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ABSTRACT: Droplet evaporation on heterogeneous or patterned surfaces
has numerous potential applications, for example, inkjet printing. The effect of
surface heterogeneities on the evaporation of a nanometer-sized cylindrical
droplet on a solid surface is studied using molecular dynamics simulations of
Lennard-Jones particles. Different heterogeneities of the surface were achieved
through alternating stripes of equal width but two chemical types, which lead
to different contact angles. The evaporation induced by the heated substrate
instead of the isothermal evaporation is investigated. It is found that the whole
evaporation process is generally dominated by the nonuniform evaporation
effect. However, at the initial moment, the volume expansion and local evaporation effects play important roles. From the
nanoscale point of view, the slow movement of the contact line during the pinning process is observed, which is different from
the macroscopic stationary pinning. Particularly, we found that the speed of the contact line may be not only affected by the
intrinsic energy barrier between the two adjacent stripes (ũ) but also relevant to the evaporation rate. Generally speaking, the
larger the intrinsic energy barrier, the slower the movement of the contact line. At the specified temperature, when ũ is less than
a critical energy barrier (ũ*), the speed of the contact line would increase with the evaporate rate. When ũ > ũ*, the speed of the
contact line is determined only by ũ and no longer affected by the evaporation rate at different stages (the first stick and the
second stick).

■ INTRODUCTION

Droplet evaporation on heterogeneous or patterned surfaces
may be observed in numerous applications such as inkjet
printing,1 DNA stretching and DNA mapping,2,3 coating,4 and
nanopatterning.5 Understanding the inherent mechanism of
droplet evaporation on heterogeneous surfaces is helpful to
design functional patterns and produce smart devices.
A significant amount of experimental and theoretical work has

been carried out to understand the behavior or mechanism of
droplet evaporation. Some studies focused on how the contact
line and contact angle change during evaporation, whereas some
highlighted factors influencing the evaporation rate.6−21 The
first theory of the evaporation of a free droplet surrounded by gas
has been proposed by Maxwell about 100 years ago.22 Since
then, relevant theories have been further developed and refined.
For instance, based on the dynamics of the contact line and
contact angle, three different evaporation modes have been
proposed: the constant contact radius (CCR) mode,6,11,19 the
constant contact angle (CCA) mode,9,11,16,19 and the mixed
mode.11,15,19 In the CCR mode, the contact line is pinned and
immobilized on the solid substrate and contact area remains
constant, which result in a diminishing contact angle during
evaporation. In the CCA mode, the contact line keeps on
receding toward the center of the droplet, whereas the contact
angle remains unchanged. In the mixed mode, both the contact
line length and contact angle change during evaporation, which
usually takes place at the end of evaporation.

The dynamics of the contact line and contact angle may be
found more complicated due to the surface morphology and
chemical composition.23−40 The first molecular dynamics (MD)
simulations for the evaporation of nanodroplets on chemically
stripe-patterned surfaces under a constant-temperature con-
dition were carried out byWang andWu.35 The evaporation was
achieved by extracting the liquid molecules from the droplet
surface; in other words, the evaporation rate was a specified
constant in their simulations. The pinning−depinning phenom-
enon (CCR−CCA transition) was observed during the
evaporation with different surface morphologies. Xu et al.11

experimentally studied the evaporation of sessile water droplets
on micropillared superhydrophobic surfaces. It was found that
with the decrease in the solid fraction the CCR mode is
shortened and the CCA mode is lengthened.
There are always concerns about critical factors that result in

the transition from CCR to CCA mode during the evaporation.
In recent years, pinning and depinning forces19,41 or the energy
barrier17,18,42 has been discussed widely to interpret evaporation
behavior and the contact line motion. For example, Orejon et
al.17 investigated the dynamics of the three-phase contact line of
evaporating droplets on different surfaces with varying substrate
hydrophobicities. According to their opinion, the depinning of
the contact line on rough surfaces occurs when the intrinsic
energy barrier due to surface roughness can be overcome. Chen
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et al.19 studied the contact line dynamics during droplet
evaporation on microstructured surfaces. In their work, the
pinning force Fp and the depinning force Fd were formulated and
it was claimed that pinning is caused by Fp > Fd. However, these
two explanations originated from a macroscale experiment and a
microscale picture of pinning is still necessary for a better
understanding.
Recently, based on the MD simulations, Zhang et al.43

proposed a nanoscale explanation for pinning during evapo-
ration, i.e., the pinning should be interpreted as a drastic
slowdown of the contact line dynamics during the transition
between two contact angle boundaries. However, in the
pinning−depinning mechanism, the stick speed and the factors
that would influence the speed are still not very clear. Besides, in
the study of Zhang et al.,43 the evaporation was also realized by
removing molecules from the system at a given rate instead of
specifying a heated substrate. In this work, the MD simulations
for droplet evaporation on chemically stripe-patterned surfaces
were carried out, and in our simulations, the substrate was
heated. We particularly focused on pinning−depinning behavior
of evaporation and the thermal effect due to the heated
substrate. First, the thermal effect will be discussed compre-
hensively. Second, from the point of view of atomic-scale
interactions, it is found that the stick speed is not only related to
the intrinsic energy barrier but also related to the evaporation
rate.
In our simulations, for convenience, a cylindrical droplet was

used in our simulations. The heterogeneity of the surface was
modeled through alternating stripes of equal width of two types.
In Numerical Methods, the details about the model and
methods used in our simulations are presented. In Results and
Discussion, the wetting properties, evaporation patterns,
thermal effects, stick speed, and pinning mechanism will be
discussed. Finally, in Summary and Conclusions, the concluding
remarks are presented.

■ NUMERICAL METHODS
The simulation setup for evaporation of a nanometer-sized cylindrical
droplet on a heated substrate is shown in Figure 1. There are three

phases in the systems, i.e., the liquid droplet surrounded by its gas and
the solid substrate. Lennard-Jones atoms with the parameters of argon
were used to model the fluid phase because this atomic fluid has been
extensively studied both experimentally and theoretically. To simplify
the system, Lennard-Jones atoms were employed to model the solid
substrate. The total number of argon atoms for the liquid and gas phases
was 11115. Initially, these atoms were distributed on a cubic lattice with
a density close to the liquid density. The solid substrate was modeled as
an fcc lattice containing six layers of 1064 atoms each. The solid

substrate was placed at the bottom of the computational domain under
the cubic lattice containing the liquid atoms.

The 12-6 Lennard-Jones potential [U(rij)] was used to model the
interactions between the atoms in the systems43
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Most parameters in Zhang et al.43 were adopted here. The liquid−liquid
interaction parameters were σ1 = 0.3405 nm and ε1 = 0.992 kJ/mol, and
the solid−solid interactions parameters were σs = 0.4085 nm and εs =
9.92 kJ/mol. The mass of the liquid atoms wasm = 6.63× 10−26 kg. The
solid atoms were 10 times heavier than the liquid ones. The
temperature of the liquid and gas was T = 119.8 K, and its normalized
value was T* = kBT/εl = 1. The fluid property is close to that of Ar. The
time unit was τ = (mσ2/ε)1/2.

Besides the fluid parameters, we have to specify the energy
parameters for the fluid−solid interaction. In the following descriptions,
all quantities are given in reduced units with respect to the Lennard-
Jones parameters for the liquid particles. It is noted in our descriptions,
if the energy parameter for fluid−solid interaction was εsl* = n × 10−1,
the interaction strength was named “En”, where n is an integer. Because
the substrate consists of stripes A and Bwith equal width (Figure 1), the
fluid−solid interaction strength for the neighboring two stripes may be
different. Here, when we discuss the evaporation pattern and thermal
effect, the fluid−solid A and fluid−solid B interactions εsl*were specified
to be 0.4 and 0.7, respectively. In other words, the interaction strengths
are E4 and E7, respectively. In this way, a wetting contrast between the
neighboring stripes was achieved. Furthermore, the solid−liquid
distance parameter was εsl* = 1.1. From our results, the equilibrium
contact angles for E4 and E7 are θA = 119° (hydrophobic) and θB = 79°
(hydrophilic), respectively at T* = 0.67.

In our simulation, theNVT ensemble was used, where the Berendsen
thermostat was chosen to control the temperature with a coupling time
of 0.25τ. Note that the thermostat was applied only to the substrate
atoms to mimic the heating process. The dimensions of the
computational domain in the x, y, and z directions were 144.4σl,
13.3σl, and 283.2σl, respectively, where z is the surface normal. Periodic
boundary conditions in the three directions of space were applied in all
simulations. The simulations were carried out using LAMMPS.44 The
time step and the cutoff were set to be 0.0025τ and 4.4σl, respectively.

Initially, in the computational domain, there was no gas phase in the
computational domain and all fluid particles were placed on a cubic
lattice with a density close to the liquid density. At the beginning, the
temperature of the whole system, including the substrate, was T* =
0.67. The system relaxed to its equilibrium state where a droplet
surrounded by a vapor phase was formed and the temperature
everywhere was the initialT*. Furthermore, at the equilibrium state, the
droplet size no longer changed. The relaxation stage typically took
about 12 500τ. After the system reached the equilibrium state, the
droplet was heated by suddenly increasing the temperature of the
substrate to T* = 0.91, yielding droplet evaporation. Besides during this
process, at least 15 million time steps (37 500τ) were performed to
collect enough data for further analysis of the evaporation properties.
The size of the droplet and its variation upon evaporation were
obtained by means of a cluster analysis. Two atoms were considered to
be part of the same cluster if the distance between them was smaller
than 1.5σl.

In our simulations, the stripe width effect on evaporation was
investigated. The width of each stripe was set to 1.9σl, 6.65σl, 11.4σl, and
24.7σl. The corresponding systems are named d2, d6, d12, and d24,
respectively. For the d12 and d24 systems, our results show that there is
not only the CCR but also the CCA mode. For the d2 system, there is
only the CCA mode. These results are consistent with those in ref 43.
However, in this article, we particularly focused on pinning−depinning
behavior of evaporation. In the d6 system, there is only the CCR mode
and it includes pinning−depinning behaviors. Hence, the results of the
d6 system are taken as examples in our analysis.

Figure 1. Schematic diagram of a cylindrical droplet on a substrate with
alternating A (high equilibrium contact angle θA) and B (low
equilibrium contact angle θB) stripes. The thermostat was applied to
the substrate atoms to mimic the heating process. Periodic boundary
conditions are applied to all three directions.
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■ RESULTS AND DISCUSSION

Density in Equilibrium State. First, we would like to
validate our simulations. A simulation of a d6 system at a
constant temperature T* = 0.67 (without heating) was
performed. In the isothermal case, the initial condition is
mentioned at the end of the above section. At the equilibrium

state, the droplet is surrounded by the vapor phase and the
droplet volume becomes constant. The density contour of the
equilibrium droplet and the mass−density distribution along x =
−10σl, which passes through the center of the cylindrical
droplet, are shown in Figure 2a,b, respectively. We suppose that
the droplet is a cap of a perfect cylinder, then the location of the

Figure 2. (a) Density contour of the equilibrium droplet, (b) mass−density along x =−10σl, which passes through the center of the cylindrical droplet,
as a function of z. The empty circles denote the simulation data. The red solid line represents the data fitting. The system is d6 at T* = 0.67.

Figure 3. (a) Snapshots of the droplet evolution during the evaporation at a substrate temperature T* = 0.91 for system d6: (a) t = 0τ, (b) t = 13 750τ
(jump), (c) t = 14 500τ, (d) t = 26 500τ (jump), and (e) t = 27 000τ.

Figure 4.Quantity analysis for droplet evolution in the d6 system (substrate temperature T* = 0.91). (a) Locations of the right TPCL (black line) and
left TPCL (blue line) during the evaporation. (b) Contact angle θ (black line) and contact line radius RCL (blue line) as functions of time. The
beginning and end of the “jump” phase are denoted by the two vertical dash-dotted purple lines. All of the other dashed lines are the data fitting curves.
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cylinder’s center can be obtained from fitting the droplet
isodensity contour by a circle. It is seen from Figure 2b that there
are large fluctuations of mass−density distribution in the liquid
near the liquid−solid interface.
The fluctuations are attributed to the strong interaction

between the solid and liquid atoms that are close to the solid.
The result is consistent with the observations in ref 15. It is also
seen that the density distribution becomes much smoother
when z≈ 5.0σl. The mass density decreases sharply at z≈ 26.0σl,
indicating the location of the liquid−vapor interface. Through
data fitting, we obtained a hyperbolic tangent curve

ρ ρ ρ ρ ρ= + − −
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where ρl and ρg are liquid and vapor mass densities, respectively.
z0 = 28.0σl is the height of the droplet, and the obtained liquid−
vapor interface thickness is ds = 2.5σl. It is seen that excluding the
points of z < 5.0σl the fitted curve agrees well with the data.
Evaporation Pattern. In this section, the simulations for

systems d6 with the heated substrates were performed. The
setup has been mentioned in section “Numerical Methods”. The
evolution of the droplet during the evaporation is shown in
Figure 3, and the locations of the right and left three-phase

contact line (TPCL) during the evaporation are shown in Figure
4a. From Figure 3a, it is seen that the contact lines sit on
hydrophobic stripes A. At the beginning, due to evaporation, the
contact lines first move toward each other gradually (t < 13 600τ
in Figure 4a) and then cross the A→ B boundary. When t ≈ 13
750τ, the droplet suddenly shifts to the left (see Figures 3b and
4a). In a short period (13 750τ < t < 14 500τ), the left and right
contact lines both move left and quickly cross the B → A
boundary. At t ≈ 14 500τ, both contact lines are close to the AB
boundaries (see Figure 3c). Later (14 500τ < t < 27 000τ), the
above process is repeated again and finally the droplet
completely evaporates in a stripe B.
To quantify the evolution of the droplet during the

evaporation, the contact angle (θ) and the contact line radius
(RCL) as a function of time are shown in Figure 4b. It is seen that
according to the variation features of θ and RCL there are four
distinct sequential phases during the evaporation, i.e., first stick,
first jump, second stick, and second jump phases. At the
beginning of the first phase, both left and right contact lines
interact with the AB boundaries. It is seen from Figure 4b that in
the first phase the evaporation of the droplet almost follows the
CCRmode because RCL almost remains constant. In this stage, θ
continuously decreases from θ ≈ θA to θ ≈ θB. It can be
understood as follows. At the beginning of the stage, we have θ≈

Figure 5.Geometry evolution of the droplet and temperature differences as functions of time in the d6 system with substrate’s temperature T* = 0.91.
(a) Normalized volumeV (green), base diameter L (red), droplet heightH (black), and contact angle θ (blue) as functions of time. For comparison, all
parameters have been normalized by their initial quantities. The curves are truncated at 26 000τ because after that moment, only a small amount of
residue was left on the substrate. The inset shows the zoom-in view for t < 2000τ. (b) Location of the droplet’s mass center in the (x,z)-plane during the
evaporation. The red point denotes the moment of truncation. (c) Average temperature evolution of the vapor and liquid phase. The green long-dash
line indicates the substrate temperature T* = 0.91. (d) Reduced temperature difference (ΔT = Tlayer− Tdroplet) between the average temperature of the
“absorbed” layer with a thickness of 3σl in the base of the droplet and the average temperature of the rest of the droplet (shown as the inset figure) as a
function of time. The blue solid line and red dash line represent the simulation data and the data fitting. The green long-dash line denotes ΔT = 0.
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θA because the contact lines sit on hydrophobic stripe A and
interact with the A stripes. While the contact radius almost
remains constant as a result of the pinned contact lines, the
contact angle would decrease due to the continuous
evaporation. It is also seen that there is a slight decrease of the
contact radius when the contact angle decreases from θ≈ θA to θ
≈ θB. From Figure 4a, it is seen that the corresponding time rate
of change of the contact radius is very small but almost linear.
Finally, after the contact lines cross the A → B boundaries, the
contact lines are all located in the B stripe and θ≈ θB. The speed
of the TPCL is so small that the movement is usually neglected.
Hence, the contact lines are described as pinning at the AB
boundaries, and this phase is called the first stick phase. In the
following section “Stick Speed and PinningMechanism”, we will
derive a formula to describe the contact line dynamics during the
stick phases.
In the second phase, which is called jump, RCL and θ suddenly

decrease and increase, respectively. At t ≈ 13 600τ, the droplet
cannot maintain the existing shape as the evaporation continues
due to the depinning force19 and it would jump to its next
equilibrium position. In this stage, θ quickly increases from θ ≈
θB to θ ≈ θA. It is noted that θ in the jump phase presented in
Figure 4b is the average value of the left and right contact angles.
Later, the “stick−jump” process is repeated again. After the
second jump (t ≈ 27 000τ), θ is larger than θA. This can be
attributed to the significant small droplet. First, for a very small
droplet, the interfacial tensions are expected to become different
and the use of Young’s contact angle equation is questionable.
Second, the calculation error of the contact angle may be
amplified when the volume of the droplet is small.
Thermal Effect. In this section, the thermal influence on the

droplet evaporation is discussed in detail. The thermal influence
due to the temperature difference between the substrate and the
droplet may be decomposed into three factors, i.e., volume
expansion, local evaporation near the three-phase contact line,
and nonuniform evaporation across the liquid−vapor interface.
The volume expansion is due to the temperature rise of the
droplet. The local evaporation refers to the fast evaporation near
the three-phase contact line caused by the local high
temperature near the base of the droplet. Also, the nonuniform
evaporation across the liquid−vapor interface is mainly caused
by the unsaturated vapor pressure.
Here, we will elucidate the competition of the three factors.

The geometry evolution of the droplet and temperature
differences as functions of time are shown in Figure 5. From
the inset in Figure 5a, it is seen that when t < 660τ the contact
angle θ, droplet volumeV, and the heightH increase rapidly with
time, whereas the base diameter L decreases rapidly. It is noted
that the substrate temperature is set to be T* = 0.91 at t = 0,
which is significantly larger than the environmental temperature
T* = 0.67. Hence, there is a large heat flux transported from the
substrate to the droplet when t < 660τ, which leads to the rapid
rise of the droplet’s average temperature as shown in Figure 5c.
The volume expansion is dominant at this stage, which would
result in the increase of V and H. However, meanwhile L
decreases at first and then almost keep constant at this stage. In
this way, θ increases at the stage.
The variation of L at t < 660τ can be understood as follows. In

the stage, when T* of the substrate suddenly increases from 0.67
to 0.91, there may be a temperature gradient along the z
direction. Here, ΔT = Tlayer − Tdroplet is used to quantify the
temperature difference between different parts of the droplet.
Specifically, Tlayer is the average temperature of the absorbed

layer, which is the closest layer to the substrate with a thickness
of 3σl, and Tdroplet is the average temperature of the rest of the
droplet. The evolution of ΔT is shown in Figure 5d. From the
figure, we can see that there is a peak withΔT≈ 0.05 at the initial
moment. On the one hand, the volume expansion makes L
increase. On the other hand, the atoms with higher kinetic
energy would evaporate with higher probability from the liquid−
vapor interfacial region. Therefore, the evaporation close to the
three-phase contact line is faster than that in another region at T
< 660τ. In this way, the local evaporation will make L decrease.
Hence, the effects of the volume expansion and local
evaporation on L are opposite. At t < 340τ, the local evaporation
effect may be stronger than the volume expansion effect and the
base diameter shrinks slightly. At 340τ < t < 660τ, the local
evaporation effect is weakened and the expansion effect is
enhanced. During this period, the two effects are balanced and
approximately L is constant. At 660τ < t < 1100τ, the expansion
effect may bemore significant than the local evaporation effect. L
increases a little bit, but it is smaller than the initial length L0. In
other words, the variation of L is the competition result of the
volume expansion effect and the local evaporation effect.
Figure 5c,d shows that when t > 1100τ the droplet

temperature reaches T* ≈ 0.8 and ΔT < 0.02. Thus, the effects
of the volume expansion and local evaporation diminish
gradually. However, due to the nonuniform evaporation, V, H,
L, and θ all decrease rapidly (see 1100τ < t < 13 600τ in Figure
5a). When the contact angle decreases to θB at t ≈ 13 600τ, the
contact line is depinned and the base diameter “jumps” from L≈
0.8 to 0.55, which yields an increasing θ andH at the moment. It
is noticed that after jumping θ ≈ θA is almost achieved.
Figure 5b shows the location of the droplet’s mass center in

the (x,z)-plane during the evaporation. In the pinning process (t
< 13 600τ), the horizontal location of the droplet’s mass center
substantially remains unchanged but the vertical location
decreases rapidly, except at the initial stage (t < 660τ). At the
initial stage, the droplet’s mass center would slightly rise because
H increases a little bit at t < 660τ (see Figure 5a). In the jump
process, the height of the droplet’s mass center will increase
slightly and the horizontal jump distance is approximately equal
to the stripe width 6.65σl.
From the above analysis, we found that the whole evaporation

process is generally dominated by the nonuniform evaporation
effect and the time span of the effect reaches 104τ. The volume
expansion and local evaporation effects only play important roles
at the initial moment. Also, the time span of their impact is 1 to 2
orders of magnitude lower than that of the nonuniform
evaporation effect.

Stick Speed and PinningMechanism. In our research, we
are particularly concerned about the pinning phenomenon. As
we know, in the CCRmode, θ decreases with time, whereas L or
RCL remains constant due to the pinned contact line. In contrast
to the usual CCR mode, the result in ref 43 has shown that
pinning should be interpreted as a drastic slowdown of the
contact line dynamics rather than a complete immobilization of
it during a transition between two contact angle boundaries at
the nanoscale. Our result also confirmed this point.
In this section, we will focus on stick speed in the stick−jump

evaporation mode in the d6 system at the nanoscale. Here, the
stick speed is quantified to describe how slow the contact line
moves in the stick process. The intrinsic energy barrier would be
used to quantify the constraint degree of pinning in the jump
process. Therefore, the stick−jump evaporation mode links the
movement of the contact line and the pinning phenomenon.
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The schematic diagram of the stick−jump evaporation mode is
shown in Figure 6. Initially, the base diameter and contact angle

of the droplet are L0 and θH (θH = θA), respectively. During the
time interval τ1, the contact lines move slowly with a stick
distance ds, and the droplet evaporates in the CCR mode until
the contact angle reaches θL (θL = θB). In the next time interval
τ2, the droplet jumps to a new geometry with contact angle θH.
This stick−jump process is repeated until the droplet completely
evaporates in a stripe B. In this stick−jump mode, we can see
that the contact line moves with a stick distance ds during the
odd time interval τodd (i.e., τ1, τ3, ...) and meanwhile there is a
contact angle change δθ = θH − θL, which is referred to as
hysteresis contact angle. In this part, we will study the stick speed
(us = ds/τodd) and the time rate of change of contact angle (δθ/
τodd) in the evaporation process.
If the contact line is pinned during evaporation, the contact

angle would increasingly deviate from the equilibrium value,
resulting in an excess Gibbs free energy. Shanahan42 presented a
theory in which the pinning of the contact line is modeled as an
energy barrier. In this section, the theory is applied to the
situation of a two-dimensional cylindrical drop. We start from

expressions for the droplet volumeV, the liquid/vapor interfacial
area ALV, and the liquid/solid interfacial area ASL
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contact radius, and Ly is the length of the cylindrical drop in the y
direction. Therefore, for a droplet at a constant volume, we have
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The important contributions to the Gibbs free energy of the
cylindrical drop come from the interfacial terms
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where γLV, γSL, and γSV are the liquid−gas, solid−liquid, and
solid−gas surface tensions, respectively. The term involving γSL
and γSV is simplified using Young’s equation for the equilibrium
contact angle θ0. It is noticed here that θ0 and r0 are supposed to
be the droplet’s contact angle and radius at the equilibrium state,
respectively. The corresponding contact angle and radius at the
nonequilibrium state are θ = θ0− δθ and r = r0 + δr, respectively.
Using eqs 6 and 7 and the Taylor expansion, the following
equation is obtained

δ
θ θ θ

θ θ θ
δθ γ= − ≈

−
−
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sin cos
( ) y0

0 0 0

0 0 0

2
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(8)

where δG is the excess Gibbs free energy of the nonequilibrium
droplet, compared to the equilibrium state. Here, the Gibbs free
energy (G) and excess Gibbs free energy (δG) are normalized by
γ VL2 yLV , i.e.,

Figure 6. Schematic diagram for the stick−jump evaporation mode. A
droplet on a hydrophobic surface with initial base diameter L0 and
contact angle θH = θA evaporates in the CCRmode during time interval
τ1. When the contact angle reaches θL = θB and the base diameter
becomes L1, the droplet jumps to retrieve θH (the black semicircle). A
jump during time interval τ2 is much shorter than that during τ1. This
process is repeated with evaporation in the CCRmode until the droplet
completely evaporates in a stripe B. ds = L0− L1: stick distance, δθ = θH
− θL: hysteresis contact angle.

Figure 7. (a) Normalized Gibbs free energy and (b) normalized excess Gibbs free energy as functions of θ. The equilibrium contact angle θ0 increases

from 30 to 150°with a 30° increment. The triangles in (a) and (b) denote the points where =
θ

0gd
d

and =δ
θ

0gd( )
d

. The solid lines represent the physical

evaporation process, in which θ is always smaller than θ0.
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From eqs 9 and 10, we can see that the normalized Gibbs free
energy (g) and normalized excess Gibbs free energy (δg) are
functions of θ0 and θ. g and δg as functions of θ for a specific θ0
are shown in Figure 7a,b, respectively. In the evaporation
process, θ is always smaller than θ0 and therefore δθ = θ0 − θ is
always positive. Hence, only the solid lines in the region θ < θ0 in
Figure 7a,b represent a physical process. Figure 7a shows that for
a specific θ0, as θ increases, g decreases first and then increases a
little bit. Since θ0 corresponds to the equilibrium contact angle,
of course, we have [dg/dθ]θ =θ0 = 0 in Figure 7a. Figure 7b shows
δg as a quadratic function of θ (δθ = θ0 − θ). For a specific θ0, at
the equilibrium state with θ = θ0, we have δg = 0.
In our descriptions, θ0 = θH, and at θ = θL, the corresponding

δg is exactly the intrinsic energy barrier of the system ũ, which is
related only to the neighboring stripes’ fluid−solid interactions.
In the evaporation process, when δg > ũ, there is sufficient

energy available to overcome the hysteresis barrier effect and the
contact line would jump to its next equilibrium position with θ =
θH.
To explore the relationship between stick speed and intrinsic

energy barrier, we fix stripe A with E4 (εsl* = 0.4 and
corresponding θH = 119°) and set stripe B’s fluid−solid
interaction strength from E4 to E9. In the cases with E5, E6,
..., E9, the corresponding θL < θH. Different solid−liquid
interaction strengths (εsl*) would result in different contact
angles. First, the wetting characteristics of a droplet on a
homogeneous substrate with a specified εsl* can be obtained
through simulations. The obtained equilibrium contact angle θ
as a function of εsl* is shown in Figure 8a. It is seen that θ
decreases linearly with εsl*. Second, from Figure 8a, a specified εsl*
of stripe B, for example, εsl* = 0.5, would lead to an equilibrium
contact angle, which corresponds to θL in our further simulation
of d6 heterogeneous system. Then, δθ = θH − θL can be
obtained. Using δθ and θ0 = θH, δg, i.e., ũ can be calculated from
eq 10. In this way, the intrinsic energy barrier of the system ũ as a
function of εsl* can be obtained, which is shown in Figure 8b. It is
seen that the stronger the stripe B’s hydrophilicity the larger the
intrinsic energy barrier.
The stick speeds of the two “stick” processes obtained from

our simulations are shown in Figure 4b. The two stick processes

Figure 8. (a) Contact angle (θ) as a function of the liquid−solid interaction (εsl*). (b) Intrinsic energy barrier ̃u( ) as a function of the liquid−solid
interaction (εsl*) when the equilibrium contact angle θ0 = θH = 119°.

Figure 9. (a) First stick speed us1 and the second stick speed us2 as functions of intrinsic energy barrier ̃u( ). (b) Time rate of change of contact angles uc1
and uc2 in the first and second stick period, respectively as functions of ̃u( ). (c) Normalized number of liquid atoms as a function of time. The direction
of the arrow in the figure indicates the increase of the intrinsic energy barrier, and the left and right sides of the arrow approximately represent the first
and second stick processes. For comparison, all parameters have been normalized by their initial values.
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during τ1 and τ3 are referred to as the “first stick” and “second
stick” (see Figure 6). The first and second stick speeds us1 and
us2, respectively, as functions of ũ are shown in Figure 9a. When
both stripes’ strength is E4, it actually represents a homogeneous
substrate and the evaporation mode is CCA. From Figure 5a, we
have seen usually for the heterogeneous cases there is a very
short jump period τ2 between the first stick [the period τ1, i.e., t
∈ (0, 13 600)τ] and the second stick [the period τ3, i.e., t ∈ (14
500, 26 000)τ]. For the homogeneous case, the jump process
would disappear (τ2 = 0). However, to compare with
heterogeneous cases, we artificially divide the homogeneous
evaporation process (t ≈ 30 000τ) into two stick processes with
equal periods, i.e., τ1 = τ3≈ 15 000τ. For this homogeneous case,
the speeds of its contact line us1 and us2 actually mean slip speeds
during the two artificial stick processes (see Figure 9c).
From Figure 9a, we can see that as ũ increases us1 and us2

initially decrease rapidly and then slow down. Generally
speaking, the contact line’s moving speed decreases with
increasing ũ. This is due to the fact that ũ indicates the
restriction strength of the heterogeneous substrate to the
contact line. Actually, the stick speed is basically in the
magnitude of about 10−2 m/s in dimension for a nanodroplet,
which is a relatively large value on the macroscopic scale. That
may be due to the scaling effect.45 In the following text, first we
would like to theoretically explain why the contact line’s moving
speed decreases with ũ increasing.

The number of liquid phase particles in our simulation is
exponentially decayed over time, i.e.,

= −N N e pt
L 0 (11)

where N0 is the initial number of liquid atoms before the
temperature of the substrate increases and p > 0 is related to the
contact angle θ. A detailed derivation of eq 11 is given in
Appendix A.When the substrate is homogeneous, we have p∝ θ.
For the heterogeneous substrate, p∝ (θH− θ) and ũ∝ (θH− θ)2

(in this study, θH = 119°). Hence, we can obtain p2 ∝ ũ. The
attenuation index p2 as a function of the intrinsic energy barrier
ũ, i.e., p2 = h(ũ) is shown in Figure 10b. Using eqs 3 and 11, and
ignoring the change of the density during evaporation, we can
obtain
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where r0 = L0/2 and r1 = L1/2. The second term( )2ln r
r
0

1
on the

right-hand side of eq 12 indicates the scale effect. At the

Figure 10. (a) Saturated number of gas atoms as a function of the substrate’s temperature when the system is in equilibrium. (b) Attenuation index p2

as a function of intrinsic energy barrier ̃u( )when θH = 119°. (c) pτ1 as a function of intrinsic energy barrier ̃u( )when θH = 119°. (d) The first stick speed
us1 as a function of intrinsic energy barrier ̃u( ) when θH = 119°. The scattered points are simulation results, and the lines in (c) and (d) are analytical
predictions.
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macroscale, the term ln r
r
0

1
is very close to zero ≈( )1r

r
0

1
and can

be ignored because r0 − r1 ≤ 7σl and usually r0 > 103σl.
43

However, at the nanoscale, the term ( )ln r
r
0

1
is on the order of

10−1 in our simulations; therefore, for simplicity =ln 0.1r
r
0

1
is

adopted in the analytical prediction. pτ1 and us1 as functions of
intrinsic energy barrier ũ are shown in Figure 10c,10d,
respectively. The dashed line in Figure 10d shows that the
stick speed decreases dramatically approximately from 10 ×
10−4σl/τ to 1 × 10−4σl/τ, which is close to 0. Hence, it is
reasonable to assume that the contact line is completely
stationary in the macro CCR model. However, at the nanoscale,
it is seen that the stick speed decreases more slowly. The
analytical prediction at the nanoscale qualitatively agrees well
with the simulation result.
From Figure 9a, we also found that the first stick speed us1 is

generally larger than the second stick speed us2 at a small ũ. For
example, at ũ = 0, us1 and us2 are approximately 10.2 × 10−4σl /τ
and 4.6 × 10−4σl /τ, respectively. When the substrate is
homogeneous, using eqs 3 and 11, and ignoring the change of
the density during evaporation, we have the evaporation rate

− N
t

d
d

L and the stick speed us as

− = −N
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d
d
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0 (14)

θ
ρ θ θ θ

= − =
−

−i

k
jjjjjj

y

{
zzzzzzu

r
t

p
N

L
2d
d

sin e
( sin cos )

pt

y
s

0
2 1/2

(15)

Furthermore, we get us as a function of the evaporation rate and
contact angle
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When the substrate is homogeneous (θ is a constant), us is

only a function of evaporation rate − N
t

d
d

L . Furthermore, the

larger the evaporation rate, the faster the contact line moves.
However, when the substrate is heterogeneous, the contact angle
θmay also change during droplet evaporation. us depends on

θ
t

d
d

and − N
t

d
d

L simultaneously. Our results show that the difference

between the first stick and the second stick will be smaller when
ũ becomes larger. From Figure 9a,c, we can see that when ũ > ũ*,
where ũ* ≈ 0.11, us1 ≈ us2 although the evaporation rates at the
first stick and the second stick are different. That may suggest
that the moving speed of the contact line when the droplet
evaporates from the same heterogeneous surface at the same
temperature T* is no longer relevant to the evaporation rate
when ũ > ũ*.
The time rate of change of contact angle uc1 and uc2 as

functions of ũ are shown in Figure 9b. It is seen that uc1 and uc2
generally increase with increasing ũ. The larger the intrinsic
energy barrier, the faster the contact angle changes. The possible
reason is that at the nanometer scale, as the stripe B becomes
more hydrophilic (ũ increases), the evaporation rate becomes
faster (see Figure 9c). Because the contact line’s moving speed is
slower as ũ increases, to match the faster evaporation rate, the
time rate of change of contact angle correspondingly becomes
larger.

■ SUMMARY AND CONCLUSIONS
The evaporation of a cylindrical nanodroplet consisting of
Lennard-Jones particles from heterogeneous surfaces was
studied by molecular dynamics simulations. The surface consists
of alternating stripes of equal width but two chemical types,
which lead to different contact angles.
First, we studied the evaporation patterns of the d6 system.

Besides, our results confirmed that pinning is a dynamic process
with a slow movement of the contact lines from the nanoscale
point of view.
Second, we studied the thermal effect on the shape of the

droplet during the evaporation process. The thermal effect can
be decomposed into three factors: volume expansion, local
evaporation near the three-phase contact line, and nonuniform
evaporation. The whole evaporation process is found to be
generally dominated by the nonuniform evaporation, and the
time span of the effect is approximately 104τ. The volume
expansion and local evaporation effects only play important roles
at the initial moment. Also, the time span of their impact is 1 to 2
orders of magnitude lower than that of the nonuniform
evaporation effect.
Finally, we used the stick−jump evaporation mode at the

nanoscale to explore the dynamics and mechanism of pinning.
From the nanoscale point of view, the slow movement of the
contact line during the pinning process is observed. Our results
show that the stick speed may be influenced by the intrinsic
energy barrier ũ and the evaporation rate. Generally speaking,
the larger the intrinsic energy barrier, the slower the contact line
moves. When the contact line moves slower, the contact angle
changes faster.
At the specified temperature, when ũ < ũ*, where ũ* is the

critical energy barrier, the speed of the contact line would
decrease with the decreasing evaporate rate. Since the
evaporation rate decays exponentially during evaporation, the
speed of the second stick is generally smaller than that of the first
stick. However, when ũ > ũ*, the contact line speed is no longer
relevant to the evaporation rate at different stages (the first stick
and the second stick).

■ APPENDIX A
Based on the diffusion equation11,12,46

∫= = − ∇
N m

t
M

t
D c S

d( )
d

d
d

dL L
(17)

wherem andML are themass of a liquid atom and themass of the
liquid phase, respectively; t is the evaporation time; NL is the
number of the liquid-phase atoms; D is the diffusion coefficient
of the vapor; c is the vapor concentration; and S is the surface of
the liquid phase. It is seen that the droplet evaporation rate is
proportional to the concentration difference. Then, we have

∝ ∇ ∝ −
N
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where cT91, Nsat_T91, and Vvap_T91 are the saturated vapor
concentration, the saturated number of the vapor-phase atoms,
and the volume of the vapor phase, respectively, when the
system is at the equilibrium state (T* = 0.91). c0,Ng, andVvap are
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the vapor concentration, the number of the vapor-phase atoms,
and the volume of the vapor phase during evaporation,
respectively, and the NT is the total number of the vapor- and
liquid-phase atoms. Ignoring the change of the volume of the
vapor phase during evaporation and Vvap ≈ Vvap_T91, we have

= − [ − − ]_
N
t

p N N N
d
d

( )L
sat T91 T L (20)

| = − | = −= _ =∞ _N N N N N N,t tL 0 T sat T67 L T sat T91 (21)

where p is the attenuation index and p > 0 and Nsat_T67 is the
saturated number of the vapor-phase atoms when T* = 0.67.
Equation 21 shows the initial (t = 0) and final (t = ∞)
conditions. The solution of the ordinary differential equation eq
20 is

= − + −_ _ _
−N N N N N( ) ( ) e pt

L T sat T91 sat T91 sat T67 (22)

The number of the saturated vapor-phase atoms is a function of
the temperature47

= −
*

+N
B

T
Elg sat (23)

whereNsat is the saturated number of the vapor -phase atoms and
B and E are constants. The saturate number of the vapor-phase
atoms as a function of the substrate’s temperature at an
equilibrium state is shown in Figure 10a. From Figure 10a, it is
seen that when the substrate’s temperature is 0.91 the saturated
number of the vapor-phase atoms is approximately 11 115,
which is the sum of the number of the liquid−vapor atoms in our
simulations (Nsat_T91 ≈ NT) and NT − Nsat_T91 ≪ Nsat_T91 −
Nsat_T67. Thus, the solution of eq 20 can be written

= −N N e pt
L 0 (24)

where N0 ≈ Nsat_T91 − Nsat_T67 is the initial number of the liquid
atoms at t = 0.
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