figure 17. The distribution of time-averaged normal force along the downstream plate under three
configurations: (a) IF, (b) FF and (¢) RF. At this point, the inclination angle of the downstream plate is the
average inclination angle. For all cases, K = 0.2, Re =400.

effects, and the other is the normal force F,,, caused by the pressure difference across the
two sides of the plate. The definitions of these three forces are

F,=[-pl+T,]-n=F;+F, 4.11)
Fr:(Ev'T)T:ftT:(fr,x» ff,y)’ (4.12)
Fn:(Ev'n)n:fnn:(fn,x’ fn,y)s (4.13)

where 7 is the unit tangential vector at the solid node, n is the unit normal vector, T is the
viscous stress tensor, and [ is the identity tensor. Here, f; and f;, represent the magnitudes
of the tangential and normal forces, respectively. In our calculation, the tangential force
is several orders of magnitude smaller than the normal force and can be neglected. The
oscillation of the plate is primarily determined by the normal force. Therefore, we focus
solely on the magnitude and distribution of the normal forces on the downstream plate.

Figure 17 illustrates the distribution of the normal force along the chord direction of
the downstream plate for the IF, FF and RF configurations at K =0.2 and Re = 400.
For the IF configuration, the normal force on the plate is directed towards the bottom
wall, causing a ‘bending’ effect that impedes the plate’s elastic recovery and dampens the
oscillations. In contrast, for the FF and RF configurations, the half-section at the fixed
end experiences normal forces that pull away from the wall, generating a ‘tensile’ effect
on the plate. The half-section at the free end experiences normal forces similar to the
IF configuration, leading to a ‘bending’ effect. The combination of these forces allows
the plate to oscillate with a larger amplitude. The distribution of normal force magnitude
Jn along the chord length is plotted in figure 18, where the trends for the FF and RF
configurations align with our previous analysis. However, regardless of whether the plate
experiences ‘tensile’ or ‘bending’ forces, the RF configuration consistently exhibits higher
normal force values compared to the FF configuration. Thus we conclude that the RF
configuration results in larger oscillation amplitudes, which is consistent with the actual
results shown in figure 10.

4.1.5. Frequency unlocking phenomenon and scaling law

For both a single flexible plate (Kumar, Assam & Prabhakaran 2023) and a tandem system
of equal-length flexible plates (Zhang er al. 2020b), a phenomenon known as ‘frequency
lock-in’ has been observed. This phenomenon occurs when the oscillation frequency
of the plates becomes locked at either their first or second natural frequencies. In this
subsubsection, we examine the flapping frequency characteristics of the RF configuration,
and compare them to those of a conventional tandem flexible plate system, with a particular
focus on the oscillation frequency of the downstream plate.
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Figure 18. Distribution of normal force magnitude f, along the downstream plate for Re =400 with K =0.2.
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Figure 19. (a) Normalised oscillation frequency f/ f,.r of the downstream plate as a function of Re in the IF
and RF configurations. (b) The Strouhal number St as a function of Re. For all cases, K =0.2.

Figure 19(a) illustrates the variation of the oscillation frequency of the longer flexible
plate with Re for both the IF and RF configurations. In the IF configuration, the frequency
adheres to the ‘frequency lock-in’ phenomenon, where the plate’s oscillation frequency
fluctuates around the second natural frequency f;2,, represented by the dashed line. The
value of f», is determined using the equation

k% K
=2 [ 4.14
Fno 2n\ B+ Cp - /4 ( )

where ky =4.694 and C,, =1 (Zhang et al. 2020b). In contrast, the RF configuration
exhibits a ‘frequency unlocking” phenomenon, where the oscillation frequency f of
the downstream plate deviates from the second natural frequency, and increases with
Re. In this case, f is no longer constrained by the plate’s natural frequency. This
deviation occurs because the excitation mechanism for vortex-induced oscillations in the
RF configuration differs from that in the equal-length tandem system. In the latter, the
vibration of the downstream plate is primarily driven by the periodic vortex shedding from
the upstream plate. In the RF configuration, however, disturbances to the shear layer induce
larger-amplitude vibrations in the downstream plate, resulting in a shift in its oscillation
frequency.
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Figure 20. The angular oscillation amplitude of the downstream plate 6, at different A, as a function of Re.
For all cases, K =0.05.

To further investigate this phenomenon, we introduce the Strouhal number (S7) and
explore potential scaling laws governing the relationship between St and Re. The Strouhal
number is defined as

_JL
==

In the IF configuration, due to the frequency lock-in phenomenon, f remains
approximately constant. As a result, based on (4.14), St follows the relationship
St ~ Re~ !, as illustrated in figure 19(b). In contrast, for the RF configuration, a distinct
scaling law emerges where St ~ Re™>/3, which is consistent across various length ratios.
At Re > 400, slight deviations from this scaling law are observed. These deviations can
be attributed to the amplified unsteady nature of the flow at higher Reynolds numbers,
leading to a rapid increase in the vibration frequency of the downstream plate.

St (4.15)

4.2. The 3-D cases study

The above 2-D studies have demonstrated that the RF configuration can maximise
the oscillation amplitude of the downstream plate. However, to enable its practical
application, the system’s dynamics must be examined in three dimensions. Therefore,
in this subsection, we investigate the RF configuration in the 3-D cases to explore more
realistic applications of this configuration.

4.2.1. Behaviour of the downstream plate under different A,

In the 3-D cases, we select two typical aspect ratios (A, = 0.25, 0.5) to explore the RF
configuration. For each case, both the upstream and downstream plates have the same
aspect ratio A,. The main dimensionless parameter that we vary is Re (the same as in the
2-D case, ranging from 200 to 500 with a step of 50). We fixed the downstream plate with
bending stiffness 0.05. Figure 20 shows the variation of the downstream plate’s oscillation
amplitude with Re for different A, (A, =0.25, 0.5). It can be seen that for Re < 300,
the downstream plate does not oscillate significantly for both aspect ratios. As Re
increases, the wider plate with A, = 0.5 begins to oscillate, whereas for the narrower plate
(A, =0.25), oscillations begin only at Re =500, and the amplitude remains relatively
small.
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Figure 21. The behaviour of the tandem system over one period from different perspectives for different
plates: (a—c) narrow plate (A, = 0.25) and (d—f) wide plate (A, =0.5). For all cases, Re = 400.
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To clearly illustrate the actual flapping behaviour of the downstream plate in a 3-D
setting, we present the behaviour of the tandem system over one period from different
perspectives for narrow and wide plates at Re =400 in figure 21. It can be seen that the
downstream plate primarily undergoes bending deformation in the chordwise direction,
with negligible bending and twisting in the spanwise direction.

4.2.2. Comparison between 2-D and 3-D cases

The 2-D simulations represent the idealised limit of infinite spanwise extent and therefore
differ fundamentally from 3-D cases, where the span is finite. Nevertheless, in the
context of fluid—structure problems, there are meaningful connections between 2-D and
3-D behaviours. Previous studies (e.g. Dong et al. 2006; Rojratsirikul et al. 2011)
have shown that for moderately low aspect ratios, many qualitative features observed
in two dimensions — such as wake structures, flapping modes and amplitude trends —
remain largely preserved in three dimensions. While quantitative differences do arise
due to spanwise flow effects and side-edge leakage, the essential dynamics governing
vortex—structure interactions and mode transitions are often comparable.

Based on this, we consider it valid and insightful to extend findings from two to three
dimensions, particularly for cases with low (but not extreme) aspect ratios. In the following
analysis, we use this perspective to interpret our 3-D results in light of the established 2-D
behaviour.

We begin by comparing the oscillation characteristics of the downstream plate in
3-D and 2-D RF configurations. In 3-D configurations, the oscillations are significantly
suppressed relative to the 2-D case. This suppression is largely due to side-edge effects: the
finite span allows fluid to escape laterally, which reduces the pressure difference between
the upper and lower surfaces of the plate. As a result, vortex formation and shedding are
weakened, leading to reduced lift forces and damped oscillations (Gosselin et al. 2010; Liu
& Huang 2024). The narrower the plate, the more pronounced this effect becomes, further
inhibiting oscillatory behaviour.
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Figure 22. The angular oscillation amplitude of the downstream plate 6,1, as a function of the variable of the
downstream plate v, /f (6L). The dash-dotted line is the fitting curve. For all cases, K = 0.05.

However, for the wider plate case (A, =0.5), the downstream oscillation amplitude
exhibits a trend similar to that observed in the 2-D simulations, particularly at higher
Re (see figure 10). This is because the flapping motion in both cases primarily occurs
in the chordwise direction, where spanwise effects are less dominant. Consequently, the
dynamics of the wider 3-D plate can be meaningfully compared to the 2-D case.

Since the narrower plate (A, =0.25) reaches only a static equilibrium without
exhibiting oscillations, our subsequent analysis focuses on the wider plate (A, =0.5),
which shows clear flapping behaviour and is more relevant for exploring the 3-D
extensions of the 2-D results.

4.2.3. Oscillation and vortex shedding of the downstream plate

For the wide cases with A, =0.5, the oscillation amplitude of the downstream plate
follows a trend similar to that of the 2-D cases, initially increasing and then decreasing
with Re, as shown in figure 20. Using (4.10), we fitted the variable for the 3-D cases, and
the results are presented in figure 22. The data points align closely with the same fitting
curve, demonstrating that our derived relation is applicable to both 2-D and 3-D cases.
The difference in slope between the fitting curves in 2-D and 3-D cases arises from 3-D
effects, which influence the dynamics of the system. Here, we introduce a correction factor
8, which modifies the effective chord length as § L. This adjustment allows the 3-D data to
align with the scaling observed in the 2-D case. At higher Re (Re > 500), the data points
remain consistent with the fitting curve, as the Reynolds number is not yet sufficient to
trigger two-stage oscillation behaviour in the 3-D case, where the plate exhibits greater
resistance to flapping.

In 2-D cases, the oscillation enhancement in the RF configuration is attributed to
the ‘self-induced amplification mechanism’. Here, we aim to investigate whether this
mechanism remains valid in 3-D cases. Figure 23 presents the 3-D vortex structures
(Q criterion) of the serially connected system at four representative moments within one
oscillation period of the downstream plate. The left and right columns display results
from different perspectives. As shown in figure 23(a), the upstream rigid plate generates
a stable vortex structure that envelops the downstream plate. Subsequently, due to the
chordwise bending restoration of the downstream plate, vortex structures emerge between
the two plates, as depicted in figures 23(b) and 23(f). These vortex structures then travel
downstream and merge with those shed from the downstream plate, forming large-scale
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Figure 23. Snapshots of vortical structures visualised using (a—d) the iso-surface of the Q criterion, (e—h)
the corresponding side views along the y = 0 plane. The iso-surfaces are coloured by streamwise velocity u.
Results are presented for the case A, =0.5, K =0.05 and Re = 400.

hairpin vortices whose legs extend continuously between the two plates, as illustrated in
figure 23(c). These observations confirm that the RF configuration in the 3-D case still
adheres to the ‘self-induced amplification mechanism’.

5. Concluding remarks

This study examines 2-D and 3-D wall-mounted flexible plates of unequal lengths in a
uniform flow, governed by bending stiffness K, Reynolds number Re, and length ratio
L*. In 2-D cases, varying K revealed five oscillatory modes, with a phase diagram in
the (K, L*) space constructed to illustrate their regimes. Particular attention is given to
the dual flapping (DF) and static flapping (SF) modes due to their significant oscillation
amplitude enhancement, critical for energy harvesting. The DF mode employs an
externally driven mechanism, where upstream vortices excite the downstream plate, while
the SF mode uses a self-induced mechanism, where downstream oscillations induce shear
layer shedding from the upstream plate, further amplifying its motion. Analysed through
wake structures and vortex merging, the active mechanism in the SF mode, offering the
most pronounced enhancement, is particularly promising for further exploration.
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We introduce a rigid—flexible (RF) configuration, replacing the upstream shorter plate
with a rigid body, and compare it to isolated flexible (IF) and tandem flexible (FF)
configurations. At low Reynolds numbers (Re < 300), FF and RF configurations perform
similarly, outperforming IF. At higher Re, RF shows a 100 % increase in oscillation
amplitude over IF. To explain the amplitude trend (increase then decrease), we propose
a relation 6,7 o v;/fL, linking amplitude to trailing-edge velocity, oscillation frequency
and chord length. This relation holds even for plates longer than 2L, though deviations
occur at very high Re (= 500) due to two-stage oscillations. Force analysis reveals that
normal force distribution and magnitude make FF and RF more effective than IF, with RF
excelling further. Unlike equal-length tandem systems, RF exhibits frequency unlocking,
where oscillation frequency rises with Re, following St ~ Re™%/3

In 3-D cases, we studied the RF configuration with two aspect ratios. For the narrow
case (A, = 0.25), the downstream plate remained nearly stationary due to fluid leakage
reducing pressure differences. For the wide case (A, =0.5), no oscillations occurred
at low Re (< 300), but amplitude increased sharply with higher Re, primarily in the
chordwise direction. The 2-D relation also fits the 3-D data. Visualisation of the Q
criterion confirmed that the RF configuration maintains the self-induced amplification
mechanism for the downstream plate in 3-D scenarios.

This study enhances understanding of wall-mounted tandem flexible plates of unequal
length. The RF configuration and its relation advance fluid—structure interaction theory
and offer practical potential, particularly for improving energy harvesting devices.
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