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Abstract A superoscillatory focusing lens has been experimen-
tally demonstrated by optimizing Fresnel zone plates (FZP), with
limited physical insight as to how the lens feature contributes
to the focal formation. It is therefore imperative to establish a
generalized viable account for both FZP (amplitude mask) and
binary optics (phase mask). Arbitrary superoscillatory spots can
now be customized and realized by a realistic optical device,
without using optimization. It is counterintuitively found that high
spatial frequency with small amplitude and destructive interfer-
ence are favorable in superfocusing of a superoscillation pat-
tern. The inevitably high sidelobe is pushed 15λ away from the
central subwavelength spot, resulting in significantly enlarged
field of view for viable imaging applications. This work therefore
not only reveals the explicit physical role of any given metallic/

Amplitude Mask

Binary Phase Mask

dielectric rings but also provides an alternative design roadmap
of superresolution imaging. The robust method is readily appli-
cable in superthin longitudinally polarized needle light, quantum
physics and information theory.
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To observe microscale objects, people always pursue su-
perresolution imaging by decreasing the focused spot [1],
tailoring the evanescent wave [2, 3], utilizing the nonlin-
ear effect [4], exploiting the digital-image-processing tech-
nique [5, 6] and developing novel equipments [7, 8]. The
newly demonstrated optical microscopy based on super-
oscillatory focusing provides another route to superresolu-
tion imaging [9]. This superoscillatory optical microscopy
with the resolution of λ/6 has gained much attention be-
cause its focused spot can be infinitesimally sharp accord-
ing to the superoscillation theory, which opens up a promis-
ing conceptual avenue to imaging arbitrarily small objects.
Nevertheless, the superoscillatory spot with smaller fea-
ture suffers from its higher sidelobe, which, to some ex-
tent, imposes great challenges in the further application in
high-resolution imaging resolution. Since the superoscil-
latory spot is inevitably accompanied by its high sidelobe
[10, 11], one cannot eliminate the sidelobe if the super-
oscillation arises. Hence, it is nontrivial and imperative to
push the high sidelobe far enough apart from the center, so
as to produce realistic applications. However, this requires
the elaborate manipulation over superoscillation via com-
plicated lens design. The reported methods of constructing
a superoscillatory pattern in an optical lens mainly rely on
optimizing algorithms [9, 12] for FZP. Hence, the under-
lying physics, relating every feature of the physical lens
structure and their contribution on the imaging plane, is not
revealed yet, which in turn limits the flexible and controlled
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design of the superoscillation imaging in not only FZP but
also binary-phase masks [13].

It is well known that the superoscillation in optics is
one kind of destructive interference of light with different
frequencies at some points at small intervals by matching
the amplitude of every frequency [14]. This implies that one
can control the optical superoscillation by choosing a suit-
able amplitude and frequency of light for the destructive
interference at the prescribed position, which is a proto-
type inverse problem. We find that this inverse problem in
some realistic optical devices, e.g., a zone plate (ampli-
tude mask) or a binary-phase lens system (phase mask),
can be described by a nonlinear matrix equation. Solving
that can produce a customized superoscillatory pattern or
control the superoscillation optionally. In contrast to using
optimization for designing multiple rings as the only way,
the unveiled fundamental physics behind the matrix enables
us to analytically design a superfocusing central spot and
push the high sidelobe away from the center for several
wavelengths. In addition, we also attempt to propose a su-
peroscillatory criterion in optical focusing, rS = 0.38/fmax
(fmax is the maximum spatial frequency), which determines
whether the superoscillatory focusing occurs or not.

In contrast to the nanohole array [15], the zone plate
with the amplitude modulation of 0 or 1 is an easy method
to focus light into a superoscillatory spot. Optimization
turns out to be the only method reported so far that can
optimize the central radius and width of every belt in a
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Figure 1 The single belt’s diffraction at the intermediate region
(where z = 20λ) between the evanescent (near-field) and far-field
region. (a) The optical system describing the diffraction of a single
belt with its width �r and radius r0. (b) The dependence of RMSE
on the width �r and radius r0 (or sinα). The smaller the RMSE, the
better the approximation between the intensity profile at the target
plane and its zero-order Bessel function |J0(krsinα)|2 with the
same sinα (= r0/(r0

2+z2)1/2). We just show the cases with small
RMSE located in the colored region. The geometry parameters
of the single belt are (sinα, �r)A = (0.6, 1.7λ) at A and (sinα,
�r)A = (0.6, 0.5λ) at B. (c and d) The 1-dimensional intensity
profiles (red) of light passing through the belt with its parameters
at position A (c) and position B (d) and their corresponding Bessel
functions with the same sinα (blue). The intensity profile in (c)
shows an excellent coincidence with the Bessel function so that it
is hard to distinguish them. (e) The dependence of the amplitude-
modulation coefficient |Cn| in Eq. (1) on the width �r and radius
r0 (or sinα).

zone plate [9]. Unfortunately, such an optimization-based
method presents little physical information but a fitness
function containing lens parameters and the designed su-
peroscillatory spot, which is not able to provide an insight-
ful means for controlling the superoscillatory focusing with
a customized pattern in the imaging plane, e.g., the peak
ratio of sideband over central spot, the distance between
high sidelobe and the center. These are actually nontrivial
in practical imaging industries, when one wants to use a
superoscillatory lens. In this connection, the contribution
of our optimization-free design principle for a superoscil-
latory lens is three-fold: First, the design process is fully
guided by the proposed theory; Secondly, the approach ap-
plies not only to an amplitude mask but also a phase mask;
Thirdly, customization and solving the disadvantage of a
superoscillatory lens, i.e. higher sidelobe too close to the
central spot.

Figure 1 shows the diffraction of light by a single belt
with its geometry of radius r0 and width �r, as shown

in Fig. 1a. In order to evaluate the focusing properties of
a single belt, we use the root-mean-square error (RMSE,
whose definition is available in Supplementary Materials)
between its diffracting intensity at the target plane and its
corresponding zero-order Bessel function of |J0(krsinα0)|2
with the same sinα0 ( = r0/(r0

2+z2)1/2). Figure 1b shows the
relationship between RMSE and the geometry (in terms of
width �r and radius r0) of a single belt. The light from a belt
has the different intensity profile at the target plane when
the geometry of the transparent belt in Fig. 1a changes.
Only the light passing through the belt with its geometry
located in the colored region of Fig. 1b has a better focusing
pattern with small RMSE, which can be approximated as
a zero-order Bessel function of the first kind as shown in
Fig. 1c, at the target plane. However, the intensity profile
for the case of A in Fig. 1d might destroy the total inten-
sity of the superoscillatory focusing for a subwavelength
spot due to its poor focusing property at r = 0 and the
incomplete destructive interference at its first valley. The
optimizing algorithm behaves poorly in rejecting the case
of A by itself. In addition, even if all the belts in a zone plate
have the geometry located in the colored region, it is still
an arduous task for the optimizing method to realize the
prescribed intensity (i.e. complete destructive interference
with zero intensity) at the customized radial (r) position
in the total intensity of the zone plate. To achieve the cus-
tomized intensity pattern, we here suggest a mathematical
method by solving a nonlinear matrix equation, without any
optimizing technique involved, to design a superoscillatory
mask.

Although some attempts based on the inverse of the
matrix have been made to construct a superoscillatory pat-
tern and diffraction-free beam [14, 16, 17], this method is
only constrained to the case that the unknown amplitude-
modulation coefficients are independent of the spatial fre-
quency. For the zone plate, the amplitude-modulation coef-
ficient from every spatial frequency has a tight relationship,
shown in Fig. 1e, with the geometry of the transparent belt in
the zone plate, which makes designing of a superoscillatory
zone plate very challenging. Here, we develop this method
further to design a superoscillatory mask with customized
pattern in a realistic optical system. For simplicity, we as-
sume that the illuminated light of the mask is an unpolarized
plane wave with uniform distribution in the paper. Accord-
ing to the scalar Rayleigh–Sommerfeld diffraction theory
[18], for an unpolarized incident beam passing through the
unobstructed belt with radius Rn and width �r in Fig. 2a,
its electric field at the target plane beyond the evanescent
region is

Un(r ) = 1

2π

∫ Rn+�r/2

Rn−�r/2

∫ 2π

0
u(r, φ)

∂

∂z

[
exp(ik R)

R

]
ρdρdφ,

(1)
where R2 = z2+r2+ρ2–2rρcos(θ–ϕ), the complex ampli-
tude u(ρ,ϕ) of the incident beam is taken as unity for
the uniform illumination here. The electric field mainly
depends on the Rn, �r and z. We define the amplitude-
modulation coefficient Cn = Un(0) and the normalized
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Figure 2 Generation of superoscillatory focusing with the side-
lobe away from the center by using a zone plate. (a) The sketch
of focusing light beyond the evanescent region by using the zone
plate. The nth belt in the zone plate has the radius of Rn and width
�d. (b) The constructed optical superoscillatory pattern with the
prescribed position r = [0, 0.33λ, 0.84λ, 1.29λ, 1.73λ] and the
customized intensity F = [1, 0, 0, 0, 0] at r. Inset: the solved Rn of
every belt with fixed �r = 0.3λ. (c) The modulus (dot) and phase
(circle) of the amplitude-modulated coefficient Cn in the solved
zone plate of (b). (d and e) The phase (d) and intensity (e) pro-
files of a belt with its width �r = 0.3λ and the changing radius
Rn.

amplitude An(r) = Un(r)/Cn. Figure 1b shows the root-
mean-square error (RMSE) between | An(r)|2 and its corre-
sponding zero-order Bessel function of |J0(krsinαn)|2 with
the same sinαn ( = Rn/(Rn

2+z2)1/2). In Fig. 1c, one can see
that |Cn| has a strong dependence on the width �r and the
spatial frequency designated as sinα/λ. Then, the total elec-
tric field of light passing through a zone plate containing N
belts can be expressed as

U (r ) =
N∑

n=1

Cn An(r ). (2)

To realize the intensity F = [f1, f2,.., fM]T at the position
r = [r1, r2, . . . , rM]T in the target plane, we can described
this problem as

SC = F, (3)

where S is an M×N matrix with its matrix element Smn

= An(rm) according to Eq. (2) and C = [C1,C2, . . . ,CN]T,
where the sign T means the transpose of matrix. The solu-
tion of Eq. (3) exists if M ≤ N. Here, we just consider the
case M = N for which Eq. (3) has the only solution. Be-
cause the Smn and Cn are dependent on the unknown Rn (or

sinαn) when the width �r and z are fixed, it is a nonlinear
problem to solve the matrix equation for Rn. Although, in
general, Eq. (3) has no analytical solution like the cases in
[14, 17], its numerical solution can be easily obtained by
using the well-developed Newton’s theory, which has been
widely used to deal with the nonlinear problem in many ar-
eas [19,20]. Newton’s theory for nonlinear problems solves
Eq. (3) on the basis of the exact solution of its subproblem
[20], which makes it a powerful tool to efficiently approach
the exact solution without any search-based optimizing al-
gorithm. The method described in Eq. (3) provides a very
useful way to design a superoscillatory zone plate despite
the fact that the solution is numerically approximated.

To verify the validity of our method, we show a con-
structed superoscillatory spot with size of about 0.5rR (rR is
the Rayleigh limitation) and its sidelobe is about 1.8λ away
from the center by using a zone plate, shown in Fig. 2a,
which is designed by our method. In order to realize the
goal of pushing away the sidelobe, we pad the zero inten-
sity at the locations between the sidelobe and the center to
suppress the high sidelobe near the center. The customized
position r with zero intensity must be carefully chosen to
reject the generation of any high intensity between the high
sidelobe and the center when solving Eq. (3). Therefore, we
choose F = [1, 0, 0, 0, 0]T at r = [0, 0.33λ, 0.84λ, 1.29λ,
1.73λ]T for achieving a superoscillatory spot with the size
of 0.5rR (0.33λ) and its sidelobe about 2λ away from the
center in Fig. 2b. In the customized F and r, f1 = 1, f2 =
0 and r1 = 0.33λ are used to define the superoscillatory
spot and the rest is responsible for suppressing the sidelobe
between the main spot and the high sidelobe. According
to the result in Fig. 1b, we assume that the width �r of
every belt has the same size of 0.3λ and the target plane is
located in z = 20λ in the simulation for removing the case
of A in Fig. 1d. To obtain the unknown Rn of every belt,
we solve its inverse problem described in Eq. (3) by using
the trust-region dogleg Newton theory that is introduced in
the Supplementary Materials [20]. The solved Rn is shown
in the inset of Fig. 2b and their corresponding sinαn =
[0.1387, 0.2576, 0.5643, 0.6638, 0.9548].

Conventionally, in order to obtain a supersmall focused
spot, one always prefers to focus the light of high spatial
frequency with large amplitude, which leads to a small size
spot dominating at the target plane, and interfere the light
from different spatial frequencies constructively, which en-
hances the focused spot. However, in superoscillatory fo-
cusing, we here show an abnormal phenomenon that the
maximum amplitude (|Cn|) is located at the frequency with
the intermediate value. This counterintuitive requirement
for obtaining a small spot by superoscillation mainly de-
pends on the fact that the superoscillation always oscil-
lates with very small amplitude that can be considered as
almost destructive interference [14]. The destructive in-
terference in the superoscillation is also reflected by the
phase of Cn that is shown in Fig. 2c. The phase differ-
ence between two neighboring belts in the designed zone
plate is nearly π , which implies that the destructive in-
terference is essentially required for realizing the super-
oscillation pattern in Fig. 2b. Thus, we can claim that the
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Figure 3 Generation of superoscillatory focusing with the side-
lobe away from the center by using a binary phase and a lens.
(a) The sketch of focusing a binary-phase modulated beam by
a lens. The binary element has the phase of 0 and π , whose
boundary is the circle with radius of Rn (n = 1,2, . . . ,N). The lens
has an NA of sinα, where α is the maximum convergent angle. (b)
A superoscillatory spot with size of 0.34λ and its sidelobe about
15λ away from the center by solving its inverse problem. Inset: 2-
dimensional intensity profiles in the range r ≤ λ. The specific radii
of individual dielectric grooves are given in Supplementary Mate-
rials. (c) Width �rn (blue dot) of every belt and its corresponding
angle width �θn (red star) in the designed binary phase. Inset: 3-
dimensional phase profile of this binary phase plate. (d) Modulus
(solid circle) and phase (hollow circle) of amplitude-modulated
coefficient Cn.

amplitude-modulated coefficient Cn has the alternating sign
of (–1)n with its modulus small for low and high spatial
frequency and large for the intermediate frequency, which
is further confirmed by the case of focusing the light with
rigorous single spatial frequencies (see Supplementary Ma-
terials). Nevertheless, this conclusion predicts that the zone
plate is not ideal to realize a superoscillatory spot in Fig. 2b.
Although the belt in the zone plate shows the excellent fo-
cusing property in a long range of Rn shown in Fig. 2e, the
phase of Cn, that is the case of r = 0 in Fig. 2d, varies from 0
to 2π quasiperiodically with the increase of Rn. As a result,
much effort must be made to obtain the phase difference of
π for the alternating sign of Cn. Therefore, the zone plate
may not be the best candidate to achieve a superoscillatory
spot with its high sidelobe away, although we can use it to
realize the superoscillatory spot in Fig. 2b.

Considering the difficulty of phase matching from a
zone plate, we suggest another optical system containing
a binary phase and a high numerical-aperture (NA) lens in
Fig. 3a to realize the superoscillatory subwavelength focus-
ing. The binary element with the phase 0 or π located in
the entrance pupil of the focusing lens provides the phase

difference of π for the generation of superoscillation in
focusing [13, 21]. In the uniform illumination of an unpo-
larized beam, the electric field at the focal plane can be
approximated by the Debye theory [22, 23]

U (r ) = 2π i

λ

∫ α

0
P(θ )J0(kr sin θ ) sin θdθ

=
N∑

n=1

(−1)n 2π i

λ

∫ θn

θn−1

√
cos θ J0 (kr sin θ ) sin θdθ

=
N∑

n=1

(−1)n Un (r ), (4)

where P(θ ) is the apodization function that equals
p(θ )·cos(θ )1/2 for the lens obeying the sine condition
[23, 24], p(θ ) is the entrance pupil function that is (–1)n

for the uniform illumination with the modulation of binary
phase. The relationship between Rn and θn (n = 0, 1, 2,
. . . , N with θ0 = 0, θN = α) is Rn/f = sinθn for the sine
lens used here, where f is the focal length of focusing lens.
We define the amplitude modulation coefficient Cn = (–
1)nUn(0) and An (r) = Un(r)/Un(0). Similarly, the inverse
problem of constructing the superoscillation using the opti-
cal system in Fig. 3a can also be expressed by Eq. (3) with
the unknown variable Rn (or sinθn). The amplitude modula-
tion coefficient Cn with the alternating sign of (–1)n makes
it easier to solve the inverse problem for generating the
superoscillatory focusing. Figure 3b shows a constructed
superoscillatory spot with a size of about 0.5rR (0.34λ) and
the high sidelobe about 15λ away from the center by using
a 0.95 NA lens (see Supplementary Materials for the radius
parameters).

This superoscillatory spot is obtained by padding 29
zero-intensity positions between the main spot and the
sidelobe when solving its inverse problem with N = 30
variables. Compared with the result in Fig. 2b by using a
zone plate, the spot in Fig. 3b almost keeps the same size,
while the distance between its high sidelobe and center is
nearly 10 times that in Fig. 2b, which mainly benefits from
the binary phase (with a phase difference of π ) for de-
structive interference. We can enlarge the distance further
by padding more zero-intensity positions between the high
sidelobe and the center. Figure 3c shows the structure of the
designed binary phase by our method. The width �rn (=
Rn–Rn–1) of belts in the binary phase tends to be diminish-
ing at the outmost belts that are relative to the high spatial
frequency. However, for a sine lens, the corresponding an-
gle width �θn ( = θn–θn–1) of every belt is increasing so
that the amplitude modulation |Cn| shows the monotoni-
cally increasing tendency from the low spatial frequency
to the high in Fig. 3d, which is different from the case in
Fig. 2c. This is mainly attributed to the fact that every belt of
binary phase corresponds to the spectrum (from sinθn–1/λ
to sinθn/λ) of spatial frequency not a quasisingle spatial fre-
quency that occurs in zone plates. Through this example,
we have shown that the method suggested here is valid to
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solve the inverse problem of superoscillation by using the
optical system in Fig. 3a.

Next, we discuss the method that distinguishes a su-
peroscillatory spot in optical focusing. Although the su-
peroscillatory spot has been widely investigated in optical
focusing and imaging [9, 12, 15, 25], none provides a clear
demonstration as to how small a spot has to be so that it can
be considered as a superoscillatory spot. To our knowledge,
the Rayleigh criterion (rR = 0.61λ/NA) is mostly used to
judge a superoscillatory spot in optical focusing [26]. How-
ever, it is a very rough method because there is no definition
of superoscillation involved. In optics, a relevant and nat-
ural definition of superoscillation has been proposed by
measuring the changing rate of the phase of a band-limited
function in a local region [27,28]. In particular, for the case
of the 1-dimensional (or axisymmetric) band-limited func-
tion, i.e. the zone plate and a binary-phase-based lens, Berry
and Dennis proposed a practical method for measuring the
local wave number, k(r) = Im{∂r[lnF(r)]}, where F(r) is
the band-limited function [28]. Therefore, the definition of
local wave number by Berry and Dennis is preferred in
optical focusing. However, when we use Berry and Den-
nis’s suggestion to evaluate the local wave number of a
superoscillatory band-limited function in Fig. 4a, the cal-
culated wave number in Fig. 4b is larger than the wave
number of its maximum Fourier component only when the
band-limited function has zero intensity. This means that,
though the band-limited function indeed oscillates faster
in the whole region x ∈ [–0.8λ, 0.8λ] than its maximum
Fourier component, Berry and Dennis’s suggestion only
predicts the superoscillation at the zero-intensity position.
It is worth pointing out that Berry and Dennis’s suggestion
gives the wave number at a certain position but not in a
region where Fig. 4b shows the large wave number only at
the zero-intensity position. Therefore, in optical focusing,
it is better to define the superoscillatory spot by measuring
the phase-changing rate in a certain region.

In optical focusing, we constrain the definition of a
superoscillatory spot on three conditions: 1) The optical
system is axisymmetric so that a circular spot could be gen-
erated. 2) The superoscillatory spot must oscillate faster in a
certain region of the target plane than its maximum Fourier
frequency component. 3) “A certain region” is located at
r ≤ rS, where rS is the first zero-intensity position of the
electric field at the target plane by focusing the light only
from the maximum Fourier frequency component. The rea-
son for choosing the region r ≤ rS is to exclude the case
shown by the black curve of Fig. 4c, which has the fast
superoscillation at r≥rS while its spot size is very large. In
this region r ≤ rS, the maximum Fourier frequency com-
ponent only oscillates for one time without changing its
phase, which is shown by the blue curve in Fig. 4c. If a
spot oscillates faster in r ≤ rS, this will lead to the gen-
eration of the intensity valley, where the high local wave
number is located [28]. Thus, we can define a superoscil-
latory spot in optical focusing as: a spot is superoscillatory
when its local wave number that is larger than the wave
number of the maximum Fourier frequency is located in
the region r ≤ rS. In that case, a spot with its zero intensity
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Figure 4 Superoscillatory criterion in optical focusing. (a) The
amplitude profiles of a superoscillatory band-limited function with
its zero-intensity position at x = ±0.2λ (red) and its maximum
spatial frequency component (blue). The band-limited function is
the electric field at the focal plane by using the binary-phase-
based 0.95NA lens in Fig. 3a with the solved sinθn = [0, 0.3435,
0.6523, 0.8744, 0.95]. This superoscillatory band-limited function
obviously oscillates faster in the region x ∈ [–0.8λ, 0.8λ] than its
maximum spatial frequency. (b) The local wave number of the
band-limited function in (a) by using Berry’s suggestion. (c) The
amplitude profiles of various cases: the first zero-intensity posi-
tion located in the colored region (red) and outside color region
(black). The blue curve shows the amplitude of the maximum
spatial frequency. (d) The spot size in different NA, which equals
the sine (sinα) of the angle between the optical axis and the
maximum convergent ray in free space. The two curves, which
are the Rayleigh (black) and superoscillation (white) criterions,
divide the focusing spot into three parts: subresolved (orange),
superresolution (cyan) and superoscillation (dark blue).

located in r ≤ rS is superoscillatory, which is shown by red
curves in Figs. 4a and c. This means that a superoscillatory
spot has a smaller size than that (rS) by only focusing its
maximum spatial frequency, which implies that rS can be
taken as the superoscillatory criterion. When light with a
single spatial frequency of sinα/λ (α is the angle between
the optical axis and the maximum convergent ray) is fo-
cused, its electric field at the target plane is proportional
to the zero-order Bessel function J0(2πrsinα/λ) of the first
kind, which gives rS = 0.38λ/sinα. The superoscillatory
criterion rS has a similar shape to the Rayleigh criterion rR.
Figure 4d shows the spot size in different NA that is usually
in terms of sinα in free space. For a given NA, the spot in all
the cyan and dark-blue areas below the Rayleigh criterion
(black curve) can be called the superresolution spot and
the spot in the dark-blue area below the superoscillation
criterion (white curve) is the superoscillation spot, which
means that the superoscillation spot is one subaggregate of
the superresolution spot. The finely distinguished roadmap
in Fig. 4d provides an instructive guide that the cyan area be-
tween the Rayleigh and superoscillation criterion is the best
choice when one pursues a superresolution focusing spot
without high sidelobe beyond the evanescent range. More
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importantly, rS implies a limitation of 0.38λ for the appli-
cation of subwavelength spot without high sidelobe.

In summary, we have demonstrated a physical design
roadmap of the superoscillatory focusing by using a zone
plate or a binary-phase-based lens, with significantly en-
larged field of view. The described inverse problem of su-
peroscillation in terms of a nonlinear matrix equation en-
ables construction of a customized superoscillatory pattern
possible to be implemented without the traditional opti-
mizing technique involved in the reported superoscillatory
lens. This paves the way to a new scheme in further im-
proving the resolution of the optical far-field imaging, and
narrowing width of longitudinally polarized needle light
for advanced data-storage performance [13]. In achieving
a supersmall spot beyond the evanescent region, our result
shows a counterintuitive phenomenon that the large spatial
frequency with low intensity and destructive interference
must be involved. Furthermore, the superoscillatory cri-
terion proposed here gives us the direct insight into the
spot pattern beyond the Rayleigh limitation, which sets a
theoretical limitation of 0.38λ for the spot size in some ap-
plications that demand the narrow spot and low sidelobe
simultaneously, i.e. optical lithography [29], high-intensity
optical machining [30] and high-contrast superresolution
imaging [31–33].
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