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A free flexible flap in channel flow
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Fine fibre immersed in different flows is ubiquitous. For a fibre in shear flows, most
motion modes appear in the flow-gradient plane. Here the two-dimensional behaviours of
an individual flexible flap in channel flows are studied. The nonlinear coupling of the fluid
inertia (Re), flexibility of the flap (K) and channel width (W) is discovered. Inside a wide
channel (e.g. W = 4), as K decreases, the flap adopts rigid motion, springy motion, snake
turn and complex mode in sequence. It is found that the fluid inertia tends to straighten
the flap. Moreover, Re significantly affects the lateral equilibrium location yeq, therefore
affecting the local shear rate and the tumbling period T . For a rigid flap in a wide channel,
when Re exceeds a threshold, the flap stays inclined instead of tumbling. As Re further
increases, the flap adopts swinging mode. In addition, there is a scaling law between T and
Re. For the effect of K, through the analysis of the torque generated by surrounding fluid,
we found that a smaller K slows down the tumbling of the flap even if yeq is comparable.
As W decreases, the wall confinement effect makes the flap easier to deform and closer
to the centreline. The tumbling period would increase and the swinging mode would
be more common. When W further decreases, the flaps are constrained to stay inclined,
parabolic-like or one-end bending configurations moving along with the flow. Our study
may shed some light on the behaviours of a free fibre in flows.

Key words: flow-structure interactions

1. Introduction

The dynamics of immersed flexible fibres in viscous flows is one of the fundamental issues
in fluid–structure interactions. The flexible fibres are common in both industrial processing
and nature, for example, the papermaking industry needs to control the arrangement
of pulp fibres (Lundell, Söderberg & Alfredsson 2011), flagella and cilia control the
movement of microorganisms (Fauci & Dillon 2006). Du Roure et al. (2019) and Lindner
& Shelley (2015) have summarized the current advances in this field. There are numerous
studies on fluid–fibre interaction. The dynamic interactions of multiple wall-mounted
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two-dimensional (2-D) flexible flaps have been studied to understand the behaviours of
immersed aquatic vegetation (Nepf 2012; Favier et al. 2017; O’Connor & Revell 2019).
They found four distinct states, i.e. static, regular waving, irregular waving and flapping
states; and the waving mode is triggered by a lock-in between the fluid and structural
natural frequencies (O’Connor & Revell 2019). Although the coupled dynamics patterns
in O’Connor & Revell (2019) are slightly similar to those of the free flexible flaps, the
wall-mounted cases still quite differ from the free cases.

The dynamics of an individual fibre in Couette flow has been extensively studied.
Jeffery (1922) theoretically studied the movement of a three-dimensional (3-D) rigid
ellipsoid in Stokes shear flow. He predicted that the ellipsoid rotates with a period
T = 2π/γ (rp + 1/rp) around a specific orbit known as a Jeffery orbit, where γ is the
shear rate of fluid, and rp is the aspect ratio of the particle (the ratio of long axis to short
axis). This theory has been expanded to any axisymmetric particle in Stokes shear flow by
Bretherton (1962), as long as an equivalent aspect ratio re is adopted. Cox (1971) derived
an approximate formula for rigid cylindrical fibres with re = 1.24rp/

√
ln rp. In this way,

the above theoretical results are roughly applicable to rigid fibres. However, they are not
applicable to flexible fibres. For non-zero Reynolds number (Re) cases, Aidun, Lu & Ding
(1998) predicted that the tumbling period of a 2-D elliptical particle is proportional to
(Rec − Re)−1/2 before rotation arrest occurs, where Rec is a critical Re. The scaling law
proposed through 2-D simulations is found to be applicable to 3-D spheroidal cases (Aidun
et al. 1998). It is still unknown whether the scaling law applies to a flexible fibre.

In Couette flow, the movement of flexible fibres is much more complicated due to
elastic deformation. The interaction between the fibre and the surrounding fluid makes
the fibre exhibit complex configuration and dynamics. Forgacs & Mason (1959) were the
first to investigate experimentally the movement of real fibres in Stokes shear flow. The
modes of fibres were categorized into five types, i.e. rigid motion, springy motion (also
called C buckling), two types of snake turn (U-turn motion and S-turn motion) and coiled
motion. Except for the coiled motion, other motion modes all appear in the flow-gradient
plane. Some of these typical movement modes have been analysed analytically using
slender-body theory by Hinch (1976) and Becker & Shelley (2001), experimentally by
Smith, Babcock & Chu (1999), Harasim et al. (2013) and Liu et al. (2018) and numerically
by Skjetne, Ross & Klingenberg (1997), Nguyen & Fauci (2014) and Słowicka, Stone &
Ekiel-Jeżewska (2020). These authors have concluded that as the fibre becomes flexible, a
transition from rigid rotation to springy motion occurs since the compressive viscous stress
along the fibre is sufficient to induce buckling. If it is more flexible, the fibre performs a
U-turn motion, similar to a tank-treading motion, in which a localized bending propagates
along the fibre. When the fibre is flexible enough, higher modes are triggered, including
slipknots (Kuei et al. 2015), multiple buckling sites and coiling of long fibres (LaGrone
et al. 2019).

Besides the fibre dynamics in linear shear flows, the dynamics of fibres transported in
Poiseuille flow is also investigated. In Poiseuille flow, shear rate changes from zero in
the centre to a finite value in the wall. The fibre inside may deform, tumble and migrate
across the streamline simultaneously. Due to the non-uniform shear rate and the presence
of the wall, the behaviour of the fibres may be affected significantly and differ from that
in the simple shear flow. Chelakkot, Winkler & Gompper (2010), Reddig & Stark (2011)
and Słowicka, Wajnryb & Ekiel-Jeżewska (2013) performed 3-D numerical simulation
using the bead–spring model to investigate the migration of a flexible fibre transported in
the Poiseuille flow. They observed that the flexible fibre migrates along the direction of
the flow gradient and accumulates to a certain position depending on the channel width
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and the flexibility of the fibre. The rigid fibre may accumulate near the wall, while the
flexible fibre accumulates away from the wall (Słowicka et al. 2013). Steinhauser, Köster
& Pfohl (2012) performed experiments with actin fibres in a cylindrical microchannel, and
observed the U-shaped conformation near the channel centre. Farutin et al. (2016) found
that the dynamics of 3-D flexible fibres can be determined by the local shear rate when they
are relatively far from the channel centre. However, fluid inertia has never been considered
in these studies. If fluid inertia is involved, the dynamics of the fibres may be significantly
different.

The dynamics of the flexible fibre are affected by many parameters, such as the fibre
aspect ratio, flexibility, channel width and flow properties, and especially the fluid inertia.
The interplay of these effects results in various complex and intriguing phenomena. The
majority of previous studies focused on the effect of the fibre aspect ratio and the fibre
flexibility, while ignoring the influences of fluid inertia and channel confinement. To this
end, we study the movement and deformation of an individual 2-D flexible flap, which
is modelled as a continuously flexible slender object obeying the Euler–Bernoulli beam
theory. Specifically, the fluid inertia, fibre flexibility and the channel width are fully
considered.

We would like to briefly elucidate why we carry out the 2-D simulations to understand
the motion modes of fibres in channel flows. From the above literature review, we can see
that under many conditions, a single fibre moves and deforms in the flow-gradient plane
in shear flows, provided the fibre is not too long. Besides, Subramanian & Koch (2005)
concluded that fluid inertia is favourable for the fibre to turn to the flow-gradient plane
instead of the vorticity direction. Therefore, our 2-D simulations in the flow-gradient plane
can capture the main characteristics of the flow–fibre interaction problem. Another reason
for our 2-D study of flaps is that qualitative results of 2-D simulations may match those
of 3-D flows. Through a large number of 2-D simulations for a sufficiently large range
of parameters, we may draw conclusive inferences about scaling trends for 3-D fibres.
Previous extensive studies well support this viewpoint for spherical, non-spherical and
soft particles in different flows (Aidun et al. 1998; Sierou & Brady 2004; Thiébaud et al.
2014).

The paper is organized as follows. The physical problem and mathematical formulation
are described in § 2. The numerical method and validation are presented in § 3. In § 4,
the dynamics and mechanisms of the behaviour of fibres are analysed. Conclusions are
summarized in § 5.

2. Physical problem and mathematical formulation

The motion of a neutrally buoyant flap inside planar Poiseuille flow is illustrated in
figure 1(a), where H denotes the channel width, L is the contour length of flap and Umax is
maximum velocity in the Poiseuille flow without a flap. The incompressible Navier–Stokes
equations that govern the flow are

∇ · v = 0, (2.1)

∂v

∂t
+ v · ∇v = − 1

ρ
∇p + μ

ρ
∇2v + f , (2.2)

where ρ is the fluid density, v is the velocity, p is the pressure, μ is the dynamic viscosity
of the fluid and f is the body force term. The dynamics of a fine flexible flap can be
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Umax
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Lx
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(a) (b)

d
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pi pi+1
dx

F1
ni τiFlexible fibre

Figure 1. (a) Schematic diagram of a free flap in Poiseuille flow. (b) Zoom-in view of the flap. The red triangles
and circles represent the ghost points and the Lagrangian points, respectively. Here F1 and F2 are the fluid force
on two ghost points; ni and τ i are local normal and tangential unit vectors, respectively; dx denotes the position
vector and |dx| = d/2, where d is the thickness of the flap.

described by the Euler–Bernoulli beam equation,

ρsh
∂2X
∂t2

= ∂

∂s

[
Eh

(
1 −

(
∂X
∂s

· ∂X
∂s

)−1/2
)

∂X
∂s

− ∂

∂s

(
EI

∂2X
∂s2

)]
+ F L + F c + F g,

(2.3)

where ρs is the density of the flap, h is the thickness, X is the position of the flap, s
is the Lagrangian coordinate along the flap. Here F L is the Lagrangian force exerted on
the flap by the surrounding fluid, and F c is the repulsive force to avoid contact and overlap
between flap elements and the wall. Here F g = ρshg is the gravity force, and g = |g| is the
acceleration of gravity. Since we study a neutrally buoyant flap, gravity is not considered,
i.e. F g = 0. Here Eh and EI are the stretching and bending stiffnesses, respectively.

The boundary conditions of the flap at both ends are

1 −
(

∂X
∂s

· ∂X
∂s

)−1/2

= 0,
∂2X
∂s2 = (0, 0),

∂3X
∂s3 = (0, 0), (2.4a–c)

which mean no tension force, no bending moment and no shearing force, respectively.
The reference quantities density ρ, velocity Umax and length L are chosen to normalize

the above formulations. The characteristic time and force are Tref = L/Umax and Fref =
1
2ρU2

maxL, respectively. The key non-dimensional parameters are listed as follows: the
Reynolds number Re = ρUmaxL/μ; the bending stiffness K = EI/ρU2

maxL3; the stretching
stiffness S = Eh/ρU2

maxL; and the channel confinement ratio W = H/L.

3. Numerical method and validation

3.1. Numerical method

3.1.1. Lattice Boltzmann method
The flow-governing equations (2.1) and (2.2) are solved by the lattice Boltzmann
method (Chen & Doolen 1998). The discrete lattice Boltzmann equation with the
Bhatnagar–Gross–Krook (BGK) collision model is

fi(x + ei�t, t + �t) − fi(x, t) = −1
τ

[
fi(x, t) − f eq

i (x, t)
]+ �tFi, (3.1)

where fi(x, t) is the distribution function for particles with velocity ei at position x and
time t. Here τ is the non-dimensional relaxation time related to the fluid viscosity,
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ν = c2
s (τ − 0.5)�t, where �t is the time step. The equilibrium distribution function

f eq
i (x, t) and the forcing term Fi (Guo, Zheng & Shi 2002) are defined as

f eq
i = wiρ

[
1 + ei · v

c2
s

+ (ei · v)2

2c4
s

− v2

2c2
s

]
, (3.2)

Fi =
(

1 − 1
2τ

)
wi

[
ei − v

c2
s

+ ei · v

c4
s

ei

]
· f , (3.3)

where cs = c/
√

3 is the speed of sound, c = �x/�t is the lattice speed, �x is the grid
spacing of the uniform mesh, f is the body force, wi is the weighting factor, for the D2Q9
model, wi = 4/9 (i = 0), wi = 1/9 (i = 1, 2, 3, 4), wi = 1/36 (i = 5, 6, 7, 8). The 2-D
D2Q9 velocity model is

ei = c ·
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
. (3.4)

The macroscopic velocity v, mass density ρ and pressure p can be obtained through

ρ =
∑

i

fi, ρv =
∑

i

ei fi + 1
2

f �t, p = c2
s ρ. (3.5a–c)

3.1.2. Immersed boundary method
The fluid–solid interaction is coupled through the immersed boundary (IB) method (Peskin
2002; Mittal & Iaccarino 2005). The Lagrangian force F L between the fluid and structure
can be calculated by the penalty scheme (Goldstein, Handler & Sirovich 1993; Huang,
Chang & Sung 2011),

F L = α

∫ t

0
[V f (s, t′) − V s(s, t′)] dt′ + β[V f (s, t) − V s(s, t)], (3.6)

where α and β are parameters which are selected based on the previous studies (Huang,
Wei & Lu 2018; Peng, Huang & Lu 2018; Zhang, Huang & Lu 2020), V s = ∂X/∂t is the
velocity of the flap at the Lagrangian points (solid points) and V f is the fluid velocity at
the position X obtained by interpolation,

V f (s, t) =
∫

Ω

v(x, t)δ(x − X (s, t)) dx, (3.7)

where the subscript Ω denotes the whole computational domain.
Then the Dirac delta function is used to transform the Lagrangian force F L to the body

force f on the Eulerian points (fluid points),

f (x, t) = −
∫

Γ

F L(s, t)δ(x − X (s, t)) ds, (3.8)

where the subscript Γ means the integral is along the flexible flap.
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3.1.3. Solution of flap equations
To evaluate the moment exerted by the surrounding fluid, two ghost points at a small
radial distance around each of the Lagrangian points (Banaei, Rosti & Brandt 2020) is
considered, dx denotes the position vector and |dx| = d/2, where d is the thickness of the
flap (see figure 1b). The forces F 1 and F 2 on the ghost points are calculated by the IB
method. Then the moment on the elements si can be obtained through

M i = dx × F 1 − dx × F 2. (3.9)

The moment can be converted to a pure moment acting on the Lagrangian points pi and
pi+1 to correct the Lagrangian force F L. Further, in order to avoid non-physical overlap, a
repulsive force f (Banaei et al. 2020) is introduced when the gap between the flap and the
wall, or the flap elements r, is less than a specified threshold r0,

φ(r) = De[exp(2a(r0 − r)) − 2 exp(a(r0 − r))], (3.10)

f = −dφ

dr
dij, (3.11)

where the parameter De governs the interaction strength, a is a scaling factor, r0 is the
cutoff force distance, dij is the unit vector connecting the contact points.

The total repulsive force on the ith element is obtained by

F ci =
N∑

j /= i

f , (3.12)

where N is the number of the elements closer than the threshold r0. Here r0 = 3d is
specified. Parameter studies show that the results are not sensitive to the strength of the
repulsive force.

The forces F L and F c are applied to (2.3). Then, (2.3) is solved by the nonlinear
finite element method with the large-displacement deformation problem handled by a
corotational scheme; a detailed description of this method can be found in Doyle (2013).

3.2. Validation

3.2.1. Wall-mounted deformable filaments in oscillatory flow
We consider a row of 10 wall-mounted flexible filaments inside a channel with a flow
driven by an oscillatory pressure gradient and compare our results with those obtained
from experiments (Favier et al. 2017) and computations (O’Connor & Revell 2019). An
instantaneous visualization of the row of filaments in the channel is shown in figure 2(a).
In our case, the sinusoidally varying pressure gradient is dp/dx = A sin(2πft), where A =
4549.13 Pa m−1, f = 1.0 Hz. The Reynolds number is defined as Re = UmaxL/ν = 120,
where Umax is the maximum flow velocity without filaments. The computational domain
size is 22L × 3L. The periodic boundary condition is applied to the left-hand and the
right-hand boundaries. And non-slip boundary condition is applied to the upper and lower
boundaries. The horizontal gap spacing between the feet of two neighbouring filaments is
0.5L. The streamwise tip positions for the first (the lower curves) and the 10th filaments
(the upper curves) are shown in figure 2(b). They also compared with the experiment
data in Favier et al. (2017) and the simulation results of O’Connor & Revell (2019). It
is seen that our simulation results agree well with both the experimental and numerical
results. The slight deviation between simulation and experiment may be attributed to the
approximation of the experimental parameters and the 3-D effect.
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Figure 2. (a) Instantaneous visualization of the row of filaments in the channel. The streamwise velocity
contours are also shown. (b) Streamwise tip positions for the first (the lower curves) and the 10th (the upper
curves) filaments compared with Favier et al. (2017) and O’Connor & Revell (2019).

(a)

12.0

6 Present, d/L = 0.01
Yin & Luo (2010)

4

2

0

12.5 13.0 13.5
t/T

CD

(b)

y(t)

Flexible plate

α(t)

x
y

y = 0

Figure 3. (a) Sketch of a model for a flapping plate. (b) Drag coefficient (CD) of the flexible plate as a
function of time. Corresponding result of Yin & Luo (2010) is also presented.

3.2.2. A flexible flapping plate with Re = 150
A flexible flapping plate is considered, as shown in figure 3(a). The forced motions of the
leading edge are prescribed by

x(t) = x0, y(t) = A cos(2πft), α(t) = α0 sin(2πft), (3.13a–c)

where x0 is the initial horizontal location of the leading edge, y(t) and α(t) are translational
and rotational motions, respectively, A and f are the flapping amplitude and frequency,
respectively, α0 is the rotational amplitude. In this case, only the leading edge of the plate
is restricted with the prescribed motions and the remainder of the plate can move freely.
A typical case with Re = Uref L/ν = 150, where Uref = 2πAf . The other key parameters
are A/L = 1.25, α0 = 0, K = 0.2, M = ρsh/ρL = 1, S = 1000 and the plate thickness
d = 0.01L. The non-dimensional computational domain size is [−15, 25] × [−15, 15] and
the grid spacing is �x = 0.01L. The drag coefficient CD = Fy/((ρUref

2L)/2), where Fy
is the drag force in the vertical direction. Both our result and that of Yin & Luo (2010) are
shown in figure 3(b). It is seen that our result agrees well with Yin & Luo (2010).

3.2.3. A single rigid flap in a shear flow
The motion of an individual flap in a shear flow is studied. The non-dimensionalized
computational dimensions are [−4, 4] × [−5, 5] with space step �x/Lref = 0.0625, time
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100
rp

200 300

Present

Figure 4. Rotational period γ T as a function of the aspect ratio rp in shear flow compared with Jeffery
(1922), Trevelyan & Mason (1951), Cox (1971) and Wu & Aidun (2010).

step �t/Tref = 0.00125, and the flap is discretized into 32 elements with 33 Lagrangian
points. A rigid flap with K = 102 is considered. The flow is close to the Stokes flow since
Re is very small in the simulation (Re = 0.1). Figure 4 shows the normalized rotational
period γ T as a function of the flap aspect ratio rp. Our simulation result agrees well with
the analytical and numerical results in the literature (Jeffery 1922; Trevelyan & Mason
1951; Cox 1971; Wu & Aidun 2010).

3.2.4. Grid convergence validation
A case of a flexible flap in a planar Poiseuille flow is simulated. The non-dimensional
computational domain size is [−2, 2] × [−2, 2], i.e. the channel width is H = 4L. The
planar Poiseuille flow is driven by a constant body force, and periodic boundary conditions
are applied at the left-hand and right-hand boundaries. The other key parameters are Re =
30 and K = 10−3. The flap with fixed aspect ratio rp = 64 is initially aligned with the
flow and released from y0 = −1. Three cases with different grid spacing �x = 1

16 L, 1
32 L

and 1
64 L are simulated. The normalized torques Γ experienced by the fibre as functions of

non-dimensional time t are shown in figure 5. It is seen that although the evolution of Γ

in the case �x = 1
16 L has a significant discrepancy with those in the cases of �x = 1

32 L,
1

64 , Γ in the case �x = 1
32 L is very close to that in the case �x = 1

64 L. The discrepancy
between the peaks is only approximately 2.7 %. Therefore, �x = 1

32 L seems sufficient to
get accurate results, i.e. 32 Lagrangian grids for a flap is enough.

4. Results and discussion

In our study, the flap is inextensible with a sufficient large stretching stiffness, i.e. S =
104. We study the effect of the bending stiffness K, Reynolds number Re and channel
confinement ratio W on the flap deformation, tumbling and cross-stream migration. The
parameter ranges in our study are K ∈ [10−4, 102], Re ∈ [0.1, 102] and W ∈ [1, 4].
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Figure 5. The normalized torques Γ as functions of non-dimensional time t. The time and torque are
normalized by L/Umax and Γref = 1/2ρU2

maxL2, respectively.

The planar Poiseuille flow is driven by a constant body force and periodic boundary
conditions are applied at the inlet and outlet. Convergence tests for different computational
domains show that the computation domain size Lx = [−5, 5] is large enough to eliminate
the effect of the periodic boundary condition. The flap with fixed aspect ratio rp = L/d =
64 is initially aligned with the flow and placed slightly offset from the channel centre, e.g.
y0 = −0.02L.

4.1. Motion modes and phase diagram
Under different circumstances, the flap may undergo different configurations which
depends on the interplay of flow drag (viscous force and pressure), fluid inertia
and flap elastic restoring force. Since the Poiseuille flow is also a shear flow
with non-uniform shear rate, the movement would be somewhat similar to those in
the Couette flow (Forgacs & Mason 1959). On the other hand, some new motion
modes that have never been found in the Couette flow are revealed here, e.g. the
swinging mode.

Typical periodic morphological evolutions of the flap during a half-period are shown
in figure 6. They correspond to different motion modes. As shown in figure 6(a), the
flap behaves like a rigid rod tumbling around its centre of mass (COM). It is referred
to as rigid motion. The springy motion, which is also called C buckling, is shown in
figure 6(b). In this mode, during its tumbling, the flap would bend a little bit, but when it
is almost horizontal, it becomes straight again. The U-turn motion is shown in figure 6(c),
the flap behaves like a tank-treading rotation. For the S-turn motion (see figure 6d), the two
ends curl in opposite directions. It is noticed that the S-turn motion rarely occurs in our
simulations. The U-turn motion and S-turn motion are also referred to as single-end and
double-end snake turns, respectively, in Forgacs & Mason (1959). Further, we observed
that a more flexible flap appears to have more complex motion (see figure 6e, f ). For a
narrow channel, a stable parabolic configuration appears (see figure 6g), the flap keeps
this shape moving along the flow. Table 1 shows the specific parameters for each of the
motion modes in figure 6.
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(a)

(e)

(g)

(b)

(c)

(d )

( f )

Figure 6. Typical periodic morphological evolutions of the flap during a half-period: (a) rigid motion;
(b) springy motion; (c) U-turn motion; (d) S-turn motion; (e, f ) complex motions; (g) stable mode. The red
point denotes the head of the flap, and the fluid flows from left to right.

(a) (b) (c) (d) (e) ( f ) (g)

Re 10 10 10 3 30 1 3
K 1 10−3 10−4 6 × 10−4 10−5 10−4 10−2

W 4 4 4 4 4 4 1

Table 1. Parameters for the motion modes in figure 6. In all cases rp = 64 except (d), in which rp = 16.

To quantify the characteristics of the above motion modes, the criterion based on the
gyration tensor (Liu et al. 2018) is adopted. The gyration tensor is defined as

Gξη =
N∑

i=1

(rξ (i, t) − r̄ξ (t))(rη(i, t) − r̄η(t))/N, (4.1)
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A free flexible flap in channel flow
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Figure 7. The time evolution of ω and α for (a) rigid motion, (b) springy motion, (c) U-turn motion,
(d,e) complex motions, ( f ) stable mode. The cases correspond to those in figure 6.

where N denotes the total number of Lagrangian points in the flap, rξ (i, t) and r̄ξ (t) denote
the instantaneous position of pi and the COM of the flap, respectively, and the subscripts
ξ , η denote x or y. Shape anisotropy ω is defined as

ω = 1 − 4λ1λ2/(λ1 + λ2)
2, (4.2)

where λ1, λ2 are the eigenvalues of the gyration tensor. These two eigenvalues as the
semiaxes naturally lead to an ellipse. Here ω ≈ 0, i.e. λ1 ≈ λ2, denotes a nearly symmetric
configuration, while ω ≈ 1, i.e. λ1 � λ2, denotes a nearly straight configuration. The
mean rotation angle α is defined as the angle between the flow direction and the mean
flap orientation, which is represented by the angle between the x axis and the eigenvector
corresponding to the largest eigenvalue of the gyration tensor. Figure 7 shows the
evolutions of these two parameters in a period for the motion modes in figure 6. For the
rigid motion, the flap keeps straight with ω ≈ 1, and α changes from −π/2 to π/2. For
the springy motion, flap buckling occurs, thus ω has a significant oscillation when the
flap is perpendicular to the flow direction (α ≈ −π/2 or π/2). The critical ω between the
rigid and springy modes is set to ω = 0.999. For the U-turn motion, α fluctuates with a
small amplitude, which differs from the above two modes. For the S-turn motion, since we
cannot distinguish this mode by the evolutions of ω and α, it has to be identified through
shape evolution. For the rotational complex motion (figure 6e), the variations of ω and α

are complicated (see figure 7d). For the steady complex motion (figure 6f ), α is almost a
constant (see figure 7e) because it almost always keeps a complex curved shape. For the
stable mode, both ω and α are constant (see figure 7f ).

A large number of cases with different W, Re and K were simulated. Besides, different
initial orientations and positions were tried. Based on limited results, it is found that
the final motion mode of the flap does not depend on the initial conditions. The final
motion mode distributions in the K–Re plane for W = 4, W = 2 and W = 1 are shown
in figure 8. For W = 4, the channel is wide enough and the wall effect is minor. When
bending stiffness K is relatively large, the flap adopts rigid motion. As K decreases, the flap
becomes more flexible, and the springy motion appears. As K further decreases, the snake
turn occurs. It is also seen that as Re increases, the borders between any two neighbouring
modes all move leftward. It seems that the fluid inertia delays the appearance of the modes
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Figure 8. Phase diagrams for the cases of (a) W = 4, (b) W = 2, (c) W = 1. Each point in the phase diagram
denotes a simulated case. The grey shading indicates the swinging mode.

with more severe deformation. In other words, the fluid inertia tends to straighten the flap.
It is noticed that when Re exceeds a threshold, e.g. Re � 65 for cases of W = 4, the flap
swings around the COM of the flap instead of tumbling.

For W = 2, the motion of the flap will be affected significantly by the wall. As shown
in figure 8(b) that overall the mode distribution is similar to that of W = 4 except for
two differences. One is that the borders or the critical values of K between any two
neighbouring modes all slightly move rightward. The other is the appearance of the stable
mode in the bottom of the plane. The possible reason is that due to the confinement effect
of the walls, the flap is more likely to bend.

For W = 1, the movement of the flap is severely constrained by the walls. The flap
mostly adopts the stable mode (Re < 10 and K > 10−3). For relatively large Re (e.g. Re =
30), as K decreases, the rigid motion, springy motion and snake turn appear in sequence,
and in all cases, the flap swings and is unable to tumble. When the flap is sufficiently
flexible, it adopts a complex mode. The rigid swinging mode is similar to the oscillation
observed in Nagel et al. (2018).

4.2. Effects of Reynolds number Re
In this section, we mainly discuss the effect of Re on the cross-stream migration and
tumbling of flaps. First, the effect of Re on rigid flaps is discussed with K = 102. The
flap tumbles or swings like a rigid rod at small and large Re, respectively. The sketches of
the successive position and orientation of the flap in the tumbling or swinging modes
are shown in figure 9(a,b). It is seen that the flap tumbles clockwise on one side of
the centreline. The relative velocity profiles at two typical instants with respect to the
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Figure 9. (a,b) Schematic diagram for the rigid mode (the axes scales are different). The insets are the relative
velocity profiles with respect to the COM of the flap in the absent of flap. The orientation angle θ and the lateral
location yCOM of the COM of the flap as functions of t for typical cases: (c) Re = 30, K = 102; (d) Re = 80,
K = 102.

COM of the flap can be found in the insets, which are similar to those in pure Couette
flow. Therefore, the tumbling behaviour looks like that in Couette flow. However, in the
swinging mode (see figure 9b), the COM of the flap fluctuates up and down across the
centreline. Besides, from the two instantaneous velocity profiles (see the insets), we can
imagine that the flap may experience clockwise and anticlockwise torques alternately in
one period. Therefore, the flap would swing.

To quantify the orientation of the flap, the angle between the end-to-end vector of the
flap and the flow direction θ is introduced here. The typical evolution of the lateral location
of the COM of the flap yCOM and θ are shown in figure 9(c,d). It is seen from figure 9(c)
that initially the flap would migrate laterally and then fluctuate up and down around an
equilibrium location yCOM ≈ −0.5 periodically. At a larger Re, e.g. Re = 80, the flap
adopts the swinging mode (see figure 9d). In this mode, the flap fluctuates up and down
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Figure 10. The period T and |yeq| as functions of Re for cases (a) K = 102, (b) K = 10−3 at W = 4.

around the equilibrium location yCOM = 0, and it is not able to approach the horizontal
orientation, i.e. θ = 0. We also observed that the flap’s instantaneous velocity along the
flow is only slightly slower than the ambient Poiseuille flow at the same lateral location
(Słowicka et al. 2012). Besides, neither the terminal equilibrium lateral location nor the
final motion mode depend on the initial lateral position.

Next, we would like to discuss the inertial effect on the period of tumbling or swinging
and the lateral equilibrium location |yeq|. The period T and |yeq| as functions of Re for
a typical rigid flap (K = 102) and a flexible flap (K = 10−3) are shown in figure 10(a,b),
respectively. The time-averaged lateral location of the COM of the flap |yeq| is defined
as |yeq| = 1/nT

∫ nT
0 yCOM dt. The error bar on |yeq| denotes the fluctuation of the lateral

location during one period.
For the case of W = 4, K = 102 (see figure 10a), when Re � 60, similar to the elliptical

particle (Chen, Pan & Chang 2012), as Re increases, the flap migrates away from the
centreline of the channel and then approaches the centreline. The period is mainly related
to the local shear rate, when |yeq| decreases, the local shear rate decreases and thereby the
period increases. That is the variation trend of T when Re � 60. When Re ≈ 65, the flap
no longer tumbles but stays tilted, moving along with the flow. When Re � 70, |yeq| = 0,
the flap adopts the swinging mode instead of the tumbling mode. With the increase of fluid
inertia, the flap swings faster since T decreases.

For a typical flexible flap (see figure 10b), the variation trends of yeq and T look similar
to those in figure 10(a), but we should notice that under low Re (approximately Re < 1),
the flap may adopt the U-turn mode, which leads to a larger period T .

Ding & Aidun (2000) predicted that the tumbling period of an ellipsoid particle is
proportional to (Rec − Re)−1/2, and this scaling law is independent of the particle shape
or the shear profile. In our simulation, the critical Reynolds number Rec from the tumbling
state to the stationary state is found at approximately Rec = 65 at W = 4. The local shear
rate γ at yeq is used to renormalize the period. The period of the flap is shown in figure 11.
The fitting curve of our data is γ T = C(Rec − Re)−1/2 with Rec = 65, and C = 800 and
C = 880 for cases of K = 100 and K = 10−3, respectively. It is seen that the tumbling
period of a flap with different shape and flexibility as a function of Re generally follows the
scaling law for the ellipsoid, i.e. γ T = C(Rec − Re)−1/2. However, it does not necessarily
mean that neither shape nor flexibility plays a role in the tumbling period. For a more
flexible fibre, the tumbling period is generally slightly larger at a specific Re (we will
discuss this in the next section).
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γT

K = 100400

300

200

100

0 10 20 30

Re
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K = 10–3

y = 800(65-x)–1/2

y = 880(65-x)–1/2

Figure 11. The period γ T as a function of Re. The fitting curve is γ T = C(Rec − Re)−1/2 with Rec = 65 and
C = 800 and 880 for cases of K = 100 and K = 10−3, respectively.

4.3. Effects of bending stiffness K
In this section, Re and W are fixed and we mainly discuss the effect of bending stiffness
K on flap motion. As the flexibility of the flap increases, the mode of the flap changes
from rigid motion to springy motion and then to U-turn motion. To reveal the mechanism
of different modes, we decompose the Lagrangian force F L at the ith Lagrangian point,
experienced by the flap into two parts: one is the normal force F n

i , in which the pressure
component dominates; and the other is the tangential force F τ

i , which mainly comes from
the viscous effects. These forces at ith Lagrangian point are defined as (Peng et al. 2018)

F n
i = (F Li · ni)ni = (Fn

x,i, Fn
y,i), (4.3)

F τ
i = (F Li · τ i)τ i = (Fτ

x,i, Fτ
y,i), (4.4)

where ni and τ i are the local unit normal and tangential vectors, respectively. Figures 12
and 13 show the examples of distribution of pressure and viscous forces on the flap, which
adopt springy motion and U-turn motion, respectively. From figure 12(a,c,e), we can see
that the tumbling of flap is mainly caused by the normal force generated by the pressure at
the head and tail, and the magnitude of the normal force determines the rotation speed
of the fibre. Before and after the flap passes through the orientation perpendicular to
the streamline, the flap accelerates and decelerates, respectively. The viscous force (see
figure 12b,d, f ) mainly affects the shape of the flap, the flap is compressed and then
stretched, so compared with rigid motion, the flap with a relatively small K is deformed.
The mechanism of U-turn motion is completely different, the normal force keeps the flap in
a compact configuration, while the tangential force generated by the viscous force mainly
results in a tank-treading movement (see figure 13).

Next we study the influence of K on the period. Figure 14 shows T and |yeq| as functions
of K at two typical Re. From figure 14(a), we can see that the variation trend of equilibrium
locations of flap at Re = 1 is close to that at Re = 0 (Słowicka et al. 2013). Because the
period of the tumbling mainly depends on the local shear rate, when the flap is closer to the
centre of the channel, the local smaller shear rate induces a larger T . Hence the variation
trends of T and |yeq| are opposite. At Re = 30 (see figure 14b), the variation trends of T
and |yeq| are similar to those at Re = 1, but the flaps would be concentrated in the middle
way between the centre of the channel and the wall due to fluid inertia.
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(e)(b)(a) (c) (d ) ( f )

Figure 12. The distribution of pressure and viscous forces on the flap which adopts springy motion at several
typical moments. Panels (a,c,e) are the normal force generated by pressure, (b,d, f ) are the tangential force
generated by viscous forces. The control parameters are W = 4, Re = 30, K = 10−3.

(e)

(b)(a)

(c) (d )

( f )

Figure 13. The distribution of pressure and viscous forces on the flap which adopts U-turn motion at several
typical moments. Panels (a,c,e) are the normal force generated by pressure, (b,d, f ) are the tangential force
generated by viscous forces. The control parameters are W = 4, Re = 30, K = 10−4.

To reveal the effect of the deformation on the tumbling of the flap, the torques generated
by F n

i and F τ
i with respect to the COM are calculated as

Γ n
i = F n

i · r = −( yi − yCOM)Fn
x,i + (xi − xCOM)Fn

y,i, (4.5)

Γ τ
i = F τ

i · r = −( yi − yCOM)Fτ
x,i + (xi − xCOM)Fτ

y,i, (4.6)

where (xi, yi) is the position of ith Lagrangian point, and r = (xi − xCOM, yi − yCOM) is
the vector from the COM to the ith Lagrangian point. Anticlockwise torque is defined as
positive.
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(b)(a)

Figure 14. Here T and |yeq| as functions of K for cases: (a) Re = 1 (log-scale); (b) Re = 30 for W = 4.
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Figure 15. The time evolution of torque generated by fluid force during a half-period for typical cases (a) K =
10−2, (b) K = 10−3, (c) K = 10−4. (d) The evolution of the total torque. In all cases, the other key parameters
are W = 4, Re = 30. Anticlockwise torque is positive and in these cases the flap rotates clockwise.

Figure 15 shows the time evolution of total Γ n and Γ τ (i.e. Γ n = ∑
i Γ

n
i and Γ τ =∑

i Γ
τ

i ). It should be noted that in these cases the flaps rotate clockwise, and when t/T = 0
the flaps are horizontal. As shown in figure 15(a), for relative rigid flaps, Γ n, i.e. pressure
component, dominates the fluid–structure interactions, while the viscous effect basically
does not affect the tumbling of flaps since Γ τ ≈ 0. When Γ n is negative, it is in favour of
the tumbling of the flap (see the lower inset). When Γ n is positive, it hinders the tumbling
(see the upper inset).

As K decreases (see figure 15b), the viscous effect begins to make a significant
contribution to the tumbling of the flap. It seems that the corresponding Γ τ is relevant
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Rigid motion Springy motion U-turn mode
(d) (c) (b) (a)

K 10−1 3 × 10−2 10−2 3 × 10−3 10−3 3 × 10−4 10−4

T 978 978 978 967 910 819 428
�θ/π 0.9474 0.9473 0.9433 0.9460 0.9433 0.9363 0.3336

Table 2. The period T and the swinging amplitude �θ/π for cases of W = 2, Re = 30 with different K;
(a)–(d) are shown in figure 16.

to the deformation of the flap. When Γ n reaches a valley it is favourable for tumbling, but
at the moment Γ τ reaches a significant peak and Γ τ > 0 and it hinders the tumbling.
This unfavourable contribution of Γ τ becomes more significant as K decreases (see
figure 15c,d). For the extremely flexible flaps that adopted a U-turn motion, Γ n is almost
counteracted by Γ τ (see figure 15c). From figure 15(d), we can see that the total torque,
i.e. Γ n + Γ τ , decreases with decreasing K. Therefore, it is expected that the rotational
period would increase as K decreases.

As mentioned above, at a relatively high Re, the COM of the flap fluctuates up and
down near the centre of the channel, and meanwhile the flap swings around the COM due
to the alternative positive and negative torques in one period. Figure 16 shows examples
of instantaneous configurations in one period in the centroid coordinate system. Table 2
shows the period T and the swinging amplitude �θ as functions of K. The swinging
amplitude �θ is defined as the range of θ . From the table, we can see that �θ and T
decrease as K decreases, and we observe a sharp decrease for the case of K = 10−4. The
period is mainly related to the swinging amplitude.

4.4. Stable mode in a narrow channel
In this section, we discuss the stable mode in a narrow channel where the channel width
is comparable to the length of the flap (e.g. W = 1). Due to the confinement of the wall,
there is a high-pressure zone between the flap and the wall; that prevents the flap from
tumbling. The rigid flap would maintain an inclined configuration moving along with
the flow, while for the flexible flap, it bends to a parabolic-like configuration. For a very
flexible flap, e.g. K = 10−3, it becomes a non-symmetric one-end bending configuration
(see figure 17d). For these configurations, the lateral location of the COM is approximately
at the centreline of the channel. The parabolic-like configuration has been experimentally
(see figure 1c in Steinhauser et al. (2012)) and numerically (see figure 5c in Reddig &
Stark (2011)) observed for an individual semiflexible actin fibre, in their studies W ≈ 1.25.
Also Karnis, Goldsmith & Mason (1966) experimentally observed this configuration (see
figure 10 in Karnis et al. (1966)) for a prolate ellipsoid particle with fixed aspect ratio
rp = 78 in a tube Poiseuille flow. In their studies W ≈ 0.9 and K ≈ 3 × 10−3 if we
approximate the elastic modulus E of the rubber according to our definition. Hence, our
result is consistent with that in the literature.

The amount of deformation of flaps can be quantified by minimum radius of curvature
and time-averaged bending energy. For two adjacent elements, the radius of curvature is
defined as (Lindström & Uesaka 2007)

Ri =
∣∣∣∣∣

1
2 (|li,i+1| + |li−1,i|)

arccos(li,i+1 · li−1,i)

∣∣∣∣∣ , (4.7)
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0.6
Re = 30, K = 10–4 Re = 30, K = 3 × 10–4
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Figure 16. Instantaneous configuration (full-body profile) in the centroid coordinate system in one period T for
the cases of W = 2, Re = 30 with different K: (a) K = 10−4; (b) K = 3 × 10−4; (c) K = 10−3; (d) K = 10−1.
The blue and yellow lines represent the clockwise and anticlockwise rotation, respectively, and the time interval
between two adjacent lines is 5Tref .
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Figure 17. Pressure contours for typical cases: (a) K = 3 × 10−1; (b) K = 10−2; (c) K = 8 × 10−3;
(d) K = 10−3 at W = 1, Re = 6.

where li,i+1 is the vector from pi to pi+1. The minimum radius of curvature is defined as
Rmin = min(Ri). It is noticed that, for an extreme flexible flap, Rmin ≈ 0 and for a rigid
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Rmin 〈Eb〉
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Figure 18. (a) The minimum radius of curvature Rmin and (b) the average bending energy 〈Eb〉 as functions
of K at W = 1.

flap, Rmin ≈ ∞. Bending energy is defined as

〈Eb〉 = k
2

∫ L

0

∂2x
∂s2 · ∂2x

∂s2 ds. (4.8)

The bending energy represents the global bending degree of the flap, while Rmin represents
the local bending degree of the flap. Figure 18(a,b) show Rmin and 〈Eb〉 as functions of
K, respectively. As depicted in the figure, Rmin decreases monotonically as K decreases.
Obviously, the bending degree of the flap increases as the flap becomes more flexible.
From figure 18(b), we observe that as K decreases, 〈Eb〉 increases, and the flap gradually
transits from a slight bending (see figure 17a) to a symmetrical configuration (see
figure 17c). When 〈Eb〉 reaches a peak, the configuration of the flap is similar to the
Poiseuille velocity profile. Then 〈Eb〉 decreases monotonically. This change is due to
the transition from global bending to local bending (see figure 17d). In the global bending,
the flap deforms as a whole while in the local bending, the two ends of the flap may deform
independently, similar to the transition from springy motion to U-turn motion in a wide
channel. Also seen from figure 18(a), at a lower Re, Rmin is smaller and the local bending
is more severe. Besides, for cases with lower Re, the local bending appears at a relatively
larger K (see from figure 18b). In other words, a higher Re puts off the appearance of local
bending to a smaller K region. Hence, again we see that fluid inertia tends to straighten
the configuration.

5. Conclusion

In this study, the behaviours of an individual fine flexible flap (rp = 64) in planar Poiseuille
flow are numerically investigated. The effects of Reynolds number Re, bending stiffness
K and channel confinement ratio W are analysed.

When a flexible flap is immersed in a wide channel flow (e.g. W = 4), as K decreases,
we observe rigid motion, springy motion, snake turn and complex motion in sequence.
As Re increases, the borders between two neighbouring modes in the K–Re plane move
leftward, so it seems that the fluid inertia is able to resist the bending and tends to straighten
the flap. When Re exceeds a threshold, the flap stays inclined instead of tumbling. As Re
further increases, the flap adopts swinging mode.

Moreover, we observe that as Re increases, the flap firstly migrates away from the
centreline of the channel and then approaches the centreline. It is similar to the behaviour
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A free flexible flap in channel flow

of a particle in a channel flow (Chen et al. 2012). Our analysis shows that the tumbling
period T is correlated with the local shear rate γ of the COM. Specifically, T is inversely
proportional to the local γ , which increases with |yeq|. Therefore, the variation trends of
T and |yeq| are opposite. In particular, for the rigid tumbling flap, the tumbling period
is correlated with the local shear rate as γ T = C(Rec − Re)−1/2. At a larger Re, the flap
swings rather than tumbles due to the alternately positive and negative torques generated
by shearing and pressure.

For the effect of K, through the analysis of the torque generated by surrounding fluid,
we reveal that a smaller K slows down the tumbling of the flap even if yeq is comparable.
It is noticed that a very flexible flap still tumbles in the U-turn mode when the channel is
wide. Besides this rationale, period T is also affected by the local shear rate γ . At a small
Re, very flexible flaps are always concentrated close to the central region of the channel
(local γ ≈ 0), while relatively rigid flaps are away from the centreline where γ is larger.

As W decreases, the wall confinement effect makes the flap easier to deform and closer
to the centreline. Hence the tumbling period would increase and the swinging mode would
be more common. When W = 2, a flexible flap, e.g. K = 10−4, adopts a U-form swing
mode instead of the U-turn mode at Re = 30. The U-form swing mode usually has a
smaller period due to the small swinging amplitude. When the flap is immersed in a
narrow channel (e.g. W = 1), the flaps are constrained to stay in inclined, parabolic-like
or one-end bending configurations moving along with the flow.

Our study is limited to 2-D flaps with infinite spanwise width, which can only move and
deform in the flow-gradient plane. In the real world, long fibres (rp ≈ 200) may rotate in
a 3-D case (helix case) (Forgacs & Mason 1959). There cannot be an analogue of this in
two dimensions; anyway, most motion modes of a 3-D fibre appear in the flow-gradient
plane (Forgacs & Mason 1959). Therefore, the 2-D restriction is a useful simplification to
help understand the 3-D results. The present finding is expected to shed some light on the
behaviours of a free fibre under the interplay of the fluid inertia, flexibility of the fibre and
channel width.
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Appendix. Validation of forces experienced by a rigid flapping plate with Re = 75

We also simulate a rigid flapping case with Re = 75, A/L = 1.4, α0 = π/4. The problem
description is almost identical to that in figure 3(a) except the prescribed translational and
rotational motions are applied to the middle of the plate instead of its leading edge. The
non-dimensional computational domain size is [−15, 25] × [−15, 15] and the grid spacing
is �x = 0.01L. Both the drag and lift coefficients, i.e. CD and CL, as functions of time are
shown in figure 19. Here CL = Fx/

1
2ρUref

2L, where Fx is the lift force experienced by the
plate. It is seen that present results are consistent with those in the experiments of Wang,
Birch & Dickinson (2004) and the simulations of Eldredge (2007).
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Figure 19. Lift (CL) and drag (CD) coefficients of the rigid flapping plate with Re = 75, A/L = 1.4,
α0 = π/4. The experimental (Wang et al. 2004) and numerical data (Eldredge 2007) are also presented.
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