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We demonstrate an efficient method to design the diffractive phase element for modulating the electric
field at the out-of-focus plane of a lens system by using an equivalent Fresnel diffraction in free space. In
the monochromatic illumination, we show an example to certify the validity of our method experimen-
tally. In the nonmonochromatic illumination, we theoretically display that the spectral beam splitting
and highly confined intensity can be obtained simultaneously at the out-of-focus plane, which has the
potential in the solar concentrating system and optical encryption. © 2012 Optical Society of America
OCIS codes: 050.1940, 050.1970, 260.1960.

1. Introduction

The diffractive phase element (DPE) has been well
known for its capacity of modulating the electric field
in the Fresnel or Fraunhofer region of an optical
beam after the theoretical and technical develop-
ment in the past half century. Generally, the DPE
is used to control the far-field intensity in the mate-
rial processing [1] and inertial confinement fusion
[2]. For an incident beam parallel to the optical axis,
its far-field intensity can be observed in the focal
plane of a Fourier lens. In some applications, i.e.,
three-dimensional (3D) display [3,4] and multiwave-
length beam splitting [5], designing the DPE in the
Fresnel region is easier than that in the Fraunhofer
region. In the Fresnel diffraction, the satisfying
results are easily obtained only when the distance
between the DPE and the target plane is much larger
in comparison with the aperture of the DPE [6]. This

induces that the intensity in the target plane cannot
be well confined around the optical axis. In the solar
concentrating system [5], the spectral beam splitting
and a well-confined intensity are pursued synchro-
nously. To solve this problem, we suggest that a Four-
ier lens should be introduced while the target plane
is located at an out-of-focus plane [Fig. 1(a)].

The simplest way to design the DPE in Fig. 1(a) is
to consider the DPE and lens as one optical compo-
nent. To realize a desired field at the target plane,
the required phase distribution of this composite
component can be found by using any phase retrieval
algorithm for Fresnel diffraction. The phase of DPE
alone is then obtained by subtracting the lens phase
from the phase of the composite component [7]. In
this method, the phase modulation range of DPE is
2π, which is very efficient in the monochromatic illu-
mination. However, for the nonmonochromatic illu-
mination, the phase modulation range of DPE is
usually larger than 2π [8]. In addition, the phase
delay that comes from the lens is strongly depen-
dent on the wavelength of the incident light. For
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the multicolor DPE, it is complicated to carry out the
operation of subtracting the lens phase. Therefore,
this method does not work well in the nonmonochro-
matic illumination.

We find that the optical system in Fig. 1(a) is
equivalent to the Fresnel diffraction in free space in
Fig. 1(b). In that case, to design the DPE in Fig. 1(a),
one substituted approach can be found by designing
the DPE in Fig. 1(b). In Fig. 1(b), any phase retrieval
algorithm based on the Fresnel diffraction can be
implemented to design the DPE without considering
the lens, which is demonstrated in Section 2. To check
the validity of our method, we display an example
for single-wavelength illumination in Section 3. In
Section 4, we investigate the design of multicolor
DPE by using the configuration of Fig. 1(a).

2. Theory

A Fraunhofer diffraction pattern, whose observation
distance is infinite, can be obtained on the focal plane
of a focusing lens. In contrast, a Fresnel diffraction
pattern is an image on a plane at a finite distance.
Intuitively, the equivalent image should be located
at a plane distant from the focal plane of the lens
when a focusing lens is used to realize the Fresnel
diffraction pattern. Here, we theoretically display
the relationship between a Fresnel diffraction pat-
tern in the free space and the equivalent image at the
out-of-focus plane of the focusing lens. In Fig. 1(a), we
assume that the DPE is located at z � 0 and the dis-
tance between DPE and lens is ignored. According to
the theory of Fourier optics [9], the transmission of a
lens is a pure phase factor of exp�−ik�x2 � y2� ∕ �2f ��,
where k � 2π ∕ λ. The propagation of light from the
lens to the target plane can be described by the Fres-
nel diffraction. Therefore, the electric field at the
target plane in Fig. 1(a) is

U�x; y� � eik�f−Δz�
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the phase of DPE. After substituting z0 � f ·
�f −Δz� ∕Δz, x0 � x · f ∕Δz, and y0 � y · f ∕Δz in
Eq. (1), one can easily have
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where A is the phase factor of expfikz0�Δz ∕ f − 1�
�1� 1

2 �x2 � y2� ∕ �f −Δz�2�g, FresnelT�u�ξ; η��jz�z0 de-
notes the Fresnel diffraction of the electric field
u�ξ; η� at the plane where z � z0, and FresnelT��
stands for the Fresnel transformation. In Eq. (2),
one can see that the field U�x; y� at the target
plane in Fig. 1(a) can be described by the field
U�x0; y0� at the plane where z � z0 in the free space
in Fig. 1(b), where U�x0; y0� � FresnelT�u�ξ; η��jz�z0 .
After the space-coordinate transformation by a scal-
ing factor of f ∕Δz and multiplying the amplitude by
A · f ∕Δz, the fieldU�x0; y0� is equivalent toU�x; y�. Ac-
cording to the definition z0 � f · �f −Δz� ∕Δz, the dis-
tance z0 is unique when the out-of-focus distance Δz
is known with a given focus f . This means that the
fields U�x0; y0� and U�x; y� have a corresponding rela-
tionship, as the field on the focal plane of a lens and
the Fraunhofer diffraction pattern do. Therefore, one
can use an equivalent Fresnel diffraction in Fig. 1(b)
to design the DPE in Fig. 1(a). The convenience
of this equivalence is that, when the configuration
parameters (such as Δz, f , and so on) in Fig. 1(a)
are known, an equivalent Fresnel diffraction in the
free space without a lens can be reconstructed by
the method of scaling and moving the target plane
to the plane z � z0. It is worthy to note that the role
the lens in Fig. 1(a) has played is substituted by the
propagation with a distance z0 in free space in
Fig. 1(b).

Here, we introduce the method of designing DPE
by using the technique mentioned above. To obtain
a special intensity profile with the field Uo�x; y� at
the target plane in Fig. 1(a), one can first change the
field Uo�x; y� into Uo�x0; y0� by the coordinate trans-
formation of x0 � x · f ∕Δz and y0 � y · f ∕Δz. The field
Uo�x0; y0� is considered to be the target field in
Fig. 1(b). In the optical system of Fig. 1(b), an itera-
tive algorithm can be used to design the DPE with
the target field Uo�x0; y0�. Then, the special intensity
profile in Fig. 1(a) can be obtained by using the de-
signed DPE. This is our routine of designing the ex-
pected DPE in Fig. 1(a). The key point is to build the
iterative algorithm based on the Fresnel diffraction.
Some theories are proposed to realize the Fresnel dif-
fraction in the free space [9–11]. Here, we use the fast
chirp transform, described by Deng et al. [10] and
that has been applied to multiwavelength optical

Fig. 1. (Color online) Schematic of modulating the electric fields
by a DPE at an out-of-focus plane of a lens (a) and at a plane where
z � z0 in the free space (b). The electric field of the incident light is
u0�ξ; η�. f is the focus of the lens. Δz is the distance between the
target plane (TP) and the focal plane.
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interconnects [12], to realize the Fresnel diffraction
with high numerical precision. Because the inverse
propagation in the Fresnel diffraction can be de-
scribed by setting a negative propagating distance
along the optical axis [13], the reported iterative
algorithms can be used to design the DPE [14–16].

3. Experiment

To check the validity of our method, we design a DPE
to exhibit a picture at the target plane in Fig. 1(a).
We choose f � 99 mm and Δz � 2 mm, having
the distance z0 � 4.8015 m. The incident beam has
a wavelength of 532 nm, and the electric field
ui�ξ; η� � exp�−r2 ∕w2

0� with w0 � 4.096 mm where
r �

����������������
ξ2 � η2

p
. The sampling number is 1024 × 1024.

Here, the Gerchberg–Saxton algorithm [14] is imple-
mented to design the DPE for exhibiting four charac-
ters “USTC” at the target plane. The experimental
setup is displayed in Fig. 2(a). A beam with the
wavelength of 532 nm is generated in a laser. After
being expanded by a beam expander that is com-
posed of the lens L1 and L2, this beam is modulated
by a phase only spatial light modulation (SLM) with
a pixel of 8 μm (PLUTO by Holoeye Photonics AG).
This SLM, controlled by a personal computer (PC),
is used to realize the phase of designed DPE. The fo-
cus of the lens L3 is 99 mm. We utilize a CCD camera
to record the intensity profile at the target plane.
Figure 2(b) shows the phase profile of the designed
DPE, whose phase has a range from −π to π. The si-
mulated and experimental pictures at the target
plane are displayed in Figs. 2(c) and 2(d), respec-
tively. Comparing Fig. 2(c) and Fig. 2(d), one can
see that the experimental result is well consistent
with the simulated picture except a bright spot at

the center. Experimentally, because the small gap
of about 0.76 μm exists between two adjacent pixels
in the SLM, one partial light impinging on these gaps
is not modulated by the SLM and has the same
phase. Although this partial light has small energy,
the intensity at the target plane is strong when fo-
cused by a lens. Therefore, the bright spot at the cen-
ter of Fig. 2(c) is mainly due to these gaps [17,18].
Although we do not give a quantitative comparison
between the simulated picture and the experimental
result, one can have a conclusion that our approach
to design the DPE in Fig. 1(a) is valid.

4. Discussion

As mentioned at the beginning, the optical system in
Fig. 1(a) is introduced to realize the spectral beam
splitting and highly confined intensity at the target
plane for the nonmonochromatic illumination. In ad-
dition, we have demonstrated theoretically and ex-
perimentally that design of DPE in the optical
system of Fig. 1(a) is a problem that can be resolved
in the Fresnel diffraction. In the nonmonochromatic
illumination, the advantage of designing a DPE in
the Fresnel region, compared with that in the Fraun-
hofer region, is that the phase modulation for every
wavelength comes from both the DPE and the wave-
length-dependence optical path difference between
the DPE and the target plane [6]. Although some re-
sults have also been reported experimentally for the
purpose of realizing the spectral splitting by DPE
[6,8], the distance between the DPE and the target
plane is much larger in comparison with the aperture
of DPE, resulting in the not-well-confined target in-
tensity. A lens exists in the optical system of Fig. 1(a),
which makes it possible to realize the spectral beam
splitting and highly confined intensity simulta-
neously. Therefore, to realize this idea, the optical sys-
tem in Fig. 1(a) can be replaced by that in Fig. 3(a).
Here, we theoretically investigate the feasibility of
realizing the spectral beam splitting and highly con-
fined intensity using the optical system of Fig. 3(a),
which is the same as that in Fig. 1(a) except the non-
monochromatic illumination.

In the optical system with multiple wavelengths,
some theories have been provided to design the
DPE in the Fresnel region [6,8,12]. Here, we adopt
the quite efficient method [12], described by Deng
et al. and based on the approximation of weak-phase
deviations, to design DPE in the optical system of
Fig. 3(a). In our simulation, we investigate the opti-
cal system of Fig. 3(a) in the illumination with three
wavelengths (λ1 � 0.5 μm, λ2 � 0.8 μm, and λ3 �
1.2 μm). We assume that the DPE is transmissive
and the DPE material is fused quartz, whose refrac-
tive index is, respectively, 1.46233, 1.45332, and
1.44805 at λ1, λ2, and λ3. For the wavelength λn,
the incident light has the intensity profile with
uin�ξ; η� � exp�−�r ∕w0�20� (n � 1, 2, and 3). The focal
length of the lens is f � 150 mm, Δz � 1 mm,
and z0 � 22.35 m. The radius of the entrance
pupil w0 is 15 mm, and the sampling number is

Fig. 2. (Color online) Experimental verification of the DPE
design for single wavelength. (a) Experimental setup; (b) the
phase profile of designed DPE. The phase in (b) is in units of ra-
dian. The simulated (c) and experimental (d) intensity (normal-
ized) at the target plane are also given. The experimental data
(d) is obtained with a charge-coupled-device (CCD) camera.
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1024 × 1024. Our goal is to design the DPE for realiz-
ing three confined spots with different positions for
three wavelengths at the target plane, respectively.
Figure. 3(c) gives the intensity profile and position
of the ideal confined spot (with the radius R �
0.1 mm) for every wavelength.

The relief profile of the designed DPE is displayed
in Fig. 3(b). The colorbar is in units of micrometers.
The range of relief depth is about 4 μm. For themulti-
color DPE, the relief depth is usually larger than that
of single-color DPE when one purses a satisfactory
intensity profile at the target plane. The large relief
depth gives more phase selection for every wave-
length, which makes the problem of designing the
multicolor DPE easier. For a single-color DPE with
the wavelength λ1, the intensity profile at the target
plane does not change when the DPE phase is added
by n · 2π (n is an integer), which means that the relief
depth increases n · λ1. However, the increment n · λ1
of relief depth is corresponding to different phase
modulation for another wavelength, which provides
the feasibility of modulating the nonmonochromatic
light with a phase relief element. Theoretically, a

good design of multicolor DPE demands the high
relief depth. Technically, it is difficult to fabricate
a DPE with high relief depth because the error en-
larges with the increase of relief depth. Therefore,
it is necessary to weigh the benefit between theory
and fabrication when carrying out the design of
multicolor DPE.

Using the designed DPE in Fig. 3(b), we give the
simulated intensity profile Uon�x; y� for wavelength
λn (n � 1, 2, and 3), which is shown in Figs. 3(d), 3(e),
and 3(f), respectively. The intensity confinement fac-
tors are Ec1 � 0.858 for λ1, Ec2 � 0.810 for λ2, and
Ec3 � 0.788 for λ3. Here, the intensity confinement
factor is defined as Ecn � ∬�x−xn�2�y2≤R2 jUonj2dxdy ∕
∬∞jUonj2dxdy, where x1 � −0.2 mm, x2 � 0, and
x3 � 0.2 mm. From the values of Ec for three wave-
lengths, one can see that the well-confined intensity
is achieved at the target plane. Certainly, the inten-
sity confinement will be better when the relief depth
of DPE increases. Although the lens in the optical
system discussed here has a low numerical aperture
(NA, about 0.1), a similar result can also be achieved
in the case of a higher NA lens. Under the nonmono-
chromatic illumination, the separation of beam
among different wavelengths is easier by using a
higher NA lens, because the dependence of the change
of complex amplitude during the propagation from
DPE to the target plane on the wavelength is strong.

The phase of designed DPE is obtained by the
weighting superposition of the phase profiles for
three wavelengths. The phase competition among
three wavelengths occurs when carrying out the
iterative algorithm. As a result, the simulated inten-
sity profiles for three wavelengths at the target plane
[Figs. 3(d)–3(f))] have a little difference from each
other despite the fact that their ideal intensity pro-
files are the same [Fig. 3(c)]. In [12], the weighting
factor for wavelength λn is RMSn ∕

PN
n�1 RMSn,

where N is the number of wavelengths, RMSn is
the root-mean-square error between the intensity
at the target plane last iteration, and the ideal
intensity for wavelength λn. Here, we use
RMSm

n ∕
P

N
n�1 RMSm

n as the weighting factor for
wavelength λn, where m is the power exponent. In
our design, we choose m � 4. For the wavelength
λn with a large RMSn in one iteration, its weighting
factor next iteration could be larger when m > 1 in
contrast with the case in [12]. Correspondingly, more
phase information for wavelength λn can be added
into the phase of DPE so that the RMSn for wave-
length λn decreases quickly. To some extent, the
phase competition can be suppressed by using this
method. Nevertheless, the phase competition is still
not eliminated to the satisfactory situation. There-
fore, more work needs to be done for solving the
problem of phase competition among different
wavelengths.

In addition to the relief depth and phase com-
petition among different wavelengths, the number
of the optimized wavelengths and the interval (or

Fig. 3. (Color online) Design of DPE in the nonmonochromatic
illumination. (a) Schematic of modulating the electric field by a
DPE at the out-of-focus plane of a lens in the nonmonochromatic
illumination. (b) The relief profile of the designed DPE. The colorbar
is in units of μm. (c) The ideal intensity and position for three wave-
lengths at the target plane. (d) (f) The normalized intensity profiles
for three wavelengths [λ1 � 0.5 μm (d), λ2 � 0.8 μm (e), and λ3 �
1.2 μm (f)] at the target plane using the designed DPE in (b).
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wavelength resolution) among the optimized wave-
lengths also have an important influence on the
result of the designed DPE. Considering that these
two factors have been demonstrated in detail in
[8], we do not discuss them here.

5. Conclusion

We have demonstrated that modulating the electric
field at the out-of-focus plane of a lens system by a
DPE is a problem that can be resolved in an equiva-
lent Fresnel diffraction in free space. As a result, the
efficient iterative algorithms can be used to design
the DPE. Although Δz is positive in two examples
here, Δz can be negative, which means that the tar-
get plane locates behind the focal plane and the cor-
responding z0 is also negative. The negative z0 means
that the image at the target plane in Fig. 1(b) is a
virtual image. The real and virtual images are corre-
sponding to the positive and negative Δz, respec-
tively. The positive or negative sign of Δz only
means that the position of target plane in Fig. 1(a)
is before or after the focal plane. Therefore, the area
where the electric field is modulated by the DPE can
be extended to the whole place where z > 0. The op-
tical system suggested in this paper (Fresnel diffrac-
tion) is different from the general optical system
whose target plane locates in the focal plane (Fraun-
hofer diffraction). Because the optical system in the
paper exhibits the advantage of realizing the spectral
splitting and highly confined intensity, we expect
that it could be applied in the solar concentrating
system and optical encryption.

The authors thank Dr. Xuegong Deng and Yuxuan
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ported by the National Natural Science Foundation
of China (11074239).
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