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ric models for natural objects, numerous eff orts have been 

made to harness their mathematics for solving outstanding prob-

lems in hydrology. Fractals are inherently scaling. Th us, with the 

current interest in upscaling hydraulic properties, fractal models 

are being reexamined as viable descriptors of soils, aquifers, and 

reservoir rocks. Several theoretical investigations of the intrinsic 

permeabilities of fractal porous media have been presented in the 

past few decades. Th ese are discussed below as a preface to the 

derivation of two new analytical models based on probabilistic 

fractal approaches. 

Early studies attempted to formulate expressions for per-

meability based on the Kozeny–Carman equation. Th e results 

suggested a general relationship between intrinsic permeability (k) 

and porosity (φ) of the form k ∝ φλ, where λ is a scaling exponent. 

Diff erent researchers found various expressions for the exponent λ 

as a function of the pore or mass fractal dimension (e.g., Jacquin 

and Adler, 1987; Muller and McCauley, 1992). Gimenez et al. 

(1997) reviewed this research and developed their own intrinsic 

permeability model incorporating the eff ects of tortuosity and 

connectivity into the exponent λ. Th e Kozeny–Carman equation 

was also analyzed by Xu and Yu (2008), who suggested a theoreti-

cal relationship for the Kozeny–Carman constant as a function of 

porosity, pore fractal dimension, and tortuosity.

Adler and Th overt (1993) performed extensive numerical 

experiments by solving the Navier–Stokes equations for fl ow in 

one-, two-, and three-dimensional fractal structures. Th eir results 

were consistent with a generalized Kozeny–Carman equation for 

one-dimensional fl ow in a “stretched” Sierpinski carpet. Th e 

scaling relationship between k and φ turned out to be unreli-

able, however, for two- and three-dimensional deterministic and 

random fractal porous media. 

More recently, Yu and Liu (2004) developed a fractal model 

for k by assuming continuous fractal pore-size and pore-length 

distributions based on Poiseuille’s equation. Xu et al. (2006a) 

developed tortuosity and permeability models for fl ow through 

a fractal-like tree network between one point and a straight line. 

Th e eff ective permeability of this network was obtained, both in 

parallel and in series, using Poiseuille’s equation including the 

eff ect of tortuosity. Xu et al. (2006b) extended this approach to 

fi nd the permeability of a fractal disk-shaped network. 

Following a different line of attack, Hunt (2001) used 

continuum percolation theory to fi nd the volume fraction of 
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We derived two new expressions for the intrinsic permeability (k) of fractal porous media. The fi rst approach, the 
probabilisƟ c capillary connecƟ vity (PCC) model, is based on evaluaƟ ng the expected value of the cross-secƟ onal area 
of pores connected along various fl ow paths in the direcƟ on in which the permeability is sought. The other model is a 
modifi ed version of Marshall’s probabilisƟ c approach (MPA) applied to random cross matching of pores present on two 
parallel slices through a fractal porous medium. The Menger sponge is a three-dimensional mass fractal that represents 
the complicated pore space geometry of soil and rock. PredicƟ ons based on the analyƟ cal models were compared with 
esƟ mates of k derived from laƫ  ce Boltzmann method (LBM) simulaƟ ons of saturated fl ow in virtual representaƟ ons of 
Menger sponges. Overall, the analyƟ cally predicted k values matched the k values from the LBM simulaƟ ons with <14% 
error for the determinisƟ c sponges simulated. While the PCC model can represent variaƟ on in permeability due to the 
randomizaƟ on process for each realizaƟ on of the sponge, the MPA approach can capture only the average permeability 
resulƟ ng from all possible random realizaƟ ons. TheoreƟ cal and empirical analyses of the surface fractal dimension (D2) 
for successive slices through a random Menger sponge show that the mean D2 value 〈D2〉 = D3 − 1, where D3 is the three-
dimensional mass fractal dimension. IncorporaƟ ng 〈D2〉 into the MPA approach resulted in a k that compared favorably 
with the modal value of k from LBM simulaƟ ons performed on 100 random realizaƟ ons of a random Menger sponge. 
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continuously distributed pores whose sizes are greater than or 

equal to a critical pore radius. Th e critical value, or the smallest 

pore in a connected network, was then related to the permeability 

based on an analogy between the Poiseuille and Darcy equations. 

Th is analysis, like most of those discussed above, assumes all of 

the pores are interconnected. It does not take into account the 

possibility of disconnected pores, which do not contribute to fl ow. 

Since disconnected pores can occur in natural porous media, the 

ability of such fully connected fractal models to accurately predict 

the k of real soils and rocks is not clear. 

Rawls et al. (1993) attempted to deal with the issue of dis-

connected pores by combining Marshall’s (1958) probabilistic 

approach with the fractal properties of a Sierpinski carpet. In the 

Marshall (1958) model, two surfaces, each of which consists of 

n sections, are exposed along a cut through an isotropic porous 

medium and then rejoined randomly. Th e surfaces are connected 

through necks, which are assumed to be equal in size to the small-

est mean pore area between any two contacting pores. Each n 

section is assumed to have the same fraction of pore area, which 

is defi ned as the areal porosity. Th e n classes of pore cross-sections 

are denoted by a sequence of mean radii as r1, r2, …, rn. Th e aver-

age area of the pore necks is then calculated and related to k:

( )
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2
a l

i
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k C l i r
n

 [1]

where C is a constant that depends on the pore geometry, l is 
the number of pore classes up to n, and a is a correction factor 

introduced later by Millington and Quirk (1961). In Marshall’s 

(1958) original study, a = 2. Rawls et al. (1993) modifi ed Eq. [1] 

for fractal structures by replacing ri with r0/bi and obtained

= φ
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2
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where r0 is the width of the Sierpinski carpet, b is the scaling 

factor, and r1 is the largest equivalent pore radius. Equation [2] 

assumes that each pore size ri has the same fractional area; how-

ever, this is not realistic for a fractal structure. When two surfaces 

from a cross-section through a fractal porous medium are rejoined 

randomly, as in the original Marshall approach, there will be dif-

ferent pore sizes with diff erent fractional areas, as opposed to 

the assumption of a constant fraction of pores. Th us, statistically 

matching two randomized fractal carpet surfaces will result in a 

diff erent formulation from Eq. [2].

In this study, we developed two new analytical expressions for 

the intrinsic (saturated) permeability by using probabilistic and 

fractal methods based on the connectivity of pores and Marshall’s 

(1958) approach. We tested these models using LBM simulations 

performed in well-defi ned, explicit fractal structures (i.e., deter-

ministic and random Menger sponges). Th e LBM simulations 

were utilized to validate our analytical models because construc-

tion of actual Menger sponges is extremely diffi  cult (Kirihara et al., 

2006; Mayama and Tsujii, 2006) and, as a result, no experimental 

studies of their hydraulic properties have been reported to date. 

Physical Proper  es of Determinis  c and 
Randomized Menger Sponges

The Menger sponge is a three-dimensional mass fractal 

with the capability of simulating a wide range of pore sizes and 

confi gurations. It is named after the mathematician Karl Menger 

(Mandelbrot, 1982). Th e Menger sponge fractal has long been 

used as a model substrate for simulating fl ow and transport prob-

lems in complex pore space geometries (e.g., Garrison et al., 1992; 

Garza-López et al., 2000; Cihan et al., 2007).

Th e Menger sponge is constructed from a solid initiator 
cube (embedding dimension E = 3) of unit length by an iterative 

process of mass removal and rescaling. A generator is defi ned by 

subdividing the initiator into bE = 27 smaller cubes of length l 
= 1/b = 1/3, and removing m = 7 of these. In the classical (deter-

ministic) Menger sponge, six of the removed cubes are central to 

the six faces of the initiator, while the remaining removed cube 

comes from the center of the initiator (Fig. 1a). In a random 

Menger sponge, the seven removed cubes are randomly chosen 

from the 27 solid cubes of length 1/b (Fig. 1b). Construction 

continues by repeatedly applying the generator to the remaining 

solid cubes. Note that l depends on b and i as li = 1/bi, where i 
= 1, 2, 3, … is the level of iteration of the fractal algorithm. Th e 

number of solid cubes of length li, Ns3(li), at the fi rst iteration is 

Ns3(1/3) = 20. At the second iteration Ns3(1/9) = 400, and so on. 

In general, we have NsE(1/bi) = EiDb where DE is the mass fractal 

dimension defi ned by the ratio log(bE − m)/log(b), with m being 

the number of cubes removed in the generator. Th e number of 

pores, NpE, of length l is given by

( )( ) ( 1) ( 1)
p p

E E Ei i D E D i D
EN n b b b b− −= = −  [3]

where np is the number of pores in the generator, which is equal to 

m = 7 for the Menger sponge. Th e porosity at any iteration level, n, 

is formulated by

F®¦. 1. (a) DeterminisƟ c Menger sponge of unit width and scaling 
factor b = 3, last iteraƟ on level n = 3, a mass fractal dimension of D3 
= log20/log3 = 2.726… and D2 = log8/log3 = 1.892… for each face of 
the cube, and (b) one realizaƟ on of a randomized Menger sponge 
with unit width and b = 3, n = 3, D3 = 2.726, and 〈D2〉 = 1.726 (r0 is 
the width of the Menger sponge).
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where E = 3 for the volumetric porosity of the Menger sponge.

Figure 1 shows a deterministic Menger sponge and an exam-

ple realization of a random Menger sponge iterated up to n = 3 

with b = 3 and D3 = 2.726… . Th e surface fractal dimensions 

(D2) of both structures change with distance (or slice number = 

bi) moving from one face through the interior to the opposite 

face. Figure 2 shows the variation in D2 as a function of slice 

number for both deterministic and random Menger sponges. Th e 

maximum value of D2 inside the deterministic Menger sponge is 

1.892…, which is the fractal dimension of the Sierpinski carpet; 

the minimum value of D2 = 1.261… occurs in the middle of the 

deterministic sponge.

Surface fractal dimensions of the slices inside a randomized 

Menger sponge change for each realization of the sponge due to 

the randomization process. Figure 2 shows changes in D2 with 

slice number for one example realization of a random Menger 

sponge. Figure 2 also shows changes in the mean value of D2 for 

each slice based on 100 random realizations. Th e line is almost 

invariant and indicates that 〈D2〉 ? D3 − 1, where 〈D2〉 is the 

mean value. A formal proof of this result is given below.

For the sake of simplicity, we will only consider the fi rst itera-

tion level, since it will be suffi  cient to deduce information about 

the relationship between 〈D2〉 and D3. At i = 1, the number of 

boxes (either solid or pore), nb
(1), in each slice is equal to b2. Th e 

number of solids inside the Menger sponge generator as a whole 

is given by 3Db , while the probability or proportion of 1/b1 sized 

solids, p1, in the whole system is 3 3/Db b . Th e probability of 

obtaining x1 number of 1/b1 sized solids from a random slice with 

b2 boxes through this structure when sampling without replace-

ment can be calculated from the hypergeometric distribution. 

Th e expected value of x1 from the hypergeometric distribution 

is given by 〈x1〉 = nb
(1)p1 = −3( 1)Db . Th en, by defi nition, the 

mean surface fractal dimension of multiple slices through a single 

randomized Menger sponge (or single slices through multiple 

random realizations) must be 

〈 〉
〈 〉= = −1

2 3

log
1

log

x
D D

b
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which explains the observed behavior in Fig. 2. According to 

the defi nition of porosity given by Eq. [4], Fig. 2 and Eq. [5] 

imply that 〈φ2〉 = φ3, i.e., the mean areal porosity is equal to the 

volumetric porosity. Th is is a convenient assumption commonly 

used in subsurface hydrology.

Th e scaling factor b represents the length ratio of the initiator 

relative to the largest pore present, and thus could be estimated 

from sample dimensions and water retention data. If the char-

acteristic size is chosen as the length of a sampled soil, b can be 

calculated from the ratio of the sample size to the maximum pore 

size or minimum capillary pressure (“air entry value” in length 

units). Finer textured or clay-rich soils can be expected to exhibit 

larger b values than coarser soils for a constant characteristic size 

(Brakensiek and Rawls, 1992).

Gibson et al. (2006) reported independent estimates of b and 

DE for soil aggregates based on image analysis and density scaling 

of two- and three-dimensional computed tomographic scans. Th e 

values of b and D3 ranged from 4 to 15 and from 2.97 to 2.99, 

respectively. Th eir results also indicate that 〈D2〉 ? D3 − 1. 

Analy  cal Models for Intrinsic Permeability
Neglecting inertial eff ects, the mean velocity of a fl uid, u, in 

a narrow tube of radius rt is given by the Poiseuille equation: 

ψ
=−

μ

2
t d

d

Cr
u

l
 [6]

where C is a shape factor, μ is the dynamic viscosity (Pa s), and 

dψ/dl is the pressure gradient driving the fl uid fl ow in the tube. 

If the porous medium is considered to be made up of channels 

of diff erent sizes, Poiseuille’s equation is analogous to Darcy’s law, 

which expresses the mean velocity of a fl uid in a porous medium, 

and can be written as

ψ
=−

μ
d

d

k
q

l
 [7]

where k is equivalent to 〈Crt
2〉, which is an averaged quantity 

for a porous medium. Th e shape factor C changes depending 

on the geometry of the pore. Its value is equal to 1/8 for circu-

lar pores. Pores in the Menger sponge are square, however, and 

fl ow is assumed to be in the z direction. Neglecting inertial and 

end eff ects, and assuming no interaction between adjacent pores 

(pores are assumed to be surrounded with solid boundaries where 

a no-slip boundary condition applies at the walls of a square), the 

solution of the Navier–Stokes equation for the average velocity 

within an individual square pore is given by (Papanastasiou et 

al., 2000)
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where d is the side length of the pore. Th e area of pores at the ith 

iteration level of the Menger sponge algorithm can be written as 

di
2 = r0

2/b2i where r0 is the width of the sponge.

ProbabilisƟ c Capillary ConnecƟ vity Model
Th e method used here separates the system into diff erent 

connected fl ow paths or networks. Consider a network consisting 

F®¦. 2. VariaƟ on of the fractal dimension D2 through slices of deter-
minisƟ c and random Menger sponges with scaling factor b = 3, last 
iteraƟ on level n = 3, and fractal dimension D3 = 2.726.
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of only the largest pores of size r0/b connected from one end to 

the other in the direction of fl ow. According to Poiseuille’s equa-

tion, the mean velocity of water following such a pathway is 

proportional to r0
2/b2. We defi ne a probability for the existence 

of such a network as P1Np3
(1)/b3, where Np3

(1)/b3 is the propor-

tion of the largest pores in the whole volume and P1 represents 

the proportion of pores of size r0/b connected from one end 

to the other. Th e remaining proportion of pores of size r0/b 

is given by (1 − P1)Np3
(1)/b3; these pores may be completely 

unconnected or connected with smaller pores of size r0/b2 to 

form a diff erent fl ow pathway. Th ere might also be a network 

formed by only the r0/b2 sized pores. Th e probability for the 

existence of a network containing r0/b2 sized pores or r0/b and 

r0/b2 sized pores is written as P2(Np3
(2)/b2×3 + (1 − P1) Np3

(1)/

b3, where P2 represents the connected proportion of pores in 

networks formed by r0/b2 or larger sized pores. Since fl ow is con-

trolled by the smallest pores within a network of diff erent-sized 

pores connected in series, the mean velocity of water following a 

pathway consisting of r0/b and r0/b2 sized pores is assumed to be 

proportional to the area of the smaller pores, i.e., r0/b2. In gener-

alized form, the pore areas controlling fl ow in the diff erent fl ow 

paths, multiplied by their associated probabilities, are written as
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Permeability is defi ned by the expected value, 〈Crt
2〉, i.e., the 

summation of all the terms above leading to
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where n is the last iteration level of the fractal porous medium, 

and the pore shape factor C is assumed to be constant for all pores. 

Summation of the probabilities yields the connected proportion 

of pores in the fl ow system and is equivalent to the eff ective 

porosity, φeff  E :

( ) ( )
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= = =
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( ) 1
p
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N
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Cihan et al. (2007) used a similar approach in their analysis of 

scale-variant fractal water retention functions during monotonic 

drainage. Th e diff erent Pi values in Cihan et al. (2007) indi-

cated the connected proportions of water-fi lled pores at diff erent 

suction levels and were named the probability of drainage. Here, 

since all the pores are fi lled with water, each Pi value represents 

the proportion of connected pores whose sizes are ≥1/bi. When 

Pi → 1, the system approximates a “stretched” Sierpinski carpet. 

Now if we consider a steady fl ow fi eld created in a deterministic 

Menger sponge by a pressure gradient in one direction (constant-

pressure boundary conditions are applied on two opposing faces 

and the rest are assigned to be no-fl ow boundary conditions), the 

proportion of the largest pores of size r0/b connected from one 

end to the other in the direction of the fl ow, P1, is 3/7. Th e same 

statistics apply for r0/b2 sized pores connected from one end to 

the other in the direction of the fl ow because 3/7 of these pores 

are connected to the remaining 4/7 of the r0/b sized pores, i.e., 

P2 = P1 = 3/7.

Assuming that all of the probabilities are constant and equal, 

i.e., P = P1 = P2 = … = Pn, evaluation of the series for E = 3 in 

Eq. [10] and [11] renders
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where φ3 = 1 − −3 3( )Dnb  is the total porosity. Since the P values 

in Eq. [10–13] are allowed to vary with direction, the above 

expressions can also be written in tensor form for applications in 

anisotropic systems. 

Variation of the eff ective porosity with the total porosity for 

various P values is presented in Fig. 3. In this and the following 

fi gures, the x and y axes are labeled in terms of generic length 

units that can be equated to any unit system (centimeters, meters, 

etc.) depending on the units of the characteristic size chosen. 

Figure 3 shows that as the connectivity of the system measured 

F®¦. 3. VariaƟ on of eff ecƟ ve porosity (φeff  3) with total porosity (φ3) 
as a funcƟ on of the measure of connecƟ vity (P) for the probabilisƟ c 
capillary connecƟ vity model with scaling factor b = 3 and fractal 
dimension D3 = 2.854 (characterisƟ c size r0 = 1 cm, pore shape fac-
tor C = 0.035).



www.vadosezonejournal.org · Vol. 8, No. 1, February 2009 191

with P decreases, the eff ective porosity decreases compared with 

the total porosity. In Fig. 3, b and D3 were kept constant while 

n was varied. Varying only the iteration level n means that pores 

formed at previous iteration levels <n are kept without chang-

ing their sizes while new smaller and smaller pores are added as 

n increases. Th us, the permeability approaches a limit beyond 

which it no longer changes with n because the contribution of 

infi nitely small pores to fl ow is negligible compared with larger 

pores. As n approaches infi nity, Eq. [12] reduces to

( )
( )( )
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=

− + −
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3

2 3

2
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D

D

Pb b b
k Cr

P b b b
 [14]

Figure 4a presents changes in the permeability as a function of b for 

various P values when n = 3 and D3 = 2.726… . As stated above, P is 

a measure of connectivity. When P = 0, the system is below the per-

colation threshold, and the permeability is zero. As P increases, the 

permeability increases as a result of increasing connectivity among 

pores (Fig. 4a). Intersection of the permeability curves with the verti-

cal dashed line at b = 3 in Fig. 4a corresponds to three possible values 

of the permeability for a random Menger sponge whose properties 

were reviewed above. Figure 4a clearly indicates the ability of the 

PCC model to represent variation in k due to randomization.

Another way to analyze the permeability is to plot its 

variation with diff erent values of D3 (Fig. 4b). Th e permeabil-

ity initially increases starting from zero as b increases because 

large pores form in an initially solid system with zero porosity. 

Increasing the scaling factor increases the number and decreases 

the size of the pores as porosity increases. As a result, the perme-

ability curves exhibit well-defi ned maxima in Fig. 4b. Beyond 

the maximum, permeability begins to decrease because the fl ow 

rate is less in a system having smaller pore sizes due to greater b 

values despite increasing porosity. Th is behavior resembles the 

phenomenon that we observe in natural soils (e.g., clay generally 

has much more porosity than sand, but it is much less permeable). 

Figure 4b also shows that the permeability maximum decreases 

with increasing mass fractal dimension, which typically increases 

with increasing clay content (Filgueira et al., 2006).

From the above discussion, a P value of 3/7 can be used in 

Eq. [12] and [14] for the prediction of the intrinsic permeability 

of a deterministic Menger sponge. Since the P values are not 

necessarily equal in a random Menger sponge, forward predic-

tion by applying Eq. [12] or [14] to random structures may not 

be possible. For such structures, P is assumed to be a constant 

eff ective parameter, equivalent to a measure of connectivity that 

can be estimated inversely by comparison with experimental or 

numerical simulation results. For forward prediction of intrinsic 

permeability in the case of random Menger sponges, Marshall’s 

probabilistic approach can be followed.

Marshall’s ProbabilisƟ c Approach
Following an approach similar to Marshall (1958), two 

surfaces from a cross-sectional cut through a random Menger 

sponge are rejoined randomly (Fig. 5). Th e surfaces are connected 

through pore necks, whose sizes are assumed to be the intersec-

tion areas between pairs of contacting pores. Table 1 shows an 

example of the calculation of probabilities of possible pore neck 

areas that result from matching two randomized unit fractal 

faces at the second iteration level. Each fractal face has the same 

fractal dimension, D2 = log7/log3. Th e width of the largest pores 

is 1/3 and the areal fraction of the largest pores is 2/9. Th e width 

of the smallest pores with areal fraction of 14/81 is 1/32 (Table 

1). Matching these two faces may result in two possible pore 

neck areas. One possibility for any given realization of the faces 

is that the largest pores on one face can match with those on the 

other face, which results in a pore neck area of 1/32. Th e other 

possibility is the 1/34 pore neck area that might result from 

intersecting a 1/3 with a 1/32 pore or a 1/32 with a 1/32 pore 

width on one face with the other. Since the randomization of the 

faces associated with the same fractal dimension are assumed to 

be independent events, the probability of a 1/32 pore neck area 

can be calculated by multiplying the areal fraction of pores of 

1/3 width in the two faces, i.e., p(1/32) ∩ p(1/32) = 2/9 × 2/9 = 

F®¦. 4. VariaƟ on of the probabilisƟ c capillary connecƟ vity (PCC) 
model intrinsic permeability (k) with the model parameters: (a) 
kPCC vs. scaling factor b as a funcƟ on of the measure of connecƟ v-
ity P when the fractal dimension D3 = 2.726… and (b) kPCC vs. b as 
a funcƟ on of D3 when P = 0.2 (characterisƟ c size r0 = 1 cm, pore 
shape factor C = 0.035).

F®¦. 5. Matching of two random fractal surfaces of the same scaling 
factor b and fractal dimension D2 values (adapted from Hillel, 1998).
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4/81. Likewise, the probability of a 1/34 pore neck area can be 

calculated by taking into account all possible pore pairs that 

give 1/34 neck area, i.e., p(1/34) ∩ p(1/34) + 2[p(1/32) ∩ p(1/34)]. 

Th e second term is multiplied by two because as the pores of 1/3 

width in the fi rst face may intersect with the pores of 1/32 width 

in the second face, the pores of 1/3 width present in the second 

face may also intersect with the pores of 1/32 width in the fi rst 

face, which result in a 1/34 pore neck area. 

Generalization of the above procedures to matching of any 

arbitrary two faces with the same arbitrary fractal dimension is as 

follows. Th e areal fraction of pores of size 1/b is equal to p(1/b2) 

= Np2
(1)/b2, where Np2

(1) is the number of pores generated at the 

fi rst iteration level of a slice (E = 2) in a fractal porous medium. 

Th e probability of occurrence for the solid space area is equal to 

1 − φ2
2. Th e probability of occurrence of 1/b2 neck areas result-

ing from the intersection of pores with 1/b width on one surface 

with pores of 1/b width on the other surface can be evaluated 

as p(1/b2) ∩ p(1/b2) = [Np2
(1)/b2]2. Likewise, the probability of 

occurrence of (1/b2)2 neck areas resulting from the intersection of 

pairs of pores 1/b2–1/b2 and 1/b–1/b2 on the matching surfaces 

can be written as [Np2
(2)/b4]2 + 2[Np2

(2)/b2 × Np2
(2)/b4]. Th e 

probabilities for all possible neck areas are given in Table 2.

According to the axiom of probability, summation of the 

probabilities must equal unity: 

−

= = = =

=
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 [15]

Th e term in the brackets of Eq. [15] is a symbolic representa-

tion for the summation of the probabilities in Table 1 excluding 

the probability of the zero neck area, 1 − φ2
2. Th e term in the 

brackets can be shown to be equal to [1 − −2( 2)i Db ]2 = φ2
2 by 

evaluating the series after substitution of Np2
(i) = (b2 − 2Db )

( )−2 1D i
b . Multiplying probable neck areas with the probabilities 

and summing across all sizes, we obtain the total expected area, 

〈rt
2〉, which can be written in symbolic form as

−

= = = =

=
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where r0 is the characteristic length of the porous medium that 

shows fractal behavior. Recalling the defi nition of k previously 

given and invoking the relationship 〈D2〉 = D3 − 1, we can formu-

late the permeability of a random Menger sponge by evaluating 

the series in Eq. [16] as
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where 〈φ2〉 = 1 − 〈 〉−2 2( )n Db .

T��½� 1. Example calculaƟ on of probability of neck areas resulƟ ng from matching of two randomized faces with unit width. In the fi rst row, 
only the pores shaded with red are taken into account to calculate the probability of the neck area in the third column. In the second row, 
the green phase indicates the pores contribuƟ ng to the calculaƟ on of the probability of the neck area at the next level.

Face 1 Face 2 Probable neck area Probability

p(1/32) = 2/9† p(1/32) = 2/9

1/32 p(1/32) ∩ p(1/32) = 2/9 × 2/9 = 4/81

p(1/34) = 14/81 p(1/34) = 14/91

1/34 p(1/34) ∩ p(1/34) + p(1/32) ∩ p(1/34) + p(1/34) ∩ p(1/32) = (14/81)2 + 
2(14/81)(2/9) = 700/(81)2

† p() indicates areal proporƟ on of pores.

T��½� 2. Neck area vs. probability from the random intersecƟ on of 
two fractal surfaces.

Probable pore 
neck area†

Probability‡

0 1 − φ2

(1/b)2 (Np
i=1/b2)2

(1/b2)2 (Np
i=2/b4)2 + 2[(Np

i=1/b2)( (Np
i=1/b4)] 

(1/b3)2 Np
i=3/b6 + 2[(Np

i=1/b2)( Np
i=3/b6)] + 2[(Np

i=2/b4)( Np
i=3/b6)]

† b is a scaling factor.
‡ Np is the number of pore elements, i is the iteraƟ on level.
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Th e variation of k with b predicted by Eq. [17] is shown 

in Fig. 6. Th e MPA model shows a very similar behavior to the 

PCC model for the diff erent values of 〈D2〉. Application of the 

MPA model is limited to more or less isotropic porous media 

since the mean surface fractal dimension 〈D2〉 is representative 

for the whole structure, while the variation of k along diff erent 

directions in anisotropic systems can only be taken into account 

by the PCC model. 

Except for very low values of b, the series converges very quickly. 

Equation [17] can then be simplifi ed by allowing n → ∞:
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2 2
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2
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D D

D D
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b b b b
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The La   ce Boltzmann Method

Detailed introductions to the LBM can be found in Sukop 

and Th orne (2006), Succi (2001), and Wolf-Gladrow (2000). 

Here we provide a brief summary of the three-dimensional LBM 

applied to numerically compute the permeability of the deter-

ministic and random Menger sponges. Th is single-phase fl uid 

fl ow problem is among the simplest capabilities of the LBM and 

the current work can be viewed as a prelude to future eff orts 

that will consider unsaturated flows. We used the simplest 

Bhatnagar–Gross–Krook (BGK) single relaxation time model in 

this study. Th e BGK model is known to have limitations (Pan et 

al., 2006), but careful application gives adequate results in many 

applications.

We have implemented the LBM in three dimensions for a 

single-component system. Th e distribution function f represents 

a fl uid and satisfi es the following lattice Boltzmann equation: 

( )

( ) ( ) ( )

+ Δ +Δ =
Δ ⎡ ⎤− −⎢ ⎥⎣ ⎦τ

eq

,

, , ,

a a

a a a

f t t t

t
f t f t f t

x e

x x x
 [19]

where fa(x,t) is the density distribution function in the ath veloc-

ity direction, τ is a relaxation time that is related to the kinematic 

viscosity through v = cs
2(τ − 0.5Δt), and ea is the discrete velocity. 

Th e equilibrium distribution function fa
eq(x,t) can be calculated as

( )
( )⎡ ⎤

⎢ ⎥= ρ + + −⎢ ⎥
⎢ ⎥⎣ ⎦

2 2
eq

2 4 2
s s s

, 1
2 2

aa
a af t w

c c c

e ue u u
x  [20]

where ρ is the density of the fl uid, which can be obtained from 

ρ = 
18
0a=Σ fa, u is the velocity of fl uid, and wa is the direction-

specifi c weight. For the D3Q19 model, the discrete velocities 

are given by

[ ]=

− − − − −

− − −

0 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18
, , , , , , , , , , , , , , , , , ,

0   1 1   0    0   0    0   1    1 1 1   1 1   1 1   0    0    0    0

0   0    0   1 1   0    0   1 1    1 1   0    0    0    c

5
e e e e e e e e e e e e e e e e e e e

− −

− − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0   1    1 1 1

0   0    0   0    0   1 1   0    0     0    0   1    1 1 1  1 1    1 1 

wa = 1/3 (a = 0), wa = 1/18 (a = 1, 2, …, 6), wa = 1/36 (a = 7, 

8, …, 18), and cs = c/√3, where cs = Δx/Δt is the ratio of lattice 

spacing Δx and time step Δt. Here, we defi ne one lattice unit 

(Δx) as 1 lu. Th e macroscopic momentum ρu is defi ned as

=
= ρ∑

18

0
a a

a

f e u

 

[21]

Pressure is proportional to density in this model and the relation-

ship, known as the Equation of State, is Ψ = cs
2ρ or simply Ψ = 

ρ/3 for the model we use here.

Results and Discussion

DeterminisƟ c Menger Sponge

We calculated k as a function of the maximum iteration level 

(n) for a deterministic Menger sponge of 1-cm width with b = 3 

and fractal dimension D3 = 2.726 (Fig. 1a). Based on this infor-

mation and setting P = 3/7, Eq. [12] was used to estimate k for 

unidirectional, steady, laminar fl ow of a fl uid passing through the 

deterministic sponge. Because most of the fl ow is transmitted by 

the serially connected largest pores (Fig. 1a), which form at n = 

1, there was not much diff erence between the k values estimated 

by the PCC model as a function of the maximum iteration level 

(Table 3). As discussed above, since the only changing variable 

is n, as n increases, the contribution of new smaller pores to 

the permeability becomes negligible compared with the larger 

pores already present. Going from n = 1 to n = 4, the intrin-

sic permeability increases by ?16%. Th e limiting form of the 

permeability given by Eq. [14] results in a k value diff ering by 

<0.15% from that given by Eq. [12] for the deterministic Menger 

sponge with n > 2. Th e pores present next to the side boundar-

ies and the pores perpendicular to serially connected pores in 

F®¦. 6. VariaƟ on of Marshall’s probabilisƟ c approach intrinsic 
permeability (kMPA) with scaling factor b as a funcƟ on of fractal 
dimension D2 (characterisƟ c size r0 = 1 cm, pore shape factor 
C = 0.035).

T��½� 3. Comparison of the results for intrinsic permeability 
(k) from the lattice Boltzmann method (LBM) and the probabi-
listic capillary connectivity (PCC) models for the deterministic 
Menger sponge. 

IteraƟ on 
level

Porosity,
φ3

Eff ecƟ ve 
porosity, 
φeff  3

k (PCC) k (LBM)
Reynolds 

number (LBM)

———  × 10−4 cm2 ———
1 0.26 0.11 4.34 5.02 0.36
2 0.45 0.26 4.97 5.53 0.39
3 0.59 0.40 5.04 5.66 0.40
4 0.70 0.53 5.05 5.73 0.41
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the main fl ow direction do not contribute to fl ow signifi cantly. 

Eliminating those pores, Eq. [13] can be defi ned as the eff ective 

porosity, which expresses the proportion of pores present in the 

main fl ow path. Table 3 shows the calculated values of eff ective 

porosity at diff erent iteration levels. Th e ratio of the eff ective 

porosity to the total porosity varies between 0.42 and 0.76 from 

n = 1 to n = 4 (Table 3). 

We also evaluated the intrinsic permeability of the determin-

istic Menger sponge illustrated in Fig. 1a using the LBM. We 

simulated fl ow at diff erent levels of construction up to n = 4. Th e 

simulations used periodic boundaries on the sides of the domain 

(so the opposite sides were eff ectively connected) and pressure 

boundaries on the top and bottom that imposed a gradient across 

the fractal domain. Th e pressure distribution occurring across 

the sponge is shown from a slice of the simulation domain in a 

Menger sponge with n = 3 (Fig. 7). In a convenient form for the 

LBM, Darcy’s law, Eq. [7], is

( )2
s 0.5

k
q

Lc t

Δψ
=

ρ τ− Δ
 [22]

where q is the Darcy fl ux (the average velocity of fl uid exiting 

the entire face—including solid areas where the velocity is zero), 

cs
2(τ − 0.5) is the kinematic viscosity, and ΔΨ/L is the pres-

sure gradient. Note that the average fl uid density is used in the 

denominator of Eq. [22].

Here we provide a brief description of the calculation of 

intrinsic permeability and Reynolds numbers for the LBM mea-

surements. For all cases in Table 3, the domain was 243 by 243 by 

243 lu3. Fluid densities of 1.005 and 0.995 mu lu−3 (mu is any 

appropriate mass unit that is compatible with all other variables) 

were applied to the ends of the model domains. Th is gives an 

average density of 1 mu lu−3 and corresponding inlet and outlet 

pressures of Ψin = 0.335 and Ψout = 0.3316 mu lu−1 s−2, respec-

tively. For the i = 3 sponge under those conditions, the observed 

fl ow through the system was about 16.25 lu3 s−1. Th e correspond-

ing Darcy fl ux q is the fl ow divided by the cross-sectional area or 

q = 16.25 lu3 s−1/(243 × 243 lu2) = 2.75 × 10−4 lu s−1. Solving 

Eq. [22] for permeability k, we get k = 33.4 lu2. Conversion to 

real units involves multiplication by the scale conversion factor 

as follows:

( ) ( )
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

2
physical

LBM

physical LBM
L

k k
L

 [23]

where Lphysical and LLBM are the lengths of any comparable fea-

ture in physical and LBM units, respectively. 

We computed the average Reynolds number as Re = u L/v, 

where u  is the mean pore velocity (q/φ3), and v is the dynamic 

viscosity of water. Th e Reynolds number increased slightly with 

iteration level of the structure under a constant pressure gradient 

(Table 3), but it was low in all cases and fl ows were expected to 

be Darcian. When Re = 0.40 for a 1-cm sponge, the LBM k value 

for i = 3 is 5.66 × 10−4 cm2, which compares very favorably to the 

PCC k value, 5.04 × 10−4 cm2, predicted by our new analytical 

expression Eq. [12], which ignores inertial and end eff ects. 

We also computed the permeability of the stretched Sierpinski 

carpet (b = 3, D2 + 1 = D3 = log24/log3, and n = 3) using both 

Eq. [12] and the LBM. Setting P = 1, Eq. [12] predicts a PCC k 

= 4.81 × 10−4 cm2. Th e corresponding LBM k for the stretched 

Sierpinski carpet is 4.32 × 10−4 cm2. 

Random Menger Sponge
We computed k using the LBM for 100 realizations of the 

b = 3, D = 2.726…, and n = 3 randomized Menger sponge gen-

erated using the homogenous algorithm (Sukop et al., 2001). 

Th ese are the same parameters that characterize the deterministic 

structure in Fig. 1a, the only diff erence being that the locations 

of the pores are allowed to vary randomly. Figure 1b shows one 

such realization. Th e distribution of the resulting permeability 

values is presented in Fig. 8, along with summary statistics. Th e 

distribution was strongly skewed toward the lower k values. Th e 

modal value of the LBM permeability for the random Menger 

sponge was 2.35 × 10−4 cm2, which was approximately 54% 

lower than the permeability of the deterministic Menger sponge. 

Th e intrinsic permeability of the random structure calculated 

using the MPA model was also less than that of the deterministic 

Menger sponge (a 35% reduction in the case of n = 3). Th e k is 

reduced because the randomization process interrupts the direct 

fl ow paths through the largest pores, 

which increases the tortuosity and dis-

connects or isolates many pores from 

the main fl ow paths, which decreases 

the eff ective porosity. 

Based on Eq. [17], and neglect-

ing the eff ect of pore coalescence (i.e., 

assuming the shape factor, C ? 0.035, 

does not change with the randomiza-

tion), the MPA intrinsic permeability 

of a randomized Menger sponge of 

1-cm width, with b = 3, n = 3, and 

a surface fractal dimension of 〈D2〉 = 

1.726, is predicted to be 3.27 × 10−4 

cm2. Th is value was closer to the mean 

value of k from the LBM simulations 

than the modal LBM k value, indicat-

ing a slight overestimation (Fig. 8). A 

quantitative comparison of the MPA F®¦. 7. VerƟ cal slices through the center of a Menger sponge showing pressure distribuƟ on (leŌ ) 
and velocity vectors (right).
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model results with the LBM simulations for the random Menger 

sponge is presented in Table 4.

Th e individual LBM k values were used to calculate a P value 

for each realization. Th e P values were inversely estimated from 

Eq. [12] by substituting the LBM k values. Figure 9 indicates 

a strong relationship between P and k. As expected, the value 

of P, the measure of connectivity, increases as the permeability 

increases. Th ere is a linear relationship for P ≤ 0.4; beyond that 

the relationship shows slight deviations from linearity. Th e dashed 

line indicates the permeability of a stretched carpet with P = 1. 

When the stretched carpet fractal dimension D3 is equal to the 

dimension of the Menger sponge, i.e., 2.726… (D2 = 1.726…), 

the PCC predicts a k value of approximately 1.1 × 10−3 cm2. Th e 

modal P value in the PCC model was calculated to be 0.20 by 

equating Eq. [12] to the modal value of the LBM permeability 

from 100 realizations. Th is indicates that, on average, 20% of 

the pore volume, including the pores whose sizes are ≥1/bi (i = 1, 

2, and 3), can form a connected path from one end to the other. 

From Eq. [13] the mean eff ective porosity of the random Menger 

sponges at n = 3 was estimated as 0.23, compared with the total 

porosity of 0.594. 

Conclusions
Applying Poiseuille’s equation and probabilistic approaches, 

we obtained two new analytical expressions (PCC and MPA) 

to estimate the intrinsic (saturated) permeability of mass fractal 

porous media. While the PCC model is able to represent variation 

in permeability with a measure of connectivity due to the ran-

domization process for each realization of the sponge, the MPA 

approach can capture only the average permeability resulting 

from all possible random realizations. Th e application of the MPA 

permeability model may not be reliable in highly anisotropic and 

heterogeneous porous media due to high variation in D2 along 

the direction in which k is measured. On the other hand, the 

PCC permeability model takes into account the anisotropy and 

heterogeneity, and also includes one additional variable (P) as a 

measure of connectivity.

Th e PCC model presented by Eq. [12] contains six physi-

cally based parameters (b, C, D3, n, P, and r0
2). Excluding P and 

replacing D3 with 〈D2〉, the MPA model, Eq. [17], contains only 

fi ve parameters. Although we have not tested any experimental 

procedures for applying these models to predict the intrinsic per-

meability of natural porous media in this research, we suggest the 

following methods for estimating the model parameters. Th e mass 

fractal dimension, D3, can be estimated from fractal measurement 

methods such as voxel counting performed on three-dimensional 

computed tomographic scans of natural porous media. Th e mean 

surface fractal dimension, 〈D2〉, can be obtained by perform-

ing similar analyses on replicated digitized images of soil thin 

sections. Th e value of the scaling factor (b) is dependent on the 

characteristic length of the medium. If the characteristic length 

is chosen to be the size of the sample, as suggested in the litera-

ture, b can be calculated from the ratio of the sample size to the 

maximum pore size corresponding to the air-entry value. Once 

b is established, the iteration level (n) can be calculated from the 

ratio of the sample size to the minimum discernible pore size. If 

the iteration level of the medium is assumed to be large, then 

the limiting forms of the models (Eq. [14] and [18]) can be used, 

which eliminates one parameter, i.e., the iteration level. It is pos-

sible to estimate the P parameter inversely from water retention 

data using the model of Cihan et al. (2007). In developing 

models for the Menger sponge, we assumed that the pore 

shape factor, C, was constant. In reality, C can be highly vari-

able in natural porous media and clearly there is no single C 

value; however, equivalent C values for possible pore shapes 

can be estimated from numerical simulations performed on 

scanned soil images.

Th e analytical model predictions compared favorably 

with the lattice Boltzmann simulations for the intrinsic 

F®¦. 8. DistribuƟ on of intrinsic permeability (k) from laƫ  ce Boltz-
mann method simulaƟ ons in 100 realizaƟ ons of the scaling factor b 
= 3, fractal dimension D = 2.726, and last iteraƟ on level n = 3 ran-
domized Menger sponge.

T��½� 4. Comparison of the results for intrinsic permeability (k) from the 
laƫ  ce Boltzmann method (LBM) and the Marshall’s probabilisƟ c approach 
(MPA) models for the random Menger sponge.

IteraƟ on
Porosity, 

φ3

Eff ecƟ ve 
porosity, φeff  3

Measure of 
connecƟ vity, P

k (MPA) k (LBM) 

———  × 10−4 cm2 ———
3 0.59 0.23 (mean) 0.21 (mean) 3.27 2.57 (mean)

0.22 (mode) 0.20 (mode) 2.35 (mode)

F®¦. 9. RelaƟ onship between the measure of connecƟ vity (P) and 
intrinsic permeability (k) from laƫ  ce Boltzmann method (LBM) 
simulaƟ ons in 100 realizaƟ ons of the scaling factor b = 3, fractal 
dimension D = 2.726, and last iteraƟ on level n = 3 randomized 
Menger sponge.
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permeability of both deterministic and random Menger sponges 

of a 1-cm width, with b = 3, n = 3, and D = 2.726… . Th e results 

showed that the intrinsic permeability of the random structure is 

less than that of the deterministic ones. Th e modal LBM perme-

ability of 100 realizations of the random Menger sponge was 54% 

lower than the permeability of the deterministic Menger sponge. 

A similar trend was observed for the analytical models going from 

the deterministic to the random structure. Further research is 

needed to verify the models both with numerical simulations 

on artifi cial porous media with scaling factors other than b = 3 

and with experiments on natural porous media for which fractal 

parameters can be measured independently.

One might also extend the probabilistic and fractal approaches 

presented here to the derivation of relative permeability models 

for the case of unsaturated fl ow. Testing of new analytical models 

is achievable with a multiphase lattice Boltzmann method (Huang 

et al., 2007) that is free of many of the assumptions commonly 

made when applying capillary theory to porous media.

Appendix
a Correction factor in Eq. [1]

b Scaling factor

C Pore shape factor

di Side length of pore at iteration level i
DE Fractal dimension for an embedding space E
E Embedding space dimension

h Potential energy per unit volume

i Iteration level

j Index variable for summation or product symbols

k Intrinsic permeability

n Th e last iteration level of the fractal porous medium

nb Number of boxes (solid or pore) in each slice of the 
Menger sponge

np Number of pores in the generator

NpE Number of pore elements in an embedding space E

NsE
 Number of solid elements in an embedding space E

pi Probability of fi nding various sized pores in iteration level i

P Measure of connectivity

ri Pore size at iteration level i
r1 Maximum pore size

r0 Characteristic size of a porous medium that shows fractal 
behavior

x1 Number of solid elements on a random slice of the 
Menger sponge

φE Porosity in an embedding space E

φeff  E Eff ective porosity in an embedding space E

ψ Pressure
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