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Abstract
Perfect optical vortices (POVs) arevortex beams with infinitely narrow rings and fixed radii
independent of their topological charges. Here we propose the concept of generalized POVs
(GPOVs) along arbitrary curves beyond the regular shapes of circles and ellipses. GPOVs share
similar properties to POVs, such as defined only along infinitely narrow curves and owning
topological charges independent of scale. Using a rigorous mathematical derivation in a
curvilinear coordinate, we reveal theoretically that the GPOVs have a topological charge
proportional to the area of the swept sector in tracing the curve, suggesting a unique mode for
optical vortex beams. Experimentally, the complex-amplitude masks to generate the GPOVs are
realized by using a pure-amplitude digital micro-mirror device with the super-pixel encoding
technique. The phase profiles of the generated GPOVs are retrieved experimentally through
self-built interferometry and exhibit good agreement with the simulations. We also derive a
properly modified formula to yield the intensity-uniform GPOVs along predesigned curves,
which might find applications in optical tweezers and communications.

Keywords: structured light, perfect vortex, wavefront shaping

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical vortices (OVs) with helical wavefronts carry orbital
angular momentum (OAM) [1] of lℏ per photon (l is the topo-
logical charge and ℏ is the reduced Planck constant), recog-
nized by Allen et al [2]. The pioneering work has excited
intense research on OVs in various applications including

∗ Authors to whom any correspondence should be addressed.

manipulation of microparticles [3–10], optical communication
[11, 12], quantum information [13–15], plasma diagnostics
[16–18], optical imaging and probing [19], and plasmonics
[20, 21]. Among these applications, the widely used vortex
beams, such as Laguerre–Gaussian beams and Bessel beams,
have the radii of their annular rings determined by their topo-
logical charges. As a topological invariant, the topological
charge is the most important factor protecting the radial struc-
ture of an OV beam from environmental disturbances, which is
known as the self-healing effect [22, 23]. Such a topologically
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dependent intensity profile exists in all the optical vortex
beams and thus leads to inconveniences when working in a
limited field of view, e.g. the tight focusing case when using
an objective lens with a high numerical aperture.

To overcome this disadvantage, a special type of OV,
termed as the perfect OV (POV), was proposed in 2013 [24].
POVs have infinitely narrow rings with radii of r0 which have
nothing to do with the topological charges l. A POV can be
described mathematically as δ (r− r0)exp(ilθ), where (r,θ) is
the polar coordinate and δ (·) is the Dirac delta function. Thus,
one can separately control the phase and intensity structures
of the OVs. By using diffractive optical elements [25], spatial
light modulator [24], digital micro-mirror device (DMD) [26],
some fruitful progress such as vector [27] and quantum [13]
POVs have been achieved, facilitating applications in optical
tweezers [28], non-diverging speckles [29] and optical free-
space communication [11]. Very recently, the circular shape
of POVs has been extended to the elliptical case by employ-
ing the Fraunhofer diffraction of elliptic Bessel beams [30].
This approach offers insight towards generalizing POVs with
non-circular or arbitrary shapes with the help of optical Four-
ier transforms. The importance of arbitrarily curved POVs is
twofold: for applications such as optical manipulation, these
arbitrarily curved POVs enable the dynamic control of micro-
particles by using a single-shot beam thus avoiding the scan-
ning mode in traditional trapping strategies; on the other hand,
since several types of POVs have been reported in theory, a
general analytical formula for POVs with predesigned shapes
is highly demanded. There are two fundamental challenges
to obtain such generalized POVs. Firstly, generalized POVs
should be predesigned with infinitesimal width along arbit-
rary smooth trajectories. Secondly, the topological charges
and local phase gradient of generalized POVs must be freely
controlled.

In this letter, we propose theoretically and demonstrate
experimentally generalized POVs (GPOVs) along arbitrary
trajectories beyond the regular shapes of circles and ellipses.
To realize the GPOVs experimentally, the required intensity
and phase profiles are simultaneously encoded on a DMD
as binary holograms, showcasing the GPOVs with circular,
elliptic, asteroid, Archimedean spiral and ‘elephant’ traject-
ories. Moreover, we give a modified formula of GPOVs to
obtain uniformly distributed trajectories in both theory and
experiments.

2. Theory and simulation of GPOVs

2.1. Definition of GPOVs

We define GPOVs as arbitrarily curved POV beams whose
intensity profiles obey the Dirac delta function along any cus-
tomized trajectories and are independent of their topological
charges. We consider a smooth 2D curve in Cartesian coordin-
ates c⃗2 (t) = (x0 (t) ,y0 (t)) , t ∈ [0,T], where T is the maximum
value of the parameter t. Note that the curve c⃗2 (t) is inde-
pendent of the coordinate transform, implying that the curve is
invariant in all coordinates. Thus, it allows us to choose a suit-
able coordinate system to simplify the mathematical descrip-
tion of the GPOV. To describe the curve in a nonparametric

form similar to the case in POVs (δ (r− r0)exp(ilθ), where
(r,θ) is the polar coordinate) and elliptic POVs, we employ a
specially designed spatial transform:{

x= px0 (q)
y= py0 (q)

, (1)

where (p,q) are the indices of a curvilinear coordinate system.
To permit an inverse transformation, we also set the Jacobian
determinant |J(p,q)| of the conversion to be non-zero:

|J(p,q)|= p [x0 (q)y
′
0 (q)− y0 (q)x

′
0 (q)] ̸= 0. (2)

In this curvilinear coordinate system (p,q), c⃗2 (t) can be
written as p= 1. Thus, the GPOV amplitude along the given
curve can be written as an invariant form: δ (p− 1). Then, we
focus on the definition of the spiral phase term of the GPOV.
The phase term determined by the given curve should also
be invariant under various coordinate transforms. Considering
that the phase is spirally surrounding the singular center, we
define the spiral phase to be proportional to the oriented area of

the swept sector along the curves: 1
2

q
∫
0
|J(1, τ)|dτ , where τ is

the integral variable. Nowwe come up with the exact mathem-
atical formula of GPOVs satisfying the definition of GPOVs
mentioned above:

C(x,y,z= 0 |⃗c2 (t) , t ∈ [0,T] ) = δ (p(x,y)− 1)

× exp

iσ q(x,y)ˆ

0

|J(1, τ)|dτ

 ,

(3)

where (p(x,y) ,q(x,y)) is the position vector at the curvilinear
coordinate plane defined in equation (1),σ is the key parameter
controlling the local phase gradient and topological charges of
GPOVs along the curves and C(·) is the complex amplitude of
GPOVs in spatial domain. The Dirac delta function indicates
that GPOVs own infinitely narrow profiles along given curves.
The phase term is represented in terms of a curve invariant pro-
portional to the oriented area of the sector swept in tracing the
curves, which means the beams are defined by the curves as
geometric objects at the plane (z= 0). The infinitesimal width
(defined by delta function) and the controllable local phase
gradient make our GPOVs distinguished fundamentally from
the previous vortices with arbitrary trajectories [31, 32].

The optical angular momenta of GPOVs are related
to their topological charges, which are extremely import-
ant to investigate OVs in both theory and applications.
We also calculate the total topological charges l of the
GPOVs:

l(x,y |⃗c2 (t) , t ∈ [0,T] ) =
σ

2π

T
∫
0
|J(1, τ)|dτ. (4)

The integrated term in equation (4) is also a curve invari-
ant defined as a geometric object which is consistent with
the invariance of the topological charges. Therefore, equation
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(4) reveals that the topological charge of GPOVs is propor-
tional to the oriented area of the sector swept in tracing the
curves, which is also an invariable. In addition, the local phase
gradient (∇ϕ(x,y) = σ |J(1,q(x,y))|∇q(x,y)) and topolo-
gical charges of GPOVs can be freely controlled by the para-
meter σ, which is independent of their intensity scales.

Next, we exemplify a type of GPOV along elliptic curves
c⃗2 (t) = (acost,bsint) , t ∈ [0,2π], where a,b are the semi-
major axis and semi-minor axis of ellipses. By using the
coordinate transform in equation (1), the elliptic GPOVs have
the form:

C(x,y,z= 0|Ellipse) = δ (p− 1)exp(iσabq) , (5)

where p=
√

x2
a2 +

y2

b2 , q= arg(bx+ iay). We can rewrite
equation (5) in a familiar form:

C(x,y,z= 0|Ellipse) = r0δ (r− r0)exp(ilθ) ,ss (6)

where r=
√

b
ax

2 + a
by

2,θ = arg(bx+ iay) ,r0 =
√
ab, l= σab.

Equation (6) is the exact expression of an elliptic perfect vor-
tex (EPOV) [33]. Thus, we have proved that EPOVs are just
GPOVs along elliptic curves. It therefore confirms the validity
of the concept of GPOVs.

2.2. GPOVs in frequency domain

Due to the infinitely narrow intensity profiles along curves and
complex expression of GPOVs in spatial domain, it is a com-
mon approach to investigate them in a frequency domain sim-
ilar to POVs and EPOVs [30, 33, 34]. In a practical setup, the
GPOVs in the frequency domain are placed at the initial plane.
After passing through a Fourier lens with focal length of f,
the GPOVs in the spatial domain are generated at the Four-
ier plane. Therefore, we can derive the complex amplitude of
GPOVs in the frequency domain through an optical inverse
Fourier transform:

Y(x1,y1 |⃗c2 (t) , t ∈ [0,T] ) =
1
λf

¨

R2

C(x,y,z= 0)

× exp

[
i
2π
λf

(x1x+ y1y)

]
dxdy,

(7)

where (x1,y1) is the position vector at the initial plane,
(x,y) is the position vector at the Fourier plane, λ is the
wavelength of the beams and Y(·) is the complex amp-
litude of GPOVs in the frequency domain. After substi-
tuting equation (3) into equation (7), the complex amp-
litude of GPOVs in frequency domain can be simplified
further:

Y(x1,y1 |⃗c2 (t) , t ∈ [0,T] ) =
1
λf

Tˆ

0

ΦY (x1,y1, t) |J(1, t)|dt,

(8)

Figure 1. The normalized intensity and phase profiles of GPOVs in
frequency domain (initial plane) and in spatial domain (Fourier
plane) along several curves via simulations. The color bars and scale
bars are shown.

where

ΦY (x1,y1, t) = exp

i 2π
λf

(x1x0 (t)+ y1y0 (t))

+ iσ

0ˆ

t

|J(1, τ)|dτ

 .

Note that this formula is expressed in Cartesian coordinates
at the initial plane, which is easy to realize both in simulation
and experiment.

2.3. Simulation method

According to the setup mentioned in section 2.2, Y is loc-
ated at the initial plane and C is placed at Fourier plane
of a lens. Firstly, we calculate the intensity and phase pro-
files of Y, which are shown in the second and third rows
of figure 1. Notice that there are two integrals in equation
(8), which requires additional attention in numerical simu-
lation. Secondly, we calculate the Fourier transform of Y
numerically, yielding C. The intensity and phase profiles of
GPOVs are shown in the fourth and fifth rows of figure 1.
The focal length of the Fourier lens is 200 mm and the laser
wavelength is 632.8 nm in simulation. The simulation codes
of GPOVs are implemented in MATLAB and publicly avail-
able (https://github.com/ChenYueWuDi/GPOVs.git.)

In addition to POVs and EPOVs, we also simulate two other
types of GPOVs: the asteroid GPOV and Archimedean GPOV,
as shown in figure 1. The corresponding formulas and para-
meters for the GPOVs in figure 1 are shown in table 1. These
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Table 1. The formulas and parameters of the curves used in figure 1.

Curves −→c 2 (t) Expressions Parameters

Circle (R0cost,R0sint),
R0 = 0.5mm

t ∈ [0, 2π] ;
σ = 1.2× 108 m−2,
l = 30

Ellipse (acost, bsint)
a = 0.5mm,
b = 0.25mm

t ∈ [0,2π] ;
σ = 2.4× 108 m−2,
l= 30

Asteroid (3R0cost+R0cos3t,
3R0sint−R0sin3t)
R0 = 0.15mm

t ∈ [0,2π] ;
σ = 8.1× 107 m−2,
l= 3,
σ = 2.2× 107 m−2,
l= 11

Archimedean
spiral

(R0tcosωt,R0tsinωt),
R0 = 0.5mm,
ω = 10

t ∈ [0,1] ,
σ = 1.2× 108m−2,
l= 16

GPOVs have extremely sharp intensity profiles along arbitrary
curves c⃗2 (t) with scales independent of topological charges.
As an example, the asteroid GPOVs with topological charge
of 3 (the third column in figure 1) and 11 (the fourth column in
figure 1) possess exactly the same size at the coordinate space.
Thus, we can customize the scales and topological charges
separately. Additionally, the simulated Archimedean GPOV
implies that our strategies are valid even for open curves,
which could significantly extend the territory of POVs.

3. Experimental demonstration of GPOVs

3.1. Optical configuration

To demonstrate the proposed GPOVs experimentally, we build
the 6 f beam generation setup (figure 2(a)) by using a DMD
(DLP Discovery 4100, Texas Instruments, 1024 × 768). The
He–Ne laser (HRS015B, Thorlabs, 632.8 nm) is collimated
through a beam expander (BE, ×10) and a mirror M1 to illu-
minate the DMD. A lens L1 (f1 = 200 mm) is used to focus
light reflected from the DMD into a pinhole aperture which
selects the first-order diffraction. The first-order diffraction
is projected by a telescope consisted of lenses L2 and L3
(f2 = f3 = 50mm) onto a CMOS camera after passing through
a neutral density ND2 filter. An optical dump is used to col-
lect undesired background light. By projecting the binary holo-
grams onto the DMD, we could create steady GPOVs at the
CMOS plane (z= 0).

3.2. Super-pixel method for holograms

To encode the complex field on DMD, the holograms cre-
ated through the super-pixel method ares used to achieve full
control over the spatial phase and amplitude [35, 36]. Such
a configuration has sufficiently high resolution for encod-
ing binary holograms compared with other binary methods.
In a typical 4 f configuration, the super-pixel method gener-
ates binary holograms suitable for DMD. The DMD pixels
at the input plane (the front focal plane of the first lens)
are divided into several super-pixels and the prefactors for

Figure 2. The experimental setup for beam generation and
interferometry. (a) Optical setup; (b) binary hologram of asteroid
GPOV (l= 11), inset is an enlarged view of the pattern;
(c) interference pattern between an asteroid GPOV (l= 11) and a
Gaussian beam. The insert is an enlarged view of the interferometric
fringe.

each pixels with one super-pixel are distributed uniformly
between 0 and 2π. Thus, the total response at the output plane
(the back focal plane of the second lens) is the summation
of the individual pixel response. By programming the mask
at the input plane, the required complex field can be real-
ized at the output plane, where it is located at the coordinate
space.

However, considering that the GPOVs have the shape of
quite narrow curves with null intensity outside the curve
region, we encode its complex field in frequency domain onto
the DMD. Thus, we can obtain the curve shape directly at the
Fourier plane of the lens L1 by using the first-order diffraction,
which is selected by a pinhole in our experiment. So, to record
it, we need another confocal system (composed of the lenses
L2 and L3) to project the curve (created at the Fourier plane of
L1) onto the back-focal plane of L3, where the CMOS camera
is located. Note that, the lenses L2 and L3 are confocal because
the back focal plane of L2 shares the same position with the
front focal plane of L3. In fact, the focal length of L3 can be lar-
ger than that of L2, so that the image of the curve is magnified
for a better recording of intensity and the following interfer-
ence experiment. The generated binary mask for the asteroid
GPOV (l= 11) is exemplified in figure 2(b). The highlighted
image of mask indicates the binary states of DMD pixels.
Additionally, our generation codes of GPOVs are also publicly
available at https://github.com/ChenYueWuDi/GPOVs.git.

3.3. Intensity and phase distribution of GPOVs
in experiments

Figures 3(a)–(c) show the experimental intensity profiles
of elliptic and asteroid GPOVs, respectively. The para-
meters are listed in table 1. The intensity profiles are
very sharp along curves in all cases. Furthermore, the
experiments of asteroid GPOVs with topological charges
of l= 3 (figure 3(b)) and l= 11 (figure 3(c)) verify that
the size of GPOVs are independent of their topological
charges. The good agreement between simulated and meas-
ured intensity profiles implies the validity of the proposed
GPOVs.
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Figure 3. (a)–(f) The experimental intensity and phase distribution
of GPOVs with elliptic and asteroid trajectories; (g) the intensity
distribution of the GPOV (l= 11) with asteroid trajectory along
z axis. The scale bars and color bars are shown.

To further measure the phase of the generated GPOVs, we
apply a Mach–Zehnder interferometer to create the interfer-
ence patterns between an asteroid GPOV (l= 11) and a Gaus-
sian beam, as sketched in figure 2(a) [25, 37]. Two beam split-
ters (BS1 and BS2) are used to generate the object beams
(GPOVs) and reference beams (Gaussian beams). The two
beams are tuned into two co-propagating beams with a slightly
oblique angle for generating the interference patterns and
then recorded by the CMOS camera. In figure 2(c), we show
the recorded interference pattern. The interference fringes
for the case of the asteroid GPOV is shown in the enlarged
insert image for better observation. Using the interference pat-
terns, we could recover the exact phase profiles of GPOVs.
Figures 3(d)–(f) show the experimentally recovered phase pro-
files of elliptic and asteroid GPOVs, respectively. The phase
gradient along the curves within the purple dashed lines mani-
fests that the generated GPOVs preserve the designed phase
cycles of 30 (ellipse), 3 (asteroid) and 11 (asteroid). The twis-
ted boundaries between phase cycles are caused by a defo-
cus effect in experiments. Both experimental results agree
well with the simulations. Furthermore, we also observe the
propagation of the GPOVs, as shown in figure 3(g). The
GPOVs are focused into extremely thin curves in the z= 0
plane. The intensity profiles deform at the out-of-focus planes
due to the diffraction of light.

3.4. Modified formula for intensity-uniform GPOVs

Note that both the simulated and obtained intensity profiles
are not uniform along the trajectories, except for circles. This
inhomogeneous effect becomes severe especially at the cusp
points along the curves, see the fourth row of figure 1 for
example. This phenomenon originates from the unique prop-
erties of the Dirac delta function [38]. As shown in equation
(3), the amplitude of GPOVs are defined as a nonparametric
form δ (p− 1) in a specially designed in a curvilinear coordin-
ate system (p,q), where the amplitude of GPOVs are uni-
form. However, the GPOVs are usually expressed in Cartesian
coordinates (x,y) as δ (p(x,y)− 1) in both theory and experi-
ments. The properties of delta function yield:

δ (f(x,y)) =

{ 1
|∇f(x,y)| , where f(x,y) = 0

0, where f(x,y) ̸= 0
. (9)

Thus the amplitude of GPOVs along the curves where
f(x,y) = 0 is modulated by the ratio of the |J(1,q(x,y))| term
to

∣∣⃗c’2 (q(x,y))∣∣ term, where |⃗c ′2 (q)|=
√
x ′20 (q)+ y ′20 (q).

Consider an elliptical GPOV for example, the modulation term
is ab√

(a2−b2)sin2θ+b2
. Thus the intensity a2 occurs at θ = 0 and

b2 occurs at θ = π
2 , which can be identified at the first column

of figures 1 and 3(a). This phenomenon has also been repor-
ted in EPOVs, where a properly designed elliptical aperture
is suggested to realize a uniform amplitude distribution [30].
Unfortunately, it is quite difficult to design such apertures for
other curves.

To further extend the potential applications of GPOVs, we
generate GPOVs with uniform intensity along given curves.
Here, we propose a modification on the expression of GPOVs
as CModified (·), which can be treated as applying a predesigned
amplitude modulation on GPOVs along the curves by the ratio
of the

∣∣⃗c’2 (q)∣∣ term to |J(1,q)| term:

CModified (x,y,z = 0 |⃗c2 (t) , t ∈ [0,T] ) =
|⃗c ′2 (q)|
J(1,q)

δ (p− 1)

× exp

[
iσ

q
∫
0
J(1, τ)dτ

]
. (10)

Similar to equation (7), we derive the predesigned amp-
litude modulation for GPOVs in frequency domain:

YModified (x1,y1 |⃗c2 (t) , t ∈ [0,T]) =
1
λf

0ˆ

T

ΦY (x1,y1, t) |⃗c ′2 (t)|dt.

(11)
The modified formulas equations (10) and (11) possess

the same expression as the EPOVs with predesigned ellipt-
ical aperture in elliptic case. Furthermore, they can produce
GPOVs with uniform intensity along other curves.

Figure 4 shows the simulated and experimental intensity
distribution of GPOVs under the predesigned amplitude mod-
ulation described by equations (10) and (11). All the shapes
including elliptical, asteroid (l= 11) and Archimedean curves
(parameters are listed in table 1) can be realized experiment-
ally, as shown in figures 4(e) and (g). In addition, an elephant
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Figure 4. The simulated and experimental intensity distribution of
modified GPOVs along several curves. The scale bars are shown.

curve with four feet and one nose is described mathematically
with the help of a Fourier series, where σ = 1.2× 108m−2,
l= 30. Such a GPOV with the elephant curve is experiment-
ally generated with a continuous profile in figure 4(h), which is
highly consistent with the simulation in figure 4(d). Compared
with figure 1, the revised formula yields better uniformity for
intensity profiles along the curves. By using this revision, we
can overcome the key difficulties in applying the GPOVs in
fields such as optical trapping and single shot lithography [39].

4. Conclusions

In conclusion, we have proposed the concept of GPOVs along
arbitrary curves. GPOVs with various shapes possess similar
properties as POVs, such as defined only along infinitely nar-
row curves and owning topological charges independent of
scale. Note that they naturally degenerate to POVs and elliptic
POVs in circle and ellipse cases, respectively. For applications
such as optical trapping and single shot lithography, we give
a properly modified formula of GPOVs to produce uniform
intensity along predesigned curves. We also experimentally
generate the GPOVs through a DMD and measure their phase
profiles by interfering with Gaussian beams. The experimental
results are consistent with the simulations. These vortex beams
are valuable in micromanipulation, quantum communication,
optical imaging, and single-shot lithography.
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