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Preface

Motivation This book is an introduction to the use of formal methods ranging
from semantics of key programming constructs to techniques for the analysis and
verification of programs. We use program graphs as the mechanism for representing
the control structure of programs in order to find a balance between generality
(should be able to accommodate many programming constructs and support many
analysis techniques) and conceptual complexity (should not require students to be
able to manipulate proof trees and the like).

We cover a wide selection of formal methods while at the same time intending to
overcome some of the learning difficulties that many students have when studying
formal methods. In particular, many of our students find the compositional approach
taken in our book Semantics with Applications: An Appetizer (Springer Undergrad-
uate Topics in Computer Science) challenging — especially when it comes to proofs.
Hence the aim of this book is to rely more on the intuition that students have about
graphs.

Teaching from the book We are using the book in the bachelor course 02141:
Computer Science Modelling at The Technical University of Denmark. Our students
have some background in functional programming so that recursive definitions are
somewhat familiar to them. Still it may be useful to explicitly point out that the
recursive definitions are sufficently detailed that they can easily be converted to
functional programs (as briefly sketched in Appendices B and C). Since our students
have different skills we have added bonus material in most chapters; this may
challenge the more advanced students but is not required.

𝟨 𝟥

𝟩 𝟣��

��

��

��

��

𝟦

𝟪 𝟤�� �� 𝟧

𝖠 𝖡 𝖢

𝖣

Figure 0: Dependencies.

Our intention is that the chapters of the book are largely plug-and-play. Chapters
1 and 2 suffice for the treatment of the majority of the remaining material; the
few cross references, examples or exercises that do not adhere to this can safely be
ignored in teaching. These two chapters cover our model of program graphs and an
example programming language.

Chapters 3, 4, 5 and 6 cover formal methods for analysing the behaviour of programs
in various ways ranging from verification, via program analysis and language-based
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security, to model checking.

Chapters 7 and 8 present language extensions with procedures and concurrency and
cover their semantics.

Appendix A describes a fragment of the C programming language that may be useful
for assignments.

Appendix B contains ideas for a number of programming projects related to the
development in Chapters 1 to 5 with Appendix C providing further suggestions for
how to tackle them in F#. This constitutes the basis for the learning environment
described in Appendix D.

Appendix D describes part of the learning environment at FormalMethods.dk, which
allows students to play with the development and hence create examples beyond
those covered in the main text.

Further teaching material and a list of typographical errors will be made available at
FormalMethods.dk in due course.

Studying the book The text in this book is not only black text on a white
background. We use a yellow background for definitions and other key notations;
we use a grey background for examples; we use a magenta background for key
results; and we use a cyan background for comments that paint a wider picture or
impose restrictions on our treatment. The simplest exercises are labelled ‘Try It Out’
and should be attempted before reading any further, the more normal exercises are
labelled ‘Exercises’ and can be solved right away or during an exercise session, and
the ‘Teasers’ may be too challenging for most students. We strongly recommend
reading all exercises and teasers even if they are not solved; those central to the
subsequent development are labelled ‘Essential Exercise’.

We have intended the book to be short and concise and leave it to the students to pro-
vide further examples using the learning environment available at FormalMethods.dk
and introduced in Appendix D.

Acknowledgement We have received many comments and suggestions from stu-
dents and colleagues when writing this book; in particular, we should like to thank
Andreas Viktor Hess, Alberto Lluch Lafuente, Kasper Laursen, Hugo A. López, Mike
Castro Lundin and Panagiotis Vasilikos for their enthusiasm.

About the authors The authors are full professors at The Technical University of
Denmark, working in the section on Formal Methods for Safe and Secure Systems
in the Department of Applied Mathematics and Computer Science.

In recent decades they have written several books on semantics and analysis and
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Prologue

Formal Methods Society becomes ever more dependent on IT systems and is
increasingly vulnerable to cyber attacks and programming errors. The slogan of
safe and secure by design emphasises that ideally IT systems should be constructed
in such a way that they are mostly immune to such vulnerabilities. The use of
formal methods offers a wide variety of techniques and tools for mitigating these
vulnerabilities. When working with existing IT systems the aim is instead to retrofit
safety and security to the extent possible.

This book is an introduction to the use of formal methods for describing and analysing
the software components that constitute IT systems. The IT systems may be small
stand-alone apps or they may be part of larger cyber-physical systems or the Internet
of Things. Constructs that look similar in different programming languages may
have subtle differences, and constructs that look rather different may turn out to be
fairly similar after all. It is the role of semantics to make these issues precise.

Often we need to ensure that software components behave in certain ways – methods
such as program verification, program analysis, language-based security and model
checking are useful for this. Together they provide a variety of means for ensuring a
safe and secure IT infrastructure for our society. Let us briefly compare the methods.
Program verification is very powerful as to the behaviour that can be expressed but
unfortunately the verification process cannot be fully automated. This is in contrast
to program analysis, which is fully automatic but less precise. The approach of
model checking supports more general properties and it is also fully automatic but
the performance is often not as good as for program analysis.

In the remainder of this prologue we provide an overview of the approach taken in
this book. For a well-written account of what formal methods can do for safety and
security of IT systems you might take a look at

Kevin Hartnett: Hacker-Proof Code Confirmed. Quanta Magazine, 2016.

(https://www.quantamagazine.org/formal-verification-creates-hacker-proof-code-20160920),
which describes how one can prove certain programs to be error-free with the same
certainty that mathematicians prove theorems, and how this is being used to secure

ix
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x Prologue

everything from unmanned drones to the Internet.

Program Graphs Sometimes we want to analyse existing software components
and sometimes we want to analyse software components that are in the process of
being designed – to ensure that we do not waste effort on implementing a software
component that eventually falls short of meeting its aims.

To present a uniform approach to these goals we make use of models of software
components or IT systems. A model is an abstraction of the system – it will focus
on some parts of the system and ignore others. It may focus on the workflow of an
organisation and ignore details about how the individual steps are carried out. It
may describe the logic of a vending machine offering tea, coffee and chocolate at
different prices and ignore construction details. It may dig into the details of how a
cryptographic protocol or a sorting algorithm works. It may be extremely concrete
and model the detailed bit-level operation of computers. What is common is that a
model should describe not only the structure of the IT system but also its meaning –
at an appropriate level of abstraction.

In this book we shall focus on a graphical representation of models called program
graphs. Program graphs focus on how a system proceeds from one point to the
next by performing one of the actions identified by the abstraction. The meaning of
the actions is formalised by defining their semantics and this gives rise to a precise
description of the meaning of the program graphs themselves. Depending on our
focus the semantics may be at the level of bit strings, mathematical integers, or
data structures such as arrays. We refer to Chapter 1 for this development.

Guarded Commands When programming we use a programming language such
as C, Java or F# to construct the software components needed. The syntax of a
programming language is usually specified by a BNF grammar and sometimes there
are additional well-formedness conditions that need to be adhered to. There are
many approaches to how to define the semantics of the programming language –
that is, to formally define the meaning of programs written in the programming
language. Some approaches are very mathematical in nature and others are more
operational, and in general the approaches have their own strengths and weaknesses.
As an example, some of the approaches lend themselves easily to programming
languages with concurrency whereas others do not.

To present a uniform approach to the semantics of a variety of programming languages
we shall take the view that programs give rise to program graphs. This means that
we will show how to transform programs in programming languages into program
graphs. We shall focus on the language Guarded Commands introduced by Dijkstra
in 1975. Our treatment covers the syntax and the construction of program graphs.
We also cover a number of extensions, including more advanced control structures.
We refer to Chapter 2 for this development. Guarded Commands is a tiny and
probably unfamiliar language but the techniques used can be extended to more
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familiar languages as discussed in Appendix A.

Program Verification Having a precise understanding of the meaning of models
and programs is a precursor to being able to reason about their behaviour. We
can investigate whether the model has the functionality we envisioned, whether it
provides the required safety or security guarantees, and we can look into performance
issues. We shall cover four methods for how to achieve this: program verification,
program analysis, language-based security and model checking. They differ widely in
the degree to which they can be automated and the precision that can be obtained.

The basic idea of program verification is to attach a predicate to each node in the
program graph. This should be done in such a way that a predicate at a node is
fulfilled whenever we reach the node during execution – when this is the case the
predicate is said to be an invariant. As an example, we may want to express that
whenever the execution of a program graph for a sorting routine reaches its final
node then the array given as input to the routine has indeed been sorted. Program
verification allows such properties to be verified in a very systematic manner.

We will cover how to express predicates and how it suffices to have predicates only
for the nodes corresponding to loop entries. We will explain what needs to be verified
about the predicates in order that they are proper invariants. And we will show how
to integrate the development with the Guarded Commands language. We refer to
Chapter 3 for this development.

Program Analysis The main shortcoming of program verification is that it cannot
be fully automated – due to the expressive power of the predicates used.

In program analysis the properties attached to the nodes in the program graph
are made less expressive and we accept that the properties often describe more
memories than can actually arise at a node – we say that program analysis is
over-approximating in nature. We illustrate the approach by developing a program
analysis for keeping track of the signs of integers and of arrays of integers: we
introduce the properties and show how to define the analysis functions.

It is possible to develop a number of algorithms for automatically computing the
properties to be attached to the nodes and these algorithms often have good
performance. Consequently, program analysis techniques are used extensively in
the advanced implementation of programming languages as well as in ensuring
correctness properties of potentially large programs. We refer to Chapter 4 for this
development.

Language-Based Security Formal Methods constitute a key set of techniques
for ensuring that we can rely on our IT systems to provide a safe and secure
infrastructure.
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Security is often said to consist of three components: Confidentiality, meaning that
data is only told to those we trust; Integrity, meaning that data is only influenced
by those we trust; Availability, meaning that data is not inaccessible when needed.

We show how to achieve confidentiality and integrity by limiting the information flow
permitted by programs. This can only partially be done by checking the information
flow dynamically so static checks will be needed and we develop a security analysis
for the Guarded Commands language to do so. We refer to Chapter 5 for this
development.

Model Checking Another fully automatic method for the analysis of models is
that of model checking .

The key novelty of the model checking approach is the use of a computation tree
logic for expressing the properties. The use of logic for expressing properties retains
some of the flavour of program verification but the expressive power is sufficiently
reduced with respect to that of the predicates so that full automation can be achieved.
The approach earned its inventors the Turing award.

Model checking is more precise than program analysis but also more costly as it
analyses a transition system built from a program graph by having multiple copies
of each node – one for each of the memories possible at that node. This gives rise
to the so-called ‘state explosion problem’, which is the real hindrance to applying
model checking on very large systems. We refer to Chapter 6 for this development.

Procedures One of the key abstraction mechanisms in programming languages is
that of procedures, or equivalently those of functions and methods. To study this we
extend the Guarded Commands language of Chapter 2 with recursive procedures with
input and output parameters as well as blocks with local declarations of variables.

The key novelty when giving the semantics to this language is that the memory
model is changed to be a stack of frames. The program graphs are extended with
appropriate actions for manipulating the stack: when a block is entered a new frame
is pushed on the stack and it is popped when the block is left – and similarly a new
frame is pushed on the stack when a procedure is called and it is popped when the
call returns.

Our first treatment of procedures gives rise to dynamic scope; we then show how a
slight modification of the development suffices for obtaining static scope. Our only
focus is on defining the semantics and we refer to Chapter 7 for this development.

Concurrency Another key abstraction mechanism in programming languages is
that of concurrency . The idea here is that a system consists of a number of processes
that execute in parallel and interact with one another by exchanging information.
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We shall assume here that the individual processes are in an extended version of the
Guarded Commands language of Chapter 2.

The key challenge in this setting is that the memory model must keep track of
the configurations of all the processes. We shall first consider the simple setting
where the processes interact through shared variables. We then extend it to channel-
based communication, by which we mean that the Guarded Commands language
is extended with constructs for input and output over channels. First we consider
asynchronous communication by means of buffered channels and next we consider
synchronous communication where two program graphs need to perform a step at
the same time.

We finish with a treatment of some advanced communication constructs: ‘broadcast’,
which sends a value to many recipients at the same time, and ‘gathering’, which
obtains values from many senders at the same time. We refer to Chapter 8 for this
development.

Programming Projects Our treatment of formal methods is sufficiently detailed
that a number of programming projects can be formulated where the ideas are put
into practice. This ranges from using the semantics to construct an interpreter to
the implementation of a verification condition generator, a program analyser, and a
security analysis. We refer to Appendices B and C for more on this. These projects
can be adapted to the MicroC language of Appendix A as desired.
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Chapter 1

Program Graphs

Sometimes we need to be very precise about the behaviour of our programs – there
may be constructs in our programming language that are subtle or novel. Semantics
is the part of Computer Science that deals with formalising the behaviour of programs.
In this chapter we are going to develop an operational notion of semantics based on
representing programs as so-called program graphs.

1.1 Program Graphs

A program graph is a graphical representation of the control structure of a program
or system. A program graph is a directed graph so it has a set of nodes and a set
of edges. However, there is a little more structure to a program graph. It has an
initial node that intuitively represents the starting point of the executions modelled
by the program graph and by symmetry it has a final node that represents a point
where the execution will have terminated. Each of the edges is labelled with an
action modelling the computation to take place when control follows the edge. The
program graph does not specify the meaning of actions – so far they are just syntax
and it is only when we come to the semantics in the next section that we give
meaning to the actions.

𝑞⊳
𝚢∶=𝟷
��
𝑞1

𝚡>𝟶

��
𝚡≤𝟶

��
𝑞2

𝚢∶=𝚡∗𝚢
��

𝑞�

𝑞3

𝚡∶=𝚡−𝟷

		

Figure 1.1: Program graph for the
factorial function.

Example 1.1: Figure 1.1 shows a program graph with five nodes: 𝑞⊳ is the
initial node, 𝑞� is the final node and then there are three additional nodes 𝑞1, 𝑞2
and 𝑞3. The edges are labelled with the associated actions; as an example the
action 𝚢 ∶= 𝚡 ∗ 𝚢 is associated with the edge with source 𝑞2 and target 𝑞3. The
five actions 𝚢 ∶= 𝟷, 𝚡 > 𝟶, 𝚡 ≤ 𝟶, 𝚢 ∶= 𝚡 ∗ 𝚢 and 𝚡 ∶= 𝚡 − 𝟷 have been chosen
so as to be suggestive of the meaning that we will be giving them when we
come to the semantics – it should be no surprise that the program graph is

1
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2 1. Program Graphs

intended to compute the factorial function: upon termination of the program
the variable y should hold the value of the factorial of the initial value of x.

Definition 1.2: A program graph PG consists of the following:

• Q: a finite set of nodes

• 𝑞⊳, 𝑞� ∈ Q: two nodes called the initial node and the final node, respec-
tively

• Act: a set of actions

• E ⊆ Q × Act × Q: a finite set of edges

An edge (𝑞◦, 𝛼, 𝑞∙) has source node 𝑞◦ and target node 𝑞∙, and it is labelled
with the action 𝛼.

We shall require that the initial and final nodes are distinct and that there are
no edges with source 𝑞�.

We sometimes write PG = (Q, 𝑞⊳𝑞�,Act,E) to summarise the components of
the program graph.

Example 1.3: Returning to the program graph of Figure 1.1, it can be repre-
sented by the three sets

Q = {𝑞⊳, 𝑞1, 𝑞2, 𝑞3, 𝑞�}
Act = {𝚢 ∶= 𝟷, 𝚡 > 𝟶, 𝚡 ≤ 𝟶, 𝚢 ∶= 𝚡 ∗ 𝚢, 𝚡 ∶= 𝚡 − 𝟷}

E = {(𝑞⊳, 𝚢 ∶= 𝟷, 𝑞1), (𝑞1, 𝚡 > 𝟶, 𝑞2), (𝑞1, 𝚡 ≤ 𝟶, 𝑞�),
(𝑞2, 𝚢 ∶= 𝚡 ∗ 𝚢, 𝑞3), (𝑞3, 𝚡 ∶= 𝚡 − 𝟷, 𝑞1)}

where the first set lists the nodes, including the initial and final nodes, the
second set lists the actions, and the third set lists the edges.

⊳
𝚢∶=𝟷
��

𝚡>𝟶

��

𝚡≤𝟶




𝚢∶=𝚡∗𝚢
��

�
𝚡∶=𝚡−𝟷

��

Figure 1.2: Program graph omitting
names of nodes.

Often the names of the nodes of the program graph are of minor interest and we then
omit them from the graphical representation, as illustrated in Figure 1.2; however,
we shall always mark the initial node (with ⊳) and the final node (with �).

Try It Out 1.4: Specify a program graph for the power function computing the
power 2𝑛 of a number 𝑛 ≥ 0: upon termination the variable y should hold the value
of the x’th power of 2. As actions you should use simple tests and assignments
similar to the ones used in Example 1.1. □

Exercise 1.5: Specify program graphs for the functions below using actions that
are simple tests and assignments (similar to the ones used in Example 1.1):

(a) the modulo operation 𝗆𝗈𝖽(𝑛, 𝑚) returning the remainder after division of
one number 𝑛 by another 𝑚;
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(b) the greatest common divisor 𝗀𝖼𝖽(𝑛, 𝑚) of two numbers 𝑛 and 𝑚;
(c) the 𝑛’th Fibonacci number. □

The Formal Language View Program graphs are closely related to finite au-
tomata. Recall that a non-deterministic finite automaton is given by a set of states
𝑄 with one state 𝑞0 being the initial state and a subset 𝐹 of states being the final
states; additionally, there is an alphabet Σ and a transition relation 𝛿, which, given
a state and a symbol from the alphabet, specifies a set of states. The alphabet
corresponds to the set of actions of the program graph (so we have Σ = Act) and
the transition relation is nothing but an alternative representation of the edges of
the program graph.

This leads us to the following definition of the formal language of a program graph
as the sequences of actions obtained by following the edges of the graph. The formal
language of a program graph PG from node 𝑞◦ to node 𝑞∙ is given by

L(𝑞◦⇝𝑞∙)(E) = {𝛼1⋯ 𝛼𝑛 ∣ ∃𝑞0,⋯ , 𝑞𝑛 ∶ ∀𝑖 ∈ {0,⋯ , 𝑛 − 1} ∶ (𝑞𝑖, 𝛼𝑖, 𝑞𝑖+1) ∈ E,
𝑞0 = 𝑞◦, 𝑞𝑛 = 𝑞∙}

and we define the formal language of PG by

L(PG) = L(𝑞⊳⇝𝑞�)(E)
using that PG = (Q, 𝑞⊳𝑞�,Act,E) is as in Definition 1.2.

As an example, the language L(PG) for the program graph PG of Figures 1.1 and
1.2 is given by the regular expression

𝚢 ∶= 𝟷 (𝚡 > 𝟶 𝚢 ∶= 𝚡 ∗ 𝚢 𝚡 ∶= 𝚡 − 𝟷)∗ 𝚡 ≤ 𝟶

where for example y:=1 is an element of the alphabet Σ = Act.

One can show that L(PG) is a regular language whenever PG is a program graph.

You may have seen programs represented as flow charts and wonder about the
relationship between program graphs and flow charts. Basically they swap the
way edges and nodes are used. In a program graph the nodes correspond to
program points whereas the edges represent the actions (say assignments). In
a flow chart the nodes represent the actions (say sequences of assignments)
whereas the edges roughly correspond to program points.

1.2 Semantics

The next task is to be precise about the meaning of the actions in the program
graphs. An action represents a transformation on a semantic domain: an element of
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the semantic domain will describe the memory of the program or system at a given
point and the semantics of the action tells us how this information is modified when
the action is executed – if indeed it can be executed.

As an example, suppose that we have only two variables x and y and that we
use pairs like (3, 5) to indicate the memory where 𝚡 = 3 and 𝚢 = 5. Then the
semantics of an assignment 𝚢 ∶= 𝟷 is given by the total function [[𝚢 ∶= 𝟷]] defined
by [[𝚢 ∶= 𝟷]](𝑣𝚡, 𝑣𝚢) = (𝑣𝚡, 1). We then have [[𝚢 ∶= 𝟷]](3, 5) = (3, 1) showing that
if the memory is (3, 5) before the execution of the action 𝚢 ∶= 𝟷 then the memory
is (3, 1) afterwards. Furthermore, the semantics of the test 𝚡 > 𝟶 is given by the
partial function [[𝚡 > 𝟶]] defined by [[𝚡 > 𝟶]](𝑣𝚡, 𝑣𝚢) = (𝑣𝚡, 𝑣𝚢) when 𝑣𝚡 > 0 and
undefined otherwise. We then have [[𝚡 > 𝟶]](3, 5) = (3, 5) because 3 > 0 is true,
whereas [[𝚡 > 𝟶]](0, 5) is undefined because 0 > 0 is false.

Definition 1.6: A semantics of a program graph consists of

• a non-empty set Mem called the memory (or semantic domain)

• a semantic function [[⋅]] ∶ Act → (Mem ↪ Mem) specifying the
meaning of the actions

Whenever [[𝛼]]𝜎 = 𝜎′ the idea is that if 𝜎 is the memory before executing 𝛼
then 𝜎′ is the memory afterwards.

Recall that a partial function 𝑓 ∶ Mem ↪ Mem is defined on a subset 𝖽𝗈𝗆(𝑓 )
of Mem and for each element in 𝖽𝗈𝗆(𝑓 ) it gives an element of Mem; if
𝖽𝗈𝗆(𝑓 ) = Mem then it is a total function.

Also recall that a higher-order function 𝑔 ∶ Act → (Mem ↪ Mem) takes a
first parameter 𝛼 and gives rise to a (partial) function 𝑔(𝛼) ∶ Mem ↪ Mem;
so if 𝜎 ∈ Mem we have that either 𝑔(𝛼)(𝜎) ∈ Mem or 𝑔(𝛼)(𝜎) is undefined.

Example 1.7: Continuing Example 1.1 we shall take Mem to be sets of pairs
of integers; the first component of a pair (𝑣𝚡, 𝑣𝚢) will be the value of the variable
𝚡 while the second component will be the value of the variable 𝚢. The program
graph has five different actions and we shall define the semantic function [[⋅]]
in each of the five cases:

[[𝚢 ∶= 𝟷]](𝑣𝚡, 𝑣𝚢) = (𝑣𝚡, 1)

[[𝚡 > 𝟶]](𝑣𝚡, 𝑣𝚢) =
{

(𝑣𝚡, 𝑣𝚢) if 𝑣𝚡 > 0
undefined otherwise

[[𝚡 ≤ 𝟶]](𝑣𝚡, 𝑣𝚢) =
{

(𝑣𝚡, 𝑣𝚢) if 𝑣𝚡 ≤ 0
undefined otherwise

[[𝚢 ∶= 𝚡 ∗ 𝚢]](𝑣𝚡, 𝑣𝚢) = (𝑣𝚡, 𝑣𝚡 ∗ 𝑣𝚢)
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[[𝚡 ∶= 𝚡 − 𝟷]](𝑣𝚡, 𝑣𝚢) = (𝑣𝚡 − 1, 𝑣𝚢)

Notice that we specify partial functions for the two actions testing on the value
of x: rather than formally modelling that the test evaluates to true, we model
it as an application of the identity function, and rather than formally modelling
that the test evaluates to false, we model it as an application of the undefined
function.

Try It Out 1.8: Returning to Try It Out 1.4, define the semantics for the actions
used in the program graph (in the manner of Example 1.7). □

Exercise 1.9: Returning to Exercise 1.5, define the semantics for the actions used
in each of the program graphs (in the manner of Example 1.7). □

Configurations and Transitions When defining the semantics of program graphs
we will be looking at configurations consisting of nodes from the program graphs
and memories.

Definition 1.10: A configuration is a pair ⟨𝑞; 𝜎⟩ where 𝑞 ∈ Q and 𝜎 ∈ Mem;
an initial configuration has 𝑞 = 𝑞⊳ and a final configuration has 𝑞 = 𝑞�.

Next we will use the semantics to explain how to move between configurations.

Definition 1.11: Whenever (𝑞◦, 𝛼, 𝑞∙) ∈ E we have an execution step

⟨𝑞◦; 𝜎⟩ 𝛼
⟹ ⟨𝑞∙; 𝜎′⟩ if [[𝛼]]𝜎 = 𝜎′

Note that [[𝛼]]𝜎 = 𝜎′ means that 𝜎 is in the domain of [[𝛼]] as well as that
the result of the function is 𝜎′; if 𝜎 is not in the domain of [[𝛼]] there is no
execution step.

A configuration ⟨𝑞; 𝜎⟩ is called stuck if it is not a final configuration and if
there is no execution step of the form ⟨𝑞; 𝜎⟩ 𝛼

⟹ ⟨𝑞′; 𝜎′⟩; in this case we write⟨𝑞; 𝜎⟩ ̸⟹.

Example 1.12: Continuing Examples 1.1 and 1.7, we have the execution step

⟨𝑞⊳; (3, 5)⟩ 𝚢∶=𝟷
⟹ ⟨𝑞1; (3, 1)⟩

and next we have the following execution step

⟨𝑞1; (3, 1)⟩ 𝚡>𝟶
⟹ ⟨𝑞2; (3, 1)⟩
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We may put this together as follows

⟨𝑞⊳; (3, 5)⟩ 𝚢∶=𝟷
⟹ ⟨𝑞1; (3, 1)⟩ 𝚡>𝟶

⟹ ⟨𝑞2; (3, 1)⟩
Figure 1.3 gives a complete execution sequence for the program graph in the
case where the initial values of x and y are 3 and 7: the initial memory is (3, 7)
and the final memory is (0, 6), showing that the factorial of 3 is 6.

⟨𝑞⊳; (3, 7)⟩ 𝚢∶=𝟷
⟹⟨𝑞1; (3, 1)⟩ 𝚡>𝟶
⟹⟨𝑞2; (3, 1)⟩ 𝚢∶=𝚡∗𝚢
⟹⟨𝑞3; (3, 3)⟩ 𝚡∶=𝚡−𝟷
⟹⟨𝑞1; (2, 3)⟩ 𝚡>𝟶
⟹⟨𝑞2; (2, 3)⟩ 𝚢∶=𝚡∗𝚢
⟹⟨𝑞3; (2, 6)⟩ 𝚡∶=𝚡−𝟷
⟹⟨𝑞1; (1, 6)⟩ 𝚡>𝟶
⟹⟨𝑞2; (1, 6)⟩ 𝚢∶=𝚡∗𝚢
⟹⟨𝑞3; (1, 6)⟩ 𝚡∶=𝚡−𝟷
⟹⟨𝑞1; (0, 6)⟩ 𝚡≤𝟶
⟹⟨𝑞

�
; (0, 6)⟩

Figure 1.3: Execution sequence for
the factorial function.

Definition 1.13: We write ⟨𝑞; 𝜎⟩ 𝜔
⟹

∗ ⟨𝑞′; 𝜎′⟩ for the reflexive and transitive
closure of the execution relation.

An execution sequence is a sequence of the form ⟨𝑞; 𝜎⟩ 𝜔
⟹

∗ ⟨𝑞′; 𝜎′⟩; a complete
execution sequence is a sequence of the form ⟨𝑞⊳; 𝜎⟩ 𝜔

⟹
∗ ⟨𝑞�; 𝜎′⟩, that is, it

begins in an initial configuration and ends in a final configuration.

We may dispense with the superscript action sequence if it is of little interest.

Try It Out 1.14: Continuing Examples 1.1 and 1.7, determine the complete
execution sequence ⟨𝑞⊳; (4, 4)⟩ 𝜔

⟹
∗ ⟨𝑞�; (𝑣𝚡, 𝑣𝚢)⟩

What are the length of the action sequence 𝜔 and the values 𝑣𝚡 and 𝑣𝚢? □

Example 1.15: Sometimes an initial memory may give rise to more than one
complete execution sequence. For the semantics of Example 1.7 this arises
for the program graph of Figure 1.4.

⊳
𝚡≤𝟶

��
𝚡≥𝟶

��
𝑞1

𝚢∶=−𝟷 ��

𝑞2
𝚢∶=𝟷

���
Figure 1.4: There may be more than
one complete execution sequence.

Here we have the complete execution
sequence ⟨𝑞⊳; (0, 0)⟩ ⟹∗ ⟨𝑞�; (0,−1)⟩
as well as ⟨𝑞⊳; (0, 0)⟩ ⟹∗ ⟨𝑞�; (0, 1)⟩
This means that the program graph of Figure 1.4 is a non-deterministic system.

Sometimes an initial memory might not have a complete execution sequence.
For the semantics of Example 1.7 this arises for the program graph of Figure
1.5.

⊳
𝚡<𝟶

��
𝚡>𝟶

��
𝑞1

𝚢∶=−𝟷 ��

𝑞2
𝚢∶=𝟷

���
Figure 1.5: There may be no com-
plete execution sequence.

Here the configuration ⟨𝑞⊳; (0, 0)⟩ is stuck because both of the edges
leaving 𝑞⊳ have a semantics that is undefined on (0, 0). This means that the
program graph of Figure 1.5 does not always successfully terminate.

You may not have seen the special brackets [[⋯]] before. We shall exclusively
use them around arguments that relate to syntactic constructs. Historically,
they come from an approach to semantics called Denotational Semantics and
are a stylised form of what could be written (⌈⋯⌉). The outermost (⋯) is the
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usual kind of parentheses that we might use around arguments to functions.
The innermost ⌈⋯⌉ is Quine quasi-quotation; you can read more about this on
Wikipedia.

1.3 The Structure of the Memory

So far we have modelled memories as tuples: when we have 𝑛 variables 𝑥1,⋯ , 𝑥𝑛
we have modelled the memory as an 𝑛-tuple 𝜎 = (𝑣1,⋯ , 𝑣𝑛) (or 𝜎 = (𝑣𝑥1 ,⋯ , 𝑣𝑥𝑛 ))
where 𝑣𝑖 ∈ Int gives the value of 𝑥𝑖.

Writing Var for the set {𝑥1,⋯ , 𝑥𝑛} we shall now model memories as mappings

𝜎 ∶ Var → Int

and then we write 𝜎(𝑥𝑖) for the value of 𝑥𝑖. The set Var is called the domain of 𝜎 and
is denoted 𝖽𝗈𝗆(𝜎). This is illustrated in Figure 1.6 for a memory 𝜎 ∶ {𝚡, 𝚢} → Int
with just two variables x and y.

𝚡 12
𝚢 5

Figure 1.6: Example memory: 𝜎
with 𝜎(𝚡) = 12 and 𝜎(𝚢) = 5.

We shall introduce the notation 𝜎[𝑥 ↦ 𝑣] for the memory that is the same as 𝜎
except that the value of the variable 𝑥 ∈ 𝖽𝗈𝗆(𝜎) now has the value 𝑣. So if 𝜎(𝚡) = 12,
𝜎(𝚢) = 5 and 𝜎′ = 𝜎[𝚡 ↦ 13], then 𝜎′(𝚡) = 13 and 𝜎′(𝚢) = 5 as is illustrated in Figure
1.7. With this notation we may for example write [[𝚡 ∶= 𝚡 + 𝟷]]𝜎 = 𝜎[𝚡 ↦ 𝜎(𝚡) + 1]
for the semantics of the action incrementing the value of x. (It may be prudent to
ensure that an entry for x is already present in 𝜎 and we shall do so when introducing
the Guarded Commands language in Chapter 2.)

𝚡 13
𝚢 5

Figure 1.7: Updated example mem-
ory: 𝜎[𝚡 ↦ 13].

Arrays Our programs may manipulate more complex structures, for example ar-
rays. An array 𝐴 has a fixed length, say 𝑘, and we refer to its elements as
𝐴[0], 𝐴[1],⋯ , 𝐴[𝑘 − 1]. We shall therefore extend memories to hold information
about the values of these elements, as illustrated in Figure 1.8.

𝚗 4
𝚒 1
𝚓 2

𝙰[0] 4
𝙰[1] 2
𝙰[2] 17
𝙰[3] 9

Figure 1.8: Example memory with
an array of length 4.

Here we have three
variables n, i and j and an array A of length 4, and the memory specifies the values
in each of the cases. If we index outside the bounds of the array and ask for the
value of, say 𝙰[4], then the result is undefined – the memory has no information.

For the general formulation assume that we have a finite set of variables Var and
a finite set of arrays Arr; each array 𝐴 ∈ Arr has a length given by 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴). We
shall then take

𝜎 ∶
(

Var ∪ {𝐴[𝑖] ∣ 𝐴 ∈ Arr, 0 ≤ 𝑖 < 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴)}
)
→ Int

Thus 𝜎(𝐴[𝑖]) will be the value of the 𝑖’th entry of the array 𝐴 – provided that 𝑖 is a
proper index into the array, that is, 0 ≤ 𝑖 < 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴). The notation 𝜎[𝐴[𝑖] ↦ 𝑣]
stands for the memory that is the same as 𝜎 except that the 𝑖’th entry of the array
𝐴 now has the value 𝑣; again this is provided that 0 ≤ 𝑖 < 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴).
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Example 1.16: Figure 1.9 shows a program graph for an algorithm intended
to sort the elements of an array A of length n. The algorithm is known as
insertion sort and the sorting is performed using two integer-valued variables i
and j and the action 𝚜𝚠𝚊𝚙(𝙰, 𝚓, 𝚓 − 𝟷). For typographical reasons we write b for
𝚓 > 𝟶 && 𝙰[𝚓 − 𝟷] > 𝙰[𝚓], and ¬b for its negation, where && is a short-circuit
version of conjunction ∧ which does not attempt to evaluate the right argument
if the left argument is false. This means that if 𝚓 = 0 we do not get an error
from 𝙰[𝚓 − 𝟷].

⊳
𝚒∶=𝟷
��

𝚒<𝚗





𝚒≥𝚗
��

𝚓∶=𝚒
��

�
b
��

¬b
��

𝚜𝚠𝚊𝚙(𝙰,𝚓,𝚓−𝟷)
��

𝚒∶=𝚒+𝟷

��

𝚓∶=𝚓−𝟷
��

Figure 1.9: Program graph for inser-
tion sort.

The memory of the semantics will specify the values of the elements of the array
A as well as the values of the variables n, i and j; Figure 1.8 gives an example
of a memory. The semantics will specify the meaning of the actions; most of
these are fairly straightforward and we shall therefore concentrate on the action
𝚜𝚠𝚊𝚙(𝙰, 𝚓, 𝚓 − 𝟷). As the name suggests it is intended to swap two entries in
the array and leave the rest of the memory unchanged. We may formalise this
as follows:

[[𝚜𝚠𝚊𝚙(𝙰, 𝚓, 𝚓 − 𝟷)]]𝜎 =

⎧⎪⎪⎨⎪⎪⎩
𝜎[𝙰[𝑗] ↦ 𝑣𝑗−1][𝙰[𝑗 − 1] ↦ 𝑣𝑗]

if 𝜎(𝚓) = 𝑗 and 𝙰[𝑗], 𝙰[𝑗 − 1] ∈ 𝖽𝗈𝗆(𝜎)
and 𝑣𝑗 = 𝜎(𝙰[𝑗]) and 𝑣𝑗−1 = 𝜎(𝙰[𝑗 − 1])

undefined otherwise

The test in the first branch ensures that 𝙰[𝚓] as well as 𝙰[𝚓 − 𝟷] refer to existing
entries in the array A; if this is not the case then the semantics is undefined, as
recorded in the second branch of the formula.

Try It Out 1.17: Modify the program graph for the insertion sort algorithm to use
a temporary variable to do the swapping of array entries and define the corresponding
semantics. How is indexing outside the array bounds captured in your semantics?□

Exercise 1.18: Construct a program graph for the bubble sort algorithm and define
the semantics of the actions being used; be careful to capture when you are indexing
outside the bounds of the arrays. □

Exercise 1.19: Let 𝐴 and 𝐵 be arrays corresponding to two vectors of length 𝑛
and 𝑚, respectively. Construct program graphs for the following operations:

(a) the inner product being the number defined by Σ𝑛−1
𝑖=0 Σ

𝑚−1
𝑗=0 𝐴[𝑖] ⋅ 𝐵[𝑗];

(b) the outer product being an 𝑛 × 𝑚 matrix 𝐶 with the (𝑖, 𝑗)’th entry given
by 𝐶[𝑖, 𝑗] = 𝐴[𝑖] ⋅ 𝐵[𝑗].

Define the semantics of the actions being used; in the case of the outer product this
also involves defining the structure of the memories, as they now have to represent
matrices. □

Teaser 1.20: Argue as convincingly as you can that every complete execution
sequence of the insertion sort algorithm of Figure 1.9 ensures that the array is
eventually sorted. (We shall return to this in Chapter 3.) □
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1.4 Properties of Program Graphs

Often programs are expected to compute some output values based on some input
values. For a complete execution sequence ⟨𝑞⊳; 𝜎⟩ 𝜔

⟹
∗ ⟨𝑞�; 𝜎′⟩ we would say that

𝜎′ contains the output values corresponding to the input values in 𝜎.

Deterministic System We would often expect the value computed to be the
same each time we perform the computation and that the same computations are
performed. This leads to the notion of a deterministic system.

Definition 1.21: A program graph PG and its semantics  constitute a
deterministic system whenever

⟨𝑞⊳; 𝜎⟩ 𝜔′

⟹
∗ ⟨𝑞�; 𝜎′⟩ and ⟨𝑞⊳; 𝜎⟩ 𝜔′′

⟹
∗ ⟨𝑞�; 𝜎′′⟩

imply that 𝜎′ = 𝜎′′ and that 𝜔′ = 𝜔′′

To ensure that a program graph and its semantics give rise to a deterministic system
we may use the following sufficient condition (illustrated in Figure 1.10), which is
relatively straightforward to check.

Proposition 1.22: A program graph PG and its semantics  constitute a
deterministic system whenever distinct edges with the same source node have
semantic functions that are defined on non-overlapping domains:

∀(𝑞, 𝛼1, 𝑞1), (𝑞, 𝛼2, 𝑞2) ∈ E ∶
(

(𝛼1, 𝑞1) ≠ (𝛼2, 𝑞2) ⇒
(𝖽𝗈𝗆([[𝛼1]]) ∩ 𝖽𝗈𝗆([[𝛼2]]) = { })

)
𝛼1

��

𝛼2

��

Figure 1.10: [[𝛼1]]𝜎 or [[𝛼2]]𝜎 un-
defined.

Proof: First we prove that

if ⟨𝑞⊳; 𝜎⟩ 𝜔′

⟹
∗ ⟨𝑞′; 𝜎′⟩, ⟨𝑞⊳; 𝜎⟩ 𝜔′′

⟹
∗ ⟨𝑞′′; 𝜎′′⟩ and |𝜔′| = |𝜔′′|

then 𝑞′ = 𝑞′′, 𝜎′ = 𝜎′′ and 𝜔′ = 𝜔′′

We conduct the proof by mathematical induction on the length |𝜔′| of 𝜔′. If |𝜔′| = 0
we have 𝑞′ = 𝑞′′ = 𝑞⊳, 𝜔′ = 𝜔′′ = 𝜀 (the empty string) and 𝜎′ = 𝜎′′ = 𝜎 so the
result is immediate.

If |𝜔′| = 𝑛+1 for some 𝑛 ≥ 0 we can write 𝜔′ = 𝑢′𝛼′ and expand ⟨𝑞⊳; 𝜎⟩ 𝜔′

⟹
∗ ⟨𝑞′; 𝜎′⟩

to ⟨𝑞⊳; 𝜎⟩ 𝑢′

⟹
∗ ⟨𝑞′0; 𝜎′0⟩ 𝛼′

⟹ ⟨𝑞′; 𝜎′⟩; similarly we can write 𝜔′′ = 𝑢′′𝛼′′ and expand

⟨𝑞⊳; 𝜎⟩ 𝜔′′

⟹
∗ ⟨𝑞′′; 𝜎′′⟩ to ⟨𝑞⊳; 𝜎⟩ 𝑢′′

⟹
∗ ⟨𝑞′′0 ; 𝜎′′0 ⟩ 𝛼′′

⟹ ⟨𝑞′′; 𝜎′′⟩. It follows from the
induction hypothesis that 𝑞′0 = 𝑞′′0 , 𝜎′0 = 𝜎′′0 and 𝑢′ = 𝑢′′.
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We clearly have edges (𝑞′0, 𝛼
′, 𝑞′) and (𝑞′′0 , 𝛼

′′, 𝑞′′) such that [[𝛼′]]𝜎′0 = 𝜎′, and
[[𝛼′′]]𝜎′′0 = 𝜎′′. It follows from the assumptions of the proposition that (𝑞′0, 𝛼

′, 𝑞′) =
(𝑞′′0 , 𝛼

′′, 𝑞′′) and hence that 𝛼′ = 𝛼′′ and 𝜎′ = 𝜎′′. This concludes the proof in the
inductive case.

The above result suffices to establish the property of Definition 1.21. So assume⟨𝑞⊳; 𝜎⟩ 𝜔′

⟹
∗ ⟨𝑞�; 𝜎′⟩ and ⟨𝑞⊳; 𝜎⟩ 𝜔′′

⟹
∗ ⟨𝑞�; 𝜎′′⟩. If |𝜔′| = |𝜔′′| the property follows

directly from the above. If |𝜔′| ≠ |𝜔′′| then we can, without loss of generality,
assume that 𝜔′ is shorter than 𝜔′′ so 𝜔′′ = 𝜔′′

1𝜔
′′
2 where |𝜔′| = |𝜔′′

1 |. Now consider
the prefix

⟨𝑞⊳; 𝜎⟩ 𝜔′′
1

⟹
∗ ⟨𝑞′′′; 𝜎′′′⟩

of the second execution sequence. The result proved above gives that 𝑞� = 𝑞′′′ and
since there are no edges leaving 𝑞� it cannot be the case that |𝜔′| ≠ |𝜔′′|. This
completes the proof. □

Try It Out 1.23: Continuing Examples 1.1 and 1.7, determine whether or not
the factorial program constitutes a deterministic system. □

⊳
𝚡=𝟶





𝚡≠𝟶

��

𝚢∶=𝟶 ��

𝚡≤𝟶

��
𝚡≥𝟶

��

𝚢∶=𝟷 �� 𝚢∶=𝟸

�
Figure 1.11: A deterministic system.

The conditions mentioned in the proposition are sufficient for obtaining a deterministic
system but they are not necessary – meaning that it is possible to have a deterministic
system even when the conditions of the proposition do not hold. An example is
shown in Figure 1.11 where the key point is that 𝚡 ≤ 𝟶 and 𝚡 ≥ 𝟶 overlap exactly
when 𝚡 = 𝟶.

Evolving System We would generally like that a value is always computed. This
is clearly not always the case because programs may loop, and proving the absence
of looping behaviour requires careful analysis of the program.

A weaker demand is that a program does not stop in a stuck configuration. This
leads to the notion of an evolving system.

Definition 1.24: A program graph PG and its semantics  constitute an
evolving system whenever

⟨𝑞⊳; 𝜎⟩ 𝜔′

⟹
∗ ⟨𝑞′; 𝜎′⟩ with 𝑞′ ≠ 𝑞� can always be extended to

⟨𝑞⊳; 𝜎⟩ 𝜔′′

⟹
∗ ⟨𝑞′′; 𝜎′′⟩ for some 𝜔′′ of the form 𝜔′′ = 𝜔′𝛼′

To ensure that a program graph and its semantics give rise to an evolving system
we may use the following sufficient condition (illustrated in Figure 1.12), which is
relatively straightforward to check.
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Proposition 1.25: A program graph PG and its semantics  constitute an
evolving system if for every non-final node and every memory there is an edge
leaving it such that the memory is in the domain of the semantic function for
that edge:

∀𝑞 ∈ Q ⧵ {𝑞�} ∶ ∀𝜎 ∈ Mem ∶ ∃(𝑞, 𝛼, 𝑞′) ∈ E ∶ 𝜎 ∈ 𝖽𝗈𝗆([[𝛼]])

𝛼1

��

𝛼2

��

Figure 1.12: [[𝛼1]]𝜎 or [[𝛼2]]𝜎 de-
fined.

Proof: Straightforward: simply use the assumption on the last configuration of
the execution sequence considered in Definition 1.24. □

Try It Out 1.26: Continuing Examples 1.1 and 1.7, determine whether or not
the factorial program constitutes an evolving system. □

The conditions mentioned in the proposition are sufficient for obtaining an evolving
system but they are not necessary – meaning that it is possible to have an evolving
system even when the conditions of the proposition do not hold. An example is
shown in Figure 1.13 where the key point is that 𝚡 > 𝟶 and 𝚡 < 𝟶 have a gap exactly
when 𝚡 = 𝟶.

⊳
𝚡=𝟶





𝚡≠𝟶

��

𝚢∶=𝟶 ��

𝚡<𝟶

��
𝚡>𝟶

��

𝚢∶=𝟷 �� 𝚢∶=𝟸

�
Figure 1.13: An evolving system.

1.5 Bit-Level Semantics (Bonus Material)

When looking at the numbers occurring in the actions of program graphs we may
take them to be the integers, as we know them from mathematics. But to be more
faithful to the fact that program graphs are to be executed by actual computers we
could take them to be bit strings interpreted in certain ways. In this section we are
going to consider three scenarios for how to model the semantics of numbers.

We will consider the program graph in Figure 1.14 throughout this section. The
semantics will operate on a memory that gives values to the four variables x, y, z
and u; we shall write 𝜎 = (𝜎𝚡, 𝜎𝚢, 𝜎𝚣, 𝜎𝚞). We use the notation 𝑥 ∶= 𝑒 to indicate
that the result of evaluating 𝑒 gives rise to the new value of the variable 𝑥. We will
be interested in answering the following two questions:

⊳
𝚞∶=𝟷
��

𝚡>𝟶

�� 𝚡≤𝟶

��𝚢>𝟶
��

𝚢≤𝟶

��

𝚣∶=𝚡+𝚢
��

�

𝚣≤𝟶 ��

𝚣>𝟶

��

𝚞∶=𝟶

��

Figure 1.14: Example program.

• Is it always possible to reach a final configuration?
To be precise: ∀𝜎 ∶ ∃𝜎′ ∶ ⟨𝑞⊳; 𝜎⟩ ⟹∗ ⟨𝑞�; 𝜎′⟩?

• Will the final value of u always be 1?
To be precise: ∀𝜎, 𝜎′ ∶ (⟨𝑞⊳; 𝜎⟩ ⟹∗ ⟨𝑞�; 𝜎′⟩) ⇒ 𝜎′𝚞 = 1?

Scenario 1: Mathematical Integers In this approach to the semantics of numbers
we consider them to be the integers as we know them from mathematics, and the
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operations +, > and ≤ are the familiar ones. (This is the approach that we have
implicitly taken so far and will be taking throughout the book.) It is straightforward
that the answer to both questions is affirmative because clearly the sum of positive
integers is a positive integer.

Scenario 2: Unsigned Byte In this approach to the semantics of numbers we
consider them to be bit strings of length 8 that are interpreted as unsigned numbers.
(This is called unsigned char in C.) To be precise the mathematical integer denoted
by the bit string 𝑏7⋯ 𝑏0 is

[[𝑏7⋯ 𝑏0]]𝑈 = Σ𝑖<8 𝑏𝑖2𝑖

and as an example [[10000000]]𝑈 = 128.

The operation + will be the familiar addition on bit strings where we start from the
right and produce a carry (either 0 or 1) that is repetitively brought to the next
position. To avoid confusion we write + for this operation on bits. In general we
write

𝑏′7⋯ 𝑏′0 + 𝑏′′7 ⋯ 𝑏′′0 = 𝑐 ∶ 𝑏7⋯ 𝑏0

where 𝑐 is the value of the final carry bit. As an example 10010101 + 10011001 =
1 ∶ 00101110; this is illustrated in Figure 1.15.

1 0 0 1 0 0 0 1
1 0 0 1 0 1 0 1

+ 1 0 0 1 1 0 0 1
1 ∶ 0 0 1 0 1 1 1 0

Figure 1.15: Adding bit strings.

We need to consider when this
operation might be incorrect with respect to the mathematical integers, that is when

[[𝑏′7⋯ 𝑏′0]]𝑈 + [[𝑏′′7 ⋯ 𝑏′′0 ]]𝑈 ≠ [[𝑏7⋯ 𝑏0]]𝑈

and the answer is that this is the case precisely when 𝑐 = 1. There is nothing we
can do about this because in this case the correct result cannot be represented in 8
bits. We have two choices for how to deal with the overflow situation where 𝑐 = 1.
One is to halt the program and the other is to ignore the problem; the latter would
seem more familiar from actual computers.

Returning to the program graph of Figure 1.14 let us merely assume that the
operations > and ≤ work as expected. Next, let us take both x and y to be 10000000
(representing the integer 128) and note that 10000000 + 10000000 = 1 ∶ 00000000
and that [[10000000]]𝑈 > 0 but [[00000000]]𝑈 ≤ 0. It is then clear that the answer
to the first question above is affirmative only if we ignore the overflow. Also, that
the answer to the second question is affirmative only if we halt the program. Clearly
the magnitude of x and y becomes critical to the correctness of the program graph.

Teaser 1.27: Suppose that the initial value of x is chosen with equal probability
among the 256 possibilities (representing numbers from 0 to 255) and similarly for y.
Furthermore, assume that we ignore the overflows. Show that the probability that u
has a final value of 1 is 99.6%. (Hint: Determine the number of cases where the
final value of u is 0, then divide by 2562, and finally subtract from 1.) □
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Scenario 3: Signed Byte In this approach to the semantics of numbers we
consider them to be bit strings of length 8 that are interpreted as signed numbers.
(This is called signed char in C.) To be precise, the mathematical integer denoted
by the bit string 𝑠𝑏6⋯ 𝑏0 is

[[𝑠𝑏6⋯ 𝑏0]]𝑆 = (−𝑠)27 + Σ𝑖<7 𝑏𝑖2𝑖 = (−𝑠)27 + [[𝑏6⋯ 𝑏0]]𝑈

and as an example [[10000001]]𝑆 = −127.

As before, the operation + will be the familiar addition on bit strings where we start
from the right and produce a carry (either 0 or 1) that is repetitively brought to
the next position and to avoid confusion we write + for this operation on bits. In
general we write

𝑠′𝑏′6⋯ 𝑏′0 + 𝑠′′𝑏′′6 ⋯ 𝑏′′0 = 𝑐 ∶ 𝑠𝑏6⋯ 𝑏0

where 𝑐 is the value of the final carry bit. As an example 00001001 + 10000000 =
0 ∶ 10001001 and as yet another example 10001001 + 10000000 = 1 ∶ 00001001.
We need to consider when this operation might be incorrect with respect to the
mathematical integers, that is when

[[𝑠′𝑏′6⋯ 𝑏′0]]𝑆 + [[𝑠′′𝑏′′6 ⋯ 𝑏′′0 ]]𝑆 ≠ [[𝑠𝑏6⋯ 𝑏0]]𝑆

and it is helpful to consider the sub-computation 𝑏′6⋯ 𝑏′0 + 𝑏′′6 ⋯ 𝑏′′0 = 𝑜 ∶ 𝑏6⋯ 𝑏0
and to note that 0𝑠′ + 0𝑠′′ + 0𝑜 = 𝑐𝑠 and that this makes it possible to determine
𝑜 from 𝑠′, 𝑠′′, 𝑠 and 𝑐. As we shall see in the exercise below, the erroneous situation
arises when 𝑠′ = 𝑠′′ ≠ 𝑜. There is nothing we can do about this because the correct
result cannot be represented in 8 bits when interpreted as signed numbers. We have
two choices for how to deal with the erroneous situation where 𝑠′ = 𝑠′′ ≠ 𝑜. One is
to halt the program and the other is to ignore the problem; the latter would seem
more familiar from actual computers.

Returning to the program graph, let us merely assume that the operations > and
≤ work as expected. Next let us take both x and y to be 01000000 (representing
the integer 64) and note that 01000000 + 01000000 = 0 ∶ 10000000 and that
[[01000000]]𝑆 > 0 but [[10000000]]𝑆 ≤ 0. It is then clear that the answer to the first
question is affirmative only if we ignore the overflow. Also, that the answer to the
second question is affirmative only if we halt the program. Clearly the magnitude of
x and y becomes critical to the correctness of the program graph.

Exercise 1.28: Consider each of the eight cases in Figure 1.16 and argue that
they correctly explain whether or not [[𝑠′𝑏′6⋯ 𝑏′0]]𝑆 + [[𝑠′′𝑏′′6 ⋯ 𝑏′′0 ]]𝑆 = [[𝑠𝑏6⋯ 𝑏0]]𝑆 .
Finally note that the two offending cases are characterised by 𝑠′ = 𝑠′′ ≠ 𝑜.

As an example, let us consider the last entry. From 𝑠′ = 1, 𝑠′′ = 1 and 𝑜 = 1 we
know that 𝑐 = 1 and 𝑠 = 1 and hence that 1𝑏′6⋯ 𝑏′0 + 1𝑏′′6 ⋯ 𝑏′′0 = 1 ∶ 1𝑏6⋯ 𝑏0.

𝑠′ 𝑠′′ 𝑜
0 0 0 ok
0 0 1 wrong
0 1 0 ok
0 1 1 ok
1 0 0 ok
1 0 1 ok
1 1 0 wrong
1 1 1 ok

Figure 1.16: Case analysis.From 𝑜 = 1 we know that [[𝑏′6⋯ 𝑏′0]]𝑈 + [[𝑏′′6 ⋯ 𝑏′′0 ]]𝑈 = 27 + [[𝑏6⋯ 𝑏0]]𝑈 and hence



14 1. Program Graphs

that
[[1𝑏′6⋯ 𝑏′0]]𝑆 + [[1𝑏′′6 ⋯ 𝑏′′0 ]]𝑆 =

[[𝑏′6⋯ 𝑏′0]]𝑈 − 27 + [[𝑏′′6 ⋯ 𝑏′′0 ]]𝑈 − 27 =
[[𝑏6⋯ 𝑏0]]𝑈 − 27 =

[[1𝑏6⋯ 𝑏0]]𝑆
as was to be shown. □

Teaser 1.29: Suppose that the initial value of x is chosen with equal probability
among the 256 possibilities (representing numbers from −128 to 127) and similarly
for y. Furthermore, assume that we ignore the overflows. Show that the probability
that u has a final value of 1 is 87.6%. (Hint: Find the number of cases where the
final value of u is 0, then divide by 2562, and finally subtract from 1.) □

Exercise 1.30: One method for carrying out subtraction of numbers in signed byte
representation is based on the mathematical equality 𝑥 − 𝑦 = −(𝑦 + (−𝑥)). For the
calculation of −𝑥 one often uses the formula

- 𝑠𝑏6⋯ 𝑏0 = flip(𝑠𝑏6⋯ 𝑏0) + 00000001

where flip(𝑠𝑏6⋯ 𝑏0) = (1 − 𝑠)(1 − 𝑏6)⋯ (1 − 𝑏0); as an example flip(01010101) =
10101010. Determine when −[[𝑠𝑏6⋯ 𝑏0]]𝑆 ≠ [[flip(𝑠𝑏6⋯ 𝑏0) + 00000001]]𝑆 . □



Chapter 2

Guarded Commands

Programs are written in programming languages and in this chapter we are going
to show how we can construct program graphs for all programs in a programming
language. The programming language will be the (probably unfamiliar) language of
Guarded Commands introduced by Dijkstra in 1975.

2.1 Syntax

In Dijkstra’s language of Guarded Commands a basic command has one of two
forms: either it is an assignment 𝑥 ∶= 𝑎 or it is a skip command; the latter has no
effect but is useful when no memory change is wanted. Commands can be combined
in three different ways. Sequencing is written 𝐶1 ; ⋯ ;𝐶𝑘 and indicates that the
commands should be executed in the order they are written. The conditional
takes the form 𝚒𝚏 𝑏1 → 𝐶1 [] ⋯ [] 𝑏𝑘 → 𝐶𝑘 𝚏𝚒; as an example, to express that
𝐶1 should be executed when 𝑏 holds and that otherwise 𝐶2 should be executed,
we shall write 𝚒𝚏 𝑏 → 𝐶1 [] ¬𝑏 → 𝐶2 𝚏𝚒. The iteration construct takes the form
𝚍𝚘 𝑏1 → 𝐶1 [] ⋯ [] 𝑏𝑘 → 𝐶𝑘 𝚘𝚍; as an example, to express that 𝐶 should be executed
as long as 𝑏 holds, we shall write 𝚍𝚘 𝑏 → 𝐶 𝚘𝚍.

𝚢 ∶= 𝟷;
𝚍𝚘 𝚡 > 𝟶 → 𝚢 ∶= 𝚡 ∗ 𝚢;

𝚡 ∶= 𝚡 − 𝟷
𝚘𝚍

Figure 2.1: Example program for the
factorial function.

Example 2.1: Figure 2.1 is a program intended to compute the factorial
function. In addition to assignments, it makes use of sequencing (as indicated
by the semicolons) and the iteration construct 𝚍𝚘 ⋯ 𝚘𝚍. The body of the
construct is a single guarded command consisting of a guard and a command;
here the guard is the test 𝚡 > 𝟶 and the command is the sequence of assignments
𝚢 ∶= 𝚡 ∗ 𝚢; 𝚡 ∶= 𝚡 − 𝟷. The idea is that as long as the guard is satisfied the
associated command will be executed. When the guard fails, the construct
terminates.
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Example 2.2: Figure 2.2 is a program computing the maximum of two values.
It makes use of the conditional 𝚒𝚏 ⋯ 𝚏𝚒 and contains two guarded commands
separated by the choice symbol [] . The idea is to select a guard that is satisfied
and to execute the corresponding command – in our program exactly one of
the guards will be satisfied.

If none of the guards are satisfied the execution stops; for example, this will be
the case if we change the first guard to 𝚡 > 𝚢 and start in a memory where x
and y are equal.

It might also be the case that more than one guard is satisfied and then one of
the alternatives will be selected non-deterministically for execution; for example,
this will be the case if we change the second guard to 𝚢 ≥ 𝚡 and start in a
memory where x and y are equal.

𝚒𝚏 𝚡 ≥ 𝚢 → 𝚣 ∶= 𝚡
[] 𝚢 > 𝚡 → 𝚣 ∶= 𝚢
𝚏𝚒

Figure 2.2: Example program for the
maximum function.

Definition 2.3: The syntax of the commands 𝐶 and guarded commands 𝐺𝐶
of the Guarded Commands language are mutually recursively defined using the
following BNF notation:

𝐶 ∶∶= 𝑥 ∶= 𝑎 ∣ 𝚜𝚔𝚒𝚙 ∣ 𝐶1 ;𝐶2 ∣ 𝚒𝚏 𝐺𝐶 𝚏𝚒 ∣ 𝚍𝚘 𝐺𝐶 𝚘𝚍
𝐺𝐶 ∶∶= 𝑏 → 𝐶 ∣ 𝐺𝐶1 []𝐺𝐶2

We make use of arithmetic expressions 𝑎 and boolean expressions 𝑏 given by

𝑎 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝑎1 + 𝑎2 ∣ 𝑎1 − 𝑎2 ∣ 𝑎1 ∗ 𝑎2 ∣ 𝑎1 ^ 𝑎2

𝑏 ∶∶= 𝚝𝚛𝚞𝚎 ∣ 𝑎1 = 𝑎2 ∣ 𝑎1 >𝑎2 ∣ 𝑎1 ≥ 𝑎2 ∣ 𝑏1 ∧ 𝑏2 ∣ 𝑏1 && 𝑏2 ∣ ¬ 𝑏0

The syntax of variables 𝑥 and numbers 𝑛 is left unspecified.

∗

𝚡 +

𝚢 𝚣

+

∗ 𝚣

𝚡 𝚢

Figure 2.3: Abstract syntax trees for
𝚡 ∗ (𝚢 + 𝚣) and (𝚡 ∗ 𝚢) + 𝚣.

The definition specifies an abstract syntax tree for commands, guarded commands
and arithmetic and boolean expressions. As an example, 𝑎 ∶∶= 𝑥 tells us that an
arithmetic expression can be a tree consisting of a single node representing the
variable 𝑥, whereas 𝑎 ∶∶= 𝑎1 ∗ 𝑎2 tells us that it can be a binary tree with root ∗
and a subtree corresponding to 𝑎1 and another subtree corresponding to 𝑎2.

The definition specifies the syntactic tree structure (rather than a linear sequence
of characters) and therefore we do not need to introduce explicit brackets in the
syntax, although we shall feel free to use parentheses in textual presentations of
programs in order to disambiguate the syntax. This is illustrated in Figure 2.3; when
the precedence of operators is clear we write 𝚡 ∗ 𝚢 + 𝚣 for (𝚡 ∗ 𝚢) + 𝚣.;

𝐶1 ;

𝐶2 𝐶3

;

; 𝐶3

𝐶1 𝐶2

Figure 2.4: Abstract syntax trees for
𝐶1 ; (𝐶2 ;𝐶3) and (𝐶1 ;𝐶2) ;𝐶3.

Similar comments hold for commands, guarded commands and boolean expressions;
see Figure 2.4 for an example. In the case of sequencing we consider the sequencing
operator to associate to the right so that 𝐶1 ;𝐶2 ;𝐶3 is shorthand for 𝐶1 ; (𝐶2 ;𝐶3).
In the case of choice we consider the choice operator to associate to the right so
that 𝐺𝐶1 []𝐺𝐶2 []𝐺𝐶3 is shorthand for 𝐺𝐶1 [] (𝐺𝐶2 []𝐺𝐶3). Figure 2.5 gives the
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𝚒𝚏⋯ 𝚏𝚒

[]

→ →

≥ ∶= > ∶=

𝚡 𝚢 𝚣 𝚡 𝚢 𝚡 𝚣 𝚢

Figure 2.5: Abstract syntax tree for the program in Figure 2.2.

abstract syntax tree for the program of Figure 2.2.

Try It Out 2.4: Draw the abstract syntax tree for the program of Figure 2.1.□

Try It Out 2.5: Construct a Guarded Commands program for the power function
computing the power 2𝑛 of a number 𝑛 without using exponentiation (^). □

Exercise 2.6: Construct programs in the Guarded Commands language computing

(a) the modulo operation 𝗆𝗈𝖽(𝑛, 𝑚) returning the remainder after division of
one number 𝑛 by another 𝑚;

(b) the greatest common divisor 𝗀𝖼𝖽(𝑛, 𝑚) of two numbers 𝑛 and 𝑚;

(c) the 𝑛’th Fibonacci number. □

Usually we write programs as linear sequences of characters so how do we get
them in the form of the abstract syntax trees required here? The answer is that
this task is carried out by parsing the programs. How to do this is specified
using a context-free grammar that differs from our BNF notation in having to
deal with issues like precedence of operators. Hence parsing produces parse
trees that need to be ‘simplified’ to the abstract syntax trees used here.

2.2 Program Graphs

In Chapter 1 we constructed program graphs manually and given a program in the
Guarded Commands language we should be able to do the same. However, we
would like the construction of program graphs from programs to be fully specified in
such a way that it could be carried out by an algorithm (which might be part of an
interpreter for the Guarded Commands language).

To this end we will define a function edges, which works on commands and guarded
commands and produces the set of edges of a program graph – given the factorial
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program of Figure 2.1 we expect the function to construct the edges of a program
graph like the one in Example 1.3. We are particularly interested in the initial and
final nodes and want to restrict the function edges to use the intended initial and
final nodes; they are therefore supplied as parameters. So for a command 𝐶 the
result of edges(𝑞◦ ⇝ 𝑞∙)[[𝐶]] should be the set of edges of a program graph with
initial node 𝑞◦ and final node 𝑞∙. During the construction of program graphs we will
be able to create fresh nodes; however, we shall refrain from covering the machinery
needed to really ensure that fresh nodes are indeed only chosen once.

Definition 2.7: For commands the edges are constructed as follows:

edges(𝑞◦⇝𝑞∙)[[𝑥 ∶= 𝑎]] = {(𝑞◦, 𝑥 ∶= 𝑎, 𝑞∙)}

edges(𝑞◦⇝𝑞∙)[[𝚜𝚔𝚒𝚙]] = {(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞∙)}

edges(𝑞◦⇝𝑞∙)[[𝐶1 ;𝐶2]] = let 𝑞 be fresh
𝐸1 = edges(𝑞◦⇝𝑞)[[𝐶1]]
𝐸2 = edges(𝑞⇝𝑞∙)[[𝐶2]]

in 𝐸1 ∪ 𝐸2

edges(𝑞◦⇝𝑞∙)[[𝚒𝚏 𝐺𝐶 𝚏𝚒]] = edges(𝑞◦⇝𝑞∙)[[𝐺𝐶]]

edges(𝑞◦⇝𝑞∙)[[𝚍𝚘 𝐺𝐶 𝚘𝚍]] = let 𝑏 = 𝖽𝗈𝗇𝖾[[𝐺𝐶]]
𝐸 = edges(𝑞◦⇝𝑞◦)[[𝐺𝐶]]

in 𝐸 ∪ {(𝑞◦, 𝑏, 𝑞∙)}

For an assignment 𝑥 ∶= 𝑎 we simply create an edge from 𝑞◦ to 𝑞∙ that is labelled
𝑥 ∶= 𝑎. This is illustrated in Figure 2.6(a). The construct skip is handled in a
similar way.

For a sequence of commands 𝐶1 ;𝐶2 we create a new node that will glue the edges
for the 𝐶𝑖’s together; the idea is that the final node of 𝐶1 becomes the initial node
of 𝐶2. This is illustrated in Figure 2.6(b).

Definition 2.8: For guarded commands the edges are constructed as follows:

edges(𝑞◦⇝𝑞∙)[[𝑏 → 𝐶]] = let 𝑞 be fresh
𝐸 = edges(𝑞⇝𝑞∙)[[𝐶]]

in {(𝑞◦, 𝑏, 𝑞)} ∪ 𝐸

edges(𝑞◦⇝𝑞∙)[[𝐺𝐶1 []𝐺𝐶2]] = let 𝐸1 = edges(𝑞◦⇝𝑞∙)[[𝐺𝐶1]]
𝐸2 = edges(𝑞◦⇝𝑞∙)[[𝐺𝐶2]]

in 𝐸1 ∪ 𝐸2

For a single guarded command 𝑏 → 𝐶 we create an edge labelled 𝑏 to a new node 𝑞
that is then used as the initial node for the following command. This is illustrated
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𝑞◦
𝑥 ∶= 𝑎 �� 𝑞∙ 𝑞◦

𝐸1 �� 𝑞
𝐸2 �� 𝑞∙ 𝑞◦

𝑏 �� 𝑞 𝐸 �� 𝑞∙ 𝑞◦

𝐸1

��

𝐸2

��
𝑞∙

𝑞◦
𝖽𝗈𝗇𝖾[[𝐺𝐶]] ��

𝐸

��
𝑞∙

(a) assignment (b) sequencing (c) single guarded (d) choice guarded (e) iteration
command of commands command command command

Figure 2.6: Figures explaining the construction of program graphs.

in Figure 2.6(c). If we have a choice between two guarded commands we use the
same source and target nodes for both of them as illustrated in Figure 2.6(d).

𝑞1 𝐸1
��𝑞◦

𝑏1 ��

𝑏2 ��

𝑞∙

𝑞2
𝐸2

��

Figure 2.7: A conditional with two
guarded commands.

Returning to the conditional 𝚒𝚏 𝐺𝐶 𝚏𝚒, we simply construct the edges of the program
graph for the embedded guarded command using the given source and target nodes;
it will automatically take care of the various tests within the guarded commands.
As an example, for a conditional of the form 𝚒𝚏 𝑏1 → 𝐶1 [] 𝑏2 → 𝐶2 𝚏𝚒 we obtain a
graph of the form shown in Figure 2.7 (where each 𝐸𝑖 arises from 𝐶𝑖).

The iteration construct 𝚍𝚘 𝐺𝐶 𝚘𝚍 is slightly more complex as the program graph
has to record the looping structure as shown in Figure 2.6(e). We construct the
edges of the embedded guarded command using 𝑞◦ as source as well as target node,
thereby reflecting the iterative nature of the construct. When none of the tests of
the guarded command are satisfied the iteration should terminate and therefore we
add an edge from 𝑞◦ to 𝑞∙ labelled with the boolean expression 𝖽𝗈𝗇𝖾[[𝐺𝐶]] expressing
this condition. It is defined by

𝖽𝗈𝗇𝖾[[𝑏 → 𝐶]] = ¬𝑏
𝖽𝗈𝗇𝖾[[𝐺𝐶1 []𝐺𝐶2]] = 𝖽𝗈𝗇𝖾[[𝐺𝐶1]]∧𝖽𝗈𝗇𝖾[[𝐺𝐶2]]

𝑞1

𝐸1




𝑞◦

𝑏1

��

𝑏2
��

¬𝑏1∧¬𝑏2 �� 𝑞∙

𝑞2

𝐸2

��

Figure 2.8: An iteration construct
with two guarded commands.

As an example, for an iteration construct of the form 𝚍𝚘 𝑏1 → 𝐶1 [] 𝑏2 → 𝐶2 𝚘𝚍 we
obtain a graph of the form shown in Figure 2.8; note that 𝖽𝗈𝗇𝖾[[𝑏1 → 𝐶1 [] 𝑏2 → 𝐶2]]
amounts to ¬𝑏1∧¬𝑏2.

Example 2.9: Let us apply the function edges(𝑞⊳⇝ 𝑞�)[[⋅]] to the program
in Figure 2.1. We calculate

edges(𝑞⊳⇝𝑞�)[[𝚢 ∶= 𝟷; 𝚍𝚘 𝚡 > 𝟶 → 𝚢 ∶= 𝚡 ∗ 𝚢; 𝚡 ∶= 𝚡 − 𝟷 𝚘𝚍]]
= edges(𝑞⊳⇝𝑞1)[[𝚢 ∶= 𝟷]]

∪ edges(𝑞1⇝𝑞�)[[𝚍𝚘 𝚡 > 𝟶 → 𝚢 ∶= 𝚡 ∗ 𝚢; 𝚡 ∶= 𝚡 − 𝟷 𝚘𝚍]]
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= {(𝑞⊳, 𝚢 ∶= 𝟷, 𝑞1)}
∪ edges(𝑞1⇝𝑞1)[[𝚡 > 𝟶 → 𝚢 ∶= 𝚡 ∗ 𝚢; 𝚡 ∶= 𝚡 − 𝟷]]
∪ {(𝑞1,¬(𝚡 > 𝟶), 𝑞�)}

= {(𝑞⊳, 𝚢 ∶= 𝟷, 𝑞1), (𝑞1, 𝚡 > 𝟶, 𝑞2)}
∪ edges(𝑞2⇝𝑞1)[[𝚢 ∶= 𝚡 ∗ 𝚢; 𝚡 ∶= 𝚡 − 𝟷]]
∪ {(𝑞1,¬(𝚡 > 𝟶), 𝑞�)}

= {(𝑞⊳, 𝚢 ∶= 𝟷, 𝑞1), (𝑞1, 𝚡 > 𝟶, 𝑞2)}
∪ edges(𝑞2⇝𝑞3)[[𝚢 ∶= 𝚡 ∗ 𝚢]] ∪ edges(𝑞3⇝𝑞1)[[𝚡 ∶= 𝚡 − 𝟷]]
∪ {(𝑞1,¬(𝚡 > 𝟶), 𝑞�)}

= {(𝑞⊳, 𝚢 ∶= 𝟷, 𝑞1), (𝑞1, 𝚡 > 𝟶, 𝑞2), (𝑞2, 𝚢 ∶= 𝚡 ∗ 𝚢, 𝑞3),
(𝑞3, 𝚡 ∶= 𝚡 − 𝟷, 𝑞1), (𝑞1,¬(𝚡 > 𝟶), 𝑞�)}

The resulting graph is shown in Figure 2.9.

𝑞⊳
𝚢∶=𝟷
��
𝑞1

𝚡>𝟶

��

¬(𝚡>𝟶)

��
𝑞2

𝚢∶=𝚡∗𝚢
��

𝑞�

𝑞3

𝚡∶=𝚡−𝟷

		

Figure 2.9: edges(𝑞⊳ ⇝ 𝑞
�
)[[⋅]] ap-

plied to the factorial function.

Try It Out 2.10: Use the algorithm of Definitions 2.7 and 2.8 to construct a
program graph for the program of Try It Out 2.5. Discuss the extent to which you
get the same program graph as you constructed in Try It Out 1.4. □

Exercise 2.11: Use the algorithm of Definitions 2.7 and 2.8 to construct program
graphs for the programs of Exercise 2.6. Discuss the extent to which you get the
same program graphs as you constructed in Exercise 1.5. □

Recall that the edges of a program graph are triples E ⊆ Q × Act × Q and given
the initial node 𝑞⊳ and the final node 𝑞� we define E = edges(𝑞⊳⇝𝑞�)[[𝐶]] for the
command 𝐶 of interest. The set Act consists of three kinds of actions: one is an
assignment, 𝑥 ∶= 𝑎, another is 𝚜𝚔𝚒𝚙, and the third is a boolean condition, 𝑏. The
set Q of nodes consists of {𝑞⊳, 𝑞�} together with all the nodes occurring as first or
third components of tuples in E.

Proposition 2.12: Given a command 𝐶 the result of edges(𝑞⊳⇝𝑞�)[[𝐶]] is
a set E of edges of a program graph PG where Act and Q are as explained
previously (and where we ensure that 𝑞⊳ ≠ 𝑞�).

Sketch of Proof: It is immediate that edges(𝑞⊳ ⇝ 𝑞�)[[𝐶]] produces a set of
edges and we need to show that 𝑞� is not the first component of any edge in
edges(𝑞⊳⇝𝑞�)[[𝐶]] (using that 𝑞⊳ ≠ 𝑞�).

Formally this can be done by induction on the size of the argument 𝐶 or 𝐺𝐶 to
the call of edges(𝑞◦ ⇝ 𝑞∙)[[⋅]]; here we take the size to be the number of nodes
in the abstract syntax tree. The actual proof boils down to considering each of
the defining clauses for edges(𝑞◦ ⇝ 𝑞∙)[[⋅]] in Definitions 2.7 and 2.8 one by one
and showing that if 𝑞◦ ≠ 𝑞∙ then 𝑞∙ cannot be the first component of any edge in
𝐸 = edges(𝑞◦⇝𝑞∙)[[⋅]].

Suppose that 𝐸′ = edges(𝑞′◦⇝𝑞′∙)[[⋅]] and 𝐸′′ = edges(𝑞′′◦ ⇝𝑞′′∙ )[[⋅]] arise from two
distinct calls on the right-hand side of the same clause. Let 𝑁 ′ be the set of nodes in
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𝐸′ and 𝑁 ′′ be the set of nodes in 𝐸′′. The freshness of the generated nodes ensures
that (𝑁 ′⧵{𝑞′◦, 𝑞

′
∙})∩(𝑁

′′∪{𝑞′′◦ , 𝑞
′′
∙ }) = { } and (𝑁 ′∪{𝑞′◦, 𝑞

′
∙})∩(𝑁

′′⧵{𝑞′′◦ , 𝑞
′′
∙ }) = { }.

It now follows from the induction hypothesis that if 𝑞◦ ≠ 𝑞∙ then 𝑞∙ cannot be the
first component of any edge in 𝐸 = edges(𝑞◦⇝𝑞∙)[[⋅]]. □

Teaser 2.13: Argue that the construction of edges(𝑞◦⇝ 𝑞∙)[[𝐶1;𝐶2]] = 𝐸1 ∪ 𝐸2
for 𝐸1 = edges(𝑞◦ ⇝ 𝑞)[[𝐶1]] and 𝐸2 = edges(𝑞 ⇝ 𝑞∙)[[𝐶2]] (for some fresh node
𝑞) might be incorrect if we did not ensure that the final node cannot be a first
component of any of the edges. □

2.3 Semantics

We shall now define the semantics for Guarded Commands in accordance with
Definition 1.6. This calls for defining a semantic domain and we shall use Mem =
Var → Int reflecting that the values of the variables will always be integers. It also
calls for defining a semantic function [[⋅]] ∶ Act → (Mem ↪ Mem) giving the
meaning of the actions. Recall that the 𝚜𝚔𝚒𝚙 action does nothing so it is immediate
to take [[𝚜𝚔𝚒𝚙]]𝜎 = 𝜎; however we need a bit of preparation before we can define
[[𝑥 ∶= 𝑎]] and [[𝑏]].

An arithmetic expression was defined to be one of 𝑛, 𝑥, 𝑎1 + 𝑎2, 𝑎1 − 𝑎2, 𝑎1 ∗ 𝑎2 or
𝑎1 ^ 𝑎2, where 𝑎1 and 𝑎2 are also arithmetic expressions. This is a recursive definition
of how to form an abstract syntax tree for an arithmetic expression.

When evaluating the arithmetic expressions we shall therefore define semantic
functions

[[𝑎]] ∶ Mem ↪ Int

recursively on the way the arithmetic expressions were formed; the idea being
that [[𝑎]]𝜎 is the value of 𝑎 in the memory 𝜎:

[[𝑥]]𝜎 =
{

𝜎(𝑥) if 𝑥 ∈ 𝖽𝗈𝗆(𝜎)
undefined otherwise

[[𝑛]]𝜎 = 𝑛

[[𝑎1 + 𝑎2]]𝜎 =
{

𝑧1 + 𝑧2 if 𝑧1 = [[𝑎1]]𝜎 and 𝑧2 = [[𝑎2]]𝜎
undefined otherwise

[[𝑎1 − 𝑎2]]𝜎 =
{

𝑧1 − 𝑧2 if 𝑧1 = [[𝑎1]]𝜎 and 𝑧2 = [[𝑎2]]𝜎
undefined otherwise

[[𝑎1 ∗ 𝑎2]]𝜎 =
{

𝑧1 ⋅ 𝑧2 if 𝑧1 = [[𝑎1]]𝜎 and 𝑧2 = [[𝑎2]]𝜎
undefined otherwise

[[𝑎1 ^ 𝑎2]]𝜎 =
{

𝑧
𝑧2
1 if 𝑧1 = [[𝑎1]]𝜎, 𝑧2 = [[𝑎2]]𝜎 and 𝑧2 ≥ 0

undefined otherwise
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Here we write merely 𝑛 for the integer denoted by the number (or numeral) 𝑛, but
we distinguish between the syntactic operations (e.g. ∗ ) and their mathematical
counterparts (e.g. ⋅). If we had decided to use signed bytes (or signed words) as
discussed in Section 1.5 we would have needed to take even more care in distinguishing
syntax from semantics. When we write 𝑧 = [[𝑎]]𝜎 this means that [[𝑎]]𝜎 is defined
and that it gives the integer 𝑧. Note that [[𝑥]]𝜎 is undefined when 𝑥 ∉ 𝖽𝗈𝗆(𝜎).

Example 2.14: Figure 2.10 shows in detail how to use the semantics to
compute the value of 𝚡 ∗ 𝟹− 𝟻 using the usual precedence of operators and a
memory 𝜎 where x is 7.

[[𝚡 ∗ 𝟹− 𝟻]]𝜎
= [[(𝚡 ∗ 𝟹) − 𝟻]]𝜎
= [[𝚡 ∗ 𝟹]]𝜎 −[[𝟻]]𝜎
= ([[𝚡]]𝜎 ⋅[[𝟹]]𝜎) −[[𝟻]]𝜎
= (𝜎(𝚡) ⋅ 3) − 5
= (7 ⋅ 3) − 5
= 16

Figure 2.10: Calculating the value
of 𝚡 ∗ 𝟹− 𝟻. The boolean expressions were defined to have one of the forms 𝚝𝚛𝚞𝚎, 𝑎1 = 𝑎2,

𝑎1 >𝑎2, 𝑎1 ≥ 𝑎2, 𝑏1 ∧ 𝑏2, 𝑏1 && 𝑏2 or ¬ 𝑏0, where 𝑏0, 𝑏1 and 𝑏2 are themselves
boolean expressions. Once again this is a recursive definition of how the abstract
syntax trees for boolean expressions are formed.

When evaluating boolean expressions we shall therefore define semantic functions

[[𝑏]] ∶ Mem ↪ Bool

recursively on the way the boolean expressions were formed; here Bool denotes
the set of truth values {true, false}:

[[𝚝𝚛𝚞𝚎]]𝜎 = true

[[𝑎1 = 𝑎2]]𝜎 =
⎧⎪⎨⎪⎩

true if 𝑧1 = [[𝑎1]]𝜎, 𝑧2 = [[𝑎2]]𝜎, and 𝑧1 = 𝑧2
false if 𝑧1 = [[𝑎1]]𝜎, 𝑧2 = [[𝑎2]]𝜎, and 𝑧1 ≠ 𝑧2
undefined otherwise

[[𝑎1 >𝑎2]]𝜎 =
⎧⎪⎨⎪⎩

true if 𝑧1 = [[𝑎1]]𝜎, 𝑧2 = [[𝑎2]]𝜎, and 𝑧1 > 𝑧2
false if 𝑧1 = [[𝑎1]]𝜎, 𝑧2 = [[𝑎2]]𝜎, and 𝑧1 ≤ 𝑧2
undefined otherwise

[[𝑎1 ≥ 𝑎2]]𝜎 =
⎧⎪⎨⎪⎩

true if 𝑧1 = [[𝑎1]]𝜎, 𝑧2 = [[𝑎2]]𝜎, and 𝑧1 ≥ 𝑧2
false if 𝑧1 = [[𝑎1]]𝜎, 𝑧2 = [[𝑎2]]𝜎, and 𝑧1 < 𝑧2
undefined otherwise

[[𝑏1 ∧ 𝑏2]]𝜎 =
⎧⎪⎨⎪⎩

true if [[𝑏1]]𝜎 = true and [[𝑏2]]𝜎 = true
undefined if [[𝑏1]]𝜎 = undefined

or [[𝑏2]]𝜎 = undefined
false otherwise
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[[𝑏1 && 𝑏2]]𝜎 =
⎧⎪⎨⎪⎩

[[𝑏2]]𝜎 if [[𝑏1]]𝜎 = true
false if [[𝑏1]]𝜎 = false
undefined if [[𝑏1]]𝜎 = undefined

[[ ¬ 𝑏]]𝜎 =
⎧⎪⎨⎪⎩

true if [[𝑏]]𝜎 = false
false if [[𝑏]]𝜎 = true
undefined if [[𝑏]]𝜎 = undefined

Try It Out 2.15: Give an example where the usual conjunction 𝑏1 ∧ 𝑏2 has a
different semantics than the short-circuit conjunction 𝑏1 && 𝑏2. □

Exercise 2.16: It is quite standard to use boolean expressions beyond those of
𝚝𝚛𝚞𝚎, 𝑎1 = 𝑎2, 𝑎1 >𝑎2, 𝑎1 ≥ 𝑎2, 𝑏1 ∧ 𝑏2, 𝑏1 && 𝑏2 and ¬ 𝑏0. Extend the syntax and
semantics to also incorporate 𝚏𝚊𝚕𝚜𝚎, 𝑎1 ≠ 𝑎2, 𝑎1 <𝑎2, 𝑎1 ≤ 𝑎2, 𝑏1 ∨ 𝑏2 and 𝑏1 || 𝑏2
(where the latter is a form of disjunction that does not attempt to evaluate 𝑏2 if 𝑏1
evaluates to true). Does this extend the expressive power of the boolean expressions
or could we have managed without these extensions? □

Definition 2.17: We are now ready to define the semantics for Guarded
Commands. The semantic domain is

Mem = Var → Int

and the semantic function [[⋅]] ∶ Act → (Mem ↪ Mem) is given by

[[𝚜𝚔𝚒𝚙]]𝜎 = 𝜎

[[𝑥 ∶= 𝑎]]𝜎 =
{

𝜎[𝑥 ↦ [[𝑎]]𝜎] if [[𝑎]]𝜎 is defined and 𝑥 ∈ 𝖽𝗈𝗆(𝜎)
undefined otherwise

[[𝑏]]𝜎 =
{

𝜎 if [[𝑏]]𝜎 = true
undefined otherwise

Whenever [[𝛼]]𝜎 = 𝜎′ the idea is that if 𝜎 is the memory before executing 𝛼
then 𝜎′ is the memory afterwards.

Teaser 2.18: Modify the development of the present section to use the semantic
domain

Mem = Var → Byte
where Byte denotes signed bytes as considered in Section 1.5. Be careful in
determining what to do in case of overflow : to halt the program or to ignore the
problem. □

Arrays We shall now incorporate arrays as studied in Section 1.3 into the Guarded
Commands language. For this we shall modify the syntax of Definition 2.3 as
follows:
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𝐶 ∶∶= 𝐴[𝑎1] ∶= 𝑎2 ∣ ⋯ as in Definition 2.3⋯
𝑎 ∶∶= 𝐴[𝑎] ∣ ⋯ as in Definition 2.3⋯

𝚒 ∶= 𝟶;
𝚡 ∶= 𝟶;
𝚍𝚘 𝚒 < 𝟷𝟶 → 𝚡 ∶= 𝚡 + 𝙰[𝚒];

𝙱[𝚒] ∶= 𝚡;
𝚒 ∶= 𝚒 + 𝟷

𝚘𝚍

Figure 2.11: Traversing an array.

The new constructs give us a command for assigning to array entries and an arithmetic
expression for indexing into an array. These constructs can be combined freely with
the previous constructs. Figure 2.11 gives an example of a program constructing an
array B such that 𝙱[𝑖] = 𝙰[0] +⋯ + 𝙰[𝑖] for all values of 𝑖 < 10, where the arrays A
and B both have length 10.

The program graphs for commands (and guarded commands) of the extended
language will have the same form as in Section 2.2 with the main exception being
that we have a fourth kind of action, namely 𝐴[𝑎1] ∶= 𝑎2.

Definition 2.19: We extend Definition 2.7 as follows:

edges(𝑞◦⇝𝑞∙)[[𝐴[𝑎1] ∶= 𝑎2]] = {(𝑞◦, 𝐴[𝑎1] ∶= 𝑎2, 𝑞∙)}

The memories of the semantics will be defined as in Section 1.3. Thus we shall
assume that that each array 𝐴 ∈ Arr has a length given by 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴) and that the
memories are given by

Mem =
(

Var ∪ {𝐴[𝑖] ∣ 𝐴 ∈ Arr, 0 ≤ 𝑖 < 𝗌𝗂𝗓𝖾(𝐴)}
)
→ Int

Essential Exercise 2.20: Extend Definition 2.17 to apply to the extended
language. More precisely, use the above definition of Mem and complete the
following partial definition of the semantic function [[⋅]]:

[[𝐴[𝑎1] ∶= 𝑎2]]𝜎 =
⎧⎪⎨⎪⎩

𝜎[𝐴[𝑧1] ↦ 𝑧2] if 𝑧1 = [[𝑎1]]𝜎
and 𝑧2 = [[𝑎2]]𝜎
and 𝐴[𝑧1] ∈ 𝖽𝗈𝗆(𝜎)

undefined otherwise

To do so you should perform the necessary extensions of the functions [[⋅]]
and [[⋅]].

2.4 Alternative Approaches

In Section 2.2 we presented one particular way of constructing the program graphs for
the Guarded Commands language. In this section we shall discuss some alternatives
that lead to different semantics of the syntactically same language. In order to avoid
confusion we shall supply the function edges with an index reminding us of the
alternative considered, and if the functions for commands and guarded commands
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have different functionality we shall use a prime to indicate the one for guarded
commands.

A deterministic version Consider the following alternative way to define program
graphs, where the function edges on guarded commands is modified: it is given an
extra argument indicating which tests have been attempted previously and it returns
an updated version of this information as well as the set of edges being constructed:

edges𝖽𝟤(𝑞◦⇝𝑞∙)[[𝑏 → 𝐶]](𝑑) = let 𝑞 be fresh
𝐸 = edges𝖽(𝑞⇝𝑞∙)[[𝐶]]

in ({(𝑞◦, 𝑏 ∧ ¬𝑑, 𝑞)} ∪ 𝐸, 𝑏 ∨ 𝑑)

edges𝖽𝟤(𝑞◦⇝𝑞∙)[[𝐺𝐶1 []𝐺𝐶2]](𝑑) = let (𝐸1, 𝑑1) = edges𝖽𝟤(𝑞◦⇝𝑞∙)[[𝐺𝐶1]](𝑑)
(𝐸2, 𝑑2) = edges𝖽𝟤(𝑞◦⇝𝑞∙)[[𝐺𝐶2]](𝑑1)

in (𝐸1 ∪ 𝐸2, 𝑑2)

Note that we make use of the additional parameter in the construction of the edge
in the case of a single guarded command and we pass the updated information from
the first to the second guarded command in the case of the choice construct.

The new function is then used in the definition of the edges for the commands. Only
the cases of conditional and iteration are affected so we modify Definition 2.7 to
have

edges𝖽(𝑞◦⇝𝑞∙)[[𝚒𝚏 𝐺𝐶 𝚏𝚒]] = let (𝐸, 𝑑) = edges𝖽𝟤(𝑞◦⇝𝑞∙)[[𝐺𝐶]](𝚏𝚊𝚕𝚜𝚎)
in 𝐸

edges𝖽(𝑞◦⇝𝑞∙)[[𝚍𝚘 𝐺𝐶 𝚘𝚍]] = let (𝐸, 𝑑) = edges𝖽𝟤(𝑞◦⇝𝑞◦)[[𝐺𝐶]](𝚏𝚊𝚕𝚜𝚎)
in 𝐸 ∪ {(𝑞◦,¬𝑑, 𝑞∙)}

As an example, for a conditional of the form 𝚒𝚏 𝑏1 → 𝐶1 [] 𝑏2 → 𝐶2 𝚏𝚒 we now get
a program graph of the form shown in Figure 2.12 (rather than as in Figure 2.7);
here we have taken the liberty of simplifying 𝑏1 ∧ ¬𝚏𝚊𝚕𝚜𝚎 to 𝑏1.

𝐸1
��𝑞◦

𝑏1
��

𝑏2∧¬𝑏1 ��

𝑞∙

𝐸2

��

Figure 2.12: A conditional with two
guarded commands.

Try It Out 2.21: Give an example of a command where edges and edges𝖽 give
rise to different program graphs. □

Exercise 2.22: Argue that if (𝐸, 𝑑) = edges𝖽𝟤(𝑞◦⇝ 𝑞∙)[[𝐺𝐶]](𝚏𝚊𝚕𝚜𝚎) then ¬𝑑 is
logically equivalent to 𝖽𝗈𝗇𝖾[[𝐺𝐶]]. Argue that this means that all the resulting
program graphs will give rise to deterministic systems in the sense of Section 1.4.□

An evolving version The semantics is such that a conditional 𝚒𝚏 𝐺𝐶 𝚏𝚒 will be
stuck at the source node if all of the tests in 𝐺𝐶 evaluate to false. As an example,
consider a conditional of the form 𝚒𝚏 𝑏1 → 𝐶1 [] 𝑏2 → 𝐶2 𝚏𝚒; it will be stuck if both
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𝑏1 and 𝑏2 evaluate to false. If we do not want this to be the case we can simply
modify the construction of the edges of the program graph as follows:

edges𝖾(𝑞◦⇝𝑞∙)[[𝚒𝚏 𝐺𝐶 𝚏𝚒]] = let 𝑏 = 𝖽𝗈𝗇𝖾[[𝐺𝐶]]
𝐸 = edges𝖾(𝑞◦⇝𝑞∙)[[𝐺𝐶]]

in 𝐸 ∪ {(𝑞◦, 𝑏, 𝑞∙)}

The other definitions are as in Section 2.2. For a conditional 𝚒𝚏 𝑏1 → 𝐶1 [] 𝑏2 → 𝐶2 𝚏𝚒
we now obtain a program graph of the form shown in Figure 2.13.

𝐸1

��
𝑞◦

𝑏1
��

𝑏2 ��

¬𝑏1∧¬𝑏2 �� 𝑞∙

𝐸2

��

Figure 2.13: A non-blocking condi-
tional with two guarded commands.

Try It Out 2.23: Give an example of a command where edges and edges𝖾 give
rise to different program graphs. □

Exercise 2.24: Assume that the semantics of arithmetic and boolean expressions
are given by total functions. Argue that then the resulting program graphs will give
rise to evolving systems in the sense of Section 1.4. □

An internal choice Returning to Definition 2.8 let us consider the following
alternative for the case 𝐺𝐶1 []𝐺𝐶2:

edges𝗂(𝑞◦⇝𝑞∙)[[𝐺𝐶1 []𝐺𝐶2]] = let 𝑞1 and 𝑞2 be fresh
𝐸1 = edges𝗂(𝑞1⇝𝑞∙)[[𝐺𝐶1]]
𝐸2 = edges𝗂(𝑞2⇝𝑞∙)[[𝐺𝐶2]]

in {(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞1), (𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞2)} ∪ 𝐸1 ∪ 𝐸2

All the other cases are as in Definitions 2.7 and 2.8. Figure 2.14 illustrates the
program graph obtained for a conditional 𝚒𝚏 𝑏1 → 𝐶1 [] 𝑏2 → 𝐶2 𝚏𝚒 (where each
𝐸𝑖 arises from 𝐶𝑖).

𝑏1 ��
𝐸1

��
𝑞◦

𝚜𝚔𝚒𝚙
��

𝚜𝚔𝚒𝚙 ��

𝑞∙

𝑏2
��

𝐸2

��

Figure 2.14: An internal choice for
a conditional with two guarded com-
mands.

2.5 More Control Structures (Bonus Material)

Loop control commands Let us add two new constructs to the Guarded Com-
mands language:

𝐶 ∶∶= 𝚋𝚛𝚎𝚊𝚔 ∣ 𝚌𝚘𝚗𝚝𝚒𝚗𝚞𝚎 ∣ ⋯ as in Definition 2.3⋯

The idea is that a break command encountered inside a do command will terminate
the execution of the loop and transfer control to the end of the command. On the
other hand, the continue construct will transfer control to the beginning of the
loop.
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Example 2.25: The program in Figure 2.15 uses the variable x to compute
the sum of some of the entries of the array A (of length 10) and y will count
how many entries have been added up. The program terminates when the first
negative entry is encountered.

If we replace the break command with a continue command then the program
will sum all the non-negative entries in the array and count their number.

Note that if we replace the break command with skip then the intended
relationship between x and y no longer holds.

𝚒 ∶= 𝟶;
𝚡 ∶= 𝟶;
𝚢 ∶= 𝟶;
𝚍𝚘 𝚒 < 𝟷𝟶 →

𝚒𝚏 𝙰[𝚒] ≥ 𝟶 → 𝚡 ∶= 𝚡 + 𝙰[𝚒];
𝚒 ∶= 𝚒 + 𝟷

[] 𝙰[𝚒] < 𝟶 → 𝚒 ∶= 𝚒 + 𝟷;
𝚋𝚛𝚎𝚊𝚔

𝚏𝚒;
𝚢 ∶= 𝚢 + 𝟷

𝚘𝚍

Figure 2.15: Adding and counting
some of the entries of an array.

To construct program graphs for the extended language we need to keep track of not
only the source and target nodes 𝑞◦ and 𝑞∙ of the program graph to be constructed
but also the source and target nodes 𝑞𝑐 and 𝑞𝑏 of the immediately enclosing do
command. The idea is that when we encounter a break command inside a do
construct we have to transfer control to the target of the do construct, that is 𝑞𝑏
(rather than 𝑞∙). On the other hand, when we encounter a continue command we
shall transfer control to the entry node of the do construct, that is 𝑞𝑐 .

As in Section 2.2 the function edges is defined for commands and guarded commands.
In addition to the parameters 𝑞◦, 𝑞∙ and 𝐶 or 𝐺𝐶 it will also take two nodes 𝑞𝑏 and
𝑞𝑐 as parameters.

Definition 2.26: For commands the edges are constructed as follows:

edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝑥 ∶= 𝑎]](𝑞𝑏, 𝑞𝑐) = {(𝑞◦, 𝑥 ∶= 𝑎, 𝑞∙)}

edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝚜𝚔𝚒𝚙]](𝑞𝑏, 𝑞𝑐) = {(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞∙)}

edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝐶1;𝐶2]](𝑞𝑏, 𝑞𝑐) =
let 𝑞 be fresh

𝐸1 = edges𝖻𝖼(𝑞◦⇝𝑞)[[𝐶1]](𝑞𝑏, 𝑞𝑐)
𝐸2 = edges𝖻𝖼(𝑞⇝𝑞∙)[[𝐶2]](𝑞𝑏, 𝑞𝑐)

in 𝐸1 ∪ 𝐸2

edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝚒𝚏 𝐺𝐶 𝚏𝚒]](𝑞𝑏, 𝑞𝑐) = edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝐺𝐶]](𝑞𝑏, 𝑞𝑐)

edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝚍𝚘 𝐺𝐶 𝚘𝚍]](𝑞𝑏, 𝑞𝑐) =
let 𝑏 = 𝖽𝗈𝗇𝖾[[𝐺𝐶]]

𝐸 = edges𝖻𝖼(𝑞◦⇝𝑞◦)[[𝐺𝐶]](𝑞∙, 𝑞◦)
in 𝐸 ∪ {(𝑞◦, 𝑏, 𝑞∙)}

edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝚋𝚛𝚎𝚊𝚔]](𝑞𝑏, 𝑞𝑐) = {(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞𝑏)}

edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝚌𝚘𝚗𝚝𝚒𝚗𝚞𝚎]](𝑞𝑏, 𝑞𝑐) = {(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞𝑐)}
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Note that the parameters 𝑞𝑏 and 𝑞𝑐 are only modified when we enter a do command.
The reason is that we only record the current looping context as the break and
continue constructs are relative to the innermost enclosing do command. So in
particular there is no need to record the information for all the enclosing loops.

Definition 2.27: For guarded commands the edges are constructed as follows:

edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝑏 → 𝐶]](𝑞𝑏, 𝑞𝑐) =
let 𝑞 be fresh

𝐸 = edges𝖻𝖼(𝑞⇝𝑞∙)[[𝐶]](𝑞𝑏, 𝑞𝑐)
in {(𝑞◦, 𝑏, 𝑞)} ∪ 𝐸

edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝐺𝐶1 []𝐺𝐶2]](𝑞𝑏, 𝑞𝑐) =
let 𝐸1 = edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝐺𝐶1]](𝑞𝑏, 𝑞𝑐)

𝐸2 = edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝐺𝐶2]](𝑞𝑏, 𝑞𝑐)
in 𝐸1 ∪ 𝐸2

Example 2.28: Let us use Definitions 2.26 and 2.27 to construct the program
graph for the program in Figure 2.15. The result is shown in Figure 2.16. First
a number of nodes are created for the sequence of initialising assignments. The
program graph for the do command is then constructed using 𝑞3 and 𝑞� as
the source and target nodes and therefore its body will use 𝑞� and 𝑞3 as its
break and continue nodes. The two branches of the conditional are processed
independently of one another; they both have 𝑞� and 𝑞3 as their break and
continue nodes but this information is only used in the second branch, which
gives rise to an edge with target 𝑞� when it encounters the break command.

𝑞⊳
𝚒∶=𝟶��

𝑞1
𝚡∶=𝟶��

𝑞2
𝚢∶=𝟶
��
𝑞3

𝚒<𝟷𝟶 ��
¬(𝚒<𝟷𝟶)
  

𝑞4
𝙰[𝚒]≥𝟶

��
𝙰[𝚒]<𝟶
!!

𝑞�

𝑞6
𝚡∶=𝚡+𝙰[𝚒]
��

𝑞8
𝚒∶=𝚒+𝟷��

𝑞7
𝚒∶=𝚒+𝟷
��

𝑞9

𝚜𝚔𝚒𝚙
""

𝑞5

𝚢∶=𝚢+𝟷
##

Figure 2.16: Program graph for the
sum/counting function.

Try It Out 2.29: Replace the break command with continue in the program
in Figure 2.15 and construct the corresponding program graph. Repeat the exercise
with skip in place of break. □

Exercise 2.30: Explain which parameters to give to edges𝖻𝖼 in order to generate
the program graph for a command 𝐶 of interest. Do you get the intended effect of
a 𝚋𝚛𝚎𝚊𝚔 or 𝚌𝚘𝚗𝚝𝚒𝚗𝚞𝚎 command that does not occur inside a do construct? □

Exercise 2.31: Add a command 𝚕𝚘𝚘𝚙 𝐺𝐶 𝚙𝚘𝚘𝚕 for which we generate edges as
follows:

edges𝖻𝖼(𝑞◦⇝𝑞∙)[[𝚕𝚘𝚘𝚙 𝐺𝐶 𝚙𝚘𝚘𝚕]](𝑞𝑏, 𝑞𝑐) = edges𝖻𝖼(𝑞◦⇝𝑞◦)[[𝐺𝐶]](𝑞∙, 𝑞◦)

Explain how its semantics differs from that of 𝚍𝚘 𝐺𝐶 𝚘𝚍. Is there a way to use
𝚕𝚘𝚘𝚙 ⋯ 𝚙𝚘𝚘𝚕 and 𝚋𝚛𝚎𝚊𝚔 to get the same behaviour as 𝚍𝚘 ⋯ 𝚘𝚍? Is there a way to
use 𝚍𝚘 ⋯ 𝚘𝚍 to get almost the same behaviour as 𝚕𝚘𝚘𝚙 ⋯ 𝚙𝚘𝚘𝚕? □
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Exceptions We shall now extend the Guarded Commands language of Section
2.1 with an exception mechanism. For this we introduce two new commands: one
is the command 𝚝𝚑𝚛𝚘𝚠 𝑒 that will raise an exception named 𝑒 and the other is a
command 𝚝𝚛𝚢 𝐶 𝚌𝚊𝚝𝚌𝚑 𝑒1∶ 𝐶1 [] ⋯ [] 𝑒𝑘∶ 𝐶𝑘 𝚢𝚛𝚝 that specifies handlers for the
exceptions 𝑒1,… , 𝑒𝑘. If the command 𝚝𝚑𝚛𝚘𝚠 𝑒𝑖 is encountered inside 𝐶 then control
will be transferred to 𝐶𝑖. In general when a command 𝚝𝚑𝚛𝚘𝚠 𝑒 is encountered, the
control will be transferred to the appropriate innermost handler in an enclosing try
command.

To summarise we shall modify the syntax of Definition 2.3 to have:

𝐶 ∶∶= 𝚝𝚛𝚢 𝐶 𝚌𝚊𝚝𝚌𝚑 𝐻𝐶 𝚢𝚛𝚝 ∣ 𝚝𝚑𝚛𝚘𝚠 𝑒 ∣ ⋯ as in Definition 2.3⋯
𝐻𝐶 ∶∶= 𝑒∶ 𝐶 ∣ 𝐻𝐶1 []𝐻𝐶2

The exceptions 𝑒 are left unspecified but in examples we shall use strings, for example
yes and no. The syntax of handler commands 𝐻𝐶 is patterned after that of guarded
commands – the main difference is that the guards are now exception names rather
than boolean expressions.

Example 2.32: The program of Figure 2.17 searches for a value in an array
A (of length 10) and throws the exception yes if the value is present and no
otherwise.

𝚒 ∶= 𝟶;
𝚝𝚛𝚢
𝚍𝚘 𝙰[𝚒] = 𝚡 →

𝚝𝚑𝚛𝚘𝚠 𝚢𝚎𝚜
[] ¬(𝙰[𝚒] = 𝚡) →

𝚒𝚏 𝚒 < 𝟿 →
𝚒 ∶= 𝚒 + 𝟷

[] 𝚒 ≥ 𝟿 →
𝚝𝚑𝚛𝚘𝚠 𝚗𝚘

𝚏𝚒
𝚘𝚍

𝚌𝚊𝚝𝚌𝚑 𝚢𝚎𝚜∶ ⋯
[] 𝚗𝚘∶ ⋯

𝚢𝚛𝚝

Figure 2.17: Searching for a value
in an array.

In order to construct the program graphs we need to keep track of a mapping 𝛾
from exceptions to the nodes in the program graph to which the control has to
be transferred when the exception is thrown. The mapping is called a handler
environment and we write 𝛾(𝑒) for the node associated with the exception 𝑒.

The function edges needs to be supplied with a handler environment in order to con-
struct the relevant edges. For the construct 𝚝𝚛𝚢 𝐶 𝚌𝚊𝚝𝚌𝚑 𝑒1∶ 𝐶1 [] ⋯ [] 𝑒𝑘∶ 𝐶𝑘 𝚢𝚛𝚝
we shall first extend the handler environment with information about the new excep-
tions [𝑒1 ↦ 𝑞1,⋯ , 𝑒𝑘 ↦ 𝑞𝑘] and then use this when constructing the edges for 𝐶;
here 𝑞1,⋯ , 𝑞𝑘 are fresh nodes created when processing the handler commands, so
the version of the edges function used for handler commands does not need to be
supplied with a source node.

For handler commands the edges and the updated handler environment are
constructed as follows:

edges𝗑𝟤(⇝𝑞∙)[[𝑒∶ 𝐶]]𝛾 = let 𝑞 be fresh
𝐸 = edges𝗑(𝑞⇝𝑞∙)[[𝐶]]𝛾

in (𝐸, 𝛾[𝑒 ↦ 𝑞])
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edges𝗑𝟤(⇝𝑞∙)[[𝐻𝐶1 []𝐻𝐶2]]𝛾 = let (𝐸1, 𝛾1) = edges𝗑𝟤(⇝𝑞∙)[[𝐻𝐶1]]𝛾
(𝐸2, 𝛾2) = edges𝗑𝟤(⇝𝑞∙)[[𝐻𝐶2]]𝛾1

in (𝐸1 ∪ 𝐸2, 𝛾2)

For the handler command 𝑒∶ 𝐶 we simply update the supplied handler environment 𝛾
with the relevant information for 𝑒. For the composite handler command 𝐻𝐶1 []𝐻𝐶2
the definition expresses that first the handler environment 𝛾 is extended with the
exceptions of 𝐻𝐶1 and the resulting environment 𝛾1 is then extended with the
exceptions of 𝐻𝐶2 to produce the result for the composite construct.

For commands the edges are constructed as follows for the new constructs:

edges𝗑(𝑞◦⇝𝑞∙)[[𝚝𝚛𝚢 𝐶 𝚌𝚊𝚝𝚌𝚑 𝐻𝐶 𝚢𝚛𝚝]]𝛾 =
let (𝐸′, 𝛾 ′) = edges𝗑𝟤(⇝𝑞∙)[[𝐻𝐶]]𝛾

𝐸 = edges𝗑(𝑞◦⇝𝑞∙)[[𝐶]]𝛾 ′
in 𝐸 ∪ 𝐸′

edges𝗑(𝑞◦⇝𝑞∙)[[𝚝𝚑𝚛𝚘𝚠 𝑒]]𝛾 ={
{(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞)} where 𝑞 = 𝛾(𝑒)
{ } if 𝑒 ∉ 𝖽𝗈𝗆(𝛾)

Notice that the handler environment 𝛾 ′ constructed from 𝐻𝐶 in the construct
𝚝𝚛𝚢 𝐶 𝚌𝚊𝚝𝚌𝚑 𝐻𝐶 𝚢𝚛𝚝 is used when constructing the program graph for 𝐶. The
construct 𝚝𝚑𝚛𝚘𝚠 𝑒 then makes use of the handler environment when constructing
the program graph.

𝑞⊳
𝚒∶=𝟶
��

¬(𝙰[𝚒]=𝚡)

$$
𝙰[𝚒]=𝚡
��

¬(𝙰[𝚒]=𝚡)∧(𝙰[𝚒]=𝚡)

%%𝚒<𝟿��
𝚒≥𝟿
&&

𝚜𝚔𝚒𝚙��

𝚒∶=𝚒+𝟷
''

𝚜𝚔𝚒𝚙
��

𝑞𝗒 ((
𝑞�

𝑞𝗇

��

Figure 2.18: Program graph for the
search function.

Example 2.33: For the program in Figure 2.17 we obtain the program graph
in Figure 2.18; we start with an empty handler environment and extend it to
[𝚢𝚎𝚜 ↦ 𝑞𝗒, 𝚗𝚘 ↦ 𝑞𝗇]. The wavy edges represent the program graph for the
unspecified parts of the program of Figure 2.17.

Exercise 2.34: Complete the specification of the function edges𝗑 for the com-
mands and guarded commands of the extended language. □

Exercise 2.35: Consider each of the following scenarios. Determine what happens
and discuss whether this is what we want:

(a) an exception is thrown and it has more than one handler in the same try
construct,

(b) an exception is thrown and it has a handler in more than one try construct,

(c) an exception is thrown and it has no handler at all. □



Chapter 3

Program Verification

It is essential that programs are correct – meaning that their behaviour is as we
intend. For example, a sorting routine should indeed sort the array given as input.
To verify the correctness of programs one often writes invariants at various points
in the program and checks their correctness. In this chapter we will illustrate this
approach – working directly on program graphs.

3.1 Predicates

To be able to express the correctness of programs we need adequate notation; to set
the scene we first consider a couple of examples. 𝑞⊳

𝚢∶=𝟷
��
𝑞1

𝚡>𝟶

��

¬(𝚡>𝟶)

��
𝑞2

𝚢∶=𝚡∗𝚢
��

𝑞�

𝑞3

𝚡∶=𝚡−𝟷

		

Figure 3.1: Program graph for the
factorial function.

Example 3.1: Let us consider the factorial function from Figure 3.1. Assuming
that 𝚡 = 𝚗 ≥ 0 holds initially the aim is to establish that 𝚢 = fac (𝚗) holds when
the program terminates; here fac is the mathematical function defined by

fac(z) =
{

1 if z ≤ 0
z ⋅ fac(z-1) if z > 0

So how do we define the correctness of the factorial function? One way is to
say at 𝑞⊳ that 𝚡 = 𝚗 ≥ 0, to say at 𝑞� that 𝚢 = fac (𝚗), and to ensure that n
never changes.

Example 3.2: Consider the program graph for insertion sort explained in Exam-
ple 1.16 and shown in Figure 3.2; recall that b abbreviates 𝚓 > 𝟶&&𝙰[𝚓 − 𝟷] > 𝙰[𝚓]
and that ¬b is its negation. It was intended to accept an array A of length n
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as input (at the node 𝑞⊳) and to produce the sorted array A as output (at the
node 𝑞�).

How can we express that the array A is sorted? One possibility is to merely
assume a predicate sorted and to write sorted(𝙰, 0, 𝚗) to express this. Another
possibility is to define sorted(𝙰, 𝚖, 𝚗) by

∀𝑖, 𝑗 ∶ 𝚖 ≤ 𝑖 < 𝑗 < 𝚗 ⇒ 𝙰[𝑖] ≤ 𝙰[𝑗]

We may read this as saying that for all choices of indices 𝑖 and 𝑗, whenever
𝑖 < 𝑗 then 𝙰[𝑖] ≤ 𝙰[𝑗], assuming that 𝑖 and 𝑗 both stay within the bounds
{𝚖,⋯ , 𝚗 − 1}.

𝑞⊳
𝚒∶=𝟷��

𝑞1
𝚒<𝚗

��
𝚒≥𝚗

��
𝑞2
𝚓∶=𝚒
��

𝑞�

𝑞3
b ��

¬b
��

𝑞5
𝚜𝚠𝚊𝚙(𝙰,𝚓,𝚓−𝟷)
��

𝑞4

𝚒∶=𝚒+𝟷

))

𝑞6

𝚓∶=𝚓−𝟷

((

Figure 3.2: Program graph for inser-
tion sort; b abbreviates 𝚓 > 𝟶 &&
𝙰[𝚓 − 𝟷] > 𝙰[𝚓].

Example 3.3: Continuing Example 3.2, how can we express that the array
A of length n is the result of sorting an array A also of length n? On top
of sorted(𝙰, 0, 𝚗) we need to say that A and A have the same elements. One
possibility is to assume a predicate permuted and to write permuted(𝙰, 𝚗, 𝙰) to
mean this. Another possibility is to define permuted(𝙰, 𝚗, 𝙰) by

∃𝜋 ∶
(

(∀𝑖, 𝑗 ∶ 0 ≤ 𝑖 < 𝑗 < 𝚗 ⇒ 0 ≤ 𝜋(𝑖) ≠ 𝜋(𝑗) < 𝚗) ∧
∀𝑖 ∶ 𝙰[𝑖] = 𝙰[𝜋(𝑖)]

)
where the first line says that 𝜋 is a permutation function and the second line
says that A is a permuted version of A.

How can we express that the output array A of length n is the sorted version of
the input array A of length n? One way is to say at 𝑞⊳ that 𝙰 = 𝙰, to say at 𝑞�
that sorted(𝙰, 0, 𝚗) ∧ permuted(𝙰, 𝚗, 𝙰), and to ensure that A never changes.

Try It Out 3.4: Explain why it is problematic to define permuted(𝙰, 𝚗, 𝙰) by ∀𝑖 ∶
0 ≤ 𝑖 < 𝚗 ⇒ (∃𝑗 ∶ 0 ≤ 𝑗 < 𝚗 ∶ 𝙰[𝑖] = 𝙰[𝑗]). □

The examples suggest that we would like to write predicates and expressions that
go beyond what we can write in the boolean and arithmetic expressions of our
program graphs. In particular, we would like to use universal quantifiers (∀) and
existential quantifiers (∃); we would like to be able to quantify over functions and
to use well-known mathematical functions; and we would like to have a supply of
variables that cannot be changed by executing the actions of the program graph.
The latter kind of variables will be called logical variables and we will use underlining
to distinguish them from traditional program variables: only program variables can
occur in the actions of the program graphs.

It will be inappropriate for us to fully specify the syntax of our predicates and
expressions so we shall merely provide a partial specification of predicates (or
formulae) 𝜙 and expressions 𝑒:



3.1. Predicates 33

𝜙 ∶∶= true ∣ 𝜙1 ∧ 𝜙2 ∣ 𝜙1 ∨ 𝜙2 ∣ ¬𝜙0 ∣ 𝜙1 ⇒ 𝜙2 ∣
∃𝑥 ∶ 𝜙0 ∣ ∀𝑥 ∶ 𝜙0 ∣ 𝑒1 = 𝑒2 ∣ ⋯ ∣ p(𝑒1,⋯ , 𝑒𝑛)

𝑒 ∶∶= 𝑥 ∣ 𝑥 ∣ 𝑒1 + 𝑒2 ∣ ⋯ ∣ f (𝑒1,⋯ , 𝑒𝑛)

Here p is a previously defined predicate (like sorted) and f is a well-known mathe-
matical function (like fac).

When defining the meaning of predicates we shall write

(𝜎, 𝜎) ⊧ 𝜙

to indicate that the predicate 𝜙 holds in a setting where the program variables are
given by the (concrete) memory 𝜎 and the logical variables are given by the virtual
memory 𝜎. We may provide the following partial definition:

(𝜎, 𝜎) ⊧ true iff true
(𝜎, 𝜎) ⊧ 𝜙1 ∧ 𝜙2 iff ((𝜎, 𝜎) ⊧ 𝜙1) ∧ ((𝜎, 𝜎) ⊧ 𝜙2)
(𝜎, 𝜎) ⊧ 𝜙1 ∨ 𝜙2 iff ((𝜎, 𝜎) ⊧ 𝜙1) ∨ ((𝜎, 𝜎) ⊧ 𝜙2)
(𝜎, 𝜎) ⊧ ¬𝜙0 iff (𝜎, 𝜎) ⊧̸ 𝜙0

(𝜎, 𝜎) ⊧ 𝜙1 ⇒ 𝜙2 iff ((𝜎, 𝜎) ⊧ 𝜙1) ⇒ ((𝜎, 𝜎) ⊧ 𝜙2)
(𝜎, 𝜎) ⊧ ∃𝑥 ∶ 𝜙 iff ∃𝑣 ∶ (𝜎, 𝜎[𝑥 ↦ 𝑣]) ⊧ 𝜙

(𝜎, 𝜎) ⊧ ∀𝑥 ∶ 𝜙 iff ∀𝑣 ∶ (𝜎, 𝜎[𝑥 ↦ 𝑣]) ⊧ 𝜙

(𝜎, 𝜎) ⊧ 𝑒1 = 𝑒2 iff [[𝑒1]](𝜎, 𝜎) = [[𝑒2]](𝜎, 𝜎)

It is essential that we ensure that (𝜎, 𝜎) ⊧ 𝜙 always gives true or false (and hence
cannot be undefined). The latter clause uses a function [[⋅]] defined in part by

[[𝑥]](𝜎, 𝜎) = 𝜎(𝑥)
[[𝑥]](𝜎, 𝜎) = 𝜎(𝑥)

[[𝑒1 + 𝑒2]](𝜎, 𝜎) = [[𝑒1]](𝜎, 𝜎) + [[𝑒2]](𝜎, 𝜎)

It is essential that we ensure that [[𝑒]](𝜎, 𝜎) always gives a value (and hence cannot
be undefined).

Note how the definitions of (𝜎, 𝜎) ⊧ 𝜙 and [[𝑒]](𝜎, 𝜎) make it clear that program
variables are handled by the (concrete) memory and logical variables by the virtual
memory.

Recall that a predicate 𝜙 is called a tautology when it is always true (meaning
that ∀(𝜎, 𝜎) ∶ (𝜎, 𝜎) ⊧ 𝜙) and that a predicate 𝜙 is said to be satisfiable when
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it is not always false (meaning that ∃(𝜎, 𝜎) ∶ (𝜎, 𝜎) ⊧ 𝜙).

In both cases we only quantify over suitable pairs of memories that provide values
to all the program variables and logical variables actually used. Note that 𝜙 is a
tautology exactly when ¬𝜙 is not satisfiable.

Often predicates are expressed in a first-order logic with interpreted base
predicates. For some choices of predicates there are advanced tools known
as SMT solvers (Satisfaction Modulo Theories) that can determine whether
or not a predicate 𝜙 is satisfiable. The logic we used in Examples 3.2 and
3.3 is actually a form of second-order logic because of our quantification over
functions.

3.2 Predicate Assignments

A key step in the verification of program graphs is to associate invariants with each
node in the program graph. So let us consider a program graph PG given by Q, 𝑞⊳,
𝑞�, Act and E as in Definition 1.2.

Definition 3.5: A predicate assignment is a mapping

P ∶ Q → Pred

where Pred is a non-empty set of predicates as discussed in Section 3.1.

Example 3.6: Returning to Example 3.1, define P as follows:

P(𝑞⊳) = 𝚡 = 𝚗 ∧ 𝚗 ≥ 0
P(𝑞1) = 𝚗 ≥ 𝚡 ∧ 𝚡 ≥ 0 ∧ 𝚢 ⋅ fac (𝚡) = fac (𝚗)
P(𝑞2) = 𝚗 ≥ 𝚡 ∧ 𝚡 > 0 ∧ 𝚢 ⋅ 𝚡 ⋅ fac (𝚡 − 1) = fac (𝚗)
P(𝑞3) = 𝚗 ≥ 𝚡 ∧ 𝚡 > 0 ∧ 𝚢 ⋅ fac (𝚡 − 1) = fac (𝚗)
P(𝑞�) = 𝚢 = fac (𝚗)

This defines a predicate assignment for the program graph in Figure 3.1.

Example 3.7: Returning to Examples 3.2 and 3.3, define the auxiliary predicate
almost(𝙰, 𝚖, 𝚙, 𝚗) by

∀𝑖, 𝑗 ∶ (𝚖 ≤ 𝑖 < 𝑗 < 𝚗) ⇒ (𝙰[𝑖] ≤ 𝙰[𝑗] ∨ 𝑗 = 𝚙)
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Next define P as follows:

P(𝑞⊳) = 𝙰 = 𝙰
P(𝑞1) = sorted(𝙰, 0, 𝚒) ∧ permuted(𝙰, 𝚗, 𝙰)
P(𝑞2) = sorted(𝙰, 0, 𝚒) ∧ permuted(𝙰, 𝚗, 𝙰) ∧ 𝚒 < 𝚗
P(𝑞3) = almost(𝙰, 0, 𝚓, 𝚒 + 1) ∧ permuted(𝙰, 𝚗, 𝙰)
P(𝑞4) = sorted(𝙰, 0, 𝚒 + 1) ∧ permuted(𝙰, 𝚗, 𝙰)
P(𝑞5) = almost(𝙰, 0, 𝚓, 𝚒 + 1) ∧ 𝙰[𝚓 − 1] > 𝙰[𝚓] ∧ permuted(𝙰, 𝚗, 𝙰)
P(𝑞6) = almost(𝙰, 0, 𝚓 − 1, 𝚒 + 1) ∧ permuted(𝙰, 𝚗, 𝙰)
P(𝑞�) = sorted(𝙰, 0, 𝚗) ∧ permuted(𝙰, 𝚗, 𝙰)

This defines a predicate assignment for the program graph in Figure 3.2.

To be useful, invariants must be preserved as we perform the actions in the program
graph; for this we will need the semantic function  introduced in Definitions 1.6
and 2.17.

Definition 3.8: A predicate assignment P is correct with respect to a se-
mantics [[⋅]] when it satisfies the following constraints: whenever we have an
edge

(𝑞◦, 𝛼, 𝑞∙) ∈ E

and whenever we have pairs of suitable memories (𝜎, 𝜎) we have that(
(𝜎, 𝜎) ⊧ P(𝑞◦) ∧ 𝜎′ = [[𝛼]](𝜎)

)
⇒ (𝜎′, 𝜎) ⊧ P(𝑞∙)

where 𝜎′ = [[𝛼]](𝜎) means that [[𝛼]] is defined on 𝜎 and gives 𝜎′.

Try It Out 3.9: Show that the predicate assignment in Example 3.6 is correct
for the program graph of Figure 3.1. □

Exercise 3.10: Show that the predicate assignment in Example 3.7 is correct with
respect to the program graph of Figure 3.2 (using the semantics of Example 1.16).□

Proposition 3.11: Let P denote a correct predicate assignment. Whenever
(𝜎, 𝜎) ⊧ P(𝑞◦) and ⟨𝑞◦; 𝜎⟩ 𝜔

⟹
∗ ⟨𝑞∙; 𝜎′⟩ we have that (𝜎′, 𝜎) ⊧ P(𝑞∙).

Proof: We prove the result by mathematical induction on the length |𝜔| of 𝜔.

If |𝜔| = 0 then 𝑞◦ = 𝑞∙ and 𝜎 = 𝜎′ and the result is trivial.

If |𝜔| = 𝑛 + 1 for some 𝑛 ≥ 0 we can write ⟨𝑞◦; 𝜎⟩ 𝜔
⟹

∗ ⟨𝑞∙; 𝜎′⟩ as ⟨𝑞◦; 𝜎⟩ 𝜔′

⟹
∗

⟨𝑞′′; 𝜎′′⟩ 𝛼
⟹ ⟨𝑞∙; 𝜎′⟩ such that 𝜔 = 𝜔′𝛼 and hence |𝜔′| = 𝑛. From (𝜎, 𝜎) ⊧ P(𝑞◦) it

follows using the induction hypothesis that (𝜎′′, 𝜎) ⊧ P(𝑞′′) and from the correctness
of P (see Definition 3.8) we get that (𝜎′, 𝜎) ⊧ P(𝑞∙) as desired. □
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The partial correctness of a program graph with respect to 𝜙⊳ and 𝜙� is a
statement of the form(

(𝜎, 𝜎) ⊧ 𝜙⊳ ∧ ⟨𝑞⊳; 𝜎⟩ 𝜔
⟹

∗ ⟨𝑞�; 𝜎′⟩) ⇒ (𝜎′, 𝜎) ⊧ 𝜙�

Proposition 3.11 shows that a correct predicate assignment P establishes the partial
correctness of the program graph with respect to P(𝑞⊳) and P(𝑞�).
Teaser 3.12: Let us assume that the arithmetic expressions 𝑎 of Definition 2.3 are
part of the expressions 𝑒 considered in Section 3.1 – except for exponentiation – so
that their semantics [[𝑎]] gives rise to a total function; note that the arithmetic
expressions 𝑎 only mention program variables 𝑥 but not logical variables 𝑥. Further-
more, let us assume that the boolean expressions 𝑏 of Definition 2.3 are part of the
predicates 𝜙 considered in Section 3.1.

Define a predicate transformer  [[𝛼]] mapping predicates into predicates such that
(𝜎, 𝜎) ⊧  [[𝛼]](𝜙) if and only if ([[𝛼]]𝜎, 𝜎) ⊧ 𝜙, where 𝛼 may be any one of 𝚜𝚔𝚒𝚙,
𝑥 ∶= 𝑎 and 𝑏. (Adding array assignments 𝐴[𝑎1] ∶= 𝑎2 is more challenging.) □

3.3 Partial Predicate Assignments

Predicate assignments often need to be provided by programmers and it is a bit
demanding to require that a predicate should be given to each and every node in
the program graph. To overcome this we shall introduce the notion of a partial
predicate assignment together with conditions for when it encompasses sufficiently
many nodes.

Definition 3.13: A partial predicate assignment is a mapping P ∶ Q ↪
Pred.

Example 3.14: Once more consider the program graph of Figure 3.1 and
define P as follows:

P(𝑞⊳) = 𝚡 = 𝚗 ∧ 𝚗 ≥ 0
P(𝑞1) = 𝚗 ≥ 𝚡 ∧ 𝚡 ≥ 0 ∧ 𝚢 ⋅ fac (𝚡) = fac (𝚗)
P(𝑞�) = 𝚢 = fac (𝚗)

This defines a partial predicate assignment for the program graph in Figure 3.1.

Example 3.15: Once more consider the program graph of Figure 3.2 and
define P as follows:
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P(𝑞⊳) = 𝙰 = 𝙰
P(𝑞1) = sorted(𝙰, 0, 𝚒) ∧ permuted(𝙰, 𝚗, 𝙰)
P(𝑞3) = almost(𝙰, 0, 𝚓, 𝚒 + 1) ∧ permuted(𝙰, 𝚗, 𝙰)
P(𝑞�) = sorted(𝙰, 0, 𝚗) ∧ permuted(𝙰, 𝚗, 𝙰)

This defines a partial predicate assignment for the program graph in Figure 3.2.

Definition 3.16: A partial predicate assignment P ∶ Q ↪ Pred covers the
program graph PG with initial node 𝑞⊳ and final node 𝑞� whenenver

𝑞⊳, 𝑞� ∈ 𝖽𝗈𝗆(P)
each loop in PG contains a node in 𝖽𝗈𝗆(P)

and we also say that 𝖽𝗈𝗆(P) covers the program graph when this holds.

Note that the partial predicate assignment of Example 3.14 covers the program
graph of Figure 3.1.

Exercise 3.17: Argue that the partial predicate assignment of Example 3.15 covers
the program graph of Figure 3.2. Can you find a smaller partial predicate assignment
that also covers the program graph? □

Definition 3.18: Define the set of short path fragments with respect to a
partial predicate assignment P and program graph with edges E to be those
paths that start and end at nodes in 𝖽𝗈𝗆(P) but that do not pass through
other nodes in 𝖽𝗈𝗆(P):

𝗌𝗉𝖿 (P) = {𝑞0𝛼1⋯ 𝛼𝑛𝑞𝑛 ∣ ∀𝑖 ∈ {0,⋯ , 𝑛 − 1} ∶ (𝑞𝑖, 𝛼𝑖+1, 𝑞𝑖+1) ∈ E,
𝑛 > 0, 𝑞0 ∈ 𝖽𝗈𝗆(P), 𝑞𝑛 ∈ 𝖽𝗈𝗆(P)
∀𝑖 ∈ {1,⋯ , 𝑛 − 1} ∶ 𝑞𝑖 ∉ 𝖽𝗈𝗆(P)}

Example 3.19: The short path fragments for Example 3.14 are

𝑞⊳ 𝚢 ∶= 𝟷 𝑞1
𝑞1 𝚡 > 𝟶 𝚢 ∶= 𝚡 ∗ 𝚢 𝚡 ∶= 𝚡 − 𝟷 𝑞1
𝑞1 ¬(𝚡 > 𝟶) 𝑞�

Exercise 3.20: Determine the short path fragments for the partial predicate as-
signment of Example 3.15. □

Essential Exercise 3.21: Argue that 𝗌𝗉𝖿 (P) is finite whenever the partial
predicate assignment P covers the program graph.

We can construct an algorithm for computing the short path fragments 𝗌𝗉𝖿 (P) for
a partial predicate assignment P that covers the program graph. It performs a
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INPUT a program graph with Q, Act, E as in Definition 1.2
a partial predicate assignment P as in Definition 3.13

OUTPUT S: a set of short path fragments
DATA S ⊆ Q × Act∗ × Q: the fragments constructed so far
ALGORITHM S := { };

for all 𝑞 ∈ 𝖽𝗈𝗆(P) do BUILD(𝑞𝜖𝑞)
PROCEDURE BUILD(𝑞◦𝜔𝑞∙) is defined by

for all edges (𝑞, 𝛼, 𝑞◦) ∈ E
do if 𝑞 ∈ 𝖽𝗈𝗆(P)

then S := S ∪ {𝑞𝛼𝜔𝑞∙}
else BUILD(𝑞𝛼𝜔𝑞∙);

Figure 3.3: Computing short path fragments.

backward search from each node in 𝖽𝗈𝗆(P), collecting a partial short path fragment
along the way, and stopping when a node in 𝖽𝗈𝗆(P) is encountered, in which case
the partial short path fragment is emitted as a short path fragment. The details are
in Figure 3.3.

Try It Out 3.22: Use the algorithm of Figure 3.3 to construct the short path
fragments for Example 3.14. □

Exercise 3.23: Use the algorithm of Figure 3.3 to construct the short path frag-
ments for Example 3.15. □

Proposition 3.24: The algorithm of Figure 3.3 correctly produces the set
𝗌𝗉𝖿 (P) whenever the partial predicate assignment P covers the program graph.

Sketch of Proof: Let us say that 𝑞◦𝛼1⋯ 𝛼𝑛𝑞∙ is realised by a sequence 𝑞0,⋯ , 𝑞𝑛
of nodes whenever 𝑞0 = 𝑞◦, 𝑞𝑛 = 𝑞∙, 𝑞𝑛 ∈ 𝖽𝗈𝗆(P), 𝑞1,⋯ , 𝑞𝑛−1 ∉ 𝖽𝗈𝗆(P), and all
(𝑞𝑖−1, 𝛼𝑖, 𝑞𝑖) are edges in the program graph (for 1 ≤ 𝑖 ≤ 𝑛) .

Note that whenever there is a call BUILD(𝑞◦𝜔𝑞∙) then 𝑞◦𝜔𝑞∙ is realised by some
sequence 𝑞0,⋯ , 𝑞𝑛 such that 𝑞◦ = 𝑞∙ when 𝑛 = 0 and 𝑞◦ ∉ 𝖽𝗈𝗆(P) when 𝑛 > 0. It
follows that all 𝑞𝛼𝜔𝑞∙ added to S are short path fragments and hence that S ⊆ 𝗌𝗉𝖿 (P)
is an invariant of the algorithm.

For a short path fragment 𝑞◦𝛼1⋯ 𝛼𝑛𝑞∙ being realised by 𝑞0,⋯ , 𝑞𝑛 we know that
𝑛 > 0. We know that we perform the call BUILD(𝑞𝑛𝜖𝑞𝑛) and can prove by induction
that we eventually perform the call BUILD(𝑞1𝛼2⋯ 𝛼𝑛𝑞𝑛). In the body of this call
we add 𝑞◦𝛼1⋯ 𝛼𝑛𝑞∙ to S and this shows that 𝗌𝗉𝖿 (P) ⊆ S upon termination of the
algorithm.

From Essential Exercise 3.21 we know that 𝗌𝗉𝖿 (P) is finite, and each short path
fragment can only be realised by a finite number of node sequences. It follows
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that we only perform finitely many calls to BUILD and hence that the algorithm
terminates. □

The short path fragments give rise to proof obligations: whenever 𝑞◦𝛼1⋯ 𝛼𝑛𝑞∙ is in
𝗌𝗉𝖿 (P) we obtain a proof obligation of the form

[P(𝑞◦)] 𝛼1⋯ 𝛼𝑛 [P(𝑞∙)]

which intuitively expresses that if the predicate P(𝑞◦) holds in a memory and we
execute the actions 𝛼1⋯ 𝛼𝑛 then the predicate P(𝑞∙) will hold in the resulting memory.
To make this clear we need the following notation.

Let us write 𝜎𝑛 = [[𝛼1⋯ 𝛼𝑛]](𝜎0) to mean that there exists 𝜎1⋯ 𝜎𝑛−1 such
that 𝜎𝑖 = [[𝛼𝑖]](𝜎𝑖−1) for all 𝑖 ∈ {1,⋯ , 𝑛}.

Definition 3.25: A partial predicate assignment P is correct with respect to
a semantics [[⋅]] whenever(

(𝜎, 𝜎) ⊧ P(𝑞◦) ∧ 𝜎′ = [[𝛼1⋯ 𝛼𝑛]](𝜎)
)
⇒ (𝜎′, 𝜎) ⊧ P(𝑞∙)

holds for each (𝑞◦𝛼1⋯ 𝛼𝑛𝑞∙) ∈ 𝗌𝗉𝖿 (P) and for all suitable pairs of memories
(𝜎, 𝜎).

Try It Out 3.26: Show that the partial predicate assignment of Example 3.14 is
correct for the program graph of Figure 3.1: first identify the proof obligations and
then argue for their correctness. □

Exercise 3.27: Show that the partial predicate assignment of Example 3.15 is
correct for the program graph of Figure 3.2: first identify the proof obligations and
then argue for their correctness. □

The following proposition shows that partial correctness can be established by
providing a partial predicate assignment that is correct. This is a key and practical
technique for proving programs correct.

Proposition 3.28: Let P denote a correct partial predicate assignment. When-
ever 𝑞◦ ∈ 𝖽𝗈𝗆(P), (𝜎, 𝜎) ⊧ P(𝑞◦), ⟨𝑞◦; 𝜎⟩ 𝜔

⟹
∗ ⟨𝑞∙; 𝜎′⟩, and 𝑞∙ ∈ 𝖽𝗈𝗆(P) we

have that (𝜎′, 𝜎) ⊧ P(𝑞∙).

Proof:
𝜔 ∗'*

𝜔1 ∗'* 𝜔2 ∗'* 𝜔𝑛 ∗'*

Figure 3.4: Splitting an execution
sequence into smaller execution se-
quences.

As illustrated in Figure 3.4, we shall write ⟨𝑞◦; 𝜎⟩ 𝜔
⟹

∗ ⟨𝑞∙; 𝜎′⟩ as

⟨𝑞◦; 𝜎⟩ = ⟨𝑞0; 𝜎0⟩ 𝜔1
⟹

∗ ⟨𝑞1; 𝜎1⟩ 𝜔2
⟹

∗
⋯

𝜔𝑛
⟹

∗ ⟨𝑞𝑛; 𝜎𝑛⟩ = ⟨𝑞∙; 𝜎′⟩
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such that 𝜔 = 𝜔1𝜔2⋯𝜔𝑛 and all 𝑞𝑖−1𝜔𝑖𝑞𝑖 are short path fragments (for 𝑖 ∈
{1,⋯ , 𝑛}).

We shall perform mathematical induction on 𝑛 ≥ 0.

If 𝑛 = 0 we know that |𝜔| = 0 and the result is immediate (as in the proof of
Proposition 3.11).

If 𝑛 = 𝑛′ + 1 for some number 𝑛′ ≥ 0 then from (𝜎, 𝜎) ⊧ P(𝑞◦) we get (𝜎1, 𝜎) ⊧ P(𝑞1)
by the assumption that P is a correct partial predicate assignment, and then
(𝜎′, 𝜎) ⊧ P(𝑞∙) by the induction hypothesis. □

Teaser 3.29: Establish the correctness of your bubble sort algorithm from Exercise
1.18 by defining a partial predicate assignment, showing that it covers the program
graph, and then argue for the correctness of the proof obligations. □

3.4 Guarded Commands with Predicates

One way to find a set of nodes that covers the program graph is to do so when con-
structing the program graph. For most so-called structured programming languages
it is easy to indicate in the programs themselves where the nodes will originate. If
one then extends the syntax so as to explicitly mention the predicates holding at
those program points one can directly construct a program graph together with a
partial predicate assignment that covers it.

In this section we show how to do so for a version of the Guarded Commands
language of Chapter 2. We shall write 𝐴𝑃 for an annotated program, 𝐴𝐶 for an
annotated command, and 𝐴𝐺 for an annotated guarded command, and use 𝑥, 𝐴, 𝑎
and 𝑏 as before.

Definition 3.30: The syntax of Guarded Commands with Predicates is given
by

𝐴𝑃 ∶∶= 𝚋𝚎𝚐𝚒𝚗[𝜙⊳] 𝐴𝐶 𝚎𝚗𝚍[𝜙�]
𝐴𝐶 ∶∶= 𝑥 ∶= 𝑎 ∣ 𝐴[𝑎1] ∶= 𝑎2 ∣ 𝚜𝚔𝚒𝚙 ∣ 𝐴𝐶1 ;𝐴𝐶2 ∣ 𝚒𝚏 𝐴𝐺 𝚏𝚒 ∣ 𝚍𝚘[𝜙] 𝐴𝐺 𝚘𝚍
𝐴𝐺 ∶∶= 𝑏 → 𝐴𝐶 ∣ 𝐴𝐺1 []𝐴𝐺2

An annotated version of the factorial program is shown in Figure 3.5.

𝚋𝚎𝚐𝚒𝚗[𝚡 = 𝚗 ∧ 𝚗 ≥ 0]
𝚢 ∶= 𝟷;
𝚍𝚘 [𝚗 ≥ 𝚡 ∧ 𝚡 ≥ 0 ∧

𝚢 ⋅ fac (𝚡) = fac (𝚗)]
𝚡 > 𝟶 → 𝚢 ∶= 𝚡 ∗ 𝚢;

𝚡 ∶= 𝚡 − 𝟷
𝚘𝚍
𝚎𝚗𝚍[𝚢 = fac (𝚗)]

Figure 3.5: Example program for the
factorial function.

Next we redefine the function edges(⋅⇝ ⋅)[[⋅]], which operated on commands and
guarded commands, to a new function edges𝗏(⋅⇝ ⋅)[[⋅]], which operates on annotated
programs, annotated commands and annotated guarded commands. In Section 2.2
the result of edges(𝑞◦ ⇝ 𝑞∙)[[𝐶]] for a command 𝐶 was the set 𝐸 of edges of a
program graph with initial node 𝑞◦ and final node 𝑞∙. Here we should like the result
of edges𝗏(𝑞◦⇝𝑞∙)[[𝐴𝐶]] for an annotated command to be a pair (𝐸, 𝑃 ): the set 𝐸 is
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the set of edges of the program graph as before, and the partial predicate assignment
𝑃 is such that 𝖽𝗈𝗆(𝑃 ) ∪ {𝑞◦, 𝑞∙} covers the program graph. Similar remarks apply to
the result of edges𝗏(𝑞◦⇝𝑞∙)[[𝐴𝐺]] for an annotated guarded command 𝐴𝐺, whereas
the result edges𝗏(𝑞⊳⇝𝑞�)[[𝐴𝑃 ]] for an annotated program 𝐴𝑃 is to be such that
𝖽𝗈𝗆(𝑃 ) covers the program graph.

Definition 3.31: For annotated programs we have

edges𝗏(𝑞⊳⇝𝑞�)[[𝚋𝚎𝚐𝚒𝚗[𝜙⊳] 𝐴𝐶 𝚎𝚗𝚍[𝜙�]]] =
let 𝑞◦, 𝑞∙ be fresh

(𝐸1, 𝑃1) = edges𝗏(𝑞◦⇝𝑞∙)[[𝐴𝐶]]
𝐸2 = {(𝑞⊳, 𝚜𝚔𝚒𝚙, 𝑞◦), (𝑞∙, 𝚜𝚔𝚒𝚙, 𝑞�)}
𝑃2 = [𝑞⊳ ↦ 𝜙⊳][𝑞� ↦ 𝜙�]

in (𝐸1, 𝑃1)⊕ (𝐸2, 𝑃2)

During the construction of the program graphs we create fresh nodes as before. We
use ⊕ to combine the pairs produced:

(𝐸1, 𝑃1)⊕ (𝐸2, 𝑃2) = (𝐸1 ∪ 𝐸2, 𝑃1[𝑃2])

Here (𝑃1[𝑃2])(𝑞) = 𝑃1(𝑞) if 𝑞 ∈ 𝖽𝗈𝗆(𝑃1) ⧵ 𝖽𝗈𝗆(𝑃2) and (𝑃1[𝑃2])(𝑞) = 𝑃2(𝑞) if
𝑞 ∈ 𝖽𝗈𝗆(𝑃2). (Whenever we use the notation below it will be the case that
𝖽𝗈𝗆(𝑃1) ∩ 𝖽𝗈𝗆(𝑃2) = { } so that 𝑃1[𝑃2] = 𝑃2[𝑃1].) Furthermore, we write [ ] for
the partial predicate assignment whose domain is empty.

Definition 3.32: For annotated commands we have

edges𝗏(𝑞◦⇝𝑞∙)[[𝑥 ∶= 𝑎]] = ({(𝑞◦, 𝑥 ∶= 𝑎, 𝑞∙)}, [ ])

edges𝗏(𝑞◦⇝𝑞∙)[[𝐴[𝑎1] ∶= 𝑎2]] = ({(𝑞◦, 𝐴[𝑎1] ∶= 𝑎2, 𝑞∙)}, [ ])

edges𝗏(𝑞◦⇝𝑞∙)[[𝚜𝚔𝚒𝚙]] = ({(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞∙)}, [ ])

edges𝗏(𝑞◦⇝𝑞∙)[[𝐴𝐶1;𝐴𝐶2]] = let 𝑞 be fresh
(𝐸1, 𝑃1) = edges𝗏(𝑞◦⇝𝑞)[[𝐴𝐶1]]
(𝐸2, 𝑃2) = edges𝗏(𝑞⇝𝑞∙)[[𝐴𝐶2]]

in (𝐸1, 𝑃1)⊕ (𝐸2, 𝑃2)

edges𝗏(𝑞◦⇝𝑞∙)[[𝚒𝚏 𝐴𝐺 𝚏𝚒]] = edges𝗏(𝑞◦⇝𝑞∙)[[𝐴𝐺]]

edges𝗏(𝑞◦⇝𝑞∙)[[𝚍𝚘[𝜙] 𝐴𝐺 𝚘𝚍]] = let 𝑏 = 𝖽𝗈𝗇𝖾[[𝐴𝐺]]
(𝐸, 𝑃 ) = edges𝗏(𝑞◦⇝𝑞◦)[[𝐴𝐺]]

in (𝐸, 𝑃 )⊕ ({(𝑞◦, 𝑏, 𝑞∙)}, [𝑞◦ ↦ 𝜙])
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The auxiliary function 𝖽𝗈𝗇𝖾[[⋅]] is defined much as before:

𝖽𝗈𝗇𝖾[[𝑏 → 𝐴𝐶]] = ¬𝑏
𝖽𝗈𝗇𝖾[[𝐴𝐺1 []𝐴𝐺2]] = 𝖽𝗈𝗇𝖾[[𝐴𝐺1]] ∧ 𝖽𝗈𝗇𝖾[[𝐴𝐺2]]

Definition 3.33: For annotated guarded commands we have

edges𝗏(𝑞◦⇝𝑞∙)[[𝑏 → 𝐴𝐶]] = let 𝑞 be fresh
(𝐸, 𝑃 ) = edges𝗏(𝑞⇝𝑞∙)[[𝐶]]

in ({(𝑞◦, 𝑏, 𝑞)}, [ ])⊕ (𝐸, 𝑃 )

edges𝗏(𝑞◦⇝𝑞∙)[[𝐴𝐺1 []𝐴𝐺2]] = let (𝐸1, 𝑃1) = edges𝗏(𝑞◦⇝𝑞∙)[[𝐴𝐺1]]
(𝐸2, 𝑃2) = edges𝗏(𝑞◦⇝𝑞∙)[[𝐴𝐺2]]

in (𝐸1, 𝑃1)⊕ (𝐸2, 𝑃2)

We construct the program graph PG for an annotated program 𝐴𝑃 as follows.
The edges E come from (E,P) = edges𝗏(𝑞⊳ ⇝ 𝑞�)[[𝐴𝑃 ]] (where we ensure that
𝑞⊳ ≠ 𝑞�). The actions Act consist of the four kinds of actions: 𝑥 ∶= 𝑎, 𝐴[𝑎1] ∶= 𝑎2,
𝚜𝚔𝚒𝚙 and 𝑏. The nodes Q consist of all the nodes occurring as first or third
components of tuples in E. The partial predicate assignment P also comes from
(E,P) = edges𝗏(𝑞⊳⇝𝑞�)[[𝐴𝑃 ]].

Example 3.34: Let us apply the function edges𝗏(𝑞⊳⇝𝑞�)[[⋅]] to the program
of Figure 3.5 and let (E,P) be the result produced. The set E of edges produced
is shown in Figure 3.6 and the partial predicate assignment P is as in Example
3.14. The set 𝖽𝗈𝗆(P) equals {𝑞⊳, 𝑞1, 𝑞�} and covers the program graph.

Exercise 3.35: Rewrite the insertion sort algorithm of Examples 1.16, 3.2 and 3.3
with the appropriate predicates in Guarded Commands with Predicates.

How would you compare the resulting program graph and partial predicate assignment
to the program graph of Figure 3.2 and the partial predicate assignment of Example
3.15? □

𝑞⊳
𝚜𝚔𝚒𝚙
��
𝑞0
𝚢∶=𝟷
��
𝑞1

𝚡>𝟶

��

¬(𝚡>𝟶)

��
𝑞2

𝚢∶=𝚡∗𝚢
��

𝑞4
𝚜𝚔𝚒𝚙
��

𝑞3

𝚡∶=𝚡−𝟷

		

𝑞�
Figure 3.6: The program graph for
the factorial function obtained using
edges𝗏(𝑞⊳⇝𝑞

�
)[[⋅]].

Proposition 3.36: Given an annotated program 𝐴𝑃 and the result (E,P)
of edges𝗏(𝑞⊳ ⇝ 𝑞�)[[𝐴𝑃 ]] where we ensure that 𝑞⊳ ≠ 𝑞�. The set of nodes
𝖽𝗈𝗆(P) covers the program graph obtained from E.

Sketch of Proof: We will expand on the proof of Proposition 2.12. We shall
prove for each recursive call (𝐸, 𝑃 ) = edges𝗏(𝑞◦⇝𝑞∙)[[𝐴𝐶]] that all nodes in 𝐸 are
reachable from 𝑞◦, that all nodes in 𝐸 can reach 𝑞∙, that if 𝑞◦ ≠ 𝑞∙ then no edge in
𝐸 has 𝑞∙ as a first component, and that 𝖽𝗈𝗆(𝑃 ) ∪ {𝑞◦, 𝑞∙} covers 𝐸.

The key part of the proof is to show that 𝖽𝗈𝗆(𝑃 ) ∪ {𝑞◦, 𝑞∙} covers 𝐸. This is
straightforward in most cases. As an example we consider (𝐸, 𝑃 ) = edges𝗏(𝑞◦⇝
𝑞∙)[[𝐴𝐶1;𝐴𝐶2]] where for (𝐸1, 𝑃1) = edges𝗏(𝑞◦⇝𝑞)[[𝐴𝐶1]] and (𝐸2, 𝑃2) = edges𝗏(𝑞⇝
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𝑞∙)[[𝐴𝐶2]] we have 𝐸 = 𝐸1 ∪ 𝐸2 and 𝑃 = 𝑃1[𝑃2]. Any loop in 𝐸1 ∪ 𝐸2 must be
entirely within 𝐸1 or 𝐸2 and the result follows from the induction hypothesis.

The interesting case is (𝐸, 𝑃 ) = edges𝗏(𝑞◦⇝𝑞∙)[[𝚍𝚘[𝜙] 𝐴𝐺 𝚘𝚍]], which expands to

(𝐸, 𝑃 ) = edges𝗏(𝑞◦⇝𝑞∙)[[𝚍𝚘[𝜙] 𝑏1 → 𝐴𝐶1 [] ⋯ [] 𝑏𝑛 → 𝐴𝐶𝑛 𝚘𝚍]]

and where 𝑞◦ ∈ 𝖽𝗈𝗆(P). Any loop in 𝐸 is either entirely within some edges𝗏(𝑞◦⇝
𝑞∙)[[𝑏𝑖 → 𝐶𝑖]] or not. In the former case the result follows from the induction
hypothesis. In the latter case the loop must involve the node 𝑞◦ and the result
follows. □

Exercise 3.37: Extend the development of the present section to the extended
Guarded Commands language of Section 2.5. First include the loop control com-
mands 𝚋𝚛𝚎𝚊𝚔 and 𝚌𝚘𝚗𝚝𝚒𝚗𝚞𝚎 and then extend the development with the commands
𝚝𝚛𝚢 𝐶 𝚌𝚊𝚝𝚌𝚑 𝐻𝐶 𝚢𝚛𝚝 and 𝚝𝚑𝚛𝚘𝚠 𝑒 for defining and throwing exceptions together
with the handler commands 𝐻𝐶. Do you need to annotate the new constructs with
additional predicates? □

3.5 Reverse Postorder (Bonus Material)

If we are merely given a program graph and want to find a set of nodes that covers
it we can construct a depth-first spanning tree and use the reverse postorder defined
by it to find the set of nodes that covers the program graph.

In this section we shall only be interested in the part of the program graph that
is reachable from the start node 𝑞⊳ and we ignore the remaining nodes.

We provide in Figure 3.7 the algorithm for producing a depth-first spanning tree
and its associated reverse postorder. It takes as input a program graph with nodes
Q, edges E and initial node 𝑞⊳. It produces a depth-first spanning tree T (initially
empty) and a so-called reverse postorder numbering rP. It makes use of a current
number k (initially the number of nodes) and a set V of visited nodes (initially
empty). The key part of the algorithm is the procedure DFS(𝑞), which traverses all
outgoing edges (to nodes that have not previously been traversed) in a depth-first
manner while building the tree along the way. It assigns each node its reverse
postorder number just before returning.

𝑞⊳

��
𝑞1



 ��
𝑞2

��

𝑞�

𝑞3

Figure 3.8: Depth-first spanning
tree for the program graph of Figure
3.1.

Try It Out 3.38: Show that the algorithm of Figure 3.7 applied to the factorial
program graph of Figure 3.1 may give rise to the depth-first spanning tree of
Figure 3.8. Is it possible to construct other depth-first spanning trees? What are
the possible reverse postorders? □

Exercise 3.39: Use the algorithm of Figure 3.7 to construct a depth-first spanning
tree for the insertion sort program graph of Figure 3.2. How many different reverse
postorders may arise from different ways of running the algorithm? □
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INPUT a program graph with Q, 𝑞⊳, E as in Definition 1.2
OUTPUT T: a set of edges in a depth-first spanning tree

rP: a reverse postorder numbering of the nodes in Q
DATA T ⊆ Q × Q: the tree constructed so far

V ⊆ Q: the nodes visited so far
k ∈ Int: the current number
rP ∶ Q → Int: the reverse postorder numbering

ALGORITHM T := { };
V := { };
k := |Q|;
DFS(𝑞⊳)

PROCEDURE DFS(𝑞◦) is defined by
V := V ∪ {𝑞◦};
while there exists an edge (𝑞◦, 𝛼, 𝑞∙) ∈ E

such that 𝑞∙ ∉ V
do T := T ∪ {(𝑞◦, 𝑞∙)}; DFS(𝑞∙);

rP[𝑞◦] := k; k:= k–1;

Figure 3.7: Depth-First Spanning Tree and Reverse Postorder.

We shall be writing T∗ for the reflexive transitive closure of T (following zero or
more edges in T), T+ for the transitive closure of T (following one or more edges in
T) and T++ for T+ ⧵ T (following two or more edges in T).

Definition 3.40: The edges in E can be classified with respect to T into one
of four types:

• a tree edge is an edge (𝑞, 𝛼, 𝑞′) ∈ E where (𝑞, 𝑞′) ∈ T,

• a forward edge is an edge (𝑞, 𝛼, 𝑞′) ∈ E where (𝑞, 𝑞′) ∈ T++, meaning
that it points further down in the tree,

• a back edge is an edge (𝑞, 𝛼, 𝑞′) ∈ E where (𝑞′, 𝑞) ∈ T∗ (including 𝑞 = 𝑞′),
meaning that it points back up in the tree,

• a cross edge is an edge (𝑞, 𝛼, 𝑞′) ∈ E where neither (𝑞, 𝑞′) nor (𝑞′, 𝑞) is in
T∗, meaning that neither 𝑞 nor 𝑞′ is an ancestor of the other.

Example 3.41: The edges of the program graph of Figure 3.1 can be classified
with respect to the depth-first spanning tree of Figure 3.8: all edges except
(𝑞3, 𝚡 ∶= 𝚡 − 𝟷, 𝑞1) are tree edges while (𝑞3, 𝚡 ∶= 𝚡 − 𝟷, 𝑞1) is a back edge.

In general a program graph may have many different depth-first spanning trees and
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therefore the notions of tree edges, forward edges, back edges and cross edges are
not uniquely determined but are always relative to the depth-first spanning tree of
interest. However, for a large class of so-called reducible program graphs the notion
of back edge will be the same regardless of the depth-first spanning tree considered.
Most program graphs constructed from ‘structured programming languages’ will
indeed produce reducible program graphs (and the Guarded Commands language is
an example of this). A non-reducible program graph is shown in Figure 3.9.

⊳



 ��

��

*+





$$

�
Figure 3.9: A non-reducible program
graph.

Exercise 3.42: Returning to Exercise 3.39, determine whether or not the different
reverse postorders give rise to the same back edges. □

Proposition 3.43: The edge (𝑞, 𝛼, 𝑞′) ∈ E is a back edge if and only if
rP[𝑞] ≥ rP[𝑞′].

Proof: We first assume that (𝑞, 𝛼, 𝑞′) ∈ E is a back edge and show that rP[𝑞] ≥
rP[𝑞′]. If (𝑞, 𝛼, 𝑞′) is additionally a self loop, i.e. 𝑞 = 𝑞′, we have rP[𝑞] = rP[𝑞′]
and the result is immediate. Otherwise 𝑞′ is a proper ancestor of 𝑞 in the depth-
first spanning tree T. Hence 𝑞′ is visited before 𝑞 in the depth-first traversal and
the call DFS(𝑞′) is pending throughout the entire call of DFS(𝑞), meaning that
rP[𝑞] > rP[𝑞′] and the result is immediate.

We next assume that rP[𝑞] ≥ rP[𝑞′] and show that (𝑞, 𝛼, 𝑞′) ∈ E is a back edge.
If rP[𝑞] = rP[𝑞′] we have 𝑞 = 𝑞′ and hence we have a self loop, which is clearly a
back edge. Otherwise rP[𝑞] > rP[𝑞′], which shows that the call of DFS(𝑞) is left
before that of DFS(𝑞′). This means that the call of DFS(𝑞′) must either be pending
during the call of DFS(𝑞) or has not yet been initiated. In the former case 𝑞′ is
a proper ancestor of 𝑞 in T and the edge is a back edge. In the latter case the
node 𝑞′ has not yet been marked as visited and the algorithm would have initiated
DFS(𝑞′), which would have ensured that rP[𝑞] < rP[𝑞′], which is impossible due to
our assumption. □

Proposition 3.44: Any loop in E will involve at least one back edge.

Proof: We prove this by contradiction. For this we shall suppose that there is
a loop (𝑞0, 𝛼1, 𝑞1),⋯ , (𝑞𝑛−1, 𝛼𝑛, 𝑞𝑛) with 𝑛 > 0 and 𝑞0 = 𝑞𝑛 and that it involves no
back edges. It then follows from Proposition 3.43 that rP[𝑞0] < rP[𝑞𝑛] but this is a
contradiction since rP[𝑞0] = rP[𝑞𝑛]. □

The set of nodes that are targets of back edges is useful for identifying the set of
nodes that cover the program graph.
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Proposition 3.45: The set {𝑞⊳, 𝑞�} ∪ {𝑞′ ∣ ∃ 𝑞, 𝛼 ∶ (𝑞, 𝛼, 𝑞′) ∈ E ∧ rP[𝑞] ≥
rP[𝑞′]} covers the program graph.

Proof: This is a consequence of Propositions 3.43 and 3.44 (because we assumed
in this section that all nodes in Q are reachable from 𝑞⊳). □

Exercise 3.46: Would we still obtain a set of nodes that covers the program graph
if we used the sources of the back edges instead of the targets? □



Chapter 4

Program Analysis

Program analysis is an approach to finding properties of programs and it can be
fully automated unlike program verification. The price to pay is that we can only
express approximate behaviours of programs and in general we need to admit more
behaviours than are really possible. The gain is that everything is fully automatic
and often very efficient.

4.1 Abstract Properties

The aim of this chapter is to introduce static techniques for obtaining useful
information about programs. The techniques are called static in contrast to dynamic
because we obtain the information without executing the programs.

𝑞⊳

𝚒<𝚗∧𝙰[𝚒]≥𝟶

+,

𝚒≥𝚗

��

𝚒<𝚗∧𝙰[𝚒]<𝟶

,-
𝑞1

𝚡∶=𝚡+𝙰[𝚒]
��

𝑞5

𝚡∶=𝚡∕𝚢
��

𝑞4

𝚒∶=𝚒+𝟷

-.

𝑞2

𝚢∶=𝚢+𝟷
��

𝑞
�

𝑞3

𝚒∶=𝚒+𝟷

./

Figure 4.1: Computing the average
of some of the elements of an array.

Example 4.1: Consider the program graph of Figure 4.1. It is intended to
compute the average of the non-negative elements of an array A of length n;
it is assumed that the variables x, y and i are initialised to 0 and that 𝚗 > 0.
The expression x/y performs integer division and it fails if y is zero. We may
want to ensure that this will never be the case. Using a program analysis called
detection of signs analysis we can show that

• if A only contains non-negative elements then we never divide by zero,
• if all the elements of A are negative then we will indeed divide by zero,
• in all other cases we may or may not divide by zero.

So unless we know for sure that A does not contain any negative elements we
should improve the program graph by inserting a test on the value of y before
performing the division.

In program analysis we compute with abstractions of the memories rather than the
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memories themselves. Often the abstraction will capture some property of the values.
For the detection of signs analysis mentioned in Example 4.1 we are interested in
the signs of the values.

Suppose that we have variables as well as arrays as in Example 4.1. Following
Section 1.3 it is natural to let a memory be a mapping

𝜎 ∈ Mem =
(

Var ∪ {𝐴[𝑖] ∣ 𝐴 ∈ Arr, 0 ≤ 𝑖 < 𝗌𝗂𝗓𝖾(𝐴)}
)
→ Int

associating a value with each variable and with each entry in the arrays; we shall
sometimes call this a concrete memory . In the abstract memory the values are
replaced by properties, in our case signs. For each variable we will record the sign of
its value. It does not make much sense to record the sign of each entry in an array –
our analysis will give us information about the sign of the index but not its actual
value. Instead for each array we record a set of signs, namely the ones possessed by
the entries of the array. So it is natural to let an abstract memory consist of two
mappings, one for the variables and one for the arrays:

(𝜎̂1, 𝜎̂2) ∈ M̂em = (Var → Sign) × (Arr → 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(Sign))

where we write Sign for the set {−, 0,+} of signs. Figure 4.2 gives an example of a
memory and its abstraction and Figure 4.3 depicts 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(Sign).

𝚡 0
𝚢 1
𝚒 1
𝚗 3
𝙰[0] 0
𝙰[1] 4
𝙰[2] 7

𝚡 0
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

Figure 4.2: A memory and its ab-
straction.

{−, 0,+}

{−, 0} {−,+} {0,+}

{−} {0} {+}

{ }

Figure 4.3: Diagram of
𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(Sign).

Definition 4.2: Consider a semantics using a concrete memory Mem and an
analysis using an abstract memory M̂em. The relationship between memories
and abstract memories is provided by an extraction function

𝜂 ∶ Mem → M̂em

that associates an abstract memory with each memory.

In our scenario we define 𝜂(𝜎) = (𝜎̂1, 𝜎̂2) where

𝜎̂1(𝑥) = sign(𝜎(𝑥)) for 𝑥 ∈ Var
𝜎̂2(𝐴) = {sign(𝜎(𝐴[𝑖])) ∣ 0 ≤ 𝑖 < 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴)} for 𝐴 ∈ Arr

and where the function sign ∶ Int → Sign returns the sign of its argument (so
sign(𝑛) = + if 𝑛 > 0, sign(𝑛) = − if 𝑛 < 0 and sign(𝑛) = 0 if 𝑛 = 0).𝚡 0

𝚢 +
𝚒 +
𝚗 +
𝙰 {+}

𝚡 0
𝚢 +
𝚒 +
𝚗 +
𝙰 {−, 0,+}

Figure 4.4: Two abstract memories.

The abstract memory (in the right part) of Figure 4.2 is obtained by applying
the function 𝜂 to the concrete memory (in the left part) of the figure – it is an
abstraction of the concrete memory. The two abstract memories of Figure 4.4 are
not abstractions of the memory of Figure 4.2; the leftmost one is excluded because
the array contains the element 0 and the rightmost one is excluded because the
array does not contain any negative number.

Try It Out 4.3: Provide concrete memories corresponding to the abstract memo-
ries of Figure 4.4. □
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A(𝑞⊳) =

⎧⎪⎪⎨⎪⎪⎩

𝚡 0
𝚢 0
𝚒 0
𝚗 +
𝙰 {0,+}

,

𝚡 0
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

,

𝚡 +
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

⎫⎪⎪⎬⎪⎪⎭
A(𝑞1) =

⎧⎪⎪⎨⎪⎪⎩

𝚡 0
𝚢 0
𝚒 0
𝚗 +
𝙰 {0,+}

,

𝚡 0
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

,

𝚡 +
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

⎫⎪⎪⎬⎪⎪⎭
A(𝑞2) =

⎧⎪⎪⎨⎪⎪⎩

𝚡 0
𝚢 0
𝚒 0
𝚗 +
𝙰 {0,+}

,

𝚡 +
𝚢 0
𝚒 0
𝚗 +
𝙰 {0,+}

,

𝚡 0
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

,

𝚡 +
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

⎫⎪⎪⎬⎪⎪⎭

A(𝑞3) =

⎧⎪⎪⎨⎪⎪⎩

𝚡 0
𝚢 +
𝚒 0
𝚗 +
𝙰 {0,+}

,

𝚡 +
𝚢 +
𝚒 0
𝚗 +
𝙰 {0,+}

,

𝚡 0
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

,

𝚡 +
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

⎫⎪⎪⎬⎪⎪⎭
A(𝑞4) = { }

A(𝑞5) =

⎧⎪⎪⎨⎪⎪⎩

𝚡 0
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

,

𝚡 +
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

⎫⎪⎪⎬⎪⎪⎭
A(𝑞

�
) =

⎧⎪⎪⎨⎪⎪⎩

𝚡 0
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

,

𝚡 +
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

⎫⎪⎪⎬⎪⎪⎭
Figure 4.5: An analysis assignment A for the program graph of Figure 4.1.

Exercise 4.4: Specify an extraction function mapping concrete memories to ab-
stract memories of the form

M̂em𝗉 = (Var → Parity) × (Arr → 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(Parity))

where Parity is the set {𝖾𝗏𝖾𝗇, 𝗈𝖽𝖽} (and an integer is even when it is a multiple of
2 and odd otherwise). □

4.2 Analysis Assignments

The result of a program analysis will be an analysis assignment associating a collection
of abstract memories with each node in the program graph – Figure 4.5 is an example
of such an assignment for the program graph of Figure 4.1.

Definition 4.5: An analysis assignment of a program graph with nodes Q is
a mapping

A ∶ Q → 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em)

where the analysis domain 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em) is the set of collections of abstract
memories.

The collection of abstract memories associated with a node should be an over-
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approximation of the set of memories that could occur at that node in an execution
sequence. That it is an over-approximation means that if the memory 𝜎 arises at
some node 𝑞 at some point during an execution sequence then the collection of
abstract memories at 𝑞 must contain the corresponding abstract memory 𝜂(𝜎) – but
it may contain additional abstract memories as well.

Definition 4.6: The analysis assignment A ∶ Q → 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em) is se-
mantically correct (or just correct) with respect to a semantics with [[⋅]] as
in Definition 2.17, a set of initial memories Mem⊳ and an extraction function
𝜂 when it satisfies the following two conditions:

• whenever we have an edge (𝑞◦, 𝛼, 𝑞∙) ∈ E we have for all memories 𝜎 that(
𝜂(𝜎) ∈ A(𝑞◦) ∧ 𝜎′ = [[𝛼]]𝜎

)
⇒ 𝜂(𝜎′) ∈ A(𝑞∙)

where 𝜎′ = [[𝛼]]𝜎 means that  is defined on 𝜎 and gives 𝜎′, and

• whenever 𝜎 ∈ Mem⊳ we have 𝜂(𝜎) ∈ A(𝑞⊳).

This is illustrated in Figure 4.6.

𝜎

[[𝛼]]
��

𝜂(𝜎) ∈ A(𝑞◦) 𝑞◦

𝛼

��
𝜎′ 𝜂(𝜎′) ∈ A(𝑞∙) 𝑞∙

Figure 4.6: Semantic correctness.

Example 4.7: Let us consider the program graph of Figure 4.1 and the edge
from 𝑞1 to 𝑞2, which is labelled with the action 𝚡 ∶= 𝚡 + 𝙰[𝚒]. Let (𝜎̂1, 𝜎̂2)
be the abstract memory in the right part of Figure 4.2 and note that it is an
element of the collection associated with 𝑞1 in Figure 4.5.

We need to reason about every concrete memory 𝜎 having 𝜂(𝜎) = (𝜎̂1, 𝜎̂2), and
writing 𝜎′ = [[𝚡 ∶= 𝚡 + 𝙰[𝚒]]]𝜎 we need to argue that 𝜂(𝜎′) is an element of
the collection associated with 𝑞2 in Figure 4.5.

In this case 𝜂(𝜎′) either amounts to (𝜎̂1, 𝜎̂2) or to the abstract memory in the
right part of Figure 4.7. We observe that both are members of the collection
associated with 𝑞2 in Figure 4.5.

𝚡 4
𝚢 1
𝚒 1
𝚗 3
𝙰[0] 0
𝙰[1] 4
𝙰[2] 7

𝚡 +
𝚢 +
𝚒 +
𝚗 +
𝙰 {0,+}

Figure 4.7: Another memory and its
abstraction.

Exercise 4.8: Perform some of the remaining checks required to show that the
analysis assignment of Figure 4.5 is indeed a semantically correct analysis assignment
with respect to the set of initial memories Mem⊳ where x, y and i are initially zero,
n is positive and the entries of the array A are non-negative. □

Proposition 4.9: Let A be a semantically correct analysis assignment. When-
ever 𝜂(𝜎) ∈ A(𝑞◦) and ⟨𝑞◦; 𝜎⟩ 𝜔

⟹
∗ ⟨𝑞∙; 𝜎′⟩ we have that 𝜂(𝜎′) ∈ A(𝑞∙).

Proof: We prove the result by mathematical induction on the length |𝜔| of 𝜔.

If |𝜔| = 0 then 𝑞◦ = 𝑞∙ and 𝜎 = 𝜎′ and the result is trivial.
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If |𝜔| = 𝑛 + 1 for some 𝑛 then we can write ⟨𝑞◦; 𝜎⟩ 𝜔
⟹

∗ ⟨𝑞∙; 𝜎′⟩ as ⟨𝑞◦; 𝜎⟩ 𝜔′

⟹
∗

⟨𝑞′′; 𝜎′′⟩ 𝛼
⟹ ⟨𝑞∙; 𝜎′⟩ so that 𝜔 = 𝜔′𝛼 and hence |𝜔′| = 𝑛. From 𝜂(𝜎) ∈ A(𝑞◦) and

the induction hypothesis we get that 𝜂(𝜎′′) ∈ A(𝑞′′). From ⟨𝑞′′; 𝜎′′⟩ 𝛼
⟹ ⟨𝑞∙; 𝜎′⟩ we

get that [[𝛼]]𝜎′′ = 𝜎′ and using the definition of a semantically correct analysis
assignment (Definition 4.6) it follows that 𝜂(𝜎′) ∈ A(𝑞∙) as required. □

Example 4.10: Let us assume that our initial memory 𝜎 maps x, y and i to
zero and that the array A has positive length (so n is positive) and only contains
non-negative elements. Then 𝜂(𝜎) equals the first abstract memory in the set
A(𝑞⊳) in Figure 4.5 – also displayed in Figure 4.8.

𝚡 0
𝚢 0
𝚒 0
𝚗 +
𝙰 {0,+}

Figure 4.8: The initial abstract mem-
ory of Figure 4.5.

Now consider an execution sequence for the program graph starting in the
configuration ⟨𝑞⊳; 𝜎⟩ and ending in ⟨𝑞5; 𝜎′⟩ for some 𝜎′. Since the analysis
assignment of Figure 4.5 is semantically correct, Proposition 4.9 gives us that
𝜂(𝜎′) is in the set A(𝑞5). So in particular 𝜂(𝜎′) will map y to + and this means
that it must be the case that 𝜎′(𝚢) > 0. Hence we will never run the risk of
dividing by zero in the action taking us from 𝑞5 to 𝑞�.

Thus we have proved that if the non-empty array A only contains non-negative
elements then we will never divide by zero, as was claimed in Example 4.1.

Exercise 4.11: Assume now that the initial memory 𝜎 maps x, y and i to zero
and that the array A has positive length (so n is positive) but only contains negative
elements. This gives rise to the abstract memory shown in Figure 4.9. Suggest a
semantically correct analysis assignment A′ for the program graph in this scenario;
it should satisfy that the abstract memory of Figure 4.9 belongs to A′(𝑞⊳) as well as
the remaining requirements of Definition 4.6. Does your analysis assignment allow
you to conclude that it is always the case that we will attempt to divide by zero in
the action from 𝑞5 to 𝑞�? □

𝚡 0
𝚢 0
𝚒 0
𝚗 +
𝙰 {−}

Figure 4.9: An abstract memory.

For simplicity we shall assume throughout this chapter that the set M̂em
of abstract memories is a finite set so that the set of collections of abstract
memories 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em) is also finite. In a more general set-up the set of
collections of abstract memories needs neither to be finite nor to be a powerset.

4.3 Analysis Functions

Let us assume that we have three kinds of actions, namely assignments to variables
𝑥 ∶= 𝑎, tests 𝑏 and assignments to array entries 𝐴[𝑎1] ∶= 𝑎2. The arithmetic and
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boolean expressions are given by the syntax

𝑎 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝑎1 + 𝑎2 ∣ 𝑎1 − 𝑎2 ∣ 𝑎1 ∗ 𝑎2 ∣ 𝑎1 ∕ 𝑎2 ∣ 𝑎1 ^ 𝑎2 ∣ 𝐴[𝑎]
𝑏 ∶∶= 𝚝𝚛𝚞𝚎 ∣ 𝑎1 = 𝑎2 ∣ 𝑎1 >𝑎2 ∣ 𝑎1 ≥ 𝑎2 ∣ 𝑏1 ∧ 𝑏2 ∣ 𝑏1 && 𝑏2 ∣ ¬ 𝑏

much as in Chapter 2 and Example 4.1. We now define the corresponding analysis
functions.

Try It Out 4.12: Argue that skip should be analysed the same way as true.□

The detection of signs analysis for expressions As a first step we shall specify
how to compute the potential signs of an arithmetic expression from an abstract
memory. To do this we shall replace the semantic function [[𝑎]], taking a memory
as argument and returning an integer (or being undefined), with an analysis function
̂[[𝑎]], taking an abstract memory as argument and returning a set of signs. It is
defined by

̂[[𝑛]](𝜎̂1, 𝜎̂2) = {sign(𝑛)}

̂[[𝑥]](𝜎̂1, 𝜎̂2) = {𝜎̂1(𝑥)}

̂[[𝑎1 𝑜𝑝 𝑎2]](𝜎̂1, 𝜎̂2) = ̂[[𝑎1]](𝜎̂1, 𝜎̂2) 𝑜𝑝 ̂[[𝑎2]](𝜎̂1, 𝜎̂2)

̂[[𝐴[𝑎]]](𝜎̂1, 𝜎̂2) =
{

𝜎̂2(𝐴) if ̂[[𝑎]](𝜎̂1, 𝜎̂2) ∩ {0,+} ≠ { }
{ } otherwise

where 𝑜𝑝 ∈ {+, ∗,−, ∕, ^} and 𝑜𝑝 is the analogue of 𝑜𝑝 operating on sets of signs. The
operator 𝑜𝑝 is defined using an auxiliary operator 𝑜𝑝 working on signs:

𝑆1 𝑜𝑝𝑆2 =
⋃

𝑠1∈𝑆1,𝑠2∈𝑆2

𝑠1 𝑜𝑝 𝑠2

Figure 4.10 defines +̃ and thus shows how to add signs; it follows that

{0,+} +̂ {0,+} = (0 +̃ 0) ∪ (0 +̃ +) ∪ (+ +̃ 0) ∪ (+ +̃+) = {0,+}

For indexing into the array we check that ̂[[𝑎]](𝜎̂1, 𝜎̂2) ∩ {0,+} ≠ { } as otherwise
the index is negative or undefined and hence out of bounds.

+̃ − 0 +
− {−} {−} {−, 0,+}
0 {−} {0} {+}
+ {−, 0,+} {+} {+}

Figure 4.10: Addition of individual
signs (with the left argument in the
first column and the right argument
in the first row).

Try It Out 4.13: Specify tables corresponding to Figure 4.10 for −̃, ∗̃, ∕̃ and ̃̂ .
Calculate { }+̂{0,+}, {0,+}−̂{0,+}, {0,+}∗̂{0,+} and {0,+}∕̂{0,+}. □

Exercise 4.14: Prove that the analysis function defined above satisfies the following
property:

sign([[𝑎]]𝜎) ∈ ̂[[𝑎]](𝜂(𝜎))
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whenever [[𝑎]]𝜎 is defined. The property expresses that the sign of the value
obtained by evaluating the expression in the semantics is included in the result
obtained by analysing the expression based on the abstraction of the memory. □

Teaser 4.15: Suppose that the semantics uses a memory where mathematical
integers are replaced by signed bytes as considered in Section 1.5. What consequences
does that have for the definition of +̂, −̂, ∗̂, ∕̂ and ̂̂? □

For boolean expressions the semantic function [[𝑏]] takes a memory and returns
either true or false (or is undefined). The analysis function ̂[[𝑏]] will take an abstract
memory as argument and return a set of truth values – as we may not be able to
determine whether the expression evaluates to true or false, as illustrated in Figure
4.11.

≥̃ − 0 +
− {𝗍𝗍, 𝖿𝖿} {𝖿𝖿} {𝖿𝖿}
0 {𝗍𝗍} {𝗍𝗍} {𝖿𝖿}
+ {𝗍𝗍} {𝗍𝗍} {𝗍𝗍, 𝖿𝖿}

Figure 4.11: Comparison of individ-
ual signs (with the left argument in
the first column and the right argu-
ment in the first row).

The analysis function ̂[[𝑏]] is specified as follows:

̂[[𝚝𝚛𝚞𝚎]](𝜎̂1, 𝜎̂2) = {𝗍𝗍}

̂[[𝑎1 = 𝑎2]](𝜎̂1, 𝜎̂2) = ̂[[𝑎1]](𝜎̂1, 𝜎̂2) =̂ ̂[[𝑎2]](𝜎̂1, 𝜎̂2)

̂[[𝑎1 >𝑎2]](𝜎̂1, 𝜎̂2) = ̂[[𝑎1]](𝜎̂1, 𝜎̂2) >̂ ̂[[𝑎2]](𝜎̂1, 𝜎̂2)

̂[[𝑎1 ≥ 𝑎2]](𝜎̂1, 𝜎̂2) = ̂[[𝑎1]](𝜎̂1, 𝜎̂2) ≥̂ ̂[[𝑎2]](𝜎̂1, 𝜎̂2)

̂[[𝑏1 ∧ 𝑏2]](𝜎̂1, 𝜎̂2) = ̂[[𝑏1]](𝜎̂1, 𝜎̂2) ∧̂ ̂[[𝑏2]](𝜎̂1, 𝜎̂2)

̂[[𝑏1 && 𝑏2]](𝜎̂1, 𝜎̂2) = ̂[[𝑏1]](𝜎̂1, 𝜎̂2) &̂& ̂[[𝑏2]](𝜎̂1, 𝜎̂2)

̂[[¬𝚋]](𝜎̂1, 𝜎̂2) = ¬̂ ̂[[𝑏]](𝜎̂1, 𝜎̂2)

Here 𝑆1≥̂𝑆2 =
⋃

𝑠1∈𝑆1,𝑠2∈𝑆2
𝑠1≥̃𝑠2 where ≥̃ is specified in Figure 4.11, and similarly

𝑆1∧̂𝑆2 =
⋃

𝑠1∈𝑆1,𝑠2∈𝑆2
𝑠1∧̃𝑠2 where ∧̃ is specified in Figure 4.12. The case of

short-circuit conjunction is more complex and is given by

𝑆1&̂&𝑆2 =
(
𝑆1 ∩ {𝖿𝖿}

)
∪
(
𝑆1 ∧̂𝑆2

)
since it does not require both arguments to be evaluated.

∧̃ 𝗍𝗍 𝖿 𝖿
𝗍𝗍 {𝗍𝗍} {𝖿𝖿}
𝖿𝖿 {𝖿𝖿} {𝖿𝖿}

Figure 4.12: Conjunction of individ-
ual truth values (with the left ar-
gument in the first column and the
right argument in the first row).

Exercise 4.16: Complete this specification by providing figures like the ones in
Figures 4.11 and 4.12 for the remaining operators. Then prove that the specification
satisfies that

[[𝑏]]𝜎 ∈ ̂[[𝑏]](𝜂(𝜎))
whenever [[𝑏]]𝜎 is defined. This means that the actual truth value is included in
the analysis result and you will need the result of Exercise 4.14 to establish this.□

Exercise 4.17: Continuing Exercise 4.4, specify how to compute the potential
parities of an arithmetic expression from an abstract memory. This should result in
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a function ̂𝗉[[𝑎]] that takes an abstract memory as argument and returns a set of
parities. For boolean expressions specify a function ̂𝗉[[𝑏]] that takes an abstract
memory as argument and returns a set of truth values. □

The detection of signs analysis for actions We are now ready to specify the
analysis function ̂[[⋅]] for the actions; it will take a collection 𝑀 of abstract memories
as argument and it will return a collection of abstract memories. Let us first consider
the clause for the test 𝑏; here the idea is that we consider each of the abstract
memories individually and return those for which 𝑏 might be true as captured by the
analysis function ̂[[𝑏]]:

̂[[𝑏]](𝑀) = {(𝜎̂1, 𝜎̂2) ∣ (𝜎̂1, 𝜎̂2) ∈ 𝑀 ∧ 𝗍𝗍 ∈ ̂[[𝑏]](𝜎̂1, 𝜎̂2)}

Try It Out 4.18: Preparing for Example 4.28 below, you should consider each
of the three tests (𝑞◦, 𝑏, 𝑞∙) in the program graph of Figure 4.1, and the anal-
ysis assignment A in Figure 4.5. Show that each test satisfies the constraint
̂[[𝑏]](A(𝑞◦)) ⊆ A(𝑞∙). □

In the clause for an assignment 𝑥 ∶= 𝑎 we also consider each of the abstract memories
of 𝑀 and determine the possible signs of 𝑎 using the analysis function ̂[[𝑎]]; for
each of those we then construct a new abstract memory that will be part of the
result:

̂[[𝑥 ∶= 𝑎]](𝑀) = {(𝜎̂1[𝑥 ↦ 𝑠], 𝜎̂2) ∣ (𝜎̂1, 𝜎̂2) ∈ 𝑀 ∧ 𝑠 ∈ ̂[[𝑎]](𝜎̂1, 𝜎̂2)}

Try It Out 4.19: Preparing for Example 4.28 below, you should consider each of
the five assignments (𝑞◦, 𝑥 ∶= 𝑎, 𝑞∙) in the program graph of Figure 4.1, and the
analysis assignment in Figure 4.5. Show that each assignment satisfies the constraint
̂[[𝑥 ∶= 𝑎]](A(𝑞◦)) ⊆ A(𝑞∙). □

The clause for an array assignment 𝐴[𝑎1] ∶= 𝑎2 is somewhat more complex. Again
we consider the abstract memories (𝜎̂1, 𝜎̂2) of 𝑀 individually. The first observation
is that the assignment only has a chance of being successful if the sign of 𝑎1 is
either 0 or positive, that is, if ̂[[𝑎1]](𝜎̂1, 𝜎̂2) ∩ {0,+} ≠ { }. Only in this case we
will modify the abstract memory to record the potential new signs of the entries of
the array and include it in the overall result. Before the assignment the signs of the
entries in 𝐴 are collected in the set 𝜎̂2(𝐴). The assignment may modify one of the
entries of 𝐴 to have a sign from the set ̂[[𝑎2]](𝜎̂1, 𝜎̂2). This may result in removing
one of the existing signs (if there was only one entry with that sign) and adding a
new sign. This is captured by
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̂[[𝐴[𝑎1] ∶= 𝑎2]](𝑀) = {(𝜎̂1, 𝜎̂2[𝐴 ↦ 𝑆]) ∣
(𝜎̂1, 𝜎̂2) ∈ 𝑀 ∧ ̂[[𝑎1]](𝜎̂1, 𝜎̂2) ∩ {0,+} ≠ { } ∧
∃𝑠′ ∈ 𝜎̂2(𝐴) ∶ ∃𝑠′′ ∈ ̂[[𝑎2]](𝜎̂1, 𝜎̂2) ∶
(𝜎̂2(𝐴) ⧵ {𝑠′}) ∪ {𝑠′′} ⊆ 𝑆 ⊆ 𝜎̂2(𝐴) ∪ {𝑠′′}}

If the array only has one entry with the sign 𝑠′ it will be removed and replaced by
the sign 𝑠′′ of the updated entry; if there are more entries with the sign 𝑠′ then we
just include the sign 𝑠′′. Our definition caters for both possibilities.

Exercise 4.20: Continuing Exercises 4.4 and 4.17 on parity analysis, specify the
analysis functions ̂𝗉[[⋅]] for actions. As before, each function should take a collection
of abstract memories as argument and return a collection of abstract memories. □

4.4 Analysis Specification

In program analysis we construct the analysis assignments by computing with the
abstract properties. For our detection of signs analysis this amounts to computing
with signs. The analysis specification tells us how to do this and it has a form that
is very similar to that of the semantics – the semantic domain is replaced by an
analysis domain and the semantic functions are replaced by analysis functions. We
provided an example development in Section 4.3 and this motivates the following
definition.

Definition 4.21: A specification of a program analysis requires

• a powerset (𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em), ⊆) called the analysis domain and consisting
of the collections of abstract memories,

• an analysis function ̂[[⋅]] ∶ Act → (𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em) →𝗆 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em)),
and

• a collection M̂em⊳ of abstract memories holding initially,

where 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em) →𝗆 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em) is the space of monotonic func-
tions.

Recall that a function 𝑓 ∶ 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em) → 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em) is a monotonic
function if whenever we have two collections 𝑀1 and 𝑀2 of abstract memories
satisfying 𝑀1 ⊆ 𝑀2 then it follows that 𝑓 (𝑀1) ⊆ 𝑓 (𝑀2).

It is natural to impose that our analysis functions are monotonic because this reflects
the fact that if the set of input memories potentially get larger then so does the set
of output memories.
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Try It Out 4.22: Show that the analysis functions of Section 4.3 are monotonic.

Together with choosing M̂em⊳ to be the singleton set consisting of the abstract
memory of Figure 4.8 this constitutes a specification of a program analysis which
we shall call the detection of signs analysis. □

Semantic soundness The analysis functions should capture the essence of the
semantics as recorded through the extraction function. This gives rise to the following
definition of soundness.

Definition 4.23: A specification of a program analysis is semantically sound
(or just sound) with respect to a semantics with [[⋅]] as in Definition 2.17, an
initial set of memories Mem⊳ and an extraction function 𝜂 ∶ Mem → M̂em
provided the following conditions hold:

• whenever 𝜎′ = [[𝛼]](𝜎) (meaning that [[𝛼]] is defined on 𝜎 and gives
𝜎′) and 𝜂(𝜎) ∈ 𝑀 for some set 𝑀 of abstract memories then it follows
that 𝜂(𝜎′) ∈ ̂[[𝛼]](𝑀), and

• whenever 𝜎 ∈ Mem⊳ we have 𝜂(𝜎) ∈ M̂em⊳.

This is illustrated in Figure 4.13.

𝜎

[[𝛼]]
��

𝜂(𝜎) ∈ 𝑀

̂[[𝛼]]
��

𝜎′ 𝜂(𝜎′) ∈ 𝑀 ′

Figure 4.13: Semantic soundness.

Exercise 4.24: An alternative formulation of the first bullet in Definition 4.23
would be that

{𝜂([[𝛼]](𝜎))} ⊆ ̂[[𝛼]]({𝜂(𝜎)})

for all 𝜎 ∈ Mem. (You should take {𝜂([[𝛼]](𝜎))} = { } whenever [[𝛼]](𝜎) is not
defined.) Determine whether or not Definition 4.23 is equivalent to the alternative
definition suggested here. □

Proposition 4.25: The detection of signs analysis specification is semanti-
cally sound with respect to the semantics of Chapters 1 and 2, assuming that
𝜂(𝜎) ∈ M̂em⊳ whenever 𝜎 ∈ Mem⊳.

Proof: We shall consider two of the cases in the proof – leaving the remaining
case to Exercise 4.26 below.

For tests we consider an arbitrary memory 𝜎′ = [[𝑏]]𝜎 satisfying 𝜂(𝜎) ∈ 𝑀 and we
need to show that 𝜂(𝜎′) ∈ ̂[[𝑏]](𝑀). From 𝜎′ = [[𝑏]]𝜎 we get that [[𝑏]]𝜎 = 𝗍𝗍
and hence 𝜎′ = 𝜎. From Exercise 4.16 we get 𝗍𝗍 ∈ ̂[[𝑏]](𝜂(𝜎)) and hence 𝜂(𝜎) ∈
̂[[𝑏]](𝑀), as required.

For assignments we consider an arbitrary memory 𝜎 satisfying 𝜂(𝜎) ∈ 𝑀 and let
𝜎′ = [[𝑥 ∶= 𝑎]]𝜎; we then want to show that 𝜂(𝜎′) ∈ ̂[[𝑥 ∶= 𝑎]](𝑀). From the
semantics it follows that [[𝑎]]𝜎 is defined and that 𝜎′ = 𝜎[𝑥 ↦ [[𝑎]]𝜎]. From
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Exercise 4.14 we get that 𝑠 ∈ ̂[[𝑎]](𝜂(𝜎)) for 𝑠 = sign([[𝑎]]𝜎). From the definition
of 𝜂 we can show that if we write (𝜎̂1, 𝜎̂2) for 𝜂(𝜎) then 𝜂(𝜎′) = (𝜎̂1[𝑥 ↦ 𝑠], 𝜎̂2). We
have assumed that 𝜂(𝜎) ∈ 𝑀 and from the definition of ̂[[𝑥 ∶= 𝑎]](𝑀) it follows
that 𝜂(𝜎′) ∈ ̂[[𝑥 ∶= 𝑎]](𝑀), as required. □

Exercise 4.26: Complete the proof of Proposition 4.25: Consider a memory 𝜎
with 𝜂(𝜎) ∈ 𝑀 and let 𝜎′ = [[𝐴[𝑎1] ∶= 𝑎2]]𝜎; argue that it will be the case that
𝜂(𝜎′) ∈ ̂[[𝐴[𝑎1] ∶= 𝑎2]](𝑀). You may assume that the semantics of the array
assignment is such that if 𝜎′ = [[𝐴[𝑎1] ∶= 𝑎2]]𝜎 then 𝑖 = [[𝑎1]]𝜎 is defined and
furthermore 0 ≤ 𝑖 < 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴) and 𝜎′ = 𝜎[𝐴[𝑖] ↦ [[𝑎2]]𝜎]. □

Teaser 4.27: Let us return to the parity analysis developed in Exercises 4.4, 4.17
and 4.20. State and prove a soundness result along the lines of Proposition 4.25.□

Solutions Given a program graph, an analysis specification gives rise to a number
of constraints on analysis assignments, as illustrated by the following example.

Example 4.28: For the program graph of Figure 4.1 the analysis specification
gives rise to the following constraints:

̂[[𝚒 < 𝚗 ∧ 𝙰[𝚒] ≥ 𝟶]](A(𝑞⊳)) ⊆ A(𝑞1)

̂[[𝚒 < 𝚗 ∧ 𝙰[𝚒] < 𝟶]](A(𝑞⊳)) ⊆ A(𝑞4)

̂[[𝚒 ≥ 𝚗]](A(𝑞⊳)) ⊆ A(𝑞5)

̂[[𝚡 ∶= 𝚡 + 𝙰[𝚒]]](A(𝑞1)) ⊆ A(𝑞2)

̂[[𝚢 ∶= 𝚢 + 𝟷]](A(𝑞2)) ⊆ A(𝑞3)

̂[[𝚒 ∶= 𝚒 + 𝟷]](A(𝑞3)) ⊆ A(𝑞⊳)

̂[[𝚒 ∶= 𝚒 + 𝟷]](A(𝑞4)) ⊆ A(𝑞⊳)

̂[[𝚡 ∶= 𝚡∕𝚢]](A(𝑞5)) ⊆ A(𝑞
�
)

We verified in Try It Out 4.18 and 4.19 that these constrains are true for the
analysis assignment A in Figure 4.5.

We now extend the constraints from Example 4.28 with a constraint M̂em⊳ ⊆ A(𝑞⊳)
expressing that the analysis assignment takes care of the collection of abstract
memories holding initially.

Definition 4.29: An analysis assignment A ∶ Q → 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em) is com-
putationally valid (or just valid) for the analysis problem for a program graph
with respect to a specification of a program analysis whenever it satisfies the
following two conditions:

• whenever we have an edge (𝑞◦, 𝛼, 𝑞∙) ∈ E we have ̂[[𝛼]](A(𝑞◦)) ⊆ A(𝑞∙),
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and

• M̂em⊳ ⊆ 𝐀(𝑞⊳).

A computationally valid analysis assignment is also called a solution.

Exercise 4.30: Assume now that M̂em⊳ is the singleton set with the abstract
memory of Figure 4.14. Propose an analysis assignment that is computationally
valid. □

𝚡 0
𝚢 0
𝚒 0
𝚗 +
𝙰 {+}

Figure 4.14: An abstract memory.
Solutions are correct So far we have talked about three conditions:

• An analysis assignment can be semantically correct as in Definition 4.6.

• An analysis specification can be semantically sound as in Definition 4.23.

• An analysis assignment can be computationally valid as in Definition 4.29.

Their relationship is clarified in the following result giving us a simple way of checking
the correctness of an analysis assignment.

Proposition 4.31: Assume that we have a semantically sound analysis spec-
ification and a computationally valid analysis assignment. Then the analysis
assignment is semantically correct.

Proof: Assume that A is a computationally valid analysis assignment and let
us show that A is semantically correct. For this we consider an edge (𝑞◦, 𝛼, 𝑞∙)
and assume that 𝜂(𝜎) ∈ A(𝑞◦) and that 𝜎′ = [[𝛼]]𝜎; we then have to show
that 𝜂(𝜎′) ∈ A(𝑞∙). From the semantic soundness of the analysis specification it
follows that 𝜂(𝜎′) ∈ ̂[[𝛼]](A(𝑞◦)). Since A is computationally valid we get that
̂[[𝛼]](A(𝑞◦)) ⊆ A(𝑞∙). Thus it follows that 𝜂(𝜎′) ∈ A(𝑞∙), as required. □

4.5 Computing Solutions (Bonus Material)

We are now ready to specify an algorithm that given an analysis specification and
a program graph will compute an analysis assignment solving the problem. The
algorithm consists of an initialisation step and an iteration step and is shown in
Figure 4.15.

The algorithm is non-deterministic in that it does not prescribe an order in which
to select an edge in the iteration step. To obtain a good running time one should
organise the selection of edges in an appropriate manner and we consider this shortly.
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Proposition 4.32: The algorithm of Figure 4.15 always terminates and upon
termination it has computed a solution to the analysis problem.

Proof: We have assumed that M̂em is a finite set and hence the analysis domain
𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(M̂em) will also be finite. In the iteration step one of the sets A(𝑞) will
increase in size but this can only happen a finite number of times. Thus the iteration
will eventually stop.

When the algorithm terminates it will be the case that ̂[[𝛼]](A(𝑞◦)) ⊆ A(𝑞∙) for all
edges (𝑞◦, 𝛼, 𝑞∙) of the program graph and furthermore M̂em⊳ ⊆ A(𝑞⊳). Hence A is
a solution to the analysis problem. □

Exercise 4.33: Use the algorithm to solve the analysis problems considered in
Exercises 4.11 and 4.30. □

INPUT a program graph with Q, 𝑞⊳, E as in Defn. 1.2
an analysis specification with ̂[[⋅]], M̂em⊳ as in Defn. 4.21

OUTPUT A: an analysis assignment as in Defn. 4.5
that is a solution to the analysis specification
in the sense of Defn. 4.29

ALGORITHM forall 𝑞 ∈ Q ⧵ {𝑞⊳} do A(𝑞) := { } ;
A(𝑞⊳) := M̂em⊳;
while there exists an edge (𝑞◦, 𝛼, 𝑞∙) ∈ E

such that ̂[[𝛼]](A(𝑞◦)) ⊈ A(𝑞∙)
do A(𝑞∙) := A(𝑞∙) ∪ ̂[[𝛼]](A(𝑞◦))

Figure 4.15: Chaotic iteration towards the solution.

Properties of solutions It is interesting to observe that we can always find an
analysis assignment that is a solution for a program graph: simply take A(𝑞) = M̂em
for all nodes 𝑞. This satisfies the conditions of Definition 4.29 as any collection of
abstract memories 𝑀 satisfies 𝑀 ⊆ M̂em. However, this analysis assignment does
not provide any useful information about the program graph.

Try It Out 4.34: Consider the analysis assignment with A(𝑞) = { } for all 𝑞 ∈ Q;
determine whether or not this can be a solution in the sense of Definition 4.29. □

Another interesting property is that if we have two different analysis assignments
A1 and A2 that are both solutions, then we can construct an even better analysis
assignment A that is also a solution – merely take A(𝑞) = A1(𝑞)∩A2(𝑞) for all nodes
𝑞. We say that A is the pointwise intersection of A1 and A2.
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INPUT a program graph with Q, 𝑞⊳, E as in Defn. 1.2
an analysis specification with ̂[[⋅]], M̂em⊳ as in Defn. 4.21

OUTPUT A: an analysis assignment as in Defn. 4.5
that is a solution to the analysis specification
in the sense of Defn. 4.29

DATA W ⊆ Q: a worklist of nodes
ALGORITHM forall 𝑞 ∈ Q ⧵ {𝑞⊳} do A(𝑞) := { } ;

A(𝑞⊳) := M̂em⊳;
W := {𝑞⊳};
while W ≠ { } do

choose 𝑞 ∈ W;
W := W ⧵ {𝑞};
for all edges (𝑞◦, 𝛼, 𝑞∙) ∈ E with 𝑞◦ = 𝑞 do

if ̂[[𝛼]](A(𝑞◦)) ⊈ A(𝑞∙)
then A(𝑞∙) := A(𝑞∙) ∪ ̂[[𝛼]](A(𝑞◦)); W := W ∪ {𝑞∙};

Figure 4.16: Worklist algorithm for iterating towards the solution.

Exercise 4.35: Show that if A1 and A2 are solutions in the sense of Definition
4.29 then this also holds for A as constructed above. □

It follows that any program graph has a unique analysis assignment that is smallest
among all the solutions. To see this, note that there is at least one solution and that
there are only finitely many solutions. We can then iteratively take their pointwise
intersection to obtain a solution and by construction it is the smallest one. It is
possible to extend the proof of Proposition 4.32 to show that this is the solution
computed by the algorithm in Figure 4.15.

Refining the algorithm The algorithm displayed in Figure 4.15 is highly non-
deterministic and to get an efficient solution we need to find a way of resolving some
of the non-determinism. The worklist algorithm of Figure 4.16 gives one approach
to this. Here there is a worklist W that keeps track of those nodes that need to be
reconsidered before we can be sure that a solution has been found. There is still a bit
of non-determinism left concerning how to organise the worklist and how to find the
edges. As for the organisation of the worklist there are at least two obvious choices:
considering it to be a stack (adding and removing from the front) or considering it
to be queue (adding to the rear and removing from the front). Fine-tuning of these
details may depend on the analysis problem and are key to obtaining an efficient
solution. The correctness of the algorithm should be unaffected by this.

Teaser 4.36: Argue that the algorithm of Figure 4.16 produces the same result as
that of Figure 4.15 whenever ̂[[𝛼]]({ }) = { } holds for all actions 𝛼. □



Chapter 5

Language-Based Security

Security is becoming increasingly important and formal methods offer powerful
techniques for ensuring it. There are three important components in security:
Confidentiality, meaning that private data is not made public data; Integrity, meaning
that trusted data is not influenced by dubious data; Availability, meaning that data
is not inaccessible when needed. In this chapter we show how formal methods can
be used to ensure that programs preserve confidentiality and integrity.

5.1 Information Flow

The key approach to ensure security is to limit the information flow allowed by
programs. To do so we first discuss what confidentiality and integrity is, and then
we explain how information flow can be used to ensure confidentiality and integrity.

Confidentiality What does it mean for a program to maintain confidentiality of
data? The basic idea is pretty simple: we have a notion of which data is private
and which data is public, and we want to prevent private data x from finding its
way into public data y.

One component of this is that there should be no explicit (sometimes called direct)
flow of information from x to y. In particular, an assignment 𝚢 ∶= 𝚡 would constitute
an explicit flow violating the confidentiality of x with respect to y.

𝚒𝚏 𝚡 < 𝟶 → 𝚢 ∶= −𝟷
[] 𝚡 = 𝟶 → 𝚢 ∶= 𝟶
[] 𝚡 > 𝟶 → 𝚢 ∶= 𝟷
𝚏𝚒

Figure 5.1: Example of implicit flow
for confidentiality.

Another component of this is that there should be no implicit (sometimes called
indirect) flow of information from x to y. In particular, a conditional assignment of
the form shown in Figure 5.1 would constitute an implicit flow where the sign of x
is made visible in y.
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Integrity What does it mean for a program to maintain integrity of data? The
basic idea is pretty simple: we have a notion of which data is trusted and which
data is dubious, and we want to prevent trusted data x from being influenced by
dubious data y.

One component of this is that there should be no explicit flow of information from y
to x. In particular, an assignment 𝚡 ∶= 𝚢 would constitute an explicit flow violating
the integrity of x with respect to y.

𝚒𝚏 𝚢 < 𝟶 → 𝚡 ∶= −𝟷
[] 𝚢 = 𝟶 → 𝚡 ∶= 𝟶
[] 𝚢 > 𝟶 → 𝚡 ∶= 𝟷
𝚏𝚒

Figure 5.2: Example of implicit flow
for integrity.

Another component of this is that there should be no implicit flow of information
from y to x. In particular, a conditional assignment of the form shown in Figure 5.2
would constitute an implicit flow where the value of x can no longer be trusted if y
is dubious.

Information Flow What is common between our descriptions of confidentiality
and integrity is that data of a certain security classification should not find its way
into data of another security classification.

To formalise this we shall assume that there is a reflexive and transitive flow relation
→ between variables indicating which flows are permissible. Recall that reflexivity
means that 𝑥 → 𝑥 holds for all variables 𝑥, and that transitivity means that if 𝑥 → 𝑦
and 𝑦 → 𝑧 then also 𝑥 → 𝑧.

In the confidentiality example of Figure 5.1, if x is private and y is public we have
𝚢 → 𝚡 but 𝚡 ̸→ 𝚢 (meaning that 𝚡 → 𝚢 does not hold). More generally we define
𝑥 → 𝑦 whenever 𝑥 is public or 𝑦 is private.

In the integrity example of Figure 5.2, if x is trusted and y is dubious we have 𝚡 → 𝚢
but 𝚢 ̸→ 𝚡. More generally we define 𝑥 → 𝑦 whenever 𝑥 is trusted or 𝑦 is dubious.

𝑐

𝑎

/*

��

��

𝑑

𝑏

##

��

00

𝑒

Figure 5.3: {𝑎, 𝑏} ⇉ {𝑐, 𝑑, 𝑒}.

It is useful to extend the flow relation to work on sets of variables. So if 𝑋 and
𝑌 are two sets of variables we shall define 𝑋 ⇉ 𝑌 to mean that each and every
variable in 𝑋 is allowed to flow to each and every variable in 𝑌 – see Figure 5.3 for
an example. We summarise our notation in the following definition.

Definition 5.1: A flow relation is a reflexive and transitive relation → between
variables and array names; it is intended to indicate those flows that are
permissible, meaning that flows not in the flow relation are not permissible.

It is extended to work on sets of variables and array names by defining 𝑋 ⇉ 𝑌
to mean that

∀𝑥 ∈ 𝑋 ∶ ∀𝑦 ∈ 𝑌 ∶ 𝑥 → 𝑦

Exercise 5.2: Show that ⇉ is not necessarily reflexive, nor symmetric (that is,
𝑋 ⇉ 𝑌 implies 𝑌 ⇉ 𝑋), nor transitive. Next let us restrict our attention to
non-empty sets of variables; determine whether or not ⇉ is reflexive, symmetric or
transitive. □
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Example 5.3: Imagine that we have a database with an array A of length n
and an array B of length m. To increase each entry of A by 27 we may use the
program of Figure 5.4; similarly the program of Figure 5.5 increases each entry
of B by 12.

𝚒 ∶= 𝟶;
𝚍𝚘 𝚒 < 𝚗 → 𝙰[𝚒] ∶= 𝙰[𝚒] + 𝟸𝟽;

𝚒 ∶= 𝚒 + 𝟷
𝚘𝚍

Figure 5.4: Incrementation of A.

𝚓 ∶= 𝟶;
𝚍𝚘 𝚓 < 𝚖 → 𝙱[𝚓] ∶= 𝙱[𝚓] + 𝟷𝟸;

𝚓 ∶= 𝚓 + 𝟷
𝚘𝚍

Figure 5.5: Incrementation of B.

In a proper database the execution of these programs might be interleaved, as
illustrated by the program

𝚒 ∶= 𝟶;
𝚓 ∶= 𝟶;
𝚍𝚘 (𝚒 < 𝚗) ∧ (𝚓 = 𝚖 ∨ 𝚋) → 𝙰[𝚒] ∶= 𝙰[𝚒] + 𝟸𝟽;

𝚒 ∶= 𝚒 + 𝟷
[] (𝚓 < 𝚖) ∧ (𝚒 = 𝚗 ∨ ¬𝚋) → 𝙱[𝚓] ∶= 𝙱[𝚓] + 𝟷𝟸;

𝚓 ∶= 𝚓 + 𝟷
𝚘𝚍

where 𝚋 indicates an interleaving condition such as 𝚒 < 𝚓 or (𝚗 − 𝚒) > (𝚖 − 𝚓).

To ensure that the operations on A are entirely independent of the operations
on B we need to specify a flow relation → such that {𝚒, 𝚓, 𝚗, 𝚖} ⇉ {𝚒, 𝚓, 𝙰, 𝙱}
but 𝙰 ̸→ 𝙱 and 𝙱 ̸→ 𝙰.

From a confidentiality point of view this says that the information in each of
the arrays A and B remains confidential from the other. From an integrity point
of view this says that the information in each of the arrays A and B remains
unaffected by the other. From an isolation point of view this says that the
operations on arrays A and B are completely independent – as indeed they are
in the programs of Figures 5.4 and 5.5.

5.2 Reference-Monitor Semantics

One way to enforce a security policy, whether for confidentiality or integrity, is to do
so dynamically (meaning at runtime). The mechanism that enforces the security
policy is often called a reference monitor because it monitors the execution and
brings it to a halt whenever the security policy is violated.

It would be fairly easy to extend our semantics for Guarded Commands from Definition
2.17 in Section 2.3 to deal with explicit flows. Instead of setting

[[𝑥 ∶= 𝑎]]𝜎 =
{

𝜎[𝑥 ↦ [[𝑎]]𝜎] if [[𝑎]]𝜎 is defined
undefined otherwise

we could use

[[𝑥 ∶= 𝑎]]𝜎 =
⎧⎪⎨⎪⎩

𝜎[𝑥 ↦ [[𝑎]]𝜎] if [[𝑎]]𝜎 is defined
and 𝖿𝗏(𝑎) ⇉ {𝑥}

undefined otherwise
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so that progress is halted whenever we attempt an assignment that violates the
explicit flows admitted by the flow relation – that is whenever there is a variable or
array name in 𝑎 that is not allowed to flow to 𝑥.

The set 𝖿𝗏(𝑎) consists of the (free) variables and array names occurring in 𝑎,
and 𝖿𝗏(𝑏) consists of the (free) variables and array names occurring in 𝑏.

To also deal with implicit flows we would need to know the set 𝑋 of variables that
constitute an implicit dependency and then we could attempt the following definition:

[[𝑥 ∶= 𝑎{𝑋}]]𝜎 =
⎧⎪⎨⎪⎩

𝜎[𝑥 ↦ [[𝑎]]𝜎] if [[𝑎]]𝜎 is defined
and 𝑋 ∪ 𝖿𝗏(𝑎) ⇉ {𝑥}

undefined otherwise

For this to work we need to slightly modify the construction of program graphs
from Definitions 2.7 and 2.8 in Section 2.2 so as to record the set 𝑋 of implicit
dependencies in each assignment.

For reasons to be discussed towards the end of Section 5.3 we shall restrict our
attention to deterministic programs in the Guarded Commands language. We
do so by modifying the construction of program graphs using the ideas from
Section 2.4.

Following the approach of Section 2.4 we define a function edges𝗌, which works
on commands and guarded commands and produces the set of edges of a program
graph – but with the assignment actions indicating the implicit flows.

Definition 5.4: Instrumented program graphs for commands are constructed
as follows:

edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝑥 ∶= 𝑎]](𝑋) = {(𝑞◦, 𝑥 ∶= 𝑎{𝑋}, 𝑞∙)}

edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐴[𝑎1] ∶= 𝑎2]](𝑋) = {(𝑞◦, 𝐴[𝑎1] ∶= 𝑎2{𝑋}, 𝑞∙)}

edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝚜𝚔𝚒𝚙]](𝑋) = {(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞∙)}

edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶1;𝐶2]](𝑋) = let 𝑞 be fresh
𝐸1 = edges𝗌(𝑞◦ ⇝ 𝑞)[[𝐶1]](𝑋)
𝐸2 = edges𝗌(𝑞 ⇝ 𝑞∙)[[𝐶2]](𝑋)

in 𝐸1 ∪ 𝐸2
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edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝚒𝚏 𝐺𝐶 𝚏𝚒]](𝑋) =
let (𝐸, 𝑑) = edges𝗌𝟤(𝑞◦ ⇝ 𝑞∙)[[𝐺𝐶]](𝚏𝚊𝚕𝚜𝚎, 𝑋)
in 𝐸

edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝚍𝚘 𝐺𝐶 𝚘𝚍]](𝑋) =
let (𝐸, 𝑑) = edges𝗌𝟤(𝑞◦ ⇝ 𝑞◦)[[𝐺𝐶]](𝚏𝚊𝚕𝚜𝚎, 𝑋)
in 𝐸 ∪ {(𝑞◦,¬𝑑, 𝑞∙)}

As in Section 2.4, for a guarded command 𝐺𝐶 the function edges𝗌 is supplied with
an additional parameter indicating which tests have been attempted previously and
it returns an updated version of this information together with a set of edges.

Definition 5.5: Instrumented program graphs for guarded commands are
constructed as follows:

edges𝗌𝟤(𝑞◦ ⇝ 𝑞∙)[[𝑏 → 𝐶]](𝑑,𝑋) =
let 𝑞 be fresh

𝐸 = edges𝗌(𝑞 ⇝ 𝑞∙)[[𝐶]](𝑋 ∪ 𝖿𝗏(𝑏) ∪ 𝖿𝗏(𝑑))
in ({(𝑞◦, 𝑏 ∧ ¬𝑑, 𝑞)} ∪ 𝐸, 𝑏 ∨ 𝑑)

edges𝗌𝟤(𝑞◦ ⇝ 𝑞∙)[[𝐺𝐶1 []𝐺𝐶2]](𝑑,𝑋) =
let (𝐸1, 𝑑1) = edges𝗌𝟤(𝑞◦ ⇝ 𝑞∙)[[𝐺𝐶1]](𝑑,𝑋)

(𝐸2, 𝑑2) = edges𝗌𝟤(𝑞◦ ⇝ 𝑞∙)[[𝐺𝐶2]](𝑑1, 𝑋)
in (𝐸1 ∪ 𝐸2, 𝑑2)

Note the way in which the set 𝑋 of implicit dependencies is updated as we pass
through a test.

Try It Out 5.6: Use the algorithm of Definitions 5.4 and 5.5 to construct the
program graph for the program of Figure 5.1. □

Exercise 5.7: Use the algorithm of Definitions 5.4 and 5.5 to construct program
graphs for the programs of Exercise 2.6. □

We will define two versions of the semantics given in Definition 2.17 (together with
Definitions 1.11 and 1.13); one that enforces the reference monitor (denoted by
subscript 1) and one that does not (denoted by subscript 0).

Definition 5.8: We define the semantics 0 and reference-monitor semantics
1 for Guarded Commands using the semantic domain

Mem =
(

Var ∪ {𝐴[𝑖] ∣ 𝐴 ∈ Arr, 0 ≤ 𝑖 < 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴)}
)
→ Int
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They have functionality  𝑖[[⋅]] ∶ Act → (Mem ↪ Mem) and are given by

 𝑖[[𝚜𝚔𝚒𝚙]]𝜎 = 𝜎

 𝑖[[𝑥 ∶= 𝑎{𝑋}]]𝜎 =
⎧⎪⎨⎪⎩

𝜎[𝑥 ↦ [[𝑎]]𝜎] if [[𝑎]]𝜎 is defined and
𝑖 = 0 ∨ 𝑋 ∪ 𝖿𝗏(𝑎) ⇉ {𝑥}

undefined otherwise

 𝑖[[𝐴[𝑎1] ∶= 𝑎2{𝑋}]]𝜎 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜎[𝐴[𝑗] ↦ [[𝑎2]]𝜎] if 𝑗 = [[𝑎1]]𝜎 is defined,
0 ≤ 𝑗 < 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴),
[[𝑎2]]𝜎 is defined and
𝑖 = 0 ∨
𝑋 ∪ 𝖿𝗏(𝑎1𝑎2) ⇉ {𝐴}

undefined otherwise

 𝑖[[𝑏]]𝜎 =
{

𝜎 if [[𝑏]]𝜎 is defined and holds
undefined otherwise

Whenever (𝑞◦, 𝛼, 𝑞∙) ∈ E we have an execution step

⟨𝑞◦; 𝜎⟩ 𝛼
⟹𝑖 ⟨𝑞∙; 𝜎′⟩ if  𝑖[[𝛼]]𝜎 = 𝜎′

and we write ⟨𝑞◦; 𝜎⟩ 𝜔
⟹

∗

𝑖 ⟨𝑞∙; 𝜎′⟩ for the reflexive and transitive closure of the
transition relation (and sometimes dispense with actually writing the 𝜔).

The definitions for 𝚜𝚔𝚒𝚙 and 𝑏 are independent of 𝑖 and are as in Chapter 2. We
already motivated the definition for 𝑥 ∶= 𝑎{𝑋} in the case where 𝑖 = 1 and it is as
in Chapter 2 in the case 𝑖 = 0. To motivate the definition for 𝐴[𝑎1] ∶= 𝑎2{𝑋} note
that 𝐴[𝑎1] ∶= 𝑎2 can be viewed as a shorthand for a command of the form

𝚒𝚏 𝑎1 = 0 → 𝐴[0] ∶= 𝑎2 [] ⋯ [] 𝑎1 = 𝑛 − 1 → 𝐴[𝑛 − 1] ∶= 𝑎2 𝚏𝚒

where 𝑛 is the length of the array 𝐴, and hence that we need to record also the
implicit flow from 𝑎1 to 𝐴 (and for succinctness we write 𝖿𝗏(𝑎1𝑎2) for 𝖿𝗏(𝑎1)∪ 𝖿𝗏(𝑎2)).

Try It Out 5.9: Show that the execution of the program of Figure 5.1 is halted
by the reference-monitor semantics ⟹1 in the case 𝚡 ̸→ 𝚢 and that it is allowed to
progress in the case 𝚡 → 𝚢. □

Note that the semantics ⟹ obtained using the definitions in Sections 1.2, 2.2 and
2.3 behaves in the same way as the semantics ⟹0 obtained using the definitions in
the present section.
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Essential Exercise 5.10: Prove that if ⟨𝑞◦; 𝜎⟩ ⟹∗
1 ⟨𝑞∙; 𝜎′⟩ then we also

have ⟨𝑞◦; 𝜎⟩ ⟹∗
0 ⟨𝑞∙; 𝜎′⟩.

Provide an example where ⟨𝑞◦; 𝜎⟩ ⟹∗
0 ⟨𝑞∙; 𝜎′⟩ but ⟨𝑞◦; 𝜎⟩ ̸⟹∗

1 ⟨𝑞∙; 𝜎′⟩.
Exercise 5.11: Suppose that ⟹0 gives rise to an evolving system in the sense of
Definition 1.24; determine whether ⟹1 also gives rise to an evolving system. What
about the other direction? □

5.3 Security Analysis

𝚒𝚏 𝚡 < 0 → 𝚢 ∶= −1 ∗ 𝚣 ∗ 𝚣
[] 𝚡 = 0 → 𝚢 ∶= 0
[] 𝚡 > 0 → 𝚢 ∶= 𝚣 ∗ 𝚣
𝚏𝚒

Figure 5.6: Example with implicit
and explicit flows.

Consider the program of Figure 5.6, where there is an explicit flow from z to y
and an implicit flow from x to y. The reference-monitor semantics of the previous
section will enforce this by checking that {𝚣} ⇉ {𝚢} and {𝚡} ⇉ {𝚢} and halt the
program in case of violations.

Should we be happy about this way of enforcing the security policy? There are at
least two reasons for wanting to avoid the program halting when executed. One
is that it is never pleasant when our programs stop working. The other is that we
might be able to learn a bit about the sign of x if we are told the program point
where the program is halted.

To rectify the situation we shall enforce the security policy statically (meaning at
compile-time). We do so by a functional specification using the functions sec[[⋅]](𝑋)
and sec𝟤[[⋅]](𝑑,𝑋) defined in Definitions 5.12 and 5.13 below; the idea is that when
sec[[𝐶]](𝑋) = 𝗍𝗋𝗎𝖾 it will never be the case that the reference-monitor semantics
halts the execution unless the ordinary semantics does the same.

Definition 5.12: The security analysis for commands is specified as follows:

sec[[𝑥 ∶= 𝑎]](𝑋) = 𝑋 ∪ 𝖿𝗏(𝑎) ⇉ {𝑥}
sec[[𝐴[𝑎1] ∶= 𝑎2]](𝑋) = 𝑋 ∪ 𝖿𝗏(𝑎1) ∪ 𝖿𝗏(𝑎2) ⇉ {𝐴}

sec[[𝚜𝚔𝚒𝚙]](𝑋) = 𝗍𝗋𝗎𝖾

sec[[𝐶1;𝐶2]](𝑋) = sec[[𝐶1]](𝑋) ∧ sec[[𝐶2]](𝑋)
sec[[𝚒𝚏 𝐺𝐶 𝚏𝚒]](𝑋) = let (𝑤, 𝑑) = sec𝟤[[𝐺𝐶]](𝚏𝚊𝚕𝚜𝚎, 𝑋)

in 𝑤
sec[[𝚍𝚘 𝐺𝐶 𝚘𝚍]](𝑋) = let (𝑤, 𝑑) = sec𝟤[[𝐺𝐶]](𝚏𝚊𝚕𝚜𝚎, 𝑋)

in 𝑤

For an assignment 𝑥 ∶= 𝑎 giving rise to an edge in the instrumented program graph
with the action 𝑥 ∶= 𝑎{𝑋} we check that 𝑋∪𝖿𝗏(𝑎) ⇉ {𝑥}, meaning that the implicit
and explicit flows are permitted according to the flow relation. In a similar way,
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for an assignment 𝐴[𝑎1] ∶= 𝑎2 giving rise to an edge in the instrumented program
graph with the action 𝐴[𝑎1] ∶= 𝑎2{𝑋} we check that 𝑋 ∪ 𝖿𝗏(𝑎1) ∪ 𝖿𝗏(𝑎2) ⇉ {𝐴}.
A skip is always permitted and for sequencing, conditional and iteration it suffices
that the constituent (guarded) commands are permitted.

Definition 5.13: The security analysis for guarded commands is specified as
follows:

sec𝟤[[𝑏 → 𝐶]](𝑑,𝑋) = let 𝑤 = sec[[𝐶]](𝑋 ∪ 𝖿𝗏(𝑏) ∪ 𝖿𝗏(𝑑))
in (𝑤, 𝑏 ∨ 𝑑 )

sec𝟤[[𝐺𝐶1 []𝐺𝐶2]](𝑑,𝑋) = let (𝑤1, 𝑑1) = sec𝟤[[𝐺𝐶1]](𝑑,𝑋)
let (𝑤2, 𝑑2) = sec𝟤[[𝐺𝐶2]](𝑑1, 𝑋)
in (𝑤1 ∧𝑤2, 𝑑2 )

For a guarded command 𝑏 → 𝐶 we check that the constituent command 𝐶 is
permitted assuming that the implicit dependencies now come not only from the
variables in 𝑋 but also those in 𝖿𝗏(𝑏) and 𝖿𝗏(𝑑). For a choice 𝐺𝐶1 []𝐺𝐶2 between
guarded commands 𝐺𝐶1 and 𝐺𝐶2 we check that both are permitted.

Try It Out 5.14: Consider again the program of Figure 5.6 and check that it is
permitted according to the security analysis (of Definitions 5.12 and 5.13) exactly
when {𝚡, 𝚣} ⇉ {𝚢}. □

Exercise 5.15: In the manner of Try It Out 5.14 consider the program of Example
5.3 and use the security analysis (of Definitions 5.12 and 5.13) to determine the
flows that need to be admitted for the program to be permitted. □

Exercise 5.16: In the manner of Try It Out 5.14 consider the programs of Exercise
2.6 and use the security analysis (of Definitions 5.12 and 5.13) to determine the
flows that need to be admitted for the programs to be permitted. □

The security analysis allows us to complement the insights from Essential Exercise
5.10. It says that for permissible programs the reference monitor never halts the
program due to a violation of the security policy. In preparation for this result we
need to dig into the interplay between the security analysis and the construction of
the instrumented program graph.

Essential Exercise 5.17: Prove the following results

If sec[[𝐶]](𝑋), 𝑞◦ ≠ 𝑞∙, and
(𝑞, 𝑥 ∶= 𝑎{𝑋′}, 𝑞′) ∈ edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋)

then 𝑋′ ∪ 𝖿𝗏(𝑎) ⇉ {𝑥} and 𝑋 ⊆ 𝑋′.

If sec[[𝐶]](𝑋), 𝑞◦ ≠ 𝑞∙, and
(𝑞, 𝐴[𝑎1] ∶= 𝑎2{𝑋′}, 𝑞′) ∈ edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋)

then 𝑋′ ∪ 𝖿𝗏(𝑎1) ∪ 𝖿𝗏(𝑎2) ⇉ {𝐴} and 𝑋 ⊆ 𝑋′.
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by induction on the size of 𝐶 (which you may take to be the number of nodes
in the abstract syntax tree for 𝐶).

Proposition 5.18: Suppose that sec[[𝐶]](𝑋) and that ⟹0 and ⟹1 are
the ordinary semantics and reference-monitor semantics obtained from the
instrumented program graph edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋) (for 𝑞◦ ≠ 𝑞∙) in Section
5.2.

If ⟨𝑞; 𝜎⟩ ⟹∗
0 ⟨𝑞′; 𝜎′⟩ then also ⟨𝑞; 𝜎⟩ ⟹∗

1 ⟨𝑞′; 𝜎′⟩.
Proof: Suppose by way of contradiction that ⟨𝑞; 𝜎⟩ 𝛼

⟹0 ⟨𝑞′; 𝜎′⟩ but ⟨𝑞; 𝜎⟩ ̸⟹1⟨𝑞′; 𝜎′⟩. By inspection of Definition 5.8 it is immediate that 𝛼 must be of the form
𝑥 ∶= 𝑎{𝑋′} or 𝐴[𝑎1] ∶= 𝑎2{𝑋′}. In the first case, (𝑞, 𝑥 ∶= 𝑎{𝑋′}, 𝑞′) ∈ edges𝗌(𝑞◦ ⇝
𝑞∙)[[𝐶]](𝑋) and from Essential Exercise 5.17 we get that 𝑋′ ∪ 𝖿𝗏(𝑎) ⇉ {𝑥}; in the
second case, (𝑞, 𝐴[𝑎1] ∶= 𝑎2{𝑋′}, 𝑞′) ∈ edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋) and from Essential
Exercise 5.17 we get that 𝑋′ ∪ 𝖿𝗏(𝑎1) ∪ 𝖿𝗏(𝑎2) ⇉ {𝐴}. This provides the required
contradiction. □

Our development concentrates on preventing information flow due to explicit
flows, as illustrated by 𝚢 ∶= 𝚡, as well as implicit flows, as illustrated by
𝚒𝚏 𝚡 > 7 → 𝚢 ∶= 1 [] 𝚡 < 8 → 𝚢 ∶= 2 𝚏𝚒.

However, there are other and more subtle ways in which information may flow
that are not prevented by our security analysis. The name covert channel is
used to describe such phenomena.

As an example, the program

𝚢 ∶= 0 ; 𝚡′ ∶= 𝚡 ; 𝚍𝚘 𝚡′ > 0 → 𝚡′ ∶= 𝚡′ − 1 [] 𝚡′ < 0 → 𝚡′ ∶= 𝚡′ + 1 𝚘𝚍

always terminates. It has no explicit or implicit flow from x to y but if we
can observe the execution time it reveals some information about the absolute
value of x.

Similar examples can be constructed where the computation on 𝚡 will only
terminate successfully for some values of 𝚡 and otherwise will enter a loop or a
stuck configuration. If we can observe the non-termination it also reveals some
information about the value of x.

For another example, allow programs to be non-deterministic and consider the
program

𝚢 ∶= 0 ; 𝚒𝚏 𝚝𝚛𝚞𝚎 → 𝚢 ∶= 1 [] 𝚡 = 0 → 𝚜𝚔𝚒𝚙 𝚏𝚒

which may terminate with the final value of y being 0 or 1 if 𝚡 = 0, but only
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with the final value of 1 if 𝚡 ≠ 0. If we can observe the non-determinism (by
running the program several times) it once again reveals some information
about the value of 𝚡.

5.4 Multi-Level Security

So far we described the permissible flows by directly defining a flow relation between
variables and array names and then extending it to sets of variables and array names
in Definition 5.1. In the multi-level security approach to information flow it is
customary to define the flow relation by means of a security classification of the
variables.

Security lattices For this we shall need two components. One is a partially ordered
set (𝐿,⊑) that describes the security classes and how information may flow. That
(𝐿,⊑) is a partially ordered set merely means that the relation ⊑ between elements
of 𝐿 is reflexive (∀𝑙 ∈ 𝐿 ∶ 𝑙 ⊑ 𝑙) and transitive (∀𝑙1, 𝑙2, 𝑙3 ∈ 𝐿 ∶ 𝑙1 ⊑ 𝑙2 ∧ 𝑙2 ⊑ 𝑙3 ⇒
𝑙1 ⊑ 𝑙3) and antisymmetric (∀𝑙1, 𝑙2 ∈ 𝐿 ∶ 𝑙1 ⊑ 𝑙2 ∧ 𝑙2 ⊑ 𝑙1 ⇒ 𝑙1 = 𝑙2). We shall
write 𝑙1 ⊏ 𝑙2 whenever 𝑙1 ⊑ 𝑙2 and 𝑙1 ≠ 𝑙2. For our confidentiality example we would
have 𝐿 = {private, public} with public ⊏ private and for our integrity example we
would have 𝐿 = {trusted, dubious} with trusted ⊏ dubious, as illustrated in Figures
5.7 and 5.8, respectively.

𝗉𝗋𝗂𝗏𝖺𝗍𝖾

𝗉𝗎𝖻𝗅𝗂𝖼

Figure 5.7: A simple lattice for con-
fidentiality.

𝖽𝗎𝖻𝗂𝗈𝗎𝗌

𝗍𝗋𝗎𝗌𝗍𝖾𝖽

Figure 5.8: A simple lattice for in-
tegrity. One way to present a partially ordered set is by means of a directed acyclic graph

(DAG). So suppose that (𝐿,→) is a directed acyclic graph and let →∗ be the reflexive
and transitive closure of → (following zero or more edges in →). Defining ⊑ to
be →∗ then gives rise to a partially ordered set (𝐿,⊑): reflexivity and transitivity
are immediate and antisymmetry follows from acyclicity. When 𝐿 is finite we can
draw (𝐿,→) in such a way that edges always slant upwards; in particular, no edges
slant downwards and no edges are horizontal. When omitting the arrow heads on
the edges this is said to be a Hasse diagram for (𝐿,⊑). We saw an example of this
already in Figure 4.3; other examples are given in Figures 5.7 and 5.8.

The other is a security classification L ∶ (Var ∪ Arr) → 𝐿 providing the security
levels of variables and arrays. Our flow relation 𝑥 → 𝑦 would then be defined by
L(𝑥) ⊑ L(𝑦) and our flow relation 𝑋 ⇉ 𝑌 would then be equivalent to ∀𝑥 ∈ 𝑋 ∶
∀𝑦 ∈ 𝑌 ∶ L(𝑥) ⊑ L(𝑦). This definition makes it clear that information is permitted
to flow from smaller (lower) security classes to larger (higher) ones.
Try It Out 5.19: Argue that this way of defining the flow relation lives up to the
demands of Definition 5.1. □

Often the partially ordered set (𝐿,⊑) has some extra structure. If for every two
elements 𝑙1 and 𝑙2 of 𝐿 we can find an element 𝑙3 of 𝐿 such that

∀𝑙 ∈ 𝐿 ∶ (𝑙1 ⊑ 𝑙 ∧ 𝑙2 ⊑ 𝑙 ⇔ 𝑙3 ⊑ 𝑙)
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then 𝐿 is a ⊔-semilattice and we write 𝑙1 ⊔ 𝑙2 for 𝑙3. (The symbol ⊔ is pronounced
join.) Similarly, if for every two elements 𝑙1 and 𝑙2 of 𝐿 we can find an element 𝑙3
of 𝐿 such that

∀𝑙 ∈ 𝐿 ∶ (𝑙 ⊑ 𝑙1 ∧ 𝑙 ⊑ 𝑙2 ⇔ 𝑙 ⊑ 𝑙3)
then 𝐿 is a ⊓-semilattice and we write 𝑙1 ⊓ 𝑙2 for 𝑙3. (The symbol ⊓ is pronounced
meet.) When the partially ordered set 𝐿 is both a ⊔-semilattice and a ⊓-semilattice
it is a lattice. For this reason (𝐿,⊑) is traditionally called a security lattice.
Try It Out 5.20: Consider our confidentiality example where 𝐿 = {private, public}
with public ⊑ private; determine private ⊔ public and private ⊓ public. □

Exercise 5.21: Suppose that (𝐿,⊑) is a lattice. Show that the operation ⊔ is
commutative (that is, 𝑙1 ⊔ 𝑙2 = 𝑙2 ⊔ 𝑙1) and associative (that is, 𝑙1 ⊔ (𝑙2 ⊔ 𝑙3) =
(𝑙1 ⊔ 𝑙2) ⊔ 𝑙3). Similarly show that the operation ⊓ is commutative and associate.□

Teaser 5.22: A partially ordered set (𝐿,⊑) is a complete lattice when it satisfies
the following two properties:

• for all subsets 𝐿′ ⊆ 𝐿 we can find an element 𝑙′ of 𝐿 such that ∀𝑙 ∈ 𝐿 ∶
(∀𝑙′′ ∈ 𝐿′ ∶ 𝑙′′ ⊑ 𝑙) ⇔ 𝑙′ ⊑ 𝑙 and we then write ⊔𝐿′ for 𝑙′;

• for all subsets 𝐿′ ⊆ 𝐿 we can find an element 𝑙′ of 𝐿 such that ∀𝑙 ∈ 𝐿 ∶
(∀𝑙′′ ∈ 𝐿′ ∶ 𝑙 ⊑ 𝑙′′) ⇔ 𝑙 ⊑ 𝑙′ and we then write ⊓𝐿′ for 𝑙′.

First argue that a complete lattice is also a lattice.

Next show that a finite and non-empty lattice is also a complete lattice. (Hint:
⊔{ } = ⊓𝐿 and ⊓{ } = ⊔𝐿.)

Finally show that 𝑋 ⇉ 𝑌 is equivalent to ⊔{L(𝑥) ∣ 𝑥 ∈ 𝑋} ⊑ ⊓{L(𝑦) ∣ 𝑦 ∈ 𝑌 }. (In
case you wonder why we perform this development: the above formulation is the
one usually found in research papers on multi-level security and information flow.)□

Confidentiality reconsidered We already said that our treatment of confiden-
tiality so far corresponds to having a security lattice with the following ordering
between elements: public ⊏ private. This is depicted in Figure 5.7.

𝗍𝗈𝗉 𝗌𝖾𝖼𝗋𝖾𝗍

𝗌𝖾𝖼𝗋𝖾𝗍

𝖼𝗅𝖺𝗌𝗌𝗂𝖿 𝗂𝖾𝖽

𝗎𝗇𝖼𝗅𝖺𝗌𝗌𝗂𝖿 𝗂𝖾𝖽

Figure 5.9: Another lattice for con-
fidentiality.

There are many variations on this theme. A standard textbook example is that of

unclassified ⊏ classified ⊏ secret ⊏ top secret

intended to mimic the confidentiality levels of Western military forces. This is
depicted in Figure 5.9.

It is not required that the partially ordered set is totally ordered as has been the case so
far. For an example of this consider the security lattice 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍({financial,medical})
under the subset ordering

{ } ⊏ {financial} ⊏ {financial,medical} { } ⊏ {medical} ⊏ {financial,medical}
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as illustrated in Figure 5.10. It describes a scenario where access to data may be
restricted to those who are permitted to see financial data, or medical data or both.

{𝖿 𝗂𝗇𝖺𝗇𝖼𝗂𝖺𝗅,𝗆𝖾𝖽𝗂𝖼𝖺𝗅}

{𝖿 𝗂𝗇𝖺𝗇𝖼𝗂𝖺𝗅} {𝗆𝖾𝖽𝗂𝖼𝖺𝗅}

{ }

Figure 5.10: Yet another lattice for
confidentiality.

Exercise 5.23: Suppose there are three users of a system: Alice, Bob and Charlie.
Define a security lattice 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍({Alice,Bob,Charlie}) for modelling readership
rights: as information flows it is permitted to remove readers but never to add
readers. □

Integrity reconsidered We already said that our treatment of integrity so far
corresponds to having a security lattice with the following ordering between elements:
trusted ⊏ dubious. This is illustrated in Figure 5.8.

𝖺𝗅𝗍𝖾𝗋𝗇𝖺𝗍𝗂𝗏𝖾 𝖿𝖺𝖼𝗍

𝖼𝗈𝗇𝗃𝖾𝖼𝗍𝗎𝗋𝖾

𝗄𝗇𝗈𝗐𝗇 𝖿𝖺𝖼𝗍

Figure 5.11: Another lattice for in-
tegrity.

Once again there are many variations on this theme. As an example,

known fact ⊏ conjecture ⊏ alternative fact

is intended to record the trustworthiness of information in a scenario where uncor-
roborated and fake information is abundant. This is depicted in Figure 5.11.

For an example where the partially ordered set is not totally ordered, consider the
security lattice 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍({host, client}) under the subset ordering

{ } ⊏ {host} ⊏ {host, client} { } ⊏ {client} ⊏ {host, client}

as illustrated in Figure 5.12. It describes a scenario where the trustworthiness of data
may depend on whether the host has not been tampered with, the client has not
been tampered with, or both. It is useful for controlling the design of client-server
systems so that malicious modification of the (Java or JavaScript) client cannot
jeopardise the overall security of the system.

{𝗁𝗈𝗌𝗍, 𝖼𝗅𝗂𝖾𝗇𝗍}

{𝗁𝗈𝗌𝗍} {𝖼𝗅𝗂𝖾𝗇𝗍}

{ }

Figure 5.12: Yet another lattice for
integrity.

An interesting example, spanning both confidentiality and integrity, is to use a
partially ordered set {clean,Microsoft,Google,Facebook} where the partial order is
given by

clean ⊏ Microsoft clean ⊏ Google clean ⊏ Facebook

as depicted in Figure 5.13. This is useful for ensuring that data belonging to different
companies is kept in isolation (as regards both explicit and implicit flow). It is
possible to turn it into a security lattice by adding an element (called confused) at
the top.

Example 5.24: Returning to Example 5.3 we might set L(𝚒) = clean, L(𝚓) =
clean, L(𝚗) = clean, L(𝚖) = clean, L(𝙰) = Microsoft and L(𝙱) = Google. This
would be a more natural way to ensure that 𝙰 ̸→ 𝙱 and 𝙱 ̸→ 𝙰 than that used
there.

𝖬 𝖦 𝖥

𝖼𝗅𝖾𝖺𝗇

Figure 5.13: A partial order for iso-
lation.
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5.5 Non-Interference (Bonus Material)

Experience shows that it is very hard to get security analyses correct. As an example,
it would be very easy to overlook the complications arising if programs were not
ensured to be deterministic. In this section we show how we can scrutinise a security
analysis so as ensure that there are no remaining flaws concerning explicit and
implicit flows.

We begin by studying some properties of instrumented program graphs.

Essential Exercise 5.25: Show that we can never leave the final node.
Formally, prove that if (𝑞′, 𝛼, 𝑞′′) ∈ edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋) (for 𝑞◦ ≠ 𝑞∙) then
𝑞′ ≠ 𝑞∙.

Show that if a node is left by two edges and the action on one of them is
not a boolean condition then in fact the two edges are the same. Formally,
prove that if (𝑞′, 𝛼1, 𝑞1), (𝑞′, 𝛼2, 𝑞2) ∈ edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋) (for 𝑞◦ ≠ 𝑞∙) and
(𝑞′, 𝛼1, 𝑞1) ≠ (𝑞′, 𝛼2, 𝑞2) then 𝛼1 = 𝑏1 and 𝛼2 = 𝑏2 for some 𝑏1 and 𝑏2.

Show that boolean conditions only arise due to the if construct or the do con-
struct. Formally, prove that if (𝑞′, 𝛼1, 𝑞1), (𝑞′, 𝛼2, 𝑞2) ∈ edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋)
(for 𝑞◦ ≠ 𝑞∙) and (𝑞′, 𝛼1, 𝑞1) ≠ (𝑞′, 𝛼2, 𝑞2) then one of the following cases applies:

• 𝐶 contains a subprogram 𝚒𝚏 𝐺𝐶 𝚏𝚒 such that (𝑞′, 𝛼1, 𝑞1), (𝑞′, 𝛼2, 𝑞2) ∈
edges𝗌(𝑞′ ⇝ 𝑞′′)[[𝚒𝚏 𝐺𝐶 𝚏𝚒]](𝑋′) ⊆ edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋), or

• 𝐶 contains a subprogram 𝚍𝚘 𝐺𝐶 𝚘𝚍 such that (𝑞′, 𝛼1, 𝑞1), (𝑞′, 𝛼2, 𝑞2) ∈
edges𝗌(𝑞′ ⇝ 𝑞′′)[[𝚍𝚘 𝐺𝐶 𝚘𝚍]](𝑋′) ⊆ edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋)

for suitable 𝑞′′ and 𝑋′ (satisfying 𝑋 ⊆ 𝑋′).

We can then establish a so-called non-interference result that basically says that, if
we perform two executions on memories that agree on all variables and arrays that
may flow into some designated variable or array, then the two executions produce
final values of the designated variable or array that agree.

To express this it is useful to write ↑𝑥 = {𝑦 ∈ Var ∪ Arr ∣ 𝑦 → 𝑥} for
𝑥 ∈ Var ∪ Arr and to observe that 𝑥 ∈ ↑𝑥.

Furthermore, for 𝐴 ∈ Arr we shall write 𝜎(𝐴) = (𝜎(𝐴[0]),⋯ , 𝜎(𝐴[𝗅𝖾𝗇𝗀𝗍𝗁(𝐴) − 1])).

Proposition 5.26: Suppose that sec[[𝐶]](𝑋) and that ⟹0 and ⟹1 are
the ordinary semantics and reference-monitor semantics obtained from the
instrumented program graph edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋) (for 𝑞◦ ≠ 𝑞∙) as in
Section 5.2.
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If ⟨𝑞; 𝜎1⟩ ⟹∗
0 ⟨𝑞∙; 𝜎′1⟩ and ⟨𝑞; 𝜎2⟩ ⟹∗

0 ⟨𝑞∙; 𝜎′2⟩ and ∀𝑦 ∈ ↑𝑥 ∶ 𝜎1(𝑦) = 𝜎2(𝑦)
then 𝜎′1(𝑥) = 𝜎′2(𝑥).

Proof: Using Proposition 5.18 it suffices to prove that

if ⟨𝑞; 𝜎1⟩ ⟹𝑘1
1 ⟨𝑞∙; 𝜎′1⟩ and ⟨𝑞; 𝜎2⟩ ⟹𝑘2

1 ⟨𝑞∙; 𝜎′2⟩
and ∀𝑦 ∈ ↑𝑥 ∶ 𝜎1(𝑦) = 𝜎2(𝑦)
then 𝜎′1(𝑥) = 𝜎′2(𝑥).

We prove by induction on 𝑛 that the result holds if 𝑘1 + 𝑘2 ≤ 𝑛.

The base case is when 𝑘1 + 𝑘2 = 0 in which case 𝑞 = 𝑞∙ and 𝜎′1 = 𝜎1 and 𝜎′2 = 𝜎2
and the result is immediate.

For the induction step we assume that 𝑘1 + 𝑘2 = 𝑛 + 1 and that the induction
hypothesis applies to shorter sequences of length 𝑘′1 and 𝑘′2 such that 𝑘′1 + 𝑘′2 ≤ 𝑛.
Since 𝑘1 + 𝑘2 > 0 we have that both 𝑘1 > 0 and 𝑘2 > 0 as otherwise 𝑞 = 𝑞∙ in which
case 𝑘1 = 𝑘2 = 0 by Essential Exercise 5.25. This means that we can rewrite our
assumptions ⟨𝑞; 𝜎1⟩ ⟹𝑘1

1 ⟨𝑞∙; 𝜎′1⟩ and ⟨𝑞; 𝜎2⟩ ⟹𝑘2
1 ⟨𝑞∙; 𝜎′2⟩ to

⟨𝑞; 𝜎1⟩ 𝛼1
⟹1 ⟨𝑞1; 𝜎′′1 ⟩ ⟹𝑘1−1

1 ⟨𝑞∙; 𝜎′1⟩⟨𝑞; 𝜎2⟩ 𝛼2
⟹1 ⟨𝑞2; 𝜎′′2 ⟩ ⟹𝑘2−1

1 ⟨𝑞∙; 𝜎′2⟩
We now proceed by cases on 𝛼1.

If 𝛼1 is 𝚜𝚔𝚒𝚙 it follows from Essential Exercise 5.25 that also 𝛼2 is 𝚜𝚔𝚒𝚙 and that
𝑞1 = 𝑞2. It follows from Definition 5.8 that 𝜎1 = 𝜎′′1 and 𝜎2 = 𝜎′′2 . Hence we can apply

the induction hypothesis to ⟨𝑞1; 𝜎′′1 ⟩ ⟹𝑘1−1
1 ⟨𝑞∙; 𝜎′1⟩ and ⟨𝑞2; 𝜎′′2 ⟩ ⟹𝑘2−1

1 ⟨𝑞∙; 𝜎′2⟩
since 𝑘1 − 1 + 𝑘2 − 1 ≤ 𝑛.

If 𝛼1 is 𝑧 ∶= 𝑎{𝑋} it follows from Essential Exercise 5.25 that also 𝛼2 is 𝑧 ∶= 𝑎{𝑋}
and that 𝑞1 = 𝑞2. It follows from Definition 5.8 that 𝜎′′1 = 𝜎1[𝑧 ↦ [[𝑎]]𝜎1] and
that 𝜎′′2 = 𝜎2[𝑧 ↦ [[𝑎]]𝜎2] and that 𝖿𝗏(𝑎) ⇉ {𝑧}. If 𝑧 ̸→ 𝑥 it is immediate that
∀𝑦 ∈ ↑𝑥 ∶ 𝜎′′1 (𝑦) = 𝜎′′2 (𝑦); if 𝑧 → 𝑥 we have that 𝖿𝗏(𝑎) ⇉ {𝑥} and [[𝑎]]𝜎1 = [[𝑎]]𝜎2
so that also in this case ∀𝑦 ∈ ↑𝑥 ∶ 𝜎′′1 (𝑦) = 𝜎′′2 (𝑦). Hence we can apply the

induction hypothesis to ⟨𝑞1; 𝜎′′1 ⟩ ⟹𝑘1−1
1 ⟨𝑞∙; 𝜎′1⟩ and ⟨𝑞2; 𝜎′′2 ⟩ ⟹𝑘2−1

1 ⟨𝑞∙; 𝜎′2⟩ since
𝑘1 − 1 + 𝑘2 − 1 ≤ 𝑛.

If 𝛼1 is 𝐴[𝑎1] ∶= 𝑎2{𝑋} it follows from Essential Exercise 5.25 that also 𝛼2 is
𝐴[𝑎1] ∶= 𝑎2{𝑋} and that 𝑞1 = 𝑞2. It follows from Definition 5.8 that 𝜎′′1 =
𝜎1[𝐴[[[𝑎1]]𝜎1] ↦ [[𝑎2]]𝜎1] and that 𝜎′′2 = 𝜎2[𝐴[[[𝑎1]]𝜎2] ↦ [[𝑎2]]𝜎2] and that
𝖿𝗏(𝑎1) ∪ 𝖿𝗏(𝑎2) ⇉ {𝐴}. If 𝐴 ̸→ 𝑥 it is immediate that ∀𝑦 ∈ ↑𝑥 ∶ 𝜎′′1 (𝑦) = 𝜎′′2 (𝑦); if
𝐴 → 𝑥 we have that 𝖿𝗏(𝑎1)∪𝖿𝗏(𝑎2) ⇉ {𝑥} and [[𝑎1]]𝜎1 = [[𝑎1]]𝜎2 and [[𝑎2]]𝜎1 =
[[𝑎2]]𝜎2 so that also in this case ∀𝑦 ∈ ↑𝑥 ∶ 𝜎′′1 (𝑦) = 𝜎′′2 (𝑦). Hence we can apply

the induction hypothesis to ⟨𝑞1; 𝜎′′1 ⟩ ⟹𝑘1−1
1 ⟨𝑞∙; 𝜎′1⟩ and ⟨𝑞2; 𝜎′′2 ⟩ ⟹𝑘2−1

1 ⟨𝑞∙; 𝜎′2⟩
since 𝑘1 − 1 + 𝑘2 − 1 ≤ 𝑛.
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If 𝛼1 is 𝑏1 it follows from Essential Exercise 5.25 that also 𝛼2 is some 𝑏2 but we do
not know that 𝑏1 and 𝑏2 are the same nor that 𝑞1 and 𝑞2 are the same. We proceed
by subcases.

The first subcase is when 𝑏1 = 𝑏2 and 𝑞1 = 𝑞2. It then follows from Definition
5.8 that 𝜎1 = 𝜎′′1 and 𝜎2 = 𝜎′′2 . Hence we can apply the induction hypothesis to⟨𝑞1; 𝜎′′1 ⟩ ⟹𝑘1−1

1 ⟨𝑞∙; 𝜎′1⟩ and ⟨𝑞2; 𝜎′′2 ⟩ ⟹𝑘2−1
1 ⟨𝑞∙; 𝜎′2⟩ since 𝑘1 − 1 + 𝑘2 − 1 ≤ 𝑛.

The second subcase is when (𝑞, 𝑏1, 𝑞1) ≠ (𝑞, 𝑏2, 𝑞2) and by Essential Exercise 5.25
(𝑞, 𝑏1, 𝑞1), (𝑞, 𝑏2, 𝑞2) ∈ edges𝗌(𝑞 ⇝ 𝑞′)[[𝚒𝚏 𝐺𝐶 𝚏𝚒]](𝑋′) ⊆ edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋).
We can then rewrite our assumptions ⟨𝑞; 𝜎1⟩ ⟹𝑘1

1 ⟨𝑞∙; 𝜎′1⟩ and ⟨𝑞; 𝜎2⟩ ⟹𝑘2
1 ⟨𝑞∙; 𝜎′2⟩

to ⟨𝑞; 𝜎1⟩ 𝛼1
⟹1 ⟨𝑞1; 𝜎1⟩ 𝜔1

⟹
𝑘′1

1 ⟨𝑞′; 𝜎′′1 ⟩ ⟹𝑘1−𝑘′1−1
1 ⟨𝑞∙; 𝜎′1⟩⟨𝑞; 𝜎2⟩ 𝛼2

⟹1 ⟨𝑞2; 𝜎2⟩ 𝜔2
⟹

𝑘′2

1 ⟨𝑞′; 𝜎′′2 ⟩ ⟹𝑘2−𝑘′2−1
1 ⟨𝑞∙; 𝜎′2⟩

for 𝑘′1 ≥ 0 and 𝑘′2 ≥ 0. We will argue that ∀𝑦 ∈ ↑𝑥 ∶ 𝜎′′1 (𝑦) = 𝜎1(𝑦) by induction
on the length of 𝜔1. There will be at least one variable 𝑦′ in 𝖿𝗏(𝑏1) such that
𝑦′ ̸→ 𝑥 as otherwise [[𝑏1]]𝜎1 = [[𝑏1]]𝜎2, which violates that the language is
deterministic. Since all assignments 𝑧′ ∶= 𝑎′{𝑋′} in 𝜔1 will have 𝑦′ ∈ 𝑋′ this
ensures that 𝑧′ ̸→ 𝑥 and it follows that ∀𝑦 ∈ ↑𝑥 ∶ 𝜎′′1 (𝑦) = 𝜎1(𝑦). In a similar way
we get that ∀𝑦 ∈ ↑𝑥 ∶ 𝜎′′2 (𝑦) = 𝜎2(𝑦). Hence we have that ∀𝑦 ∈ ↑𝑥 ∶ 𝜎′′1 (𝑦) = 𝜎′′2 (𝑦)

and this allows us to apply the induction hypothesis to ⟨𝑞′; 𝜎′′1 ⟩ ⟹𝑘1−𝑘′1−1
1 ⟨𝑞∙; 𝜎′1⟩

and ⟨𝑞′; 𝜎′2⟩ ⟹𝑘2−𝑘′2−1
1 ⟨𝑞∙; 𝜎′2⟩.

The third subcase is when (𝑞, 𝑏1, 𝑞1) ≠ (𝑞, 𝑏2, 𝑞2) and by Essential Exercise 5.25
(𝑞, 𝑏1, 𝑞1), (𝑞, 𝑏2, 𝑞2) ∈ edges𝗌(𝑞 ⇝ 𝑞′)[[𝚍𝚘 𝐺𝐶 𝚘𝚍]](𝑋′) ⊆ edges𝗌(𝑞◦ ⇝ 𝑞∙)[[𝐶]](𝑋).
It follows from Definition 5.4 that at least one of 𝑞1 and 𝑞2 will not be equal to 𝑞′; let
us, without loss of generality, assume it is 𝑞1. We can then rewrite our assumptions⟨𝑞; 𝜎1⟩ ⟹𝑘1

1 ⟨𝑞∙; 𝜎′1⟩ and ⟨𝑞; 𝜎2⟩ ⟹𝑘2
1 ⟨𝑞∙; 𝜎′2⟩ to

⟨𝑞; 𝜎1⟩ 𝛼1
⟹1 ⟨𝑞1; 𝜎1⟩ 𝜔1

⟹
𝑘′1

1 ⟨𝑞; 𝜎′′1 ⟩ ⟹𝑘1−𝑘′1−1
1 ⟨𝑞∙; 𝜎′1⟩⟨𝑞; 𝜎2⟩ ⟹𝑘2

1 ⟨𝑞∙; 𝜎′2⟩
for 𝑘′1 ≥ 0. Arguing as in the previous subcase we have that ∀𝑦 ∈ ↑𝑥 ∶ 𝜎′′1 (𝑦) = 𝜎1(𝑦)
and hence that ∀𝑦 ∈ ↑𝑥 ∶ 𝜎′′1 (𝑦) = 𝜎2(𝑦). This allows us to apply the induction

hypothesis to ⟨𝑞; 𝜎′′1 ⟩ ⟹𝑘1−𝑘′1−1
1 ⟨𝑞∙; 𝜎′1⟩ and ⟨𝑞; 𝜎2⟩ ⟹𝑘2

1 ⟨𝑞∙; 𝜎′2⟩.
This completes the proof. □

Exercise 5.27: Point out the place in the proof where we use that the security
analysis only admits deterministic programs. □
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Sometimes there is a need to let properly sanitised data flow in the opposite
direction to the flow relation. In this case careful analysis is needed to ensure that
this flow should be permitted and one can no longer rely on the security analysis
for guidance. In the case of confidentiality this is often called declassification
and in the case of integrity it is often called endorsement.



Chapter 6

Model Checking

Model checking is an approach to finding properties of programs. It can be fully
automated but its efficiency is usually not as good as that of program analysis. The
gain is that the precision is closer to that of program verification.

6.1 Transition Systems

Program graphs are intended to represent the control structure of programs and
systems whereas memories are intended to represent the data structure over which
they operate. Sometimes it is convenient not to distinguish so clearly between
control and data. This leads us to define transition systems as directed graphs where
the nodes are states and the edges are transitions.

Definition 6.1: A transition system TS consists of the following:

• S: a non-empty set of states

• I ⊆ S: a non-empty set of initial states

• ⟶⊆ S × S: the transition relation

• AP: a set of atomic propositions

• L ∶ S → 𝖯𝗈𝗐𝖾𝗋𝖲𝖾𝗍(AP): a labelling function for states

It is standard notation to write 𝜍 ⟶ 𝜍′ for (𝜍, 𝜍′) ∈⟶.

Even though both program graphs and transition systems are directed graphs it is
important to remember that program graphs only represent the control structure
whereas transition systems represent a mixture of control structure and data; we

77
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Figure 6.2: Transition System for Towers of Hanoi.

shall return to this in Section 6.4.

A B C
Figure 6.1: Towers of Hanoi config-
uration BAA.

Example 6.2: As an example of a transition system we shall consider the
game called Towers of Hanoi. It consists of three rods (A, B and C) and a
number of disks of different sizes which can slide onto any rod. However, disks
only fit on top of larger disks or empty rods. The puzzle starts with the disks
in a neat conical stack on one rod (say A) and the objective of the game is to
move the disks one by one so that they end up in a similar neat conical stack
on one of the other rods (say C). Clearly we can only move a disk from the top
of one rod and place it at the top of another rod.

Let us model the version of the game with just three disks. The set S of states
will be sequences of three letters chosen among the names of the rods; the first
letter tells us the rod where the smallest disk is placed, the next letter tells
us the rod where the middle disk is placed, and the last letter tells us where
the largest disk is placed – as illustrated in Figure 6.1. The set of initial states
I = {AAA} consists of a single state AAA (where for ease of understanding we
have used different sizes of the names of the rods). The transition relation is
depicted in the diagram of Figure 6.2. In this example it is natural to choose
the set of atomic propositions to be the same as the set of states, AP = S, so
that the labelling function is trivially defined by L(𝜍) = {𝜍}.

Try It Out 6.3: Perform a similar modelling of the game of Towers of Hanoi
where there are just two disks (but still three rods). □
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INPUT a transition system as in Definition 6.1
a set 𝑆0 of states

OUTPUT R: the set Reach1(𝑆0)
ALGORITHM R := { };

for each transition 𝜍 ⟶ 𝜍′

do if 𝜍 ∈ 𝑆0 then R := R ∪ {𝜍′}

Figure 6.3: Algorithm for Reach1(𝑆0).

INPUT a transition system as in Definition 6.1
a set 𝑆0 of states

OUTPUT R: the set Reach(𝑆0)
ALGORITHM R := 𝑆0;

while there exists a transition 𝜍 ⟶ 𝜍′

with 𝜍 ∈ R and 𝜍′ ∉ R
do R := R ∪ {𝜍′}

Figure 6.4: Algorithm for Reach(𝑆0).

A state is stuck whenever it has no transitions leaving it. A path in a transition
system is a sequence of states 𝜍0𝜍1⋯ 𝜍𝑛−1𝜍𝑛⋯ where each state arises from
the previous one according to the transition relation, ∀𝑛 > 0 ∶ 𝜍𝑛−1 ⟶ 𝜍𝑛, and
where the path is as long as possible. We write Path(𝜍0) for the set of paths
𝜋 = 𝜍0𝜍1⋯ 𝜍𝑛−1𝜍𝑛⋯ starting in 𝜍0.

A path in a transition system will be infinitely long unless it ends in a stuck state. If
the state 𝜍 is stuck we have Path(𝜍) = {𝜍}. A path fragment does not have to be
as long as possible.

Try It Out 6.4: Consider Example 6.2. Are there any stuck states? Are there
any infinite paths? Are there any finite paths? Trace the shortest path fragment
from AAA to CCC. □

We write Reach1(𝑆0) = {𝜍1 ∣ 𝜍0𝜍1⋯ 𝜍𝑛⋯ ∈ Path(𝜍0) ∧ 𝜍0 ∈ 𝑆0} for the set
of states in S reachable from some state in 𝑆0 in exactly one step.

We write Reach(𝑆0) = {𝜍𝑛 ∣ 𝜍0𝜍1⋯ 𝜍𝑛⋯ ∈ Path(𝜍0) ∧ 𝜍0 ∈ 𝑆0 ∧ 𝑛 ≥ 0} for
the set of states in S reachable from some state in 𝑆0 in zero or more steps.
States in Reach(I) are said to be reachable.

Try It Out 6.5: Which states in Example 6.2 are reachable? Which states are
not reachable? What is Reach1(ABC )? What is Reach(ABC )? □
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Exercise 6.6: Assume that the set S is finite. First argue that the algorithm in
Figure 6.3 correctly computes Reach1(𝑆0). Next argue that the algorithm in Figure
6.4 correctly computes Reach(𝑆0). □

6.2 Computation Tree Logic – CTL

We shall be concerned with expressing properties of paths in transition systems and
for this we make use of a logic called Computation Tree Logic (abbreviated CTL).
We introduce most of it by example in this section and we will give its formal syntax
and semantics in the next section.

In this section we concentrate on a transition system that has four states, S =
{𝑎, 𝑒, 𝑔, ℎ}, one initial state, I = {𝑎}, the transition relation as illustrated in Figure
6.5, two atomic propositions, AP = {𝑐, 𝑣} (with 𝑐 meaning consonant and 𝑣 meaning
vowel) and the labelling function defined by L(𝑎) = {𝑣}, L(𝑒) = {𝑣}, L(𝑔) = {𝑐} and
L(ℎ) = {𝑐}.

𝑎 66 𝑒77

��
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ℎ77

Figure 6.5: A transition system.

Atomic propositions We shall write

𝜍 ⊧ Φ

to indicate that the state 𝜍 satisfies the CTL formula Φ. The simplest CTL formulae
are the atomic propositions and in this case we have 𝜍 ⊧ 𝖺𝗉 whenever 𝖺𝗉 ∈ L(𝜍). As
an example, we have 𝑔 ⊧ 𝑐 but 𝑎 ̸⊧ 𝑐 (meaning that 𝑎 ⊧ 𝑐 is false).

Reachability in one step Another CTL formula is

𝖤𝖷Φ

which says that it is possible to reach a state in one step such that the state satisfies
Φ. Looking at Figure 6.5 it is clear that we can get from 𝑒 to a state satisfying 𝑐
in one step and we write 𝑒 ⊧ 𝖤𝖷 𝑐 to indicate this; on the other hand, 𝑎 ̸⊧ 𝖤𝖷 𝑐. In
general, 𝜍 ⊧ 𝖤𝖷Φ whenever ∃𝜍′ ∈ Reach1({𝜍}) ∶ 𝜍′ ⊧ Φ.

A related CTL formula is

𝖠𝖷Φ

which says the next state is certain to satisfy Φ. Looking at Figure 6.5 we have
𝑎 ⊧ 𝖠𝖷 𝑣 but 𝑒 ̸⊧ 𝖠𝖷 𝑣. In general, 𝜍 ⊧ 𝖠𝖷Φ whenever ∀𝜍′ ∈ Reach1({𝜍}) ≠ { } ∶
𝜍′ ⊧ Φ.
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Try It Out 6.7: Consider the transition system in Example 6.2. Consider each of
the formulae

(1) 𝖤𝖷 CAA
(2) 𝖠𝖷 CAA

and determine whether or not they hold in the state AAA. □

Reachability A CTL formula for reachability is

𝖤𝖥Φ

which says that it is possible to reach a state (possibly without moving at all) such
that the state satisfies Φ. Looking at Figure 6.5 it is clear that we can get from
𝑎 to a state satisfying 𝑐 and we write 𝑎 ⊧ 𝖤𝖥 𝑐 to indicate this; on the other hand,
𝑔 ̸⊧ 𝖤𝖥 𝑣. In general, 𝜍 ⊧ 𝖤𝖥Φ whenever ∃𝜍′ ∈ Reach({𝜍}) ∶ 𝜍′ ⊧ Φ.

A related CTL formula is

𝖠𝖥Φ

which says it is impossible not to eventually reach a state (including without moving
at all) such that the state satisfies Φ. Looking at Figure 6.5 we have 𝑎 ̸⊧ 𝖠𝖥 𝑐 but
𝑔 ⊧ 𝖠𝖥 𝑐.

Try It Out 6.8: Consider the transition system in Example 6.2. Consider each of
the formulae

(1) 𝖤𝖥 CCC
(2) 𝖠𝖥 CCC

and determine whether or not they hold in the state AAA. □

Unavoidability A CTL formula for unavoidability is

𝖠𝖦Φ

which says there is no way to escape states satisfying Φ as you move along. Looking
at Figure 6.5 we have 𝑔 ⊧ 𝖠𝖦 𝑐 to indicate this; on the other hand, 𝑎 ̸⊧ 𝖠𝖦 𝑣. In
general, 𝜍 ⊧ 𝖠𝖦Φ whenever ∀𝜍′ ∈ Reach({𝜍}) ∶ 𝜍′ ⊧ Φ.

A related CTL formula is

𝖤𝖦Φ

which says that it is possible to continue only to move to states satisfying Φ. Looking
at Figure 6.5 we have 𝑎 ⊧ 𝖤𝖦 𝑣 but 𝑔 ̸⊧ 𝖤𝖦 𝑣.
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Try It Out 6.9: Consider the transition system in Example 6.2. Consider each of
the formulae

(1) 𝖤𝖦 ¬CCC
(2) 𝖠𝖦 ¬CCC

and determine whether or not they hold in the state AAA. □

Summary We may summarise our explanation of CTL as follows:

formula meaning of formula
Φ Φ holds right now

𝖤𝖷Φ it is possible in one step to go to Φ
𝖠𝖷Φ in the next step we are at Φ
𝖤𝖥Φ it is possible to go to Φ
𝖠𝖥Φ it is not possible to escape Φ forever
𝖤𝖦Φ it is possible to continue to enjoy Φ forever
𝖠𝖦Φ you cannot escape Φ

On top of the operators explained so far we also use CTL formulae of the form ¬Φ,
Φ1 ∧ Φ2 etc.

6.3 Syntax and Semantics of CTL

Computation Tree Logic distinguishes between so-called state formulae, providing
information about states, and so-called path formulae, providing information about
paths.

Definition 6.10: The syntax of the state formulae Φ and path formulae Ψ
of Computation Tree Logic (CTL) are mutually recursively defined using the
following BNF notation:

Φ ∶∶= 𝗍𝗍 ∣ 𝖺𝗉 ∣ Φ1 ∧ Φ2 ∣ ¬Φ ∣ 𝖤Ψ ∣ 𝖠Ψ
Ψ ∶∶= 𝖷Φ ∣ 𝖥Φ ∣ 𝖦Φ ∣ Φ1 𝖴Φ2

where 𝖺𝗉 denotes an atomic proposition.

We shall write 𝖿𝖿 for ¬𝗍𝗍, Φ1 ∨Φ2 for ¬((¬Φ1)∧ (¬Φ2)) and Φ1 ⇒ Φ2 for (¬Φ1)∨Φ2
without explicitly incorporating them in the above syntax. The meanings of state
formulae and path formulae depend on each other and are defined below.
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Definition 6.11: The semantics of the state formulae Φ is given by:

𝜍 ⊧ 𝗍𝗍 iff 𝗍𝗋𝗎𝖾

𝜍 ⊧ 𝖺𝗉 iff 𝖺𝗉 ∈ L(𝜍)
𝜍 ⊧Φ1 ∧ Φ2 iff (𝜍 ⊧ Φ1) ∧ (𝜍 ⊧ Φ2)
𝜍 ⊧¬Φ iff 𝜍 ̸⊧ Φ
𝜍 ⊧𝖤Ψ iff ∃𝜋 ∶ 𝜋 ∈ Path(𝜍) ∧ 𝜋 ⊧ Ψ
𝜍 ⊧𝖠Ψ iff ∀𝜋 ∶ 𝜋 ∈ Path(𝜍) ⇒ 𝜋 ⊧ Ψ

The atomic proposition 𝖺𝗉 holds in a state whenever it is one of the atomic formulae
labelling that state. The quantifiers have much the same meaning as in predicate
logic but they range over paths rather than states; the first ensures the existence of
a path (𝜋 = 𝜍0𝜍1⋯ 𝜍𝑛⋯) with a certain property, whereas the other ensures that all
paths must have a certain property (and recall that Path(𝜍) is never empty).

Definition 6.12: The semantics of the path formulae Ψ is given by:

𝜍0𝜍1⋯ 𝜍𝑛⋯ ⊧𝖷Φ iff 𝜍1 ⊧ Φ ∧ 𝑛 > 0
𝜍0𝜍1⋯ 𝜍𝑛⋯ ⊧ 𝖥Φ iff 𝜍𝑛 ⊧ Φ ∧ 𝑛 ≥ 0
𝜍0𝜍1⋯ 𝜍𝑛⋯ ⊧𝖦Φ iff ∀𝑚 ∶ 𝜍𝑚 ⊧ Φ
𝜍0𝜍1⋯ 𝜍𝑛⋯ ⊧Φ1 𝖴Φ2 iff (𝜍𝑛 ⊧ Φ2) ∧ 𝑛 ≥ 0∧

∀𝑚 ∈ {0,⋯ , 𝑛 − 1} ∶ (𝜍𝑚 ⊧ Φ1)

The path formula 𝖷Φ holds on a path 𝜍0𝜍1⋯ 𝜍𝑛⋯ whenever Φ holds in the state
that is next in the path and there indeed is a next state. The path formula 𝖥Φ
holds on a path whenever Φ holds in some state on the path – possibly the one we
are in right now (that is 𝜍0). The path formula 𝖦Φ holds on a path whenever Φ
holds in all states on the path – including the one we are in right now (that is 𝜍0).
Finally, the path formula Φ1 𝖴Φ2 not only requires 𝖥Φ2 but additionally that Φ1
holds in all states up to (the first time) Φ2 holds.

Exercise 6.13: We did not introduce Φ1 𝖴Φ2 in Section 6.2. Explain the meaning
of 𝖠(Φ1 𝖴Φ2) and 𝖤(Φ1 𝖴Φ2) in the same informal manner used in Section 6.2.□

Exercise 6.14: Check that the informal explanation of CTL in Section 6.2 is correct
with respect to Definitions 6.11 and 6.12. □

Definition 6.15: A state formula Φ holds on a transition system whenever
it holds for all initial states: ∀𝜍 ∈ I ∶ 𝜍 ⊧ Φ.

Try It Out 6.16: Consider the transition system in Example 6.2. Consider each
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of the formulae
(1) 𝖤𝖥 CCC
(2) AAA ∧ 𝖤𝖥 CCC
(3) BBB ⇒ 𝖠𝖦 CCC
(4) 𝖠𝖥 CCC

and determine whether or not they hold for the transition system. □

6.4 From Program Graphs to Transition Systems

Recall that program graphs are intended to represent the control structure of
programs and systems whereas memories are intended to represent the data structure
over which they operate. When defining the semantics of program graphs we are
working with configurations consisting of program points (nodes in the program
graph) and memories and we are defining execution steps between configurations.

One way in which a program graph PG and a semantics may give rise to a
transition system is to take the states S to be the configurations Q × Mem,
the initial states I to be {⟨𝑞⊳; 𝜎⟩) ∣ 𝜎 ∈ Mem}, and the transition relation ⟶
to be {(𝜍, 𝜍′) ∣ 𝜍 ⟹ 𝜍′} where ⟹ is as in Definition 1.11. We shall define
AP = {@𝑞 ∣ 𝑞 ∈ Q} ∪ {#𝜎 ∣ 𝜎 ∈ Mem} ∪ {⊳,�} and take

L(⟨𝑞; 𝜎⟩) = {@𝑞, #𝜎} ∪ {⊳ ∣ 𝑞 = 𝑞⊳} ∪ {� ∣ 𝑞 = 𝑞�}
so that each state is labelled by the program point and the memory it consists
of and we have explicit labels for the initial and final program points.

Example 6.17: Let us consider the program graph depicted in Figure 6.6. It
has four program points and operates on a variable that can take integer values
among 0, 1, 2 and 3 only.

For readability we shall write the states ⟨𝑞; 𝑛⟩ simply as 𝑞𝑛 where the first
component gives a program point (chosen among 𝑎, 𝑏, 𝑐, 𝑑) and the second
component gives the value of a variable (chosen among 0, 1, 2, 3). Hence we
obtain a transition system with states S = {𝑞𝑛 ∣ 𝑞 ∈ {𝑎, 𝑏, 𝑐, 𝑑}∧𝑛 ∈ {0, 1, 2, 3}}
and the initial states I = {𝑎0, 𝑎1, 𝑎2, 𝑎3} are the ones starting in program point
𝑎.

𝑑�

𝑎⊳
𝚡<𝟹

''

𝚡>𝟶

88

𝚏𝚊𝚕𝚜𝚎

��

𝑐
𝚡∶=𝚡+𝟷

99

𝑏

𝚡∶=𝚡−𝟷

::

Figure 6.6: A program graph. The set of atomic propositions AP = {@𝑎,@𝑏,@𝑐 ,@𝑑, #0, #1, #2, #3,⊳,�} are
able to express the program point we are at, as well as the value of the variable.
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We define the labelling function by setting (for 𝑛 ∈ {0, 1, 2, 3})

L(𝑎𝑛) = {@𝑎, #𝑛,⊳}
L(𝑏𝑛) = {@𝑏, #𝑛}
L(𝑐𝑛) = {@𝑐 , #𝑛}
L(𝑑𝑛) = {@𝑑, #𝑛,�}

The transition relation ⟶ is defined as follows:

𝑞𝑛 ⟶ 𝑞′𝑛′ iff
⎛⎜⎜⎜⎝
(𝑛′ = 𝑛 ∧ 𝑞 = 𝑎 ∧ 𝑞′ ∈ {𝑏, 𝑐}∧

(𝑞′ = 𝑏 ⇒ 𝑛 > 0) ∧ (𝑞′ = 𝑐 ⇒ 𝑛 < 3)) ∨
(𝑛′ = 𝑛 + 1 ∧ 𝑞 = 𝑐 ∧ 𝑞′ = 𝑎) ∨
(𝑛′ = 𝑛 − 1 ∧ 𝑞 = 𝑏 ∧ 𝑞′ = 𝑎)

⎞⎟⎟⎟⎠
which is illustrated in Figure 6.7.

𝑏0 𝑎0 �� 𝑐0
;;

𝑑0

𝑏1

00

𝑎1 ���� 𝑐1
;;

𝑑1

𝑏2

00

𝑎2 ���� 𝑐2
;;

𝑑2

𝑏3

00

𝑎3�� 𝑐3 𝑑3

Figure 6.7: A transition system.

Try It Out 6.18: How many states are there in the transition system of Example
6.17? How many of these are reachable? □

Exercise 6.19: Write a program in the Guarded Commands language of Chapter
2 so as to obtain the program graph of Figure 6.6. □

Exercise 6.20: Consider the transition system of Example 6.17 and the following
state formulae:

(1) @𝑎
(2) #2
(3) 𝖤𝖥 (@𝑎 ∧ #2)
(4) (@𝑐 ∧ #2) ⇒ 𝖠𝖷 (@𝑎 ∧ #3)
(5) (@𝑐 ∧ #3) ⇒ 𝖠𝖷@𝑑
(6) 𝖠𝖦 (@𝑐 ⇒ 𝖠𝖷@𝑎)
(7) 𝖠𝖦 (@𝑐 ⇒ ¬#3)
(8) 𝖠𝖦 (¬@𝑑)

For each formula determine the set of states where it holds.

Next determine the set of reachable states (from Try It Out 6.18) where it holds.

Finally determine whether or not it holds of the transition system. □

For a transition system obtained from a program graph we may express the
termination of the system in different ways. The formula

⊳ ⇒ 𝖤𝖥�
says that for all initial states it is possible to terminate. The formula

⊳ ⇒ 𝖠𝖥�
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says that for all initial states we can be certain to terminate. These formulae
have different meanings in general but their meanings coincide on transition
systems obtained from deterministic systems (as defined in Definition 1.21 and
considered in Proposition 1.22).

Example 6.21: Let us return to the factorial program of Section 1.1, as
displayed in Figure 6.8. Consider the transition system obtained from the
program graph and the configurations and transitions of Section 1.2. Let us
write #𝑛 𝑚 to mean that the value of 𝚡 is 𝑛 and the value of 𝚢 is 𝑚.

The formula ⊳ ⇒ 𝖤𝖥� expresses that when we start running the factorial
program there is a way for it to finish. The formula ⊳ ⇒ 𝖠𝖥� expresses that
when we start running the factorial program it will eventually finish. Since the
program is deterministic the two formulae will have the same truth value.

𝑞⊳
𝚢∶=𝟷
��
𝑞1

𝚡>𝟶

��
𝚡≤𝟶

��
𝑞2

𝚢∶=𝚡∗𝚢
��

𝑞�

𝑞3

𝚡∶=𝚡−𝟷

		

Figure 6.8: Program graph for the
factorial function.

The formula (⊳ ∧ #7 0) ⇒ 𝖠𝖥 (� ∧ #0 5040) expresses that the program will
compute the factorial of 7 to be 5040. Note that neither of the more general
formulae (⊳ ∧ #𝑛 0) ⇒ 𝖠𝖥 (� ∧ #0 𝑛!) or ∀𝑛 ∶ (⊳ ∧ #𝑛 0) ⇒ 𝖠𝖥 (� ∧ #0 𝑛!) is
permissible in CTL.

Try It Out 6.22: Consider the program graph of Figure 6.8 and suppose that x
takes values in the set {0, 1, 2, 3} and that y takes values in the set {0, 1, 2, 3, 4, 5, 6}.
Determine how many states there are in the transition system constructed as explained
above.

Determine whether or not the formulae ⊳ ⇒ 𝖤𝖥� and ⊳ ⇒ 𝖠𝖥� hold for the
transition system. □

6.5 Towards an Algorithm (Bonus Material)

The main advantage of using a logic like CTL to express properties of transition
systems is that there are fully automatic programs, called model checkers, that can
determine whether or not the property holds of a system.

The best result that can be obtained is that model checking for CTL takes time
(∣ TS ∣ ⋅ ∣ Φ ∣) where the size ∣ TS ∣ of the transition system is the number of
states plus the number of transitions plus the sum over all states of the number of
atomic propositions, and the size ∣Φ ∣ of the formula is the number of symbols in
it. However, when the transition system is constructed from a program graph as
in Section 6.4 and the memory Mem represents 𝑚 variables taking values among
{0,⋯ , 𝑛 − 1} this works out to (𝑛𝑚 ⋅ ∣Q ∣ ⋅ ∣Φ ∣), showing exponential growth in
the number of variables; this is commonly called state explosion.

In this section we will cover some of the key ideas in the construction of a model
checker for CTL but we will not go into the symbolic data structures or optimisations
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needed to achieve the best result.

In model checking one sometimes assumes that there are transitions leaving all
(reachable) states as this reduces the complexity of some of the developments.
When this is the case we have some nice laws regarding negation, for example
that 𝖠𝖷Φ is the same as ¬(𝖤𝖷 (¬Φ)). We shall be making this assumption
in the remainder of this section; in order to meet this assumption we might
add self loops on stuck states. Furthermore, we shall assume that the set S of
states is finite.

We perform the model checking by defining a procedure Sat(Φ) computing the set
of states satisfying Φ; thus it is intended to satisfy the equation

Sat(Φ) = {𝜍 ∣ 𝜍 ⊧ Φ}

The procedure works by performing a recursive descent over the formula given as
argument.

The straightforward cases We begin with the straightforward cases:

Sat(𝗍𝗍) = S
Sat(𝖺𝗉) = {𝜍 ∈ S ∣ 𝖺𝗉 ∈ L(𝜍)}

Sat(Φ1 ∧ Φ2) = Sat(Φ1) ∩ Sat(Φ2)
Sat(¬Φ) = S ⧵ Sat(Φ)

Sat(𝖤𝖷Φ) = {𝜍 ∣ Reach1({𝜍}) ∩ Sat(Φ) ≠ { }}
Sat(𝖠𝖷Φ) = {𝜍 ∣ Reach1({𝜍}) ⊆ Sat(Φ)}

For the last two equations we make use of the algorithm of Figure 6.3 computing
the set of states reachable in exactly one step.

Exercise 6.23: Explain why the equations for 𝗍𝗍, 𝖺𝗉, Φ1∧Φ2, ¬Φ, 𝖤𝖷Φ and 𝖠𝖷Φ
are in agreement with the explanations given in Section 6.2. In particular, explain
where we are using the assumption that there are transitions leaving all (reachable)
states. □

Two of the simpler cases We continue with two of the simpler cases:

Sat(𝖤𝖥Φ) = {𝜍 ∣ Reach({𝜍}) ∩ Sat(Φ) ≠ { }}
Sat(𝖠𝖦Φ) = {𝜍 ∣ Reach({𝜍}) ⊆ Sat(Φ)}

Here we may recall the algorithm of Figure 6.4 for computing the reachable states
although it may be preferable to develop more direct algorithms.
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INPUT a transition system as in Definition 6.1
the set Sat(Φ)

OUTPUT R: the set Sat(𝖤𝖥Φ)
ALGORITHM R := Sat(Φ);

while there exists a transition 𝜍 ⟶ 𝜍′

with 𝜍 ∉ R and 𝜍′ ∈ R
do R := R ∪ {𝜍}

Figure 6.9: Algorithm for Sat(𝖤𝖥Φ).

Exercise 6.24: Argue that the algorithm of Figure 6.9 correctly computes the set
Sat(𝖤𝖥Φ). How does the algorithm differ from that of Figure 6.4? □

Exercise 6.25: Argue that 𝖠𝖦Φ is the same as ¬(𝖤𝖥 (¬Φ)) under the assumption
that there are transitions leaving all states. Use this to modify the algorithm of
Figure 6.9 to compute Sat(𝖠𝖦Φ). (Hint: it suffices to change the initialisation of
R and to insert an additional assignment at the end of the algorithm.) □

Two of the harder cases We next consider the case of 𝖤𝖦Φ, where we first
display the definition and subsequently explain it.

Sat(𝖤𝖦Φ) =
⋂

𝑛 𝐹 𝑛(Sat(Φ))
where 𝐹 (𝑆′) = {𝜍 ∈ 𝑆′ ∣ Reach1({𝜍}) ∩ 𝑆′ ≠ { }}

The definition starts with Sat(Φ) = 𝐹 0(Sat(Φ)) and gradually removes states until
each remaining state has a successor within the resulting set.

Sat(𝖤𝖦Φ)

Sat(Φ)

0
1

2
⋱𝑚

Figure 6.10: Calculating Sat(𝖤𝖦Φ).

Exercise 6.26: In this exercise we show that the calculation goes as follows

Sat(Φ) ⊃ 𝐹 1(Sat(Φ)) ⊃ ⋯ ⊃ 𝐹𝑚(Sat(Φ))
= 𝐹𝑚+1(Sat(Φ)) = ⋯ = 𝐹𝑚+𝑝(Sat(Φ)) = ⋯ =

⋂
𝑛 𝐹 𝑛(Sat(Φ))

as illustrated in Figure 6.10.

To see this, first show that 𝐹 is reductive: 𝐹 (𝑆′) ⊆ 𝑆′ for all 𝑆′.

Next show that 𝐹 is monotonic: if 𝑆1 ⊆ 𝑆2 then 𝐹 (𝑆1) ⊆ 𝐹 (𝑆2).

Then show that if 𝐹𝑚(𝑆′) = 𝐹𝑚+1(𝑆′) then indeed 𝐹𝑚(𝑆′) = 𝐹𝑚+𝑝(𝑆′) for all 𝑝 ≥ 0.

Argue that it cannot be the case that 𝐹𝑚(Sat(Φ)) ⊃ 𝐹𝑚+1(Sat(Φ)) for all 𝑚 and
conclude that the calculation goes as displayed above. □
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INPUT a transition system as in Definition 6.1
the set Sat(Φ)

OUTPUT R: the set Sat(𝖤𝖦Φ)
ALGORITHM R := Sat(Φ);

while there is 𝜍 ∈ R
with Reach1({𝜍}) ∩ R = { }

do R := R ⧵ {𝜍}

Figure 6.11: Algorithm for Sat(𝖤𝖦Φ).

Teaser 6.27: Show using mathematical induction on 𝑛 that

𝐹𝑛(Sat(Φ)) = {𝜍 ∣ ∃𝜍0𝜍1⋯ 𝜍𝑛−1𝜍𝑛⋯ ∈ Path(𝜍) ∶ ∀𝑖 ≤ 𝑛 ∶ 𝜍𝑖 ∈ Sat(Φ)}

Further conclude that the result
⋂

𝑛 𝐹
𝑛(Sat(Φ)) produced is the intended set of

states. □

Exercise 6.28: Argue that the algorithm of Figure 6.11 correctly computes the
set Sat(𝖤𝖦Φ). □

Next we consider the case 𝖠𝖥Φ, where we first display the definition and subsequently
explain it.

Sat(𝖠𝖥Φ) = S ⧵ (
⋂

𝑛 𝐹 𝑛(S ⧵ Sat(Φ)))
where 𝐹 (𝑆′) = {𝜍 ∈ 𝑆′ ∣ Reach1({𝜍}) ∩ 𝑆′ ≠ { }}

Exercise 6.29: Argue that 𝖠𝖥Φ is the same as ¬(𝖤𝖦 (¬Φ)) under the assump-
tion that there are transitions leaving all states. Conclude that Sat(𝖠𝖥Φ) =
Sat(¬(𝖤𝖦 (¬Φ))) and use this to argue for the correctness of the definition above.□

Exercise 6.30: In the manner of Exercise 6.25 use the previous exercise to modify
the algorithm of Figure 6.11 to compute Sat(𝖠𝖥Φ). (Hint: it suffices to change
the initialisation of R and to insert an additional assignment at the end of the
algorithm.) □

The remaining cases There are several approaches to dealing with the remaining
cases of 𝖤(Φ1 𝖴Φ2) and 𝖠(Φ1 𝖴Φ2). In the subsequent exercises we outline one
way to do so.

Exercise 6.31: Observe that 𝖤𝖥Φ is the same as 𝖤(𝗍𝗍 𝖴Φ) and that the algorithm
of Figure 6.9 computes Sat(𝖤𝖥Φ). Use this to argue that the algorithm of Figure
6.12 computes Sat(𝖤(Φ1 𝖴Φ2)). □
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INPUT a transition system as in Definition 6.1
the set Sat(Φ1)
the set Sat(Φ2)

OUTPUT R: the set Sat(𝖤(Φ1 𝖴Φ2))
ALGORITHM R := Sat(Φ2);

while there exists a transition 𝜍 ⟶ 𝜍′

with 𝜍 ∈ Sat(Φ1) ⧵ R and 𝜍′ ∈ R
do R := R ∪ {𝜍}

Figure 6.12: Algorithm for Sat(𝖤(Φ1 𝖴Φ2)).

Teaser 6.32: Dealing with 𝖠(Φ1 𝖴Φ2) is considerably harder. First show that

¬𝖠(Φ1 𝖴Φ2)

is equivalent to
𝖤𝖦 (¬Φ2) ∨ 𝖤( ¬Φ2 𝖴 (¬Φ1 ∧ ¬Φ2) )

Deduce that

Sat(𝖠(Φ1 𝖴Φ2)) = S ⧵
(

Sat(𝖤𝖦 (¬Φ2)) ∪ Sat(𝖤( ¬Φ2 𝖴 (¬Φ1 ∧ ¬Φ2) ))
)

and that this can be used to obtain an algorithm for computing Sat(𝖠(Φ1 𝖴Φ2)).□



Chapter 7

Procedures

Procedures (or functions) are found in most programming languages and provide a
means for reusing code in a number of programming tasks. In this chapter we will
illustrate how to add procedures to the Guarded Commands language. Our focus will
be on defining the semantics of procedures (as opposed to reasoning about them).

7.1 Declarations

So far we have taken the point of view that the memory needs to contain entries
for all the variables and arrays used in the program. This is not appropriate for
dealing with procedures and as a first step we introduce declarations that extend
the memory with entries for variables and arrays.

Syntax For this we assume that programs have the form 𝐷 ;𝐶 so commands 𝐶
are preceded by declarations 𝐷 of variables and arrays:

𝐷 ∶∶= 𝚟𝚊𝚛 𝑥 ∣ 𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛] ∣ 𝐷1 ;𝐷2

𝐶 ∶∶= ⋯ as in Definition 2.3 (with arrays)⋯
𝐺𝐶 ∶∶= ⋯ as in Definition 2.3⋯

The integer 𝑛 in the array declaration 𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛] specifies the length of the array
and is required to be positive.

𝚟𝚊𝚛 𝚒 ;
𝚟𝚊𝚛 𝚡 ;
𝚍𝚘 𝚒 < 𝟷𝟶 → 𝚡 ∶= 𝚡 + 𝙰[𝚒];

𝙱[𝚒] ∶= 𝚡;
𝚒 ∶= 𝚒 + 𝟷

𝚘𝚍

Figure 7.1: Traversing an array.

Example 7.1: The function displayed in Figure 2.11 in Section 2.3 might more
naturally be written using declarations of the auxiliary variables i and x as
shown in Figure 7.1
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Program graphs We next extend the generation of program graphs from Chapter
2. For this we introduce two new actions, 𝚟𝚊𝚛 𝑥 and 𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛], corresponding to
the two basic types of declarations and we then define a function edges(𝑞◦⇝𝑞∙)[[⋅]]
for dealing with declarations.

Definition 7.2: For declarations the edges are constructed as follows:

edges(𝑞◦⇝𝑞∙)[[𝚟𝚊𝚛 𝑥]] = {(𝑞◦, 𝚟𝚊𝚛 𝑥, 𝑞∙)}

edges(𝑞◦⇝𝑞∙)[[𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛]]] = {(𝑞◦, 𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛], 𝑞∙)}

edges(𝑞◦⇝𝑞∙)[[𝐷1 ;𝐷2]] = let 𝑞 be fresh
𝐸1 = edges(𝑞◦⇝𝑞)[[𝐷1]]
𝐸2 = edges(𝑞⇝𝑞∙)[[𝐷2]]

in 𝐸1 ∪ 𝐸2

Note that in the case of sequencing we are creating a new node exactly as we did
when dealing with sequencing of commands.

We also need a version of edges(𝑞◦⇝𝑞∙)[[⋅]] for dealing with programs of the form
𝐷 ;𝐶; for commands (and guarded commands) we can reuse the corresponding
functions from Chapter 2. For programs the edges of the program graphs are
constructed as follows:

edges(𝑞◦⇝𝑞∙)[[𝐷 ;𝐶]] = let 𝑞 be fresh
𝐸1 = edges(𝑞◦⇝𝑞)[[𝐷]]
𝐸2 = edges(𝑞⇝𝑞∙)[[𝐶]]

in 𝐸1 ∪ 𝐸2

Semantics Finally we must extend the semantic function [[⋅]] from Chapter 2 to
take care of the two new actions 𝚟𝚊𝚛 𝑥 and 𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛]:

[[𝚟𝚊𝚛 𝑥]]𝜎 = 𝜎[𝑥 ↦ 0]

[[𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛]]]𝜎 = 𝜎[𝐴[0] ↦ 0]⋯ [𝐴[𝑛 − 1] ↦ 0]

Variables are initialised to 0 and all entries of an array are similarly initialised to 0.
Note how [[𝚟𝚊𝚛 𝑥]]𝜎 differs from [[𝑥 ∶= 0]]𝜎 (defined in Definition 2.17): in the
former we do not require that an entry for 𝑥 is already present in the memory 𝜎
whereas this is the case for the latter.

Try It Out 7.3: What happens if we make multiple declarations of the same
variable (as in var u ; var u)? Is it equivalent to just a single declaration (as in var
u)? □

Try It Out 7.4: What happens if we make multiple declarations of the same array
but using different lengths (as in array A[7] ; array A[3])? □
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7.2 Blocks

Declarations are fine for introducing new variables and arrays but we would also like
to ‘get rid of them’ when they are no longer needed. To this end we introduce blocks
of the form {𝐷 ;𝐶} where the declarations 𝐷 before a command 𝐶 are indeed local
to that command. It is also customary to say that the scope of the variables and
arrays introduced in the declarations 𝐷 is restricted to the command 𝐶.

Syntax We shall take blocks to be commands and a program will simply be a
command.

Definition 7.5: The syntax of Guarded Commands with Blocks is given by

𝐷 ∶∶= 𝚟𝚊𝚛 𝑥 ∣ 𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛] ∣ 𝐷1 ;𝐷2

𝐶 ∶∶= {𝐷 ;𝐶} ∣ ⋯ as in Definition 2.3 (with arrays)⋯
𝐺𝐶 ∶∶= ⋯ as in Definition 2.3⋯

The integer 𝑛 in the array declaration 𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛] is required to be positive.
{ 𝚟𝚊𝚛 𝚢;

𝚢 ∶= 𝟷;
𝚡 ∶= 𝟷;
{ 𝚟𝚊𝚛 𝚡;
𝚡 ∶= 𝟸;
𝚢 ∶= 𝚡 + 𝟷

};
𝚡 ∶= 𝚡 + 𝚢

}

Figure 7.2: Nested declarations.

Example 7.6: As an example let us consider the program of Figure 7.2. The
variable x occurring in the assignment 𝚢 ∶= 𝚡 + 𝟷 refers to the innermost
declaration of x whereas the occurrence of x in 𝚡 ∶= 𝚡 + 𝚢 refers to the global
variable x – just as the assignment 𝚡 ∶= 𝟷 does. Therefore the value of y after
the assignment 𝚢 ∶= 𝚡 + 𝟷 is intended to be 3 (and not 2) and the value of x
after the assignment 𝚡 ∶= 𝚡 + 𝚢 is intended to be 4 (and not 5).

Program graphs To define program graphs for this language we need to extend
Definition 2.7 from Chapter 2 to take care of blocks. Declarations are handled as in
the previous section.

Definition 7.7: For blocks the edges are constructed as follows:

edges(𝑞◦⇝𝑞∙)[[{𝐷 ;𝐶}]] =
let 𝑞1, 𝑞2, 𝑞3 be fresh

𝐸1 = edges(𝑞1⇝𝑞2)[[𝐷]]
𝐸2 = edges(𝑞2⇝𝑞3)[[𝐶]]

in {(𝑞◦, 𝚎𝚗𝚝𝚎𝚛, 𝑞1)} ∪ 𝐸1 ∪ 𝐸2 ∪ {(𝑞3, 𝚎𝚡𝚒𝚝, 𝑞∙)}

The remaining cases for commands are as in Definition 2.7 (with arrays as in
Definition 2.19) and the ones for declarations are as in Definition 7.2.

The main difference from the treatment in Section 7.1 is that we introduce two
new actions 𝚎𝚗𝚝𝚎𝚛 and 𝚎𝚡𝚒𝚝 to mark the points where a new local scope begins
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and ends. The idea is that when meeting an 𝚎𝚡𝚒𝚝 we should be able to remove the
entries in the memory that were added since the previous 𝚎𝚗𝚝𝚎𝚛. The details will be
made precise shortly when we provide the semantics of the actions 𝚎𝚗𝚝𝚎𝚛 and 𝚎𝚡𝚒𝚝.

Example 7.8: Returning to Example 7.6 and Figure 7.2, the resulting program
graph is as displayed in Figure 7.3 where we have taken the liberty of naming
only some of the nodes.

𝑞⊳
𝚎𝚗𝚝𝚎𝚛 ��

𝚟𝚊𝚛 𝚢��
𝑞1
𝚢∶=𝟷
��

𝚡∶=𝟷��
𝑞2 𝚎𝚗𝚝𝚎𝚛

��

𝚟𝚊𝚛 𝚡��
𝑞3
𝚡∶=𝟸
��

𝚢∶=𝚡+𝟷��
𝑞5
𝚡∶=𝚡+𝚢��

𝑞4
𝚎𝚡𝚒𝚝��

𝑞� 𝑞6
𝚎𝚡𝚒𝚝��

Figure 7.3: Program graph for Fig-
ure 7.2.

Example 7.9: Figure 7.4 illustrates a program with nested blocks and where
the innermost block is within a loop. This means that a new instance of the
variable t is declared whenever the body of the loop is entered. The program is
intended to compute in y the x’th Fibonacci number (from the familiar sequence
1, 1, 2, 3, 5, 8, ⋯) and taking non-positive Fibonacci numbers to be 0.

{ 𝚟𝚊𝚛 𝚣;
𝚟𝚊𝚛 𝚒;
𝚣 ∶= 𝟷;
𝚢 ∶= 𝟶;
𝚒 ∶= 𝟶;
𝚍𝚘 𝚒 < 𝚡 → { 𝚟𝚊𝚛 𝚝;

𝚝 ∶= 𝚣;
𝚣 ∶= 𝚢;
𝚢 ∶= 𝚝 + 𝚣;
𝚒 ∶= 𝚒 + 𝟷

}
𝚘𝚍

}

Figure 7.4: Example program for the
Fibonacci function.

Try It Out 7.10: Construct the program graph for the program of Figure 7.4.□

Semantics The main challenge is to find a way to let the new actions 𝚎𝚗𝚝𝚎𝚛
and 𝚎𝚡𝚒𝚝 do what we intend them to do: to create a ‘marker’ when a block is
entered and to remove the entries added since the last ‘marker’ was placed when a
block is exited. There are many ways to do so and one that interacts well with our
approach so far is to redefine a memory to be a stack of frames where each frame
is a partial mapping from variables and array entries to their values; it is partial
because each frame is only intended to contain entries for some of the variables.
Creating a ‘marker’ can then be performed by pushing a new frame on the top of
the stack. Removing the entries since the last ‘marker’ was placed can be performed
by popping the topmost frame on the stack.

This leads to taking Mem𝖥 = Frame∗ (or equivalently Mem𝖥 = 𝖫𝗂𝗌𝗍(Frame)) and

Frame =
(

Var ∪ {𝐴[𝑖] ∣ 𝐴 ∈ Arr,∃𝑛 ∶ 0 ≤ 𝑖 < 𝑛}
)
↪ Int

and pretending this is a stack. When a block is entered (by executing the 𝚎𝚗𝚝𝚎𝚛
action) we will push a new empty frame on the stack. The subsequent declarations
contained in the block will add entries to the topmost frame. When leaving the
block (by executing an 𝚎𝚡𝚒𝚝 action) we pop the topmost frame from the stack.
When determining the value of a variable we will always search for the topmost
frame giving a value to it and use that. Similarly, when updating a variable we will
always find the topmost frame mentioning the variable and update its value.

Example 7.11: Before embarking upon the formal development let us illustrate
our approach by returning to the program of Figure 7.2. In doing so we will
encounter the memories of Figure 7.5 and they are annotated with the nodes
from the corresponding program graph of Figure 7.3. The initial memory
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corresponding to the node 𝑞⊳ consists of a single frame recording that the value
of the single global variable x is 0. A new frame is created when entering the
outer block and after the declaration of y we have the memory labelled (𝑞1).
The values of x and y are updated and just before entering the inner block we
have the memory labelled (𝑞2). Yet another frame is introduced and we obtain
the memory labelled (𝑞3) containing two frames defining the value of x. The
topmost occurrence of x is first updated and next inspected in order to compute
y so we arrive at the memory labelled (𝑞4). We are now ready to exit the inner
block and the topmost frame is popped so we get the memory labelled (𝑞5).
After the assignment to x we have the memory labelled (𝑞6) and when exiting
the outer block we pop the topmost frame and the resulting memory contains
the single frame labelled (𝑞�) in Figure 7.5.

𝚡 0
𝚢 0
𝚡 0

𝚢 1
𝚡 1

(𝑞⊳) (𝑞1) (𝑞2)

𝚡 0
𝚢 1
𝚡 1

𝚡 2
𝚢 3
𝚡 1

𝚢 3
𝚡 1

(𝑞3) (𝑞4) (𝑞5)

𝚢 3
𝚡 4 𝚡 4
(𝑞6) (𝑞

�
)

Figure 7.5: The memories for the
program of Figures 7.2 and 7.3.

In the following we write 𝜎 for an element of Frame and 𝜎⃗ for an element of Mem𝖥,
that is, a stack of frames; an empty frame is written [ ] whereas an empty stack of
frames is written 𝜀. The top of the stack will be to the left so we shall write 𝜎∶∶𝜎⃗
for a stack of frames with 𝜎 as the topmost frame and 𝜎⃗ being the stack of frames
below it.

A frame specifies the values of a finite set of variables and array entries and we shall
write 𝖽𝗈𝗆(𝜎) for this set; as a special case we have 𝖽𝗈𝗆([ ]) = { } for the empty
frame. We extend this notation to memories by defining

𝖽𝗈𝗆(𝜎⃗) =

{
𝖽𝗈𝗆(𝜎) ∪ 𝖽𝗈𝗆(𝜎⃗′) if 𝜎⃗ = 𝜎∶∶𝜎⃗′

{ } otherwise

One of the key operations on the memory is to determine the value of a variable.
For a frame 𝜎 we write 𝜎(𝑥) for the value of 𝑥 provided that 𝑥 ∈ 𝖽𝗈𝗆(𝜎). We shall
now extend this notation to memories and define 𝜎⃗(𝑥):

𝜎⃗(𝑥) =
⎧⎪⎨⎪⎩

𝜎(𝑥) if 𝜎⃗ = 𝜎∶∶𝜎⃗′ and 𝑥 ∈ 𝖽𝗈𝗆(𝜎)
𝜎⃗′(𝑥) if 𝜎⃗ = 𝜎∶∶𝜎⃗′ and 𝑥 ∉ 𝖽𝗈𝗆(𝜎)
undefined otherwise

Hence we return the value of 𝑥 as given by the topmost frame that contains an
entry for 𝑥; if no such frame exists the value of 𝑥 is not defined. In a similar way we
can determine the value of an array entry:

𝜎⃗(𝐴[𝑖]) =
⎧⎪⎨⎪⎩

𝜎(𝐴[𝑖]) if 𝜎⃗ = 𝜎∶∶𝜎⃗′ and 𝐴[𝑖] ∈ 𝖽𝗈𝗆(𝜎)
𝜎⃗′(𝐴[𝑖]) if 𝜎⃗ = 𝜎∶∶𝜎⃗′ and 𝐴[𝑖] ∉ 𝖽𝗈𝗆(𝜎)
undefined otherwise

Exercise 7.12: Adapt the semantic functions [[𝑎]] and [[𝑏]] of Chapter 2 to
work on memories as defined here. □

Another key operation on the memory is to update the value of a variable. For a
frame we write 𝜎[𝑥 ↦ 𝑣] for the frame that is as 𝜎 except that 𝑥 has the value 𝑣
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(provided 𝑥 ∈ 𝖽𝗈𝗆(𝜎)). For memories we shall write the operation as 𝜎⃗[𝑥 ↦ 𝑣] and
define it as follows:

𝜎⃗[𝑥 ↦ 𝑣] =
⎧⎪⎨⎪⎩

(𝜎[𝑥 ↦ 𝑣])∶∶𝜎⃗′ if 𝜎⃗ = 𝜎∶∶𝜎⃗′ and 𝑥 ∈ 𝖽𝗈𝗆(𝜎)
𝜎∶∶(𝜎⃗′[𝑥 ↦ 𝑣]) if 𝜎⃗ = 𝜎∶∶𝜎⃗′ and 𝑥 ∉ 𝖽𝗈𝗆(𝜎)
undefined otherwise

Hence we modify the value of 𝑥 as given by the topmost frame that contains an
entry for 𝑥; if no such frame exists the resulting memory is undefined. In a similar
way we can update the value of an array entry:

𝜎⃗[𝐴[𝑖] ↦ 𝑣] =
⎧⎪⎨⎪⎩

(𝜎[𝐴[𝑖] ↦ 𝑣])∶∶𝜎⃗′ if 𝜎⃗ = 𝜎∶∶𝜎⃗′ and 𝐴[𝑖] ∈ 𝖽𝗈𝗆(𝜎)
𝜎∶∶(𝜎⃗′[𝐴[𝑖] ↦ 𝑣]) if 𝜎⃗ = 𝜎∶∶𝜎⃗′ and 𝐴[𝑖] ∉ 𝖽𝗈𝗆(𝜎)
undefined otherwise

Definition 7.13: We are now ready to define the semantics of Guarded Com-
mands with Blocks. The semantic domains are

Mem𝖥 = Frame∗ where
Frame =

(
Var ∪ {𝐴[𝑖] ∣ 𝐴 ∈ Arr,∃𝑛 ∶ 0 ≤ 𝑖 < 𝑛}

)
↪ Int

and the semantic function 𝖥[[⋅]] ∶ Act → (Mem𝖥 ↪ Mem𝖥) is defined as
follows for the basic actions:

𝖥[[𝚜𝚔𝚒𝚙]]𝜎⃗ = 𝜎⃗

𝖥[[𝑥 ∶= 𝑎]]𝜎⃗ =
⎧⎪⎨⎪⎩

𝜎⃗[𝑥 ↦ 𝑧] if 𝑧 = [[𝑎]]𝜎⃗ is defined
and 𝑥 ∈ 𝖽𝗈𝗆(𝜎⃗)

undefined otherwise

𝖥[[𝑏]]𝜎⃗ =
{

𝜎⃗ if [[𝑏]]𝜎⃗ = true
undefined otherwise

𝖥[[𝐴[𝑎1] ∶= 𝑎2]]𝜎⃗ =
⎧⎪⎨⎪⎩

𝜎⃗[𝐴[𝑧1] ↦ 𝑧2] if 𝑧1 = [[𝑎1]]𝜎⃗ is defined
and 𝑧2 = [[𝑎2]]𝜎⃗ is defined
and 𝐴[𝑧1] ∈ 𝖽𝗈𝗆(𝜎⃗)

undefined otherwise

𝖥[[𝚟𝚊𝚛 𝑥]]𝜎⃗ =
{

(𝜎[𝑥 ↦ 0])∶∶𝜎⃗′ if 𝜎⃗ = 𝜎∶∶𝜎⃗′
undefined if 𝜎⃗ = 𝜀
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𝖥[[𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛]]]𝜎⃗ =
{

𝜎[𝐴[0] ↦ 0]⋯ [𝐴[𝑛 − 1] ↦ 0]∶∶𝜎⃗′ if 𝜎⃗ = 𝜎∶∶𝜎⃗′
undefined if 𝜎⃗ = 𝜀

𝖥[[𝚎𝚗𝚝𝚎𝚛]]𝜎⃗ = [ ]∶∶𝜎⃗

𝖥[[𝚎𝚡𝚒𝚝]]𝜎⃗ =
{

𝜎⃗′ if 𝜎⃗ = 𝜎∶∶𝜎⃗′
undefined if 𝜎⃗ = 𝜀

The first four clauses are straightforward adaptations of the ones in Chapter 2. The
next two clauses are adaptations of the ones from Section 7.1; here we would not
expect to encounter the cases 𝜎⃗ = 𝜖 when considering program graphs generated by
Definition 7.7. The final two clauses provide the formal treatment of the new actions
𝚎𝚗𝚝𝚎𝚛 and 𝚎𝚡𝚒𝚝; for the latter we would not expect to encounter the case 𝜎⃗ = 𝜖
when considering program graphs generated by Definition 7.7, because of the way
the block structure introduces 𝚎𝚗𝚝𝚎𝚛 and 𝚎𝚡𝚒𝚝 as matching pairs of parentheses.

Definition 7.14: As in Definitions 1.10 and 1.11 we define configurations to
be pairs of nodes and memories, so they have the form ⟨𝑞; 𝜎⃗⟩, and execution
steps will then have the form

⟨𝑞; 𝜎⃗⟩ 𝛼
⟹ ⟨𝑞′; 𝜎⃗′⟩

whenever 𝛼 is the action corresponding to an edge from 𝑞 to 𝑞′ in the program
graph and 𝖥[[𝛼]]𝜎⃗ = 𝜎⃗′. Execution sequences are then obtained as the reflexive
and transitive closure of the transition relation.

Try It Out 7.15: Assuming that the initial value of x is 4, construct a complete
execution sequence for the program of Figure 7.4 using the program graph constructed
in Try It Out 7.10. What is the maximal number of frames on the stack in any
execution sequence? □

𝙰[𝟹] ∶= 𝟷;
{ 𝚊𝚛𝚛𝚊𝚢 𝙰[𝟸];

𝙰[𝟹] ∶= 𝟽
}

Figure 7.6: Array declarations.

Exercise 7.16: Assume 𝙰 is a global array of length 5 and consider the command
of Figure 7.6 introducing a local array with the same name but of shorter length.
Construct the corresponding program graph and show that a complete execution
sequence will update the entry 𝙰[3] of the global array to 7. Modify the definition
of 𝜎⃗[𝐴[𝑖] ↦ 𝑣] so that it is undefined when indexing outside the bounds of the most
recent declaration of the array 𝐴. Make a similar modification of the definition of
𝜎⃗(𝐴[𝑖]) and give an example of a command where this makes a difference. □

Teaser 7.17: The handling of the break statement becomes more complex in the
setting of Guarded Commands with Blocks as we might have to exit a number
of blocks as part of jumping to the end of a loop. To handle this, one may keep
track of the nesting depth of the block containing the enclosing loop as well as the
nesting depth of the construct itself. Specify the construction of program graphs
and illustrate the development on an example. Extend the treatment to include the
continue construct. □
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7.3 Procedures with Dynamic Scope

Procedures are named and parameterised commands and the parameters will be
local to the procedure. There are many kinds of parameters that can be considered
and we shall restrict ourselves to just two parameters. One is an input parameter
passing values to the procedure, and the other is an output parameter passing values
out of the procedure.

Syntax Since parameters are supposed to be local to the procedure it is natural
to extend the syntax of Guarded Commands with Blocks.

Definition 7.18: The syntax of Guarded Commands with Procedures is

𝐷 ∶∶= 𝚟𝚊𝚛 𝑥 ∣ 𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛] ∣ 𝚙𝚛𝚘𝚌 𝑝(𝑥 ; 𝑦)𝐶 𝚎𝚗𝚍 ∣ 𝐷1 ;𝐷2

𝐶 ∶∶= {𝐷 ;𝐶} ∣ 𝑝(𝑎 ; 𝑧) ∣ ⋯ as in Definition 2.3 (with arrays)⋯
𝐺𝐶 ∶∶= ⋯ as in Definition 2.3⋯

The integer 𝑛 in the array declaration 𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛] is required to be positive.

The procedure declaration 𝚙𝚛𝚘𝚌 𝑝(𝑥 ; 𝑦)𝐶 𝚎𝚗𝚍 introduces a procedure with the name
𝑝, input parameter 𝑥, output parameter 𝑦 and defining command 𝐶; both 𝑥 and 𝑦
are formal parameters. The procedure call 𝑝(𝑎 ; 𝑧) calls the procedure 𝑝 with the
actual parameters 𝑎 and 𝑧. The call will pass the result of evaluating the arithmetic
expression 𝑎 to the input parameter of 𝑝 (that is to 𝑥) and will pass the resulting
value of the output parameter of 𝑝 (that is 𝑦) to the variable 𝑧 when returning.

{ 𝚙𝚛𝚘𝚌 𝚏𝚊𝚌(𝚡; 𝚢)
𝚒𝚏 𝚡 ≤ 𝟷 → 𝚢 ∶= 𝟷
[] 𝚡 > 𝟷 → { 𝚟𝚊𝚛 𝚝;

𝚏𝚊𝚌(𝚡 − 𝟷; 𝚝);
𝚢 ∶= 𝚡 ∗ 𝚝

}
𝚏𝚒

𝚎𝚗𝚍;
𝚏𝚊𝚌(𝟹; 𝚣)

}

Figure 7.7: Example program for the
factorial function.

Example 7.19: Figure 7.7 defines a factorial program written in Guarded
Commands with Procedures. Here x and y are the formal parameters of the
procedure and t is a local variable used to hold the result obtained from the
recursive call of the procedure. At the top level the procedure is called with the
actual parameters 3 and z.

Program graphs When defining the program graph we need to keep track of
the procedures that have been declared and for each procedure we need to record
its input parameter, output parameter, entry node and exit node. We shall use
an environment 𝜌 for this: this is just a partial mapping from procedure names to
quadruples consisting of two variables and two nodes, so typically we will have

𝜌(𝑝) = (𝑥, 𝑦, 𝑞𝑛, 𝑞𝑥)

for a procedure 𝑝 with parameters 𝑥 and 𝑦 and with 𝑞𝑛 being the entry (or initial)
node of the procedure body and 𝑞𝑥 being the exit (or final) node of the procedure
body. It turns out that the way we do this gives rise to something called dynamic
scope, which will be discussed in more detail in Section 7.4.
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The environment 𝜌 will be constructed when we build the program graph for the
declarations and, as we shall see shortly, it will be used when we construct the
program graph for the commands. We shall therefore let edges𝖽𝗉𝟤(𝑞◦⇝𝑞∙)[[𝐷]] be
a function that is supplied with the current environment 𝜌 as parameter and in
addition to returning the edges of the program graph for 𝐷 it will also return an
updated version of 𝜌.

Definition 7.20: For declarations the edges are constructed as follows:

edges𝖽𝗉𝟤(𝑞◦⇝𝑞∙)[[𝚟𝚊𝚛 𝑥]]𝜌 = ({(𝑞◦, 𝚟𝚊𝚛 𝑥, 𝑞∙)}, 𝜌)

edges𝖽𝗉𝟤(𝑞◦⇝𝑞∙)[[𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛]]]𝜌 = ({(𝑞◦, 𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛], 𝑞∙)}, 𝜌)

edges𝖽𝗉𝟤(𝑞◦⇝𝑞∙)[[𝐷1 ;𝐷2]]𝜌 =
let 𝑞 be fresh

(𝐸1, 𝜌1) = edges𝖽𝗉𝟤(𝑞◦⇝𝑞)[[𝐷1]]𝜌
(𝐸2, 𝜌2) = edges𝖽𝗉𝟤(𝑞⇝𝑞∙)[[𝐷2]]𝜌1

in (𝐸1 ∪ 𝐸2, 𝜌2)

edges𝖽𝗉𝟤(𝑞◦⇝𝑞∙)[[𝚙𝚛𝚘𝚌 𝑝(𝑥 ; 𝑦)𝐶 𝚎𝚗𝚍]]𝜌 =
let 𝑞𝑛, 𝑞𝑥 be fresh

𝜌′ = 𝜌[𝑝 ↦ (𝑥, 𝑦, 𝑞𝑛, 𝑞𝑥)]
𝐸 = edges𝖽𝗉(𝑞𝑛⇝𝑞𝑥)[[𝐶]]𝜌′

in ({(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞∙)} ∪ 𝐸, 𝜌′)

The first three clauses are much as in Definition 7.2 except that the environment is
provided as an additional parameter and is returned as a result.

𝑞◦

𝚜𝚔𝚒𝚙
��

𝑞𝑛

𝐸
��

𝑞∙ 𝑞𝑥

Figure 7.8: Procedure declaration.

The last clause takes care of procedure declarations and is the clause that updates
the environment with information about the procedure defined. It generates a single
edge from 𝑞◦ to 𝑞∙ with a 𝚜𝚔𝚒𝚙 action and as a ‘side effect’ it creates two fresh
nodes 𝑞𝑛 and 𝑞𝑥 to be used as the entry and exit nodes for the program graph for
the body of the procedure. This is illustrated in Figure 7.8; at this stage these two
parts of the program graph are unconnected but they will become connected when
the procedure is called. It turns out that we allow procedures to be recursive (‘call
themselves’) because the environment used for generating the program graph for 𝐶
is 𝜌′ rather than 𝜌.

Before turning to the procedure calls let us adapt the generation of edges for the
other commands and guarded commands to take care of the environment.

Essential Exercise 7.21: In preparation for dealing with procedure calls
you should modify the generation of edges for the remaining commands (that
is, Definition 2.7 with arrays) and guarded commands (that is, Definition 2.8)
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to take care of the environment. For blocks we modify Definition 7.7 to be

edges𝖽𝗉(𝑞◦⇝𝑞∙)[[{𝐷 ;𝐶}]]𝜌 =
let 𝑞1, 𝑞2, 𝑞3 be fresh

(𝐸1, 𝜌1) = edges𝖽𝗉𝟤(𝑞1⇝𝑞2)[[𝐷]]𝜌
𝐸2 = edges𝖽𝗉(𝑞2⇝𝑞3)[[𝐶]]𝜌1

in {(𝑞◦, 𝚎𝚗𝚝𝚎𝚛, 𝑞1)} ∪ 𝐸1 ∪ 𝐸2 ∪ {(𝑞3, 𝚎𝚡𝚒𝚝, 𝑞∙)}

so as to update and make use of the environment. In the clauses you define
there should only be a need to pass the environment around as a parameter (as
was done in the call to edges𝖽𝗉(𝑞2⇝𝑞3)[[𝐶]]𝜌1 in the above clause).

𝑞◦
𝚎𝚗𝚝𝚎𝚛

��

𝑞∙

𝚟𝚊𝚛 𝑥
��

𝚟𝚊𝚛 𝑦
��

𝑥 ∶= ⌊𝑎⌋
��

𝚎𝚡𝚒𝚝

<<

𝚛𝚎𝚌𝚘𝚛𝚍 𝑞◦𝑞∙ ��

⌊𝑧⌋ ∶= 𝑦

<<

𝑞𝑛 �� 𝑞𝑥

𝚌𝚑𝚎𝚌𝚔 𝑞◦𝑞∙

<<

Figure 7.9: Procedure call.

Consider now a procedure call 𝑝(𝑎 ; 𝑧) of a procedure declared as 𝚙𝚛𝚘𝚌 𝑝(𝑥 ; 𝑦)𝐶 𝚎𝚗𝚍.
Upon execution it should give rise to the following actions, as illustrated in Figure
7.9:

1. push a fresh frame for the input and output parameters 𝑥 and 𝑦 as they should
be local to the procedure body 𝐶; this can be accomplished by the three
actions 𝚎𝚗𝚝𝚎𝚛, 𝚟𝚊𝚛 𝑥 and 𝚟𝚊𝚛 𝑦,

2. assign the input parameter 𝑥 with the value of 𝑎; we shall use the special
action 𝑥 ∶= ⌊𝑎⌋ for this,

3. make a record of the call and return nodes 𝑞◦ and 𝑞∙ before transferring control
to the entry point 𝑞𝑛 of the procedure body 𝐶; the action 𝚛𝚎𝚌𝚘𝚛𝚍 𝑞◦𝑞∙ will be
used for this,

4. transfer control from the exit point 𝑞𝑥 of the procedure body 𝐶 if the recorded
call and return nodes are the appropriate ones; this is ensured by the action
𝚌𝚑𝚎𝚌𝚔 𝑞◦𝑞∙,

5. assign the return variable 𝑧 the value of the output parameter 𝑦 using the
special action ⌊𝑧⌋ ∶= 𝑦, and finally

6. pop the top frame using the action 𝚎𝚡𝚒𝚝.

This is achieved by generating program graphs for procedure calls as follows.

Definition 7.22: For commands and guarded commands the edges are con-
structed as in Essential Exercise 7.21 together with the following clause for
procedure calls:

edges𝖽𝗉(𝑞◦⇝𝑞∙)[[𝑝(𝑎 ; 𝑧)]]𝜌 =
let 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6 be fresh

(𝑥, 𝑦, 𝑞𝑛, 𝑞𝑥) = 𝜌(𝑝)
in {(𝑞◦, 𝚎𝚗𝚝𝚎𝚛, 𝑞1), (𝑞1, 𝚟𝚊𝚛 𝑥, 𝑞2), (𝑞2, 𝚟𝚊𝚛 𝑦, 𝑞3),

(𝑞3, 𝑥 ∶= ⌊𝑎⌋, 𝑞4), (𝑞4, 𝚛𝚎𝚌𝚘𝚛𝚍 𝑞◦𝑞∙, 𝑞𝑛),
(𝑞𝑥, 𝚌𝚑𝚎𝚌𝚔 𝑞◦𝑞∙, 𝑞5), (𝑞5, ⌊𝑧⌋ ∶= 𝑦, 𝑞6), (𝑞6, 𝚎𝚡𝚒𝚝, 𝑞∙)}
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𝑞⊳
𝚎𝚗𝚝𝚎𝚛 ��

𝑞◦
𝚜𝚔𝚒𝚙 ��

𝑞1
𝚎𝚗𝚝𝚎𝚛 ��

𝚟𝚊𝚛 𝚝

66𝑞0
𝚎𝚗𝚝𝚎𝚛 �� 𝚟𝚊𝚛 𝚡 �� 𝚟𝚊𝚛 𝚢 �� 𝚡∶=⌊𝟹⌋ �� 𝚛𝚎𝚌𝚘𝚛𝚍 𝑞0𝑞∙ �� 𝑞𝑛

𝚡>𝟷
==

𝚡≤𝟷
��

𝚛𝚎𝚌𝚘𝚛𝚍 𝑞2𝑞3
��

𝚡∶=⌊𝚡−𝟷⌋��
𝚟𝚊𝚛 𝚢

��
𝚟𝚊𝚛 𝚡
�� 𝑞2𝚎𝚗𝚝𝚎𝚛

��

𝚢∶=𝟷 ��
𝑞∙

𝚎𝚡𝚒𝚝 ��
𝚎𝚡𝚒𝚝

�� ⌊𝚣⌋∶=𝚢�� 𝑞𝑥𝚌𝚑𝚎𝚌𝚔 𝑞0𝑞∙
�� 𝚌𝚑𝚎𝚌𝚔 𝑞2𝑞3 �� ⌊𝚝⌋∶=𝚢 �� 𝚎𝚡𝚒𝚝 �� 𝑞3

𝚢∶=𝚡∗𝚝>>𝑞� 𝑞4
𝚎𝚡𝚒𝚝
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Figure 7.10: Program graph for the factorial function of Figure 7.7; the procedure declaration itself gives rise to the two framed parts of
the program graph.

If 𝜌(𝑝) is undefined (that is, the procedure is not declared) then no program
graph can be constructed.

Procedure calls and declarations are best understood together, as in the following
example.

Example 7.23: Figure 7.10 presents the program graph constructed for the
factorial program of Figure 7.7. The procedure declaration gives rise to the
framed edge from 𝑞◦ to 𝑞0 and the framed rightmost part of the graph; it
will produce an environment where fac is associated with the information
(𝚡, 𝚢, 𝑞𝑛, 𝑞𝑥). The procedure call fac(3,z) gives rise to the (red) edges linking
𝑞0 with 𝑞𝑛 for the call itself and the (red) edges linking 𝑞𝑥 with 𝑞∙ when returning
from the call.

The program graph for the procedure body has two parts, corresponding to the
two parts of the conditional. When 𝚡 ≤ 𝟷 we simply obtain the two edges from
𝑞𝑛 to 𝑞𝑥. When 𝚡 > 𝟷 we first have the edges for handling the local declaration
of t: the edges from 𝑞1 to 𝑞2 introduce the new frame whereas the edge from
𝑞4 to 𝑞𝑥 pops it. The recursive procedure call gives rise to the edges from 𝑞2 to
𝑞𝑛 at the call point and the edges from 𝑞𝑥 to 𝑞3 at the return point. The edge
from 𝑞3 to 𝑞4 takes care of the assignment following the recursive call.

{ 𝚙𝚛𝚘𝚌 𝚏𝚒𝚋(𝚡; 𝚢)
𝚒𝚏 𝚡 ≤ 𝟷 → 𝚢 ∶= 𝟷
[] 𝚡 > 𝟷 → { 𝚟𝚊𝚛 𝚝;

𝚟𝚊𝚛 𝚞;
𝚏𝚒𝚋(𝚡 − 𝟷; 𝚝);
𝚏𝚒𝚋(𝚡 − 𝟸; 𝚞);
𝚢 ∶= 𝚝 + 𝚞

}
𝚏𝚒

𝚎𝚗𝚍;
𝚏𝚒𝚋(𝟻; 𝚣)

}

Figure 7.11: Example program for
the Fibonacci function.

Try It Out 7.24: Construct the program graph for the command of Figure 7.11.□

Exercise 7.25: Often we would like to allow procedures to have a number of input
parameters 𝑥1,⋯ , 𝑥𝑛 (for 𝑛 ≥ 0) and a number of output parameters 𝑦1,⋯ , 𝑦𝑚 (for
𝑚 ≥ 0). Modify the clauses for procedure declaration and procedure call to allow
the case 𝑛 = 2 and 𝑚 = 1. □
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Teaser 7.26: Redo Exercise 7.25 in the general case where 𝑛 ≥ 0 and 𝑚 ≥ 0. □

Exercise 7.27: Construct recursive procedures in Guarded Commands with Proce-
dures for computing
(a) the smallest number of steps needed in the game of Towers of Hanoi (see

Example 6.2 for a description of the game) to move a stack of 𝑛 disks from one
rod to another,

(b) the Euclidean algorithm for computing the greatest common divisor, and

(c) the binomial coefficients
(𝑛
𝑘

)
; recall that

(𝑛
𝑘

)
=
(𝑛−1
𝑘−1

)
+
(𝑛−1

𝑘

)
when 1 ≤ 𝑘 ≤ 𝑛−1

and
(𝑛
0

)
=
(𝑛
𝑛

)
= 1 for 𝑛 ≥ 0.

In each case use the above definitions (and the extensions from Exercise 7.25) to
construct the corresponding program graph. □

Semantics The semantics will follow the approach of Section 7.2 and use a memory
that is a stack of frames. The semantics of the operations 𝚎𝚗𝚝𝚎𝚛 and 𝚎𝚡𝚒𝚝 are as
before so they will push and pop frames from the memory. Similarly the semantics
of the declarations 𝚟𝚊𝚛 𝑥 and 𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛] is as in Section 7.2. We shall now take
care of the four new actions used for procedures. So once again consider a procedure
call 𝑝(𝑎 ; 𝑧) of a procedure previously declared as 𝚙𝚛𝚘𝚌 𝑝(𝑥 ; 𝑦)𝐶 𝚎𝚗𝚍.

The key idea behind the ⌊⋅⌋ construct is to bypass the topmost frame on the stack.
This is used in the action 𝑥 ∶= ⌊𝑎⌋ when calling a procedure because the actual
parameter 𝑎 needs to be evaluated as if the topmost frame had not yet been pushed,
and it is also used in the action ⌊𝑧⌋ ∶= 𝑦 when returning from a procedure because
the return parameter 𝑧 needs to be located as if the topmost frame had already
been popped.

The operation 𝚛𝚎𝚌𝚘𝚛𝚍 𝑞1𝑞2 works much like an assignment ∗ ∶= (𝑞1, 𝑞2) to a special
control variable allocated in the topmost frame, and the operation 𝚌𝚑𝚎𝚌𝚔 𝑞1𝑞2 then
works much like the test ∗ = (𝑞1, 𝑞2). Together they ensure that a call returns to
the right node; we see an instance of that for the node 𝑞𝑥 in Figure 7.10 because the
factorial program may be called either globally (in which case we should eventually
return to 𝑞�) or recursively (in which case we should eventually return to 𝑞3). This
is made precise in the following definition.

Definition 7.28: The semantic function 𝖥[[⋅]] ∶ Act → (Mem𝖥 ↪ Mem𝖥)
for Guarded Commands with Procedures is defined by extending Definition 7.13
with the following clauses:

𝖥[[𝑥 ∶= ⌊𝑎⌋]]𝜎⃗ =
⎧⎪⎨⎪⎩

𝜎⃗[𝑥 ↦ [[𝑎]]𝜎⃗′] if 𝜎⃗ = 𝜎∶∶𝜎⃗′
and [[𝑎]]𝜎⃗′ is defined

undefined otherwise
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Figure 7.12: Selected memories at different program points for an execution sequence using the program graph of Figure 7.10.

𝖥[[⌊𝑥⌋ ∶= 𝑎]]𝜎⃗ =
⎧⎪⎨⎪⎩

𝜎∶∶𝜎⃗′[𝑥 ↦ [[𝑎]]𝜎⃗] if 𝜎⃗ = 𝜎∶∶𝜎⃗′
and [[𝑎]]𝜎⃗ is defined

undefined otherwise

𝖥[[𝚛𝚎𝚌𝚘𝚛𝚍 𝑞1𝑞2]]𝜎⃗ =
{

𝜎[∗ ↦ (𝑞1, 𝑞2)]∶∶𝜎⃗′ if 𝜎⃗ = 𝜎∶∶𝜎⃗′
undefined otherwise

𝖥[[𝚌𝚑𝚎𝚌𝚔 𝑞1𝑞2]]𝜎⃗ =
{

𝜎⃗ if 𝜎⃗ = 𝜎∶∶𝜎⃗′ and 𝜎(∗) = (𝑞1, 𝑞2)
undefined otherwise

For this to make sense we need to slightly modify the semantic domains from
Definition 7.13 to be

Mem𝖥 = Frame∗ where
Frame =

(
Var ∪ {𝐴[𝑖] ∣ 𝐴 ∈ Arr,∃𝑛 ∶ 0 ≤ 𝑖 < 𝑛} ∪ {∗}

)
↪̇ Int ∪ (Q × Q)

where 𝜎 ∈ Frame whenever

𝜎 ∈
(

Var ∪ {𝐴[𝑖] ∣ 𝐴 ∈ Arr,∃𝑛 ∶ 0 ≤ 𝑖 < 𝑛} ∪ {∗}
)
↪ Int ∪ (Q × Q)

and 𝜎(⋅) produces a result in Q × Q if and only if its argument is ∗.

Example 7.29: Let us consider an execution sequence for the program graph
of Figure 7.10 starting with a memory where z has the value 0, as illustrated
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by the leftmost memory of Figure 7.12. The first time we reach the node 𝑞𝑛
we will have the second memory of Figure 7.12: we have added a frame with
entries for the formal parameters x and y of the procedure, x has obtained the
value 3 and the frame will record that the call and return nodes are 𝑞0𝑞∙. As
𝚡 > 𝟷 holds, the execution will proceed to node 𝑞2 and we will add yet another
frame to the memory; it will have an entry for the local variable t, as illustrated
in the third memory of Figure 7.12.

The execution will proceed like this, adding a new frame for the formal parame-
ters and the return node each time we pass through 𝑞𝑛 and 𝑞2, as illustrated in
the left-hand part of Figure 7.12. Eventually the test 𝚡 ≤ 𝟷 will succeed and we
arrive at 𝑞𝑥 with a memory where the topmost occurrence of y has the value 1.

The subsequent steps will now pop frames from the memory whenever we
reach 𝑞3 or 𝑞𝑥 while taking care to update the actual as well as the formal
parameter of the procedure call, as illustrated in the right-hand half of Figure
7.12. Eventually we will arrive at the node 𝑞� with the memory recording that
z has the value 6.

Try It Out 7.30: Construct an execution sequence for the Fibonacci program of
Figure 7.11 using the program graph constructed in Try It Out 7.24. □

Exercise 7.31: Often we would like to allow procedure calls of the form 𝑝(𝑎1 ;𝐴[𝑎2]).
Extend the development to allow this. □

Teaser 7.32: When constructing the program graphs for procedure calls in Defini-
tion 7.22 we have used 𝚛𝚎𝚌𝚘𝚛𝚍 𝑞◦𝑞∙ and 𝚌𝚑𝚎𝚌𝚔 𝑞◦𝑞∙. An alternative would be to use
simply 𝚛𝚎𝚌𝚘𝚛𝚍 𝑞∙ and 𝚌𝚑𝚎𝚌𝚔 𝑞∙. Can you imagine a situation where the alternative
choice would be inappropriate? □

7.4 Procedures with Static Scope

Dynamic versus static scope Consider the program in Figure 7.13, where we
have a global variable u being set to 1 followed by a block declaring a procedure p
with two assignments in its body, together with local variables u and v and concluding
with a call to p. What is the final value of the global variable u? This depends on
which version of u is updated by p when it is called. The notion of dynamic scope
says that p should update the occurrence of u that is in scope at the point where
p is called ; this would give rise to the final value of the global variable u being 1.
The notion of static scope says that p should update the occurrence of u that is in
scope at the point where p is declared ; this would give rise to the final value of the
global variable u being 2. We usually expect dynamic scope when using macros and
static scope when using procedures.

𝚞 ∶= 𝟷;
{ 𝚙𝚛𝚘𝚌 𝚙(𝚡; 𝚢)

𝚢 ∶= 𝚡 + 𝟷;
𝚞 ∶= 𝟸

𝚎𝚗𝚍;
𝚟𝚊𝚛 𝚞;
𝚟𝚊𝚛 𝚟;
𝚙(𝚞; 𝚟)

}

Figure 7.13: Scope confusion.
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Essential Exercise 7.33: Use the development of Section 7.3 to generate
the program graph for the program in Figure 7.13. Next use the semantics to
construct a complete execution sequence for the program. Finally conclude that
the development of Section 7.3 gives rise to dynamic scope.

Renaming variables If it is the same declaration of a variable that is in scope
both when a procedure is declared and when it is called then there is no distinction
between static and dynamic scope. Then we can obtain static scope for a program by
first renaming all declarations and formal parameters so that no declaration or formal
parameter occurs twice or overlaps with a global variable. This is called renaming
variables apart and clearly we will have to take care in renaming all other occurrences
of variables as well, so that they refer to the appropriate renamed variable.

Renaming variables on the fly We now show how to rename variables (and
arrays) apart while generating the program graph. In the development of Section 7.3
we already used an environment 𝜌 to record crucial information about the procedures
declared. We shall now extend the environment 𝜌 to record how variables and arrays
have been renamed so as to avoid scope confusion. We begin by renaming on the
fly in the case of declarations.

Definition 7.34: For declarations the edges are constructed as follows:

edges𝗌𝗉𝟤(𝑞◦⇝𝑞∙)[[𝚟𝚊𝚛 𝑥]]𝜌 = let 𝑥′ be fresh
𝜌′ = 𝜌[𝑥 ↦ 𝑥′]

in ({(𝑞◦, 𝚟𝚊𝚛 𝑥′, 𝑞∙)}, 𝜌′)
edges𝗌𝗉𝟤(𝑞◦⇝𝑞∙)[[𝚊𝚛𝚛𝚊𝚢 𝐴[𝑛]]]𝜌 = let 𝐴′ be fresh

𝜌′ = 𝜌[𝐴 ↦ 𝐴′]
in ({(𝑞◦, 𝚊𝚛𝚛𝚊𝚢 𝐴′[𝑛], 𝑞∙)}, 𝜌′)

edges𝗌𝗉𝟤(𝑞◦⇝𝑞∙)[[𝐷1 ;𝐷2]]𝜌 =
let 𝑞 be fresh

(𝐸1, 𝜌1) = edges𝗌𝗉𝟤(𝑞◦⇝𝑞)[[𝐷1]]𝜌
(𝐸2, 𝜌2) = edges𝗌𝗉𝟤(𝑞⇝𝑞∙)[[𝐷2]]𝜌1

in (𝐸1 ∪ 𝐸2, 𝜌2)
edges𝗌𝗉𝟤(𝑞◦⇝𝑞∙)[[𝚙𝚛𝚘𝚌 𝑝(𝑥 ; 𝑦)𝐶 𝚎𝚗𝚍]]𝜌 =

let 𝑞𝑛, 𝑞𝑥 be fresh
𝑥′, 𝑦′ be fresh
𝜌′ = 𝜌[𝑝 ↦ (𝑥′, 𝑦′, 𝑞𝑛, 𝑞𝑥)]
𝜌′′ = 𝜌′[𝑥 ↦ 𝑥′, 𝑦 ↦ 𝑦′]
𝐸 = edges𝗌𝗉(𝑞𝑛⇝𝑞𝑥)[[𝐶]]𝜌′′

in ({(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞∙)} ∪ 𝐸, 𝜌′)

Thus whenever we encounter a variable or array declaration we provide a fresh name



106 7. Procedures

for it and update the environment to keep track of the new names; this also holds for
procedure declarations, where we rename the formal parameters. When constructing
the edges for the body of the procedure body we make use of the most recent version
of the environment in order to enforce static scope.

The clauses for commands show how we make use of the environment on the fly –
and update it when needed. In particular we make sure that all the variables (and
arrays) are renamed as required by the environment; as explained in more detail
below we write [[𝑎]]𝜌 for the renamed version of the arithmetic expression 𝑎 and
similarly [[𝑏]]𝜌 for the renamed version of the boolean expression 𝑏.

Definition 7.35: For commands the edges are constructed as follows:

edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝑥 ∶= 𝑎]]𝜌 = let 𝑥′ = 𝜌(𝑥)
𝑎′ = [[𝑎]]𝜌

in {(𝑞◦, 𝑥′ ∶= 𝑎′, 𝑞∙)}

edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝐴[𝑎1] ∶= 𝑎2]]𝜌 = let 𝐴′ = 𝜌(𝐴)
𝑎′1 = [[𝑎1]]𝜌
𝑎′2 = [[𝑎2]]𝜌

in {(𝑞◦, 𝐴′[𝑎′1] ∶= 𝑎′2, 𝑞∙)}

edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝚜𝚔𝚒𝚙]]𝜌 = {(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞∙)}

edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝐶1 ;𝐶2]]𝜌 = let 𝑞 be fresh
𝐸1 = edges𝗌𝗉(𝑞◦⇝𝑞)[[𝐶1]]𝜌
𝐸2 = edges𝗌𝗉(𝑞⇝𝑞∙)[[𝐶2]]𝜌

in 𝐸1 ∪ 𝐸2

edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝚒𝚏 𝐺𝐶 𝚏𝚒]]𝜌 = edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝐺𝐶]]𝜌

edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝚍𝚘 𝐺𝐶 𝚘𝚍]]𝜌 = let 𝑏 = 𝖽𝗈𝗇𝖾[[𝐺𝐶]]
𝑏′ = [[𝑏]]𝜌
𝐸 = edges𝗌𝗉(𝑞◦⇝𝑞◦)[[𝐺𝐶]]𝜌

in 𝐸 ∪ {(𝑞◦, 𝑏′, 𝑞∙)}

edges𝗌𝗉(𝑞◦⇝𝑞∙)[[{𝐷 ;𝐶}]]𝜌 = let 𝑞1, 𝑞2, 𝑞3 be fresh
(𝐸1, 𝜌1) = edges𝗌𝗉𝟤(𝑞1⇝𝑞2)[[𝐷]]𝜌
𝐸2 = edges𝗌𝗉(𝑞2⇝𝑞3)[[𝐶]]𝜌1

in {(𝑞◦, 𝚎𝚗𝚝𝚎𝚛, 𝑞1)} ∪ 𝐸1 ∪ 𝐸2
∪{(𝑞3, 𝚎𝚡𝚒𝚝, 𝑞∙)}
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edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝑝(𝑎 ; 𝑧)]]𝜌 = let 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6 be fresh
(𝑥, 𝑦, 𝑞𝑛, 𝑞𝑥) = 𝜌(𝑝)
𝑎′ = [[𝑎]]𝜌
𝑧′ = 𝜌(𝑧)

in {(𝑞◦, 𝚎𝚗𝚝𝚎𝚛, 𝑞1), (𝑞1, 𝚟𝚊𝚛 𝑥, 𝑞2),
(𝑞2, 𝚟𝚊𝚛 𝑦, 𝑞3), (𝑞3, 𝑥 ∶= ⌊𝑎′⌋, 𝑞4),
(𝑞4, 𝚛𝚎𝚌𝚘𝚛𝚍 𝑞◦𝑞∙, 𝑞𝑛),

(𝑞𝑥, 𝚌𝚑𝚎𝚌𝚔 𝑞◦𝑞∙, 𝑞5), (𝑞5, ⌊𝑧′⌋ ∶= 𝑦, 𝑞6),
(𝑞6, 𝚎𝚡𝚒𝚝, 𝑞∙)}

The renaming of the variables and array names has to be enforced everywhere as
the memory will provide values only for the renamed variables and array entries. For
an arithmetic expression 𝑎 we write [[𝑎]]𝜌 for the renamed version of it and some
selected cases are:

[[𝑥]]𝜌 = 𝜌(𝑥)
[[𝑛]]𝜌 = 𝑛

[[𝑎1 + 𝑎2]]𝜌 = [[𝑎1]]𝜌+ [[𝑎2]]𝜌
[[𝐴[𝑎]]]𝜌 = 𝜌(𝐴)[[[𝑎]]𝜌]

Similarly, for a boolean expression 𝑏 we write [[𝑏]]𝜌 for the renamed version and some
selected cases are:

[[𝚝𝚛𝚞𝚎]]𝜌 = 𝚝𝚛𝚞𝚎
[[𝑎1 <𝑎2]]𝜌 = [[𝑎1]]𝜌< [[𝑎2]]𝜌
[[𝑏1 ∧ 𝑏2]]𝜌 = [[𝑏1]]𝜌∧ [[𝑏2]]𝜌

Try It Out 7.36: Suppose that 𝜌 = [𝚡 ↦ 𝚡𝟽][𝚢 ↦ 𝚢][𝙰 ↦ 𝙰′]; which renamed
arithmetic expression does [[𝙰[𝚡] < (𝚢 + 𝟸)]]𝜌 give rise to? □

Finally, we show how to rename on the fly in the case of guarded commands.

Definition 7.37: For guarded commands the edges are constructed as follows:

edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝑏 → 𝐶]]𝜌 = let 𝑞 be fresh
𝑏′ = [[𝑏]]𝜌
𝐸 = edges𝗌𝗉(𝑞⇝𝑞∙)[[𝐶]]𝜌

in {(𝑞◦, 𝑏′, 𝑞)} ∪ 𝐸

edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝐺𝐶1 []𝐺𝐶2]]𝜌 = let 𝐸1 = edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝐺𝐶1]]𝜌
𝐸2 = edges𝗌𝗉(𝑞◦⇝𝑞∙)[[𝐺𝐶2]]𝜌

in 𝐸1 ∪ 𝐸2
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Semantics The semantic function 𝖥[[⋅]] is as in Definitions 7.13 and 7.28 with
the semantic domains as in Definition 7.28. Since the renaming of the variables
and array names happens in the construction of the program graphs the semantic
functions will not need to know about this.

When implementing programming languages part of the memory is a stack of
entries. Entries include values (perhaps 32-bit signed integers instead of our
mathematical integers), return addresses (pointers to the code rather than our
𝑞◦𝑞∙) and pointers to the stack.

A so-called dynamic pointer is contained in frames corresponding to procedure
calls, and points to the frame below the current one so as to facilitate the
popping of frames. We did not need this due to our more abstract model of
the memory as a stack of frames.

A so-called static pointer is contained in frames corresponding to procedure
calls, and in general points further down the stack than the dynamic pointer. It
is used whenever the values of non-local variables need to be found – assuming
that we want to obtain static scope. We did not need this due to our renaming
of variables on the fly.



Chapter 8

Concurrency

So far we have been looking at individual programs running on their own. In this
chapter we will illustrate how to deal with concurrently running programs that may
communicate with one another. Our main focus will be on defining the semantics.

8.1 Shared Variables

We extend the syntax of Guarded Commands from Definition 2.3 to allow commands
(called processes) that execute concurrently while having a shared memory.

Definition 8.1: The syntax of the programs 𝑃 , commands 𝐶 and guarded
commands 𝐺𝐶 of the Guarded Commands with Concurrency language are
mutually recursively defined using the following BNF notation:

𝑃 ∶∶= 𝚙𝚊𝚛 𝐶1 [] ⋯ []𝐶𝑛 𝚛𝚊𝚙
𝐶 ∶∶= ⋯ as in Definition 2.3 (with arrays)⋯

𝐺𝐶 ∶∶= ⋯ as in Definition 2.3⋯

The number 𝑛 of concurrent processes is required to be positive.

Example 8.2: To illustrate the new constructs we shall consider the mutual
exclusion problem: two (or more) concurrent processes want to access a shared
resource but they cannot be allowed to do so at the same time. The part of
each process accessing the shared resource is called the critical section of the
process. The task of the mutual exclusion algorithm is to ensure that at most
one of the processes can be in its critical section at any time. Several such
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algorithms exist and one of them is the Bakery Algorithm by Leslie Lamport.

Figure 8.1 gives the Bakery Algorithm in the case of just two processes. It makes
use of two shared variables 𝚡𝟷 and 𝚡𝟸; each process inspects both variables but
only updates one of them.

𝚙𝚊𝚛
𝚍𝚘 𝚝𝚛𝚞𝚎 →

𝚡𝟷 ∶= 𝚡𝟸 + 𝟷 ;
𝚒𝚏 𝚡𝟸 = 𝟶 ∨ 𝚡𝟷 < 𝚡𝟸 →

critical section1
𝚏𝚒 ;
𝚡𝟷 ∶= 𝟶

𝚘𝚍
[]
𝚍𝚘 𝚝𝚛𝚞𝚎 →

𝚡𝟸 ∶= 𝚡𝟷 + 𝟷 ;
𝚒𝚏 𝚡𝟷 = 𝟶 ∨ 𝚡𝟸 < 𝚡𝟷 →

critical section2
𝚏𝚒 ;
𝚡𝟸 ∶= 𝟶

𝚘𝚍
𝚛𝚊𝚙

Figure 8.1: The Bakery Algorithm
for two processes.

We shall construct 𝑛 disjoint program graphs for 𝚙𝚊𝚛 𝐶1 [] ⋯ []𝐶𝑛 𝚛𝚊𝚙 and each of
these is constructed in the manner of Chapter 2.

Definition 8.3: For programs the edges E are constructed as follows:

edges(𝑞1⊳ ⋯ 𝑞𝑛⊳⇝𝑞1� ⋯ 𝑞𝑛�)[[𝚙𝚊𝚛 𝐶1 [] ⋯ []𝐶𝑛 𝚛𝚊𝚙]] =
edges(𝑞1⊳⇝𝑞1�)[[𝐶1]] ∪⋯ ∪ edges(𝑞𝑛⊳⇝𝑞𝑛�)[[𝐶𝑛]]

where we ensure that all nodes in the vectors 𝑞1⊳ ⋯ 𝑞𝑛⊳ and 𝑞1� ⋯ 𝑞𝑛� are distinct.

The remaining parts of the definition of edges(⇝ )[[]] are as in Definitions 2.7,
2.8 and 2.19. The set of nodes Q is defined from E as in Section 2.2.

𝑞11
𝚡𝟷 ∶= 𝚡𝟸+𝟷 �� 𝑞12

𝚡𝟸=𝟶∨𝚡𝟷<𝚡𝟸

��

𝑞1⊳

𝚝𝚛𝚞𝚎
*+

𝚏𝚊𝚕𝚜𝚎 ��
𝑞1

�
𝑞14

𝚡𝟷 ∶= 𝟶
??

𝑞13
𝐸1��

𝑞21
𝚡𝟸 ∶= 𝚡𝟷+𝟷 �� 𝑞22

𝚡𝟷=𝟶∨𝚡𝟸<𝚡𝟷

��

𝑞2⊳

𝚝𝚛𝚞𝚎
*+

𝚏𝚊𝚕𝚜𝚎 ��
𝑞2

�
𝑞24

𝚡𝟸 ∶= 𝟶
??

𝑞23
𝐸2��

Figure 8.2: Program graphs for the
Bakery Algorithm.

Example 8.4: Returning to Example 8.2, we get the program graphs of Figure
8.2 for the program of Figure 8.1; the parts of the graph corresponding to the
two critical sections are marked 𝐸1 and 𝐸2, respectively. Note that the two
program graphs are disjoint.

When defining the semantics of program graphs we will be looking at configurations
consisting of tuples of nodes from the program graphs and memories.

Definition 8.5: A configuration is a pair ⟨𝑞; 𝜎⟩ with 𝑞 ∈ Q𝑛 and 𝜎 ∈ Mem;
an initial configuration has 𝑞 = 𝑞1⊳ ⋯ 𝑞𝑛⊳ and a final configuration has 𝑞 =
𝑞1� ⋯ 𝑞𝑛�.

Next we will use the semantics to explain how to move between configurations; this
happens whenever one of the concurrent processes may make a move.

Definition 8.6: Whenever (𝑞𝑖◦, 𝛼, 𝑞
𝑖
∙) ∈ E we have an execution step

⟨𝑞1⋯ 𝑞𝑖◦ ⋯ 𝑞𝑛; 𝜎⟩ 𝛼
⟹ ⟨𝑞1⋯ 𝑞𝑖∙ ⋯ 𝑞𝑛; 𝜎′⟩ if [[𝛼]]𝜎 = 𝜎′

Recall that [[𝛼]]𝜎 = 𝜎′ means that 𝜎 is in the domain of [[𝛼]] as well as that
the result of the function is 𝜎′; if 𝜎 is not in the domain of [[𝛼]] there is no
execution step.

Example 8.7: Continuing Example 8.4, let us consider an execution of the
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Bakery Algorithm and let us write 𝜎𝑖𝑗 for the memory where 𝚡𝟷 has the value 𝑖
and 𝚡𝟸 has the value 𝑗. We have the following execution sequence

⟨𝑞1⊳𝑞2⊳; 𝜎00⟩ 𝚝𝚛𝚞𝚎
⟹ ⟨𝑞1⊳𝑞21; 𝜎00⟩ 𝚝𝚛𝚞𝚎

⟹ ⟨𝑞11𝑞21; 𝜎00⟩
𝚡𝟷 ∶= 𝚡𝟸+𝟷

⟹ ⟨𝑞12𝑞21; 𝜎10⟩ 𝚡𝟸 ∶= 𝚡𝟷+𝟷
⟹ ⟨𝑞12𝑞22; 𝜎12⟩

where in each step we have non-deterministically selected which process should
take the next step. In the configuration ⟨𝑞12𝑞22; 𝜎12⟩ the test of the second
process evaluates to false, so it will be stuck. However, the first process can
proceed and we get

⟨𝑞12𝑞22; 𝜎12⟩ 𝚡𝟸=𝟶∨𝚡𝟷<𝚡𝟸
⟹ ⟨𝑞13𝑞22; 𝜎12⟩ 𝜔1

⟹
∗ ⟨𝑞14𝑞22; 𝜎12⟩

𝚡𝟷 ∶= 𝟶
⟹ ⟨𝑞1⊳𝑞22; 𝜎02⟩

where we write 𝜔1 for the actions of the critical section of the first process. In
the configuration ⟨𝑞1⊳𝑞22; 𝜎02⟩ the test of the second process evaluates to true
so we have a non-deterministic choice as to how to proceed; one possibility is

⟨𝑞1⊳𝑞22; 𝜎02⟩ 𝚡𝟷=𝟶∨𝚡𝟸<𝚡𝟷
⟹ ⟨𝑞1⊳𝑞23; 𝜎02⟩ 𝜔2

⟹
∗ ⟨𝑞1⊳𝑞24; 𝜎02⟩

𝚡𝟸 ∶= 𝟶
⟹ ⟨𝑞1⊳𝑞2⊳; 𝜎00⟩

where 𝜔2 is the sequence of actions of the critical section of the second process.

Try It Out 8.8: Construct another execution sequence for the Bakery Algorithm
where you make some other non-deterministic choices. □

Exercise 8.9: Construct an execution sequence for the Bakery Algorithm where
the values of the two variables 𝚡1 and 𝚡2 become arbitrarily large. □

Exercise 8.10: For 𝚙𝚊𝚛 𝐶1 [] ⋯ []𝐶𝑛 𝚛𝚊𝚙 we constructed (in Definition 8.1) 𝑛
disjoint program graphs with edges E = E1 ∪⋯ ∪ E𝑛 and nodes Q = Q1 ∪⋯ ∪ Q𝑛
where each E𝑖 and Q𝑖 arise from 𝐶𝑖. We then redefined (in Definitions 8.5 and 8.6)
the notions of configuration and execution step from Definitions 1.10 and 1.11 so as
to provide the semantics of Guarded Commands with Concurrency.

An alternative is to directly construct a single product program graph with nodes
Q𝖯𝖯𝖦 = Q1 ×⋯ × Q𝑛 and edges

E𝖯𝖯𝖦 = {(𝑞1⋯ 𝑞𝑖◦ ⋯ 𝑞𝑛, 𝛼, 𝑞1⋯ 𝑞𝑖∙ ⋯ 𝑞𝑛) ∣ (𝑞𝑖◦, 𝛼, 𝑞
𝑖
∙) ∈ E𝑖,∀𝑗 ≠ 𝑖 ∶ 𝑞𝑗 ∈ Q𝑗}

and to retain the notions of configuration and execution step from Definitions 1.10
and 1.11.

Do the two approaches gives rise to the same execution sequences? Are the sizes of
(E,Q) and (E𝖯𝖯𝖦,Q𝖯𝖯𝖦) both linear in the size of the program? □
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Teaser 8.11: Another algorithm for mutual exclusion is Peterson’s algorithm (see
Wikipedia). Formulate it in the language of Guarded Commands with Concurrency
and illustrate its semantics by constructing an interesting execution sequence. □

8.2 Asynchronous Communication

We extend the syntax of Guarded Commands with Concurrency from Definition 8.1
to allow channel-based communication between the concurrent processes. For this
we introduce two new actions:

• 𝑐!𝑎: outputs the value of the arithmetic expression 𝑎 on the channel 𝑐, and
• 𝑐?𝑥: inputs a value on the channel 𝑐 and assigns it to the variable 𝑥.

𝚙𝚊𝚛
𝚕𝚘𝚘𝚙 𝚒𝚗𝟷?𝚡 →

𝚌𝚑!(𝟸 ∗ 𝚡)
[] 𝚒𝚗𝟸?𝚡 →

𝚌𝚑!(𝟸 ∗ 𝚡 + 𝟷)
𝚙𝚘𝚘𝚕

[]
𝚕𝚘𝚘𝚙 𝚌𝚑?𝚢 →

𝚒𝚏 (𝚢 𝚛𝚎𝚖 𝟸) = 𝟶 →
𝚘𝚞𝚝𝟷! (𝚢 𝚍𝚒𝚟 𝟸)

[] (𝚢 𝚛𝚎𝚖 𝟸) = 𝟷 →
𝚘𝚞𝚝𝟸! (𝚢 − 𝟷 𝚍𝚒𝚟 𝟸)

𝚏𝚒
𝚙𝚘𝚘𝚕

𝚛𝚊𝚙

Figure 8.3: A multiplexer and de-
multiplexer.

We shall allow these actions to be used both as commands and as guards – the
latter allows us to choose between various communication possibilities in a guarded
command, as illustrated in the topmost command of Figure 8.3. Here we also
make use of the looping construct 𝚕𝚘𝚘𝚙 ⋯ 𝚙𝚘𝚘𝚕 that differs from the 𝚍𝚘 ⋯ 𝚘𝚍
construct in two ways: one is that it allows us to choose between communication
possibilities offered in the guards, and the other is that it will never terminate (unless
we incorporate constructs like the 𝚋𝚛𝚎𝚊𝚔 of Section 2.5).

Definition 8.12: The syntax of the programs 𝑃 , commands 𝐶, guarded
commands 𝐺𝐶 and communicating guarded commands 𝐶𝐺 of the Guarded
Commands with Communication language are mutually recursively defined using
the following BNF notation:

𝑃 ∶∶= 𝚙𝚊𝚛 𝐶1 [] ⋯ []𝐶𝑛 𝚛𝚊𝚙
𝐶 ∶∶= 𝑐!𝑎 ∣ 𝑐?𝑥 ∣ 𝑥 ∶= 𝑎 ∣ 𝐴[𝑎1] ∶= 𝑎2 ∣ 𝚜𝚔𝚒𝚙 ∣

𝐶1 ;𝐶2 ∣ 𝚒𝚏 𝐶𝐺 𝚏𝚒 ∣ 𝚍𝚘 𝐺𝐶 𝚘𝚍 ∣ 𝚕𝚘𝚘𝚙 𝐶𝐺 𝚙𝚘𝚘𝚕
𝐺𝐶 ∶∶= 𝑏 → 𝐶 ∣ 𝐺𝐶1 []𝐺𝐶2

𝐶𝐺 ∶∶= 𝑐!𝑎 → 𝐶 ∣ 𝑐?𝑥 → 𝐶 ∣ 𝑏 → 𝐶 ∣ 𝐶𝐺1 []𝐶𝐺2

where 𝑐 ranges over an unspecified set of channel names and where the number
𝑛 of concurrent processes is positive.

Note that a guarded command (𝐺𝐶) is also a communicating guarded command
(𝐶𝐺); guards of the form 𝑐!𝑎 and 𝑐?𝑥 can be used in 𝚒𝚏 ⋯ 𝚏𝚒 and 𝚕𝚘𝚘𝚙 ⋯ 𝚙𝚘𝚘𝚕
constructs but not in 𝚍𝚘 ⋯ 𝚘𝚍 constructs.

Example 8.13: The program of Figure 8.3 consists of two processes and
makes use of five channels. The first process models a multiplexer that non-
deterministically chooses between taking an input from one of the channels
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𝚒𝚗𝟷 and 𝚒𝚗𝟸 and then encodes the value obtained as an even or odd number
and outputs the information on the channel ch. The second process models
a demultiplexer; it inputs a value from ch and depending on its parity it will
forward the decoded data to one of two channels 𝚘𝚞𝚝𝟷 and 𝚘𝚞𝚝𝟸. The encoding
is such that input from 𝚒𝚗𝑖 eventually will be output to 𝚘𝚞𝚝𝑖 (for 𝑖 = 1, 2).

Here we have assumed that our arithmetic expressions have been extended

𝑎 ∶∶= 𝑎1 𝚛𝚎𝚖 𝑎2 ∣ 𝑎1 𝚍𝚒𝚟 𝑎2 ∣ ⋯ as in Chapter 2⋯

so as to incorporate remainder and integer division.

Program graphs To generate program graphs we shall admit 𝑐!𝑎 and 𝑐?𝑥 as new
actions beyond those of the form 𝚜𝚔𝚒𝚙, 𝑥 ∶= 𝑎, 𝑏 and 𝐴[𝑎1] ∶= 𝑎2. As an example,
for the program of Figure 8.3 we will obtain the program graphs of Figure 8.4. For
programs the edges are constructed as in Section 8.1.

𝑞11𝚌𝚑!(𝟸∗𝚡)

@@
𝑞1⊳

𝚒𝚗𝟷?𝚡

*+

𝚒𝚗𝟸?𝚡

AA
𝑞12𝚌𝚑!(𝟸∗𝚡+𝟷)

BB

𝑞21
𝚘𝚞𝚝𝟷!(𝚢 𝚍𝚒𝚟 𝟸)

��
𝑞2⊳

𝚌𝚑?𝚢 �� 𝑞2
(𝚢 𝚛𝚎𝚖 𝟸) = 𝟶

((

(𝚢 𝚛𝚎𝚖 𝟸) = 𝟷




𝑞22𝚘𝚞𝚝𝟸!(𝚢−𝟷 𝚍𝚒𝚟 𝟸)

CC

Figure 8.4: Program graphs for Fig-
ure 8.3.

Definition 8.14: For programs the edges are constructed as follows:

edges(𝑞1⊳ ⋯ 𝑞𝑛⊳⇝𝑞1� ⋯ 𝑞𝑛�)[[𝚙𝚊𝚛 𝐶1 [] ⋯ []𝐶𝑛 𝚛𝚊𝚙]] =
edges(𝑞1⊳⇝𝑞1�)[[𝐶1]] ∪⋯ ∪ edges(𝑞𝑛⊳⇝𝑞𝑛�)[[𝐶𝑛]]

For commands the edges are constructed as in Definitions 2.7 and 2.19 except that
we need to handle the new constructs.

Definition 8.15: For commands the edges are constructed as follows:

edges(𝑞◦⇝𝑞∙)[[𝑐!𝑎]] = {(𝑞◦, 𝑐!𝑎, 𝑞∙)}

edges(𝑞◦⇝𝑞∙)[[𝑐?𝑥]] = {(𝑞◦, 𝑐?𝑥, 𝑞∙)}

edges(𝑞◦⇝𝑞∙)[[𝑥 ∶= 𝑎]] = {(𝑞◦, 𝑥 ∶= 𝑎, 𝑞∙)}

edges(𝑞◦⇝𝑞∙)[[𝐴[𝑎1] ∶= 𝑎2]] = {(𝑞◦, 𝐴[𝑎1] ∶= 𝑎2, 𝑞∙)}

edges(𝑞◦⇝𝑞∙)[[𝚜𝚔𝚒𝚙]] = {(𝑞◦, 𝚜𝚔𝚒𝚙, 𝑞∙)}

edges(𝑞◦⇝𝑞∙)[[𝐶1 ;𝐶2]] = let 𝑞 be fresh
𝐸1 = edges(𝑞◦⇝𝑞)[[𝐶1]]
𝐸2 = edges(𝑞⇝𝑞∙)[[𝐶2]]

in 𝐸1 ∪ 𝐸2

edges(𝑞◦⇝𝑞∙)[[𝚒𝚏 𝐶𝐺 𝚏𝚒]] = edges(𝑞◦⇝𝑞∙)[[𝐶𝐺]]
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edges(𝑞◦⇝𝑞∙)[[𝚍𝚘 𝐺𝐶 𝚘𝚍]] = let 𝑏 = 𝖽𝗈𝗇𝖾[[𝐺𝐶]]
𝐸 = edges(𝑞◦⇝𝑞◦)[[𝐺𝐶]]

in 𝐸 ∪ {(𝑞◦, 𝑏, 𝑞∙)}

edges(𝑞◦⇝𝑞∙)[[𝚕𝚘𝚘𝚙 𝐶𝐺 𝚙𝚘𝚘𝚕]] = edges(𝑞◦⇝𝑞◦)[[𝐶𝐺]]

The clause for the 𝚕𝚘𝚘𝚙 ⋯ 𝚙𝚘𝚘𝚕 construct reflects that it is a looping construct;
the clause differs from the usual one for 𝚍𝚘 ⋯ 𝚘𝚍 in that there are no edges leading
to the node 𝑞∙.

Try It Out 8.16: In the above definition 𝖽𝗈𝗇𝖾[[𝐺𝐶]] is as in Section 2.2. Explain
the difficulties in extending the definition to 𝖽𝗈𝗇𝖾[[𝐶𝐺]] (which would have allowed
us not to distinguish between 𝐺𝐶 and 𝐶𝐺). □

Exercise 8.17: Use the ideas of Section 2.5 to extend the language of Guarded
Commands with Communication as follows:

𝐶 ∶∶= 𝚋𝚛𝚎𝚊𝚔 ∣ ⋯ as in Definition 8.12⋯

Show how this would allow us to dispense with the 𝚍𝚘 𝐺𝐶 𝚘𝚍 command and hence
with the guarded commands 𝐺𝐶. □

For communicating guarded commands (and the subcategory of guarded commands)
the edges are constructed as in Definition 2.8 except that we need to handle the
new constructs.

Definition 8.18: For communicating guarded commands and guarded com-
mands the edges are constructed as follows:

edges(𝑞◦⇝𝑞∙)[[𝑐!𝑎 → 𝐶]] = let 𝑞 be fresh
𝐸 = edges(𝑞⇝𝑞∙)[[𝐶]]

in {(𝑞◦, 𝑐!𝑎, 𝑞)} ∪ 𝐸

edges(𝑞◦⇝𝑞∙)[[𝑐?𝑥 → 𝐶]] = let 𝑞 be fresh
𝐸 = edges(𝑞⇝𝑞∙)[[𝐶]]

in {(𝑞◦, 𝑐?𝑥, 𝑞)} ∪ 𝐸

edges(𝑞◦⇝𝑞∙)[[𝑏 → 𝐶]] = let 𝑞 be fresh
𝐸 = edges(𝑞⇝𝑞∙)[[𝐶]]

in {(𝑞◦, 𝑏, 𝑞)} ∪ 𝐸

edges(𝑞◦⇝𝑞∙)[[𝐶𝐺1 []𝐶𝐺2]] = let 𝐸1 = edges(𝑞◦⇝𝑞∙)[[𝐶𝐺1]]
𝐸2 = edges(𝑞◦⇝𝑞∙)[[𝐶𝐺2]]

in 𝐸1 ∪ 𝐸2

Try It Out 8.19: Imagine that we would like to perform the assignment 𝚢 ∶= 𝙰[𝟸𝟽]
but that the variable y belongs to one process and the array A to another. In the
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absence of shared variables we will have to use communication to achieve this, and
the program in Figure 8.5 is one way to do so. Additionally, it performs a simple
check to ensure that we do not index out of bounds (assuming that the array A has
length n) and returns an error value otherwise.

Construct the program graphs for Figure 8.5. □

𝚙𝚊𝚛
𝚕𝚘𝚘𝚙
𝚒𝚗?𝚡 →
𝚒𝚏 𝚡 < 𝚗 → 𝚌𝚑!𝙰[𝚡]
[] 𝚡 ≥ 𝚗 → 𝚌𝚑!−𝟷
𝚏𝚒

𝚙𝚘𝚘𝚕
[]
⋯ 𝚒𝚗!𝟸𝟽 ; 𝚌𝚑?𝚢⋯
𝚛𝚊𝚙

Figure 8.5: Protected access to an
array.

Semantics We shall equip the language with an asynchronous semantics, meaning
that whenever an output happens over a channel the value will be stored in a
designated buffer and whenever an input happens we will obtain a value from the
buffer. The semantics will keep track of all the channel buffers and we shall write
𝜅 ∈ Buf for the channel buffers. The idea is that whenever 𝑐 is a channel name in a
finite set Chan of channels, then 𝜅(𝑐) is the list of values that have been sent and
not yet read over that channel; thus we shall take

Buf = Chan → Int∗

or equivalently Buf = Chan → 𝖫𝗂𝗌𝗍(Int). Whenever we output a value 𝑧 on
the channel 𝑐 we shall update 𝜅(𝑐) to record the new value; this will be written
𝜅[𝑐 ↦ 𝑧 ∶∶ 𝑧] provided that 𝜅(𝑐) = 𝑧 before the output – so the value is inserted
to the right. We can input from a channel 𝑐 if 𝜅(𝑐) has the form 𝑧′ ∶∶ 𝑧, that is,
there is at least one value in the buffer. The input will cause the leftmost value to
be removed from the buffer (and assigned to some variable) so as a result of the
input action the channel buffers 𝜅 will be updated to become 𝜅[𝑐 ↦ 𝑧]. In this way
we ensure that a value can only be input once.

To make this precise and to define the semantics we need to extend the semantic
function [[⋅]] from Definition 2.17 to take care of not only the memories of Mem
but also the channel buffers of Buf.

Definition 8.20: The asynchronous semantics for Guarded Commands with
Communication has semantic domains

Mem =
(

Var ∪ {𝐴[𝑖] ∣ 𝐴 ∈ Arr, 0 ≤ 𝑖 < 𝗌𝗂𝗓𝖾(𝐴)}
)
→ Int

Buf = Chan → Int∗

and semantic function 𝖡[[⋅]] ∶ Act → (Mem × Buf ↪ Mem × Buf) given by

𝖡[[𝑐!𝑎]](𝜎, 𝜅) =
⎧⎪⎨⎪⎩

(𝜎, 𝜅[𝑐 ↦ 𝑧 ∶∶ 𝑧′]) if 𝑧′ = [[𝑎]]𝜎
and 𝜅(𝑐) = 𝑧

undefined otherwise
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𝖡[[𝑐?𝑥]](𝜎, 𝜅) =
⎧⎪⎨⎪⎩

(𝜎[𝑥 ↦ 𝑧′], 𝜅[𝑐 ↦ 𝑧]) if 𝜅(𝑐) = 𝑧′ ∶∶ 𝑧
and 𝑥 ∈ 𝖽𝗈𝗆(𝜎)

undefined otherwise

𝖡[[𝚜𝚔𝚒𝚙]](𝜎, 𝜅) = (𝜎, 𝜅)

𝖡[[𝑥 ∶= 𝑎]](𝜎, 𝜅) =
⎧⎪⎨⎪⎩

(𝜎[𝑥 ↦ 𝑧], 𝜅) if 𝑧 = [[𝑎]]𝜎
and 𝑥 ∈ 𝖽𝗈𝗆(𝜎)

undefined otherwise

𝖡[[𝑏]](𝜎, 𝜅) =
{

(𝜎, 𝜅) if [[𝑏]]𝜎 = true
undefined otherwise

𝖡[[𝐴[𝑎1] ∶= 𝑎2]](𝜎, 𝜅) =
⎧⎪⎨⎪⎩

(𝜎[𝐴[𝑧1] ↦ 𝑧2], 𝜅) if 𝑧1 = [[𝑎1]]𝜎
and 𝑧2 = [[𝑎2]]𝜎
and 𝐴[𝑧1] ∈ 𝖽𝗈𝗆(𝜎)

undefined otherwise

Configurations need to be changed from Definition 8.5 to take buffers into account
and so does the definition of execution step in Definition 8.6.

Definition 8.21: A configuration is a triple ⟨𝑞; 𝜎, 𝜅⟩ with 𝑞 ∈ Q𝑛, 𝜎 ∈ Mem
and 𝜅 ∈ Buf. We have an execution step

⟨𝑞1⋯ 𝑞𝑖◦ ⋯ 𝑞𝑛; 𝜎, 𝜅⟩ 𝛼
⟹ ⟨𝑞1⋯ 𝑞𝑖∙ ⋯ 𝑞𝑛; 𝜎′, 𝜅′⟩ if 𝖡[[𝛼]](𝜎, 𝜅) = (𝜎′, 𝜅′)

whenever (𝑞𝑖◦, 𝛼, 𝑞
𝑖
∙) ∈ E.

Example 8.22: To illustrate the semantics, let us consider the program graphs
of Figure 8.4 and let us assume that initially the buffers are as follows:

𝜅0 = [𝚒𝚗𝟷 ↦ 1 2 3; 𝚒𝚗𝟸 ↦ 2 4 6; 𝚌𝚑 ↦ 𝜖; 𝚘𝚞𝚝𝟷 ↦ 𝜖; 𝚘𝚞𝚝𝟸 ↦ 𝜖]

so that the buffer for 𝚒𝚗𝟷 contains three values, the buffer for 𝚒𝚗𝟸 contains three
values and the remaining three buffers are empty. We then have an execution
sequence where the first process takes a number of rounds without the second
process taking any actions. So we have the following execution sequence

⟨𝑞1⊳𝑞2⊳; 𝜎, 𝜅0⟩ 𝜔
⟹

∗ ⟨𝑞1⊳𝑞2⊳; 𝜎[𝚡 ↦ 2], 𝜅0[𝚒𝚗𝟷 ↦ 3][𝚒𝚗𝟸 ↦ 4 6][𝚌𝚑 ↦ 2 5 4]⟩
where we have read two values from 𝚒𝚗𝟷 and one value from 𝚒𝚗𝟸. At this stage
the second process may take a round and we may arrive at the configuration

⟨𝑞1⊳𝑞2⊳; 𝜎[𝚡 ↦ 2][𝚢 ↦ 2], 𝜅0[𝚒𝚗𝟷 ↦ 3][𝚒𝚗𝟸 ↦ 4 6][𝚌𝚑 ↦ 5 4][𝚘𝚞𝚝𝟷 ↦ 1]⟩
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Try It Out 8.23: Construct an execution sequence for the program graphs con-
structed for the program in Figure 8.5 in Try It Out 8.19 (where you make suitable
assumptions about the initial values of the buffers). □

Exercise 8.24: The above semantics assumes that the buffers can have arbitrary
size. Assume now that there is a positive bound 𝑘 on the size of the buffers. Modify
the semantics to reflect that. What happens when one of the buffers is full? □

8.3 Synchronous Communication

Let us reconsider the Guarded Commands with Communication language and replace
the asynchronous semantics of the previous section with a synchronous semantics.
Here the outputs and inputs happen at the same time: if one process is ready to
execute an output 𝑐!𝑎 then it can only proceed if there is another process that is
ready do do an input 𝑐?𝑥 over the same channel 𝑐 – they will then exchange the
value in one joint action, written 𝑐!𝑎?𝑥, before they proceed. Thus we will no longer
have the need for the buffers of the semantics of Section 8.2.

𝚙𝚊𝚛
𝚕𝚘𝚘𝚙 𝚒𝚗𝟷!𝚞𝟷 → 𝚞𝟷 ∶= 𝚞𝟷 + 𝟷
𝚙𝚘𝚘𝚕

[]
𝚕𝚘𝚘𝚙 𝚒𝚗𝟸!𝚞𝟸 → 𝚞𝟸 ∶= 𝚞𝟸 + 𝟸
𝚙𝚘𝚘𝚕

[]
𝚕𝚘𝚘𝚙 𝚒𝚗𝟷?𝚡 →

𝚌𝚑!(𝟸 ∗ 𝚡)
[] 𝚒𝚗𝟸?𝚡 →

𝚌𝚑!(𝟸 ∗ 𝚡 + 𝟷)
𝚙𝚘𝚘𝚕

[]
𝚕𝚘𝚘𝚙 𝚌𝚑?𝚢 →

𝚒𝚏 (𝚢 𝚛𝚎𝚖 𝟸) = 𝟶 →
𝚘𝚞𝚝𝟷! (𝚢 𝚍𝚒𝚟 𝟸)

[] (𝚢 𝚛𝚎𝚖 𝟸) = 𝟷 →
𝚘𝚞𝚝𝟸! (𝚢 − 𝟷 𝚍𝚒𝚟 𝟸)

𝚏𝚒
𝚙𝚘𝚘𝚕

[]
𝚕𝚘𝚘𝚙 𝚘𝚞𝚝𝟷?𝚣𝟷 → 𝚜𝚔𝚒𝚙
𝚙𝚘𝚘𝚕

[]
𝚕𝚘𝚘𝚙 𝚘𝚞𝚝𝟸?𝚣𝟸 → 𝚜𝚔𝚒𝚙
𝚙𝚘𝚘𝚕

𝚛𝚊𝚙

Figure 8.6: A multiplexer and de-
multiplexer with two producers and
two consumers.

For this development the syntax is exactly as in Definition 8.12 and the generation
of the edges of the program graphs is still as in Definitions 8.14, 8.15 and 8.18 – so
in particular, the joint actions will never appear in the program graphs but only in
execution sequences.

Example 8.25: In Figure 8.6 we have repeated the processes for the multiplexer
and demultiplexer of Figure 8.3 and just added two processes producing data on
the channels 𝚒𝚗𝟷 and 𝚒𝚗𝟸 and two processes consuming data on the channels
𝚘𝚞𝚝𝟷 and 𝚘𝚞𝚝𝟸. The program graphs for the producers and consumers are shown
in Figure 8.7. Having all six processes available allows us to express the joint
actions of the system. As an example, the joint actions 𝚒𝚗𝟷!𝚞𝟷?𝚡, 𝚌𝚑!(𝟸 ∗ 𝚡)?𝚢
and 𝚘𝚞𝚝𝟷!(𝚢 𝚍𝚒𝚟 𝟸)?𝚣𝟷 correspond to the three synchronous communications
required to send a value from a producer to a consumer via the multiplexer and
demultiplexer.

𝑞𝑝𝑖⊳

𝚒𝚗𝑖!𝚞𝑖
@@

𝑞𝑐𝑖⊳

𝚘𝚞𝚝𝑖?𝚣𝑖
@@

𝑞𝑝𝑖

𝚞𝑖 ∶= 𝚞𝑖+𝟷
DD

𝑞𝑐𝑖

𝚜𝚔𝚒𝚙
DD

Figure 8.7: Program graphs for the
𝑖’th producer and 𝑖’th consumer of
Figure 8.6.

As for the semantics, we need to define the meaning of the actions, the form of
the configurations and the execution steps, as they will be different from those of
Section 8.2. For the actions we return to the semantic function [[⋅]] from Definition
2.17 and Essential Exercise 2.20.

Definition 8.26: The synchronous semantics for Guarded Commands with
Communication has semantic domain

Mem =
(

Var ∪ {𝐴[𝑖] ∣ 𝐴 ∈ Arr, 0 ≤ 𝑖 < 𝗌𝗂𝗓𝖾(𝐴)}
)
→ Int
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and semantic functions [[𝛼]] ∶ Mem ↪ Mem (for 𝛼 of the form 𝚜𝚔𝚒𝚙, 𝑥 ∶= 𝑎,
𝑏 or 𝐴[𝑎1] ∶= 𝑎2) and [[𝑎]] ∶ Mem ↪ Int as defined in Section 2.3.

As for the configurations, we return to those of Section 8.1; we then have a more
complex treatment of the execution steps as there will be two different types: one
type is due to actions of the form 𝚜𝚔𝚒𝚙, 𝑥 ∶= 𝑎, 𝑏 or 𝐴[𝑎1] ∶= 𝑎2, where only one
process participates in the step, and the other type of execution step is for the joint
actions of the form 𝑐!𝑎?𝑥, where two processes participate.

Definition 8.27: A configuration is a pair ⟨𝑞; 𝜎⟩ with 𝑞 ∈ Q𝑛 and 𝜎 ∈ Mem.

We have an individual execution step

⟨𝑞1⋯ 𝑞𝑖◦ ⋯ 𝑞𝑛; 𝜎⟩ 𝛼
⟹ ⟨𝑞1⋯ 𝑞𝑖∙ ⋯ 𝑞𝑛; 𝜎′⟩

whenever we have

𝜎′ = [[𝛼]]𝜎, and
(𝑞𝑖◦, 𝛼, 𝑞

𝑖
∙) ∈ E𝑖 and 𝛼 is of the form 𝚜𝚔𝚒𝚙, 𝑥 ∶= 𝑎, 𝑏 or 𝐴[𝑎1] ∶= 𝑎2.

We have a synchronous execution step

⟨𝑞1⋯ 𝑞𝑖◦ ⋯ 𝑞𝑗◦ ⋯ 𝑞𝑛; 𝜎⟩ 𝑐!𝑎?𝑥
⟹ ⟨𝑞1⋯ 𝑞𝑖∙ ⋯ 𝑞𝑗∙ ⋯ 𝑞𝑛; 𝜎′⟩

whenever we have

𝜎′ = 𝜎[𝑥 ↦ 𝑧] and 𝑧 = [[𝑎]]𝜎,
(𝑞𝑖◦, 𝑐!𝑎, 𝑞

𝑖
∙) ∈ E𝑖,

(𝑞𝑗◦, 𝑐?𝑥, 𝑞
𝑗
∙ ) ∈ E𝑗 , and

either 𝑖 < 𝑗 or 𝑖 > 𝑗.

It is not intended that the occurrence of 𝑖 before 𝑗 in the configuration should
suggest that 𝑖 is smaller than 𝑗.

Example 8.28: Returning to the system of Figure 8.6, with programs graphs
in Figures 8.4 and 8.7, the initial configuration will have the form

⟨𝑞𝑝1⊳ 𝑞𝑝2⊳ 𝑞1⊳𝑞
2
⊳𝑞

𝑐1
⊳ 𝑞𝑐2⊳ ; 𝜎⟩

where we first list the nodes of the two producers, then those of the multiplexer
and demultiplexer and finally the nodes of the two consumers.

The first step of the execution sequence will be a joint action between one of
the producers and the multiplexer. So assuming that 𝜎 maps 𝚞𝟷 to 7 we have
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the following execution steps:

⟨𝑞𝑝1⊳ 𝑞𝑝2⊳ 𝑞1⊳𝑞
2
⊳𝑞

𝑐1
⊳ 𝑞𝑐2⊳ ; 𝜎⟩

𝚒𝚗𝟷!𝚞𝟷?𝚡
⟹ ⟨𝑞𝑝1𝑞𝑝2⊳ 𝑞11𝑞

2
⊳𝑞

𝑐1
⊳ 𝑞𝑐2⊳ ; 𝜎[𝚡 ↦ 7]⟩

𝚌𝚑!(𝟸∗𝚡)?𝚢
⟹ ⟨𝑞𝑝1𝑞𝑝2⊳ 𝑞1⊳𝑞

2𝑞𝑐1⊳ 𝑞𝑐2⊳ ; 𝜎[𝚡 ↦ 7][𝚢 ↦ 14]⟩
𝚞𝟷 ∶= 𝚞𝟷+𝟷

⟹ ⟨𝑞𝑝1⊳ 𝑞𝑝2⊳ 𝑞1⊳𝑞
2𝑞𝑐1⊳ 𝑞𝑐2⊳ ; 𝜎[𝚡 ↦ 7][𝚢 ↦ 14][𝚞𝟷 ↦ 8]⟩

(𝚢 𝚛𝚎𝚖 𝟸)=𝟶
⟹ ⟨𝑞𝑝1⊳ 𝑞𝑝2⊳ 𝑞1⊳𝑞

2
1𝑞

𝑐1
⊳ 𝑞𝑐2⊳ ; 𝜎[𝚡 ↦ 7][𝚢 ↦ 14][𝚞𝟷 ↦ 8]⟩

𝚘𝚞𝚝𝟷!(𝚢 𝚍𝚒𝚟 𝟸)?𝚣𝟷
⟹ ⟨𝑞𝑝1𝑞𝑝2⊳ 𝑞1⊳𝑞

2
⊳𝑞

𝑐1𝑞𝑐2⊳ ; 𝜎[𝚡 ↦ 7][𝚢 ↦ 14][𝚞𝟷 ↦ 8][𝚣𝟷 ↦ 7]⟩
Here we start with a synchronisation between the first producer and the multi-
plexer and then a synchronisation between the multiplexer and the demultiplexer.
Next, the first producer continues on its own and so does the demultiplexer.
The last step in the above execution sequence is a synchronisation between the
demultiplexer and the first consumer.

Try It Out 8.29: Construct an execution sequence for the program graphs con-
structed for the program in Figure 8.5 in Try It Out 8.19. □

Exercise 8.30: Extend the channel-based communication to allow channels where
tuples of values can be communicated, as in 𝑐!𝑎1,⋯ , 𝑎𝑚 and 𝑐?𝑥1,⋯ , 𝑥𝑚. □

Exercise 8.31: Discuss the difference between the synchronous semantics of the
present section and the asynchronous semantics of Section 8.2 where all buffers have
length 1 (as discussed in Exercise 8.24). Explain how to construct an asynchronous
execution sequence corresponding to every synchronous execution sequence. □

8.4 Broadcast and Gather (Bonus Material)

We shall now extend the syntax of Guarded Commands with Communication from
Definition 8.12 to allow communication actions involving more than one receiver
or more than one sender (but not both simultaneously). The construct 𝑐 !!𝑘 𝑎 is a
broadcast version of 𝑐!𝑎 that in a synchronous manner outputs to all processes able
to do an input on the channel 𝑐 (using 𝑐?); the index 𝑘 is a non-negative integer
that requires that at least 𝑘 processes are able to do an input on 𝑐, otherwise the
action is stuck.

Dually 𝑐 ??𝑘 𝐴 𝑥 is a gathering version of 𝑐?𝑥 that in a synchronous manner inputs
from all processes able to do an output on the channel 𝑐 (using 𝑐!); the index 𝑘 is a
non-negative integer that requires that at least 𝑘 processes are able to do an output
on 𝑐, otherwise the action is stuck. The received values are placed in the array 𝐴
and the variable 𝑥 is set to the number of values received; if the array is too short
the remaining values are discarded and 𝑥 is set to the length of the array.
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Definition 8.32: The syntax of the programs 𝑃 , commands 𝐶, guarded
commands 𝐺𝐶 and communicating guarded commands 𝐶𝐺 of the Guarded
Commands with Broadcast language are mutually recursively defined using the
following BNF notation:

𝑃 ∶∶= 𝚙𝚊𝚛 𝐶1 [] ⋯ []𝐶𝑛 𝚛𝚊𝚙
𝐶 ∶∶= 𝑐 !!𝑘 𝑎 ∣ 𝑐 ??𝑘 𝐴 𝑥 ∣ ⋯ as in Definition 8.12⋯

𝐺𝐶 ∶∶= ⋯ as in Definition 8.12⋯
𝐶𝐺 ∶∶= ⋯ as in Definition 8.12⋯

where 𝑐 ranges over an unspecified set of channel names, the number 𝑛 of
concurrent processes is positive and the number 𝑘 of required participants is
non-negative.

Example 8.33: The following program describes a system consisting of 16
sensors and one controller running concurrently:

𝚙𝚊𝚛 𝑆𝑒𝑛𝑠𝑜𝑟0 [] ⋯ []𝑆𝑒𝑛𝑠𝑜𝑟15 []𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝚛𝚊𝚙

The processes 𝑆𝑒𝑛𝑠𝑜𝑟𝑖 and Control are defined in Figure 8.8. Each sensor is
able to measure temperature, pressure and humidity and ‘continuously’ updates
the measurements in the array Reg𝑖. Additionally it can be asked about a
measurement, which it will then report.

The controller merely wants to compute the average temperature among at least
10 of the 16 sensors. It broadcasts a request (for example the number 0) for
the temperature measurement and, having obtained at least 10 measurements,
computes the average.

𝑆𝑒𝑛𝑠𝑜𝑟𝑖 ∶
𝚕𝚘𝚘𝚙
𝚛𝚎𝚚?𝚝i → 𝚛𝚎𝚙!𝚁𝚎𝚐i[𝚝i]

[]
𝚝𝚛𝚞𝚎 → ⋯ update 𝚁𝚎𝚐i ⋯

𝚙𝚘𝚘𝚕

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ∶
𝚛𝚎𝚚 !!𝟷𝟶 𝚝𝚎𝚖𝚙 ;
𝚛𝚎𝚙 ??𝟷𝟶 𝙰 𝚡 ;
𝚒 ∶= 𝟶 ;
𝚜 ∶= 𝟶 ;
𝚍𝚘 𝚒 < 𝚡 →

𝚜 ∶= 𝚜 + 𝙰[𝚒] ;
𝚒 ∶= 𝚒 + 𝟷

𝚘𝚍 ;
𝚊𝚟𝚐 ∶= 𝚜∕𝚡

Figure 8.8: Specification of sensors
and controller.

Turning to the generation of the edges of the program graphs, we extend Definitions
8.14, 8.15 and 8.18 to deal with the two new constructs 𝑐 !!𝑘 𝑎 and 𝑐 ??𝑘 𝐴 𝑥.

Definition 8.34: For commands we additionally generate edges as follows:

edges(𝑞◦⇝𝑞∙)[[𝑐 !!𝑘 𝑎]] = {(𝑞◦, 𝑐 !!𝑘 𝑎, 𝑞∙)}

edges(𝑞◦⇝𝑞∙)[[𝑐 ??𝑘 𝐴 𝑥]] = {(𝑞◦, 𝑐 ??𝑘 𝐴𝑥, 𝑞∙)}

Example 8.35: The program graphs for the sensors and controller of Example
8.33 are displayed in Figure 8.9. The update of the measurements performed
by the sensors is modelled by the curly edge.

𝑆𝑒𝑛𝑠𝑜𝑟𝑖:

𝑞𝑖⊳

𝚛𝚎𝚐?𝚝iEE 𝚝𝚛𝚞𝚎 ��
𝑞𝑖1

𝚛𝚎𝚙!𝚁𝚎𝚐i[𝚝i] FF

𝑞𝑖2

...𝚞𝚙𝚍𝚊𝚝𝚎 𝚁𝚎𝚐i ...GG

𝐶𝑜𝑛𝑡𝑟𝑜𝑙:
𝑞⊳

𝚛𝚎𝚚 !!𝟷𝟶 𝚝𝚎𝚖𝚙��
𝑞1

𝚛𝚎𝚙 ??𝟷𝟶 𝙰 𝚡
��
𝑞2

𝚒 ∶= 𝟶
��
𝑞3

𝚜 ∶= 𝟶
��
𝑞4

𝚒<𝚡��
𝚒≥𝚡

��
𝑞5

𝚜 ∶= 𝚜+𝙰[𝚒]
��

𝑞6

𝚊𝚟𝚐 ∶= 𝚜∕𝚡
��

𝑞7

𝚒 ∶= 𝚒+𝟷 HH

𝑞
�

Figure 8.9: Program graphs for sen-
sors and controller.

The semantics, configurations and execution steps extend Definitions 8.26 and
8.27 to deal with the constructs 𝑐 !!𝑘 𝑎 and 𝑐 ??𝑘 𝐴 𝑥. For the semantics we reuse
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the semantic functions [[⋅]] and [[⋅]] from Definition 8.26. Also configurations,
individual execution steps and synchronous execution steps are as in Definition 8.27.

Let us first consider the extension of the semantics to handle the broadcast. As in
Section 8.3, we shall introduce a joint action 𝑐 !!𝑘 𝑎 ? 𝑥1⋯ 𝑥ℎ, which only occurs
as part of execution steps but not in any of the program graphs; it represents the
merge of a single output action 𝑐 !!𝑘 𝑎 with a number of input actions 𝑐?𝑥1,⋯ , 𝑐?𝑥ℎ.
The broadcast is successful if one of the processes of the system is ready to perform
the action 𝑐 !!𝑘 𝑎 and at the same time at least 𝑘 processes are ready to perform an
action of the form 𝑐?𝑥𝑗 . If so, the value of 𝑎 will be assigned to the variables 𝑥𝑗 of
the ℎ participating processes. This is formalised in the following definition.

Definition 8.36: We have a broadcast execution step

⟨𝑞1◦ ⋯ 𝑞𝑛◦; 𝜎⟩ 𝑐 !!𝑘 𝑎 ? 𝑥1⋯𝑥ℎ
⟹ ⟨𝑞1∙ ⋯ 𝑞𝑛∙ ; 𝜎

′⟩
whenever we have

(𝑞𝑖◦, 𝑐 !!𝑘 𝑎, 𝑞
𝑖
∙) ∈ E𝑖

𝑧 = [[𝑎]]𝜎
{𝑗1,⋯ , 𝑗ℎ} = {𝑗 ≠ 𝑖 ∣ ∃𝑥, 𝑞 ∶ (𝑞𝑗◦, 𝑐?𝑥, 𝑞) ∈ E𝑗}
ℎ ≥ 𝑘 and all 𝑗𝑙 are pairwise distinct

(𝑞𝑗◦, 𝑐?𝑥𝑗, 𝑞
𝑗
∙ ) ∈ E𝑗 whenever 𝑗 ∈ {𝑗1,⋯ , 𝑗ℎ}

𝜎′ = 𝜎[𝑥𝑗1 ↦ 𝑧]⋯ [𝑥𝑗ℎ ↦ 𝑧]

𝑞𝑙∙ = 𝑞𝑙◦ whenever 𝑙 ∉ {𝑗1,⋯ , 𝑗ℎ, 𝑖}

Example 8.37: Returning to Examples 8.33 and 8.35, let us consider the
configuration

⟨𝑞02𝑞1⊳𝑞2⊳𝑞32𝑞4⊳𝑞5⊳𝑞62𝑞7⊳𝑞8⊳𝑞92𝑞10⊳ 𝑞11⊳ 𝑞122 𝑞13⊳ 𝑞14⊳ 𝑞152 𝑞⊳; 𝜎⟩
where the controller is at its initial node (𝑞⊳) and so are exactly 10 of the 16
sensors (𝑞𝑖⊳), while the remaining 6 sensors are updating their information (that
is, at node 𝑞𝑖2). Then the action 𝚛𝚎𝚚 !!𝟷𝟶 𝚝𝚎𝚖𝚙 can be executed and the new
configuration will be

⟨𝑞02𝑞11𝑞21𝑞32𝑞41𝑞51𝑞62𝑞71𝑞81𝑞92𝑞101 𝑞111 𝑞122 𝑞131 𝑞141 𝑞152 𝑞1; 𝜎′⟩
where 𝜎′ is as 𝜎 except that each of the variables 𝚝1, 𝚝2, 𝚝4, 𝚝5, 𝚝7, 𝚝8, 𝚝10, 𝚝11, 𝚝13
and 𝚝14 will have obtained the value 𝜎(𝚝𝚎𝚖𝚙).

Try It Out 8.38: Redo the above example in the case where the configuration
is such that 12 of the 16 sensors are at their initial node and so is the controller.
What happens if only 8 of the 16 sensors are at their initial nodes? □
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Teaser 8.39: Modify the semantics of the broadcast operation 𝑐 !!𝑘 𝑎 such that
exactly 𝑘 processes able to perform an input 𝑐? will participate. (Hint: It does not
suffice to change ℎ ≥ 𝑘 to ℎ = 𝑘.) □

Turning to the gathering action, we shall introduce a joint action as above; it has
the form 𝑐 ! 𝑎1⋯ 𝑎ℎ ??𝑘 𝐴 𝑥 and only occurs as part of execution steps and not in
any of the program graphs. It represents the merge of a number of output actions
𝑐!𝑎1,⋯ , 𝑐!𝑎ℎ with a single input action 𝑐 ??𝑘 𝐴 𝑥. The gathering is successful if
one of the processes of the system is ready to perform the action 𝑐 ??𝑘 𝐴 𝑥 and
at the same time at least 𝑘 processes are ready to perform an action of the form
𝑐!𝑎𝑗 . When it is successful, the entries of the array 𝐴 will be assigned the values
of the expressions 𝑎𝑗 from the ℎ participating processes in some arbitrary order
(while dropping some values if ℎ > 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴)) and the variable 𝑥 will be assigned the
number of entries placed in the array. This is formalised in the following definition.

Definition 8.40: We have a gathering execution step

⟨𝑞1◦ ⋯ 𝑞𝑛◦; 𝜎⟩ 𝑐 ! 𝑎1⋯𝑎ℎ ??𝑘 𝐴𝑥
⟹ ⟨𝑞1∙ ⋯ 𝑞𝑛∙ ; 𝜎

′⟩
whenever we have

(𝑞𝑖◦, 𝑐 ??𝑘 𝐴𝑥, 𝑞𝑖∙) ∈ E𝑖

{𝑗1,⋯ , 𝑗ℎ} = {𝑗 ≠ 𝑖 ∣ ∃𝑎, 𝑞 ∶ (𝑞𝑗◦, 𝑐!𝑎, 𝑞) ∈ E𝑗}
ℎ ≥ 𝑘 and all 𝑗𝑙 are pairwise distinct

(𝑞𝑗◦, 𝑐!𝑎𝑗, 𝑞
𝑗
∙ ) ∈ E𝑗 and 𝑧𝑗 = [[𝑎𝑗]]𝜎 whenever 𝑗 ∈ {𝑗1,⋯ , 𝑗ℎ}

ℎ′ = min(ℎ, 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴))
𝜎′ = 𝜎[𝐴[0] ↦ 𝑧𝑗1 ]⋯ [𝐴[ℎ′ − 1] ↦ 𝑧𝑗ℎ′ ][𝑥 ↦ ℎ′]

𝑞𝑙∙ = 𝑞𝑙◦ whenever 𝑙 ∉ {𝑗1,⋯ , 𝑗ℎ, 𝑖}

Example 8.41: Continuing Example 8.37, we can now perform the action
𝚛𝚎𝚙 ??𝟷𝟶 𝙰 𝚡 from the configuration

⟨𝑞02𝑞11𝑞21𝑞32𝑞41𝑞51𝑞62𝑞71𝑞81𝑞92𝑞101 𝑞111 𝑞122 𝑞131 𝑞141 𝑞152 𝑞1; 𝜎′⟩
as the control is at node 𝑞1 and exactly 10 sensors are at node 𝑞𝑖1. The new
configuration is

⟨𝑞02𝑞1⊳𝑞2⊳𝑞32𝑞4⊳𝑞5⊳𝑞62𝑞7⊳𝑞8⊳𝑞92𝑞10⊳ 𝑞11⊳ 𝑞122 𝑞13⊳ 𝑞14⊳ 𝑞152 𝑞2; 𝜎′′⟩
where 𝜎′′ is as 𝜎′ except that the array 𝙰 and the variable x have been updated.
The first 10 entries of the array have been updated so that the 𝑖’th entry has the
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value of 𝜎′(𝚁𝚎𝚐𝑖[𝜎′(𝚝𝑖)]) (for 0 ≤ 𝑖 < 10) and the value of x has been updated
to be 10.

Try It Out 8.42: Redo the above example in the case where the configuration is
such that 12 of the 16 sensors are in the node 𝑞𝑖1. What happens if only 8 of the 16
sensors are in this configuration? □

Teaser 8.43: Modify the semantics of the gathering operation 𝑐 ??𝑘 𝐴 𝑥 such that
exactly min(𝑘, 𝗅𝖾𝗇𝗀𝗍𝗁(𝐴)) processes able to perform an output 𝑐! will participate.
(Hint: It does not suffice to change ℎ ≥ 𝑘 to ℎ = 𝑘.) □

Exercise 8.44: Extend the broadcast action to allow channels where tuples of
values can be communicated as in 𝑐 !!𝑘 𝑎1,⋯ , 𝑎𝑚 and 𝑐?𝑥1,⋯ , 𝑥𝑚. Similarly, extend
the gathering action to allow channels where tuples of values can be communicated
as in 𝑐!𝑎1,⋯ , 𝑎𝑚 and 𝑐 ??𝑘 𝐴1,⋯ , 𝐴𝑚 𝑥. In both cases you may decide to choose
𝑚 = 2 for simplicity. □



Epilogue

We will provide a few pointers for where to find more advanced material on some of
the topics covered in this book.

Program Verification Program verification is being explored in many directions
with tool support for the discovery of proofs as well as for checking proofs.

For an in-depth study of semi-automated program verification using the Isabelle
proof assistant you may consult the advanced book

Tobias Nipkow, Gerwin Klein: Concrete Semantics. Springer, 2014.

For an in-depth study of semi-automated program verification using the Coq proof
assistant you may consult the advanced book

Adam Chlipala: Certified Programming with Dependent Types. MIT
Press, 2013.

For an overview of some of the many tools developed you may consult the web-page

https://en.wikipedia.org/wiki/Proof_assistant

which categorises the tools with respect to some of the features supported.

Program Analysis Program analysis (sometimes called static analysis) is widely
used in software development.

For an in-depth study of program analysis you may consult the advanced book

Flemming Nielson, Hanne Riis Nielson, Chris Hankin: Principles of
Program Analysis. Springer, 2005.
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which provides a thorough overview of some of the key approaches to program
analysis as well as some of the algorithms needed for computing the solutions. It
covers Data Flow Analysis, Constraint-Based Analysis, Abstract Interpretation and
Type and Effect Systems with a view to exploring their similarities and differences.

For an overview of the many tools developed you may consult the web-page

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

which categorises the tools with respect to the programming languages supported.

Model Checking Model checking is a fast-growing area with a lot of tool support.

For an in-depth study of model checking you may consult the advanced book

Christel Baier, Joost-Pieter Katoen: Principles of Model Checking. MIT
Press, 2008.

which provides a thorough overview of transition systems and logics such as Com-
putation Tree Logic (CTL) and Linear Time Logic (LTL). It covers the algorithms
needed for dealing with the ‘state explosion problem’ through the use of symbolic
data structures and ways of reducing the size of the transition system by exploiting
various similarities and symmetries. It also covers timed systems and probabilistic
systems.

For an overview of the many tools developed you may consult the web-page

https://en.wikipedia.org/wiki/List_of_model_checking_tools

which categorises the tools with respect to whether or not they support features
such as probabilities, real-time behaviour and continuous stochastic behaviour.

Semantics of Procedures and Concurrency Semantics aims at describing the
behaviour of programming languages, taking care of all subtle issues that may arise.

The approach taken in this book is based on program graphs but there are other
approaches that are more structural in nature. For an introductory textbook taking
another approach you may consult

Hanne Riis Nielson, Flemming Nielson: Semantics with Applications:
An Appetizer. Springer Undergraduate Topics in Computer Science,
2007.

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://en.wikipedia.org/wiki/List_of_model_checking_tools
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which presents operational semantics, denotational semantics and axiomatic verifica-
tion. For an intermediate book covering concurrency and reactive systems you may
consult

Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, Jiří Srba: Re-
active Systems: Modelling, Specification and Verification. Cambridge
University Press, 2007.

which covers process algebras and timed automata.



Appendix A

The MicroC Language

In this appendix we shall introduce MicroC, a C-like language, and we shall present a
series of tasks performing some of the developments that were done for the Guarded
Commands language.

Simple statements A program in MicroC is simply a statement and as in Section
2.1 we shall specify the form of the abstract syntax trees. We shall feel free to use
traditional round brackets for expressions and curly brackets for statements in order
to disambiguate the syntax, as shown in Figure A.1.

𝚢 ∶= 𝟷;
𝚠𝚑𝚒𝚕𝚎 (𝚡 > 𝟶)

{ 𝚢 ∶= 𝚡 ∗ 𝚢;
𝚡 ∶= 𝚡 − 𝟷;

}

Figure A.1: Example program for
the factorial function.The syntax of the statements 𝑆, arithmetic expressions 𝑎 and boolean expressions

𝑏 of MicroC are defined using the following BNF notation (where we have
included some of the brackets usually found in C) :

𝑆 ∶∶= 𝑥 ∶= 𝑎 ; ∣ 𝐴[𝑎1] ∶= 𝑎2 ; ∣ 𝑆1 𝑆2
∣ 𝚒𝚏 (𝑏) 𝑆0 ∣ 𝚒𝚏 (𝑏) 𝑆1 𝚎𝚕𝚜𝚎 𝑆2 ∣ 𝚠𝚑𝚒𝚕𝚎 (𝑏) 𝑆0

𝑎 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝐴[𝑎0] ∣ 𝑎1 + 𝑎2 ∣ 𝑎1 − 𝑎2 ∣ 𝑎1 ∗ 𝑎2 ∣ 𝑎1 ∕ 𝑎2
𝑏 ∶∶= 𝚝𝚛𝚞𝚎 ∣ 𝑎1 = 𝑎2 ∣ 𝑎1 >𝑎2 ∣ 𝑎1 ≥ 𝑎2 ∣ 𝑏1 ∧ 𝑏2 ∣ ¬ 𝑏0

The syntax for variables 𝑥 and numbers 𝑛 is left unspecified.

In addition to the two kinds of assignments that are familiar from the Guarded
Commands language, MicroC has sequencing, conditional and iteration constructs
that are inspired by similar constructs in C. As in the Guarded Commands language,
we shall distinguish between arithmetic and boolean expressions (rather than following
C, where they are merged into one syntactic category). The arithmetic and boolean
expressions are as in Chapter 2 and so are the associated semantic functions.

We shall be interested in extensions of MicroC with additional iteration constructs
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and loop control constructs from C and with exceptions from C++. The extensions
are summarised by

𝑆 ∶∶= … ∣ 𝚍𝚘 𝑆0 𝚠𝚑𝚒𝚕𝚎 (𝑏) ∣ 𝚏𝚘𝚛 (𝑆1 𝑏;𝑆2) 𝑆0
∣ 𝚋𝚛𝚎𝚊𝚔 ; ∣ 𝚌𝚘𝚗𝚝𝚒𝚗𝚞𝚎 ; ∣ 𝚜𝚔𝚒𝚙 ;
∣ 𝚝𝚛𝚢{𝑆0} 𝐻 ∣ 𝚝𝚑𝚛𝚘𝚠 𝑠 ;

𝐻 ∶∶= 𝚌𝚊𝚝𝚌𝚑(𝑠){𝑆} ∣ 𝚌𝚊𝚝𝚌𝚑(𝑠){𝑆} 𝐻

The first line contains the iteration constructs. The construct

𝚍𝚘 𝑆0 𝚠𝚑𝚒𝚕𝚎 (𝑏)

will execute the statement 𝑆0 and will continue doing so as long as the test 𝑏 holds.
The construct

𝚏𝚘𝚛 (𝑆1 𝑏;𝑆2) 𝑆0

is a looping construct with 𝑆1 being the initialisation step, 𝑏 being the iteration
condition for the loop, 𝑆2 being the increment/decrement step of the loop and finally
𝑆0 being the body of the loop. Figure A.2 shows a program using the for-construct;
it computes in y the x’th Fibonacci number.

𝚣 ∶= 𝟷;
𝚢 ∶= 𝟶;
𝚝 ∶= 𝟶;
𝚏𝚘𝚛 (𝚒 ∶= 𝟶; 𝚒 < 𝚡; 𝚒 ∶= 𝚒 + 𝟷; )

{ 𝚝 ∶= 𝚣;
𝚣 ∶= 𝚢;
𝚢 ∶= 𝚝 + 𝚣;

}

Figure A.2: Example program for
the Fibonacci function.

The second line lists the two loop control statements of C. Here 𝚋𝚛𝚎𝚊𝚔 terminates
the immediately enclosing loop whereas 𝚌𝚘𝚗𝚝𝚒𝚗𝚞𝚎 skips the remainder of the loop
body and evaluates the loop condition once more. It is also convenient to introduce
a 𝚜𝚔𝚒𝚙 action to represent the direct transfer of control from one program point to
another (as in the Guarded Commands language).

The third line introduces the exception constructs of C++. Here 𝑠 is the exception
name (whose syntax we leave unspecified) and it is defined by a construct of the
form

𝚝𝚛𝚢{𝑆0}𝚌𝚊𝚝𝚌𝚑(𝑠1){𝑆1}⋯ 𝚌𝚊𝚝𝚌𝚑(𝑠𝑛){𝑆𝑛}
for 𝑛 > 0. If the exception 𝑠𝑖 is thrown (using the construct 𝚝𝚑𝚛𝚘𝚠 𝑠𝑖) within 𝑆0
then the execution of 𝑆0 is terminated and 𝑆𝑖 is executed instead. In the case where
several constructs are embedded within one another it is always the syntactically
innermost exception that is caught.

Task A.1: Construct program graphs for MicroC in the manner of Chapter 2.
Gradually extend the construction to deal with the extensions listed above. □

Task A.2: Generate proof obligations for MicroC in the manner of Chapter 3. □

Task A.3: Develop the detection of signs analysis of Chapter 4 for MicroC. □

Task A.4: Adapt the security analysis of Chapter 5 to work for MicroC. □

Declarations and functions Another extension of MicroC introduces declarations
and functions as in C; the suggested syntax is as follows:



131

𝐷 ∶∶= 𝚒𝚗𝚝 𝑥 ; ∣ 𝚒𝚗𝚝 𝐴[𝑛] ; ∣ 𝜖 ∣ 𝐷1 𝐷2
∣ 𝚒𝚗𝚝 𝑓 (𝚒𝚗𝚝 𝑦) {𝐷 𝑆} ;

𝑆 ∶∶= … ∣ { 𝐷 𝑆 } ∣ 𝚛𝚎𝚝𝚞𝚛𝚗 𝑎 ; ∣ 𝑥 ∶= 𝑓 (𝑎) ;

The first line gives the format for declarations of variables and arrays; for the sake
of simplicity we shall assume that they always have type int. These declarations
may appear at the top level as well as within nested blocks of statements, that is,
within blocks of the form { 𝐷 𝑆 }.

𝚒𝚗𝚝 𝚏𝚊𝚌 (𝚒𝚗𝚝 𝚡)
{ 𝚒𝚗𝚝 𝚝;
𝚒𝚏 (𝚡 < 𝟷) 𝚛𝚎𝚝𝚞𝚛𝚗 𝟷;
𝚎𝚕𝚜𝚎 𝚝 ∶= 𝚏𝚊𝚌(𝚡 − 𝟷);

𝚛𝚎𝚝𝚞𝚛𝚗 (𝚡 ∗ 𝚝);
}

Figure A.3: Declaration of the fac-
torial function.

At the top level we may additionally have function declarations of the form

𝚒𝚗𝚝 𝑓 (𝚒𝚗𝚝 𝑦) {𝐷 𝑆}

as illustrated in Figure A.3. Here 𝑓 is the name of the function and 𝑦 is its formal
parameter (of type int) and the function returns a value of type int. The body of
the function is a block of the form { 𝐷 𝑆 } and hence it may introduce new (local)
variables and arrays. Occurrences of statements of the form

𝚛𝚎𝚝𝚞𝚛𝚗 𝑎

determine the value returned by the function. The function is called using an
assignment of the form

𝑥 ∶= 𝑓 (𝑎)

Here 𝑎 is the actual parameter whose value will be bound to the formal parameter
of the function before its body is executed; the value returned by the function will
eventually be assigned to the variable 𝑥.

Following C, functions can only be declared at the top level and they are mutually
recursive. One of the declared functions must be called main and this is the one
that is called (with actual parameter 0) when the program is executed.

Task A.5: Specify the semantics for this extension of MicroC in the manner of
Chapter 7; you may do so in a gradual manner, starting with simple variable and
array declarations and ending with function declarations. As part of this you have to
design an appropriate memory model, to introduce appropriate actions together with
their semantics and to construct program graphs making use of these actions. □

A. The MicroC Language



Appendix B

Programming Projects

In this appendix we present a sequence of programming projects aimed at imple-
menting central parts of the development of Chapters 1 to 5. The projects may
focus on the Guarded Commands language studied in the main part of the book, or
on the MicroC language of Appendix A. In the formulation we envisage the use of a
functional language like F# but the programming projects can be adapted to use
other implementation languages. Our own realisation in Appendix C makes use of
F# and forms the core of the electronic learning tool Formal Methods – A Learning
Environment that goes with the book.

The core development The starting point of the development is illustrated in
Figure B.1. It assumes that the program of interest is available as a string of
characters (of type string) and it is the job of the parser to turn it into its
representation as an abstract syntax tree. Thus a main task will be to define an
abstract data type AST representing the abstract syntax of programs. Appropriate
techniques for constructing the parser are covered in other books; here we just note
that the type of the parsing function can be written

parse: string -> AST option

where we use the option data type constructor to take care of ill-formed strings.

𝚜𝚝𝚛𝚒𝚗𝚐� �
𝚙𝚊𝚛𝚜𝚎

��
𝙰𝚂𝚃

𝚐𝚎𝚗𝚎𝚛𝚊𝚝𝚎

��
𝙿𝙶

𝚒𝚝𝚎𝚛𝚊𝚝𝚎

88

𝚂𝙴𝙼

II
𝙲𝚘𝚗𝚏𝚒𝚐

Figure B.1: The core of the imple-
mentation.

The next step is to introduce a data type for program graphs PG and to define a
function constructing a program graph from an abstract syntax tree. The type of
this function will be

generate: AST -> PG

This function will need a mechanism for generating the fresh nodes needed in the

133

© Springer Nature Switzerland AG 2019 
F. Nielson, H. Riis Nielson, Formal Methods, https://doi.org/10.1007/978-3-030-05156-3

https://doi.org/10.1007/978-3-030-05156-3


134 B. Programming Projects

construction of program graphs.

The third step is to specify the semantic domain and the semantic functions giving
the meaning of the actions of the program graphs – the latter involves among others
things the specification of how expressions are evaluated. Writing SEM for the type
of semantic functions and Config for the type of configurations, we can construct a
function

iterate: PG -> SEM -> Config -> int -> Config

which, given a program graph, an initial configuration and an integer bound, will
execute the program for at most that number of steps and return the resulting
configuration. If the semantics is non-deterministic the function will also need a way
of resolving this in a random way.

Program verification The aim of our implementation of the verification technique
of Chapter 3 will be to extract the relevant proof obligations, as illustrated in Figure
B.2. The key function has functionality

extract: PG -> PredAssign -> ProofObl

Given a program graph and a partial predicate assignment (represented by values of
type PredAssign) it constructs (a sequence of) proof obligations of type ProofObl.
There are several points to consider in doing so.

𝙿𝙶
𝚎𝚡𝚝𝚛𝚊𝚌𝚝

JJ

𝙿𝚛𝚎𝚍𝙰𝚜𝚜𝚒𝚐𝚗

KK
𝙿𝚛𝚘𝚘𝚏𝙾𝚋𝚕

Figure B.2: The verification imple-
mentation.

One is concerned with how to obtain the partial predicate assignments. One possibility
is to annotate the programs with the required predicates and hence obtain a program
graph as well as a partial predicate assignment from the program. An alternative
would be to supply the partial predicate assignment directly and simply check that
its domain covers the program graph and only produce a proof obligation in that
case.

Another choice concerns the format of the proof obligations. In the simplest version
they may simply be shortest path fragments. More refined implementations may
introduce a small language (a version of first-order logic) for the predicates and use
it in the proof obligations; even more ambitious implementations may incorporate
ideas from Teaser 3.12.

The program analysis The implementation of the program analysis of Chapter 4
is in two parts. The first is independent of the actual analysis being performed and
is illustrated in Figure B.3. The key function has functionality

analyse: AnaSpec -> PG -> AbsMem Set -> AnaAssign

Its first argument is the analysis specification (of type AnaSpec) and when applying



135

the function later we shall supply the actual analysis – this may be the detection
of signs analysis, the parity analysis or yet another analysis. The second parameter
of the function is the program graph of interest and the third is the set of initial
abstract memories (of type AbsMem). The function will compute the corresponding
analysis assignment (of type AnaAssign). The types AbsMem and AnaAssign can
be parametric and hence knowledge about the actual analysis being performed is
not needed when implementing the function analyse.

𝚜𝚒𝚐𝚗𝚂𝚙𝚎𝚌

𝙿𝙶

𝚊𝚗𝚊𝚕𝚢𝚜𝚎

��

𝙰𝚋𝚜𝙼𝚎𝚖
𝚂𝚎𝚝

��

𝙰𝚗𝚊𝚂𝚙𝚎𝚌

LL
𝙰𝚗𝚊𝙰𝚜𝚜𝚒𝚐𝚗

Figure B.3: The program analysis
implementation.

The second part of the implementation is then concerned with the actual anal-
ysis being performed. For the detection of signs analysis we shall construct an
element

signSpec: AnaSpec

that specifies how to compute with signs and in particular how the abstract memories
(now recording the signs of variables and arrays) are modified by the actions of the
program graph; supplying this element as an argument to analyse will give us a
detection of signs analysis. In a similar way we can specify an element parSpec
of type AnaSpec and obtain a parity analysis when supplying it as an argument to
analyse.

The security analysis The starting point for the implementation of the security
analysis of Chapter 5 is abstract syntax trees, as illustrated in Figure B.4. The
admitted flows are specified in the data type Flow and the function secure will
check whether the program adheres to it:

secure: AST -> Flow -> Secure

The result may be a simple yes/no answer or more detailed information may be
given – we use the type Secure for this.

𝚂𝚎𝚌𝙻𝚊𝚝𝚝𝚒𝚌𝚎

��

𝚂𝚎𝚌𝙲𝚕𝚊𝚜𝚜

𝚊𝚕𝚕𝚘𝚠
��

𝙰𝚂𝚃
𝚜𝚎𝚌𝚞𝚛𝚎

88

𝙵𝚕𝚘𝚠

KK
𝚂𝚎𝚌𝚞𝚛𝚎

Figure B.4: The security analysis
implementation.The permitted flows can be generated from a security lattice and a security classifi-

cation; writing SecLattice and SecClass for the data type with this information,
the function allow can construct the permitted flows:

allow: SecLattice * SecClass -> Flow

Combining these functions allows us to check a number of confidentiality and integrity
properties.

B. Programming Projects



Appendix C

Realisation in F#

In this appendix we document our implementation in F# of the programming projects
proposed in Appendix B. The development focuses on the Guarded Commands
language studied in the main part of the book. The appendix provides the functional-
ities and types of the key functions used in our implementation. The implementation
also forms the core of the electronic learning tool Formal Methods – A Learning
Environment that goes with the book.

C.1 The Core Development

Our first step is to construct a generic interpreter for program graphs, thereby
providing an implementation of Chapter 1, as illustrated in Figure C.1. We shall
choose data types that are parametric in the type of the nodes as well as the actions
of the program graphs and we shall also ensure that the semantics is parametric in
the type of the memory.

Our second step will then be to instantiate this setting to use the actions of the
Guarded Commands language and the associated semantics. On top of this we then
introduce the Guarded Commands language itself and the functions for generating
program graphs and for running their semantics – together these provide us with an
implementation corresponding to the development of Chapter 2.

𝚜𝚝𝚛𝚒𝚗𝚐� �
𝚙𝚊𝚛𝚜𝚎

��
𝙰𝚂𝚃

𝚐𝚎𝚗𝚎𝚛𝚊𝚝𝚎

��
𝙿𝙶

𝚒𝚝𝚎𝚛𝚊𝚝𝚎

88

𝚂𝙴𝙼

II
𝙲𝚘𝚗𝚏𝚒𝚐

Figure C.1: The core of the imple-
mentation.

A generic interpreter The first step is to choose a data structure for program
graphs, as specified in Definition 1.2. Edges are represented as triples and in F# we
take

type (’q,’a) PG = ’q list * (’q * ’a * ’q) list * ’q * ’q
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where ’q is the type of the nodes and ’a is the type of the actions.

The next step is to choose a data structure for the semantics, as specified in Definition
1.6. The data structure is a function type and in order to model that the meaning of
an action may be a partial function we use the option type of F# and take

type (’a,’m) SEM = (’a -> ’m -> ’m Option)

where now ’m is the type of the memory.

We can now implement the transitions of the semantics, as specified in Definition
1.11. For this we introduce a function

transition: (’q,’a) PG -> (’a,’m) SEM -> (’q * ’m)
-> (’q * ’m) list

where ’q * ’m is the type of the configurations. As input it takes a program
graph, a semantics and a configuration and the result is a list of the potential next
configurations.

The next step is to implement the execution sequences of Definition 1.13. The
function iterate of type

iterate: (’q,’a) PG -> (’a,’m) SEM -> (’q * ’m) -> int
-> (’q * ’m)

will construct an execution sequence starting in the supplied configuration; the integer
argument will bound its length and the function returns the resulting configuration,
which may be a final configuration, a stuck configuration or just the configuration
that was reached after the given number of steps. The function makes use of the
function transition introduced above and will randomly choose one of the possible
next configurations in case there is more than one.

Actions: syntax and semantics We shall now introduce the abstract syntax of
the actions, as introduced in Chapter 2. We shall assume that variables and array
names have type Ident (which may be defined as strings) and take

type AExp = Num of int
| Var of Ident
| Arr of Ident * AExp
| Add of AExp * AExp
| Sub of AExp * AExp
| Mul of AExp * AExp
| Div of AExp * AExp



C.1. The Core Development 139

type BExp = True
| Eq of AExp * AExp
| Gt of AExp * AExp
| Gte of AExp * AExp
| And of BExp * BExp
| Neg of BExp

type Action = VAsgn of Ident * AExp
| AAsgn of Ident * AExp * AExp
| Skip
| Test of BExp

Turning to the semantics, we shall represent the memory as a pair of lists of pairs
as suggested in Section 2.3; the first component holds the values of the variables
and the second component holds the values of the arrays represented as a list of
integers:

type Mem = (Ident * int) list * (Ident * int list) list

We can now define an auxiliary function for looking up the values of variables and
array entries as well as for updating the value of variables and array entries. With
these functions in place we can implement functions for evaluating arithmetic and
boolean expressions; they will have types

AEval: AExp -> Mem -> int Option
BEval: BExp -> Mem -> bool Option

These functions are partly defined in the text of Section 2.3 and in Exercise 2.20. The
semantics of actions in Definition 2.17 gives rise to the function sem of type

sem: SEM<Action,Mem>

The function iterate can now be specialised to use these functions, as for example
in iterate pg sem (q,m) k.

We have chosen to use the normal F# integers int when defining the memory
Mem and should be aware that they behave much like a 32-bit version of our
signed bytes from Section 1.5. To get as close as possible to the behaviour of
mathematical integers we might use the F# full-precision integers bigint when
defining the memory.

Guarded Commands and program graphs Turning to the Guarded Commands
language, the first step is to introduce types for the abstract syntax. We shall follow
Definition 2.3 closely and take



140 C. Realisation in F#

type AST = Assign of Ident * AExp
| AAssign of Ident * AExp * AExp
| SkipGC
| Seq of AST * AST
| If of GAST
| Do of GAST

and GAST = Cond of BExp * AST
| Choice of GAST * GAST

A parser for the language will then have to construct abstract syntax trees that can
be represented in this data structure:

parse: string -> AST Option

We shall not go into further details and only mention that various libraries in F#
support this development.

In the construction of program graphs we shall write Node for the type of the nodes
of the programming graphs; a simple choice is to take this to be integers. Definition
2.7 will then give rise to a function for commands of type

edges: AST -> Node -> Node -> (Node * Action * Node) list

and it will make use of a corresponding function for guarded commands. The
definition of these functions is fairly straightforward except for the generation of
fresh nodes; this can be solved by using an imperative variable to keep track of
the next unused node. Using the edges function we can then define the overall
function

generate: AST -> PG<Node,Action>

Making use of the previously defined functions, the interpreter can be implemented
by combining the parse, generate, sem and iterate functions.

The above implementation are easily extended to handle the extensions of the
language considered in Section 2.5. It is also possible to implement a deterministic
version of the language following the approach of Section 2.4.

C.2 Program Verification

The starting point for this programming project is a version of the Guarded Commands
language annotated with predicates as suggested in Section 3.4. We can then obtain
a program graph and a partial predicate assignment, the aim of the programming
project is then to obtain a set of proof obligations, as described in Section 3.3. The
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overall development is summarised in Figure C.2.

Guarded Commands with Predicates We shall first introduce types for the
expressions and predicates to be used for formulating the properties of interest; here
we shall follow Section 3.1. We shall distinguish between (program) array names
and logical array names as they both may appear in expressions and predicates, so
we take

type Array = AName of Ident
| LName of Ident
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Figure C.2: Generating proof obliga-
tions.

Both kinds of array names can be used when indexing into array names, just as
they can occur as arguments to predefined mathematical functions and predefined
predicates – the names of the latter have type Name, which may be just strings.
Thus we take

type Exp = PNum of int
| PVar of Ident
| LVar of Ident
| PArr of Array * Exp
| ...
| PFun of Name * Array list * Exp list

type Pred = PTrue
| ...
| PPred of Name * Array list * Exp list

The actual choice of expressions and predicates is fairly open but must include
the arithmetic and boolean expressions of the Guarded Commands language. In
particular, we shall need functions mapping the data structures for the arithmetic
and boolean expressions into the above data structures.

With this in place we can now modify the abstract syntax introduced in Section C.1
for the Guarded Commands language to include predicates for the iteration construct
and the overall program. So the types will now be:

type AST = Assign of Ident * AExp
| ...
| Do of Pred * GAST

and GAST = ...

type PRG = Pred * AST * Pred

The function generate is now modified to construct a program graph together with
a partial predicate assignment of type
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type PredAssign = (Node * Pred) list

So the overall functions will be

parse: string -> AST Option
generate: PRG -> PG<Node,Action> * PredAssign

where generate amounts to an implementation of Definitions 3.32 and 3.33.

Proof obligations In order to generate proof obligations we shall first compute the
short path fragments as presented by the algorithm of Figure 3.3; the corresponding
function is

paths: PG<Node,Action> * PredAssign
-> (Node * Action list * Node) list

It returns a list of triples where the first and the third components are nodes in
the program graph and the second component is a list of actions. It is now easy
to extract the proof obligations using the partial predicate assignment so we can
obtain the function

extract: PG<Node,Action> * PredAssign
-> (Pred * Action list * Pred) list

We can now combine the parse, generate and extract functions to generate a
list of proof obligations for the guarded commands. The actual checking of the
obligations is beyond the scope of this implementation.

The above implementation is easily extended to handle the extensions of the language
considered in Section 2.5. It is also possible to extend the implementation to work
directly on program graphs as suggested in Section 3.5; then the input to the system
could be a program graph and a partial predicate assignment; one could then check
whether the corresponding set of nodes covers it and construct the proof obligations
if that is the case.

C.3 Program Analysis

This programming project consists of two parts. In the first we develop a generic
analysis function for program graphs; it is parameterised on a specification of the
analysis of interest and builds on the algorithms of Section 4.5. In the second part
of the project we specify the detection of signs analysis (and parity analysis) for the
actions of the Guarded Commands language; similar specifications can be written
for other analyses, for example the parity analysis of the exercises of Chapter 4. The
overall development is summarised in Figure C.3.
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Analysing program graphs We shall assume that program graphs have the type
given in Section C.1 and we shall now replace the semantics and the associated
iteration function with an analysis specification and a technique for computing
the analysis result. The first step is to specify data structures corresponding to
the analysis specifications of Definition 4.21. The analysis functions will have
type

type (’a,’m) AnaSpec = (’a -> ’m Set -> ’m Set)

where as before ’a is the type of the actions and now ’m is the type of the abstract
memories. Following Definition 4.5 we can now introduce the following type for
analysis assignments:

type (’q,’m) AnaAssign = (’q * ’m Set) list

Here ’q is the type of the nodes of the program graph.
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Figure C.3: The program analysis
implementation.

We can then define a function implementing the algorithm of Figure 4.16; it will
have type

solve: AnaSpec<’a,’m> -> PG<’q,’a> -> Set<’m> ->
-> AnaAssign<’q,’m>

and thus require three parameters, namely the analysis functions for the actions (̂[[⋅]]
in Figure 4.15), the program graph of interest and the initial analysis information
for the initial node (M̂em⊳ in Figure 4.15). It is now straightforward to define the
function

analyse: AnaSpec<’a,’m> -> PG<’q,’a> -> Set<’m> ->
-> AnaAssign<’q,’m>

as it simply amounts to a call of solve with the same parameters.

Detection of signs analysis In order to specify the detection of signs analysis we
shall first introduce the necessary types and functions for calculating with signs. The
signs are represented by an enumeration type:

type Sign = Nsign | Zsign | Psign

It is straightforward to specify a function sign corresponding to sign ∶ Int → Sign
(of Section 4.1).

We can now specify the abstract operations 𝑜𝑝 of Section 4.3 corresponding to the
arithmetic, relational and binary operators of the expressions. Corresponding to
Figures 4.10 and 4.11 we can define functions of type
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signAdd: Sign * Sign -> Sign Set
signGte: Sign * Sign -> bool Set

and we shall need similar functions for the other operators. Note that when specifying
the analysis of arithmetic and boolean expressions we shall need extensions of these
functions that take pairs of sets of signs, respectively, pairs of sets of booleans, as
parameters; for this it is convenient to introduce a generic function (taking special
care of the short-circuit operators).

Following Section 4.1 we shall introduce the type

type SignMem = (Ident * Sign) list *
(Ident * Sign Set) list

for abstract memories (AbsMem in Figure C.3). As was the case when we implemented
the semantics in Section C.1, it is helpful to introduce auxiliary functions for looking
up the sign of variables and the set of signs of arrays. It will also be useful to define
a function

signOf: Mem -> SignMem

corresponding to the function 𝜂 of Definition 4.2.

We are now ready to define functions for analysing arithmetic and boolean expressions
as well as actions, and here we shall follow Section 4.3. We shall define functions
with types

ASign: AExp -> SignMem -> Sign Set
BSign: BExp -> SignMem -> bool Set
signSpec: AnaSpec<Action, SignMem>

In the case of arithmetic expressions the function directly reflects the definition in
Section 4.3; in the case of boolean expressions it relies on Exercise 4.16. When
specifying the analysis of actions it may be useful first to define an auxiliary function
taking an action and a single abstract memory as arguments and returning a set of
abstract memories as result; then signSpec can be obtained by lifting this function
to take a set of abstract memories as argument.

By supplying the function analyse with the argument signSpec we have a detection
of signs analysis for program graphs obtained from the Guarded Commands language;
combining it with the functions parse and generate we obtain a detection of signs
analysis for Guarded Commands.

A similar development can be performed for the parity analysis developed in Exercises
4.4, 4.17 and 4.20. This amounts to specifying a type ParMem for the abstract
memories of the parity analysis and developing the various functions for calculating
with parities including specifying the function
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parSpec: AnaSpec<Action, ParMem>

By supplying the function analyse with the argument parSpec we obtain an
implementation of the parity analysis.

C.4 Language-Based Security

In this programming project we shall implement the security analysis of Chapter 5.
We shall take a syntax-directed approach and develop the analysis for the Guarded
Commands language as described in Section 5.3. The project has two parts. The
first is concerned with extracting the actual flows of a Guarded Commands program
and checking them against a given permissible flow. The second part constructs the
permissible flows from a security specification consisting of a security lattice and a
security classification. The overall development is illustrated in Figure C.4.
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Figure C.4: The security analysis
implementation.

Constructing the flows As a preparation our first step will be to define functions
extracting the free variables of arithmetic and boolean expressions

fvA: AExp -> Ident Set
fvB: BExp -> Ident Set

where AExp and BExp are the types for expressions introduced in Section C.1.

We can now define the type of flows to be

type Flow = (Ident * Ident) Set

We can then define a function corresponding to the operation 𝑋 ⇉ 𝑌 of Section
5.1; it will have type

make_flow: Ident Set -> Ident Set -> Flow

The next step will be to define functions corresponding to Definitions 5.12 and 5.13.
Here we have two choices. One is to supply the permitted flows as an argument to
the functions and another possibility is to collect the actual flows of the commands
and then check them subsequently – we shall take the latter approach. The types of
the functions thus are

sec: AST -> Ident Set -> Flow
secG: GAST -> BExp * Ident Set -> Flow * BExp

The function secure will then compute the actual flow and check whether it is a



146 C. Realisation in F#

subset of the allowed flows, so it has type

secure: AST -> Flow -> Secure

A simple solution takes Secure to be the type bool but more elaborate choices are
also possible; as an example one might return the offending flows.

Security specification The first component of a security specification is a security
lattice. It is defined by its ordering so we shall take

type SecLattice = (SecLevel * SecLevel) list

where SecLevel is the type of the security levels. Some examples are

confidentiality = [(public,private)]
integrity = [(trusted, dubious)]
classical = [(low,high)]

Not every element of type SecLattice is a partially ordered set and there are several
ways to deal with this. One possibility is to introduce a function checking whether
or not the element is a partially ordered set, and only proceed if this is the case.
Another possibility is to construct a partially ordered set from the given element if
this is indeed possible; then we would get a function

make_pO: SecLattice -> SecLattice Option

that performs the required checks on its argument and constructs a partially ordered
set from it. The steps could be as follows: first remove all reflexive components
from the argument, then construct the transitive closure and check its intersection
with the identity relation. If this test succeeds the function returns the reflexive
transitive closure of its argument, and otherwise it fails.

Following the development of Section 5.4 we shall specify a security classification as
an element of type

type SecClass = (Ident * SecLevel) list

that to each variable and array name associates a security class (from the security
lattice); it is useful to provide a function checking that only security classes from
the given security lattice are indeed used.

The permissible flows can then be obtained as all pairs of variables (and array
names) that, according to the security classification, have security classes that
are ordered in a way permitted by the partial ordering obtained from the security
lattice:
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allow: SecLattice * SecClass -> Flow

The security validation now amounts to supplying the permitted flows as an argument
to the function secure defined earlier.



Appendix D

A Learning Environment

We now introduce the learning environment available at FormalMethods.dk, where
one can play with the development of many of the chapters of the book. This is
useful for checking one’s understanding of the examples and exercises and is useful
for exploring further examples to those found in the book. Our main focus is on
the system at FormalMethods.dk/fm4fun, which supports the first five chapters
of the book. The welcome screen is shown in Figure D.1.

Figure D.1: The welcome screen – when first starting the system.
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D.1 The Welcome Screen

Figure D.2: The welcome screen – with an example program and program graph.

When you have written a program you get the view in Figure D.2. You can always
navigate back to this view by pressing the About button in the top line, and when
you press the Download button in the top line you will be offered the opportunity
to download a version of the system that will run locally in the browser even when
not connected to the Internet.

The top part of the left pane is the place to write the program in the Guarded
Commands language. You can write directly in the box or you can choose one of
the available example programs by clicking on Examples.

The bottom part of the left pane displays the program graph. You can choose the
semantics to be used for this: the usual non-deterministic semantics of Guarded
Commands or the deterministic version covered in Section 2.4.

The buttons in the left pane offer you a number of ways to interact with the system:
To pretty print the program that you wrote.
To download the program or program graph to a file.
To upload a program from a file.
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To get an overview of the syntax supported.
To redraw the program graph.
To open a separate window where you can rearrange the program graph.

D.2 Step-Wise Execution

Figure D.3: The Step-wise Execution screen – with an execution sequence.

When you click on Environments in the first line you get the possibility to choose
Step-wise Execution, as covered in Chapters 1 and 2. Here you should specify
initial values for all the variables and array entries in your program.

You can then choose to see an example execution and you can control the number
of steps to be carried out. This is shown in Figure D.3. If the execution sequence
resolves a non-deterministic choice the symbol indicates the point where it happens
and if you click it the system will redo the choice.

You can also choose to see all the resulting configurations from all non-deterministic
executions and you can control the depth of the computation tree.
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D.3 Verification Conditions

Figure D.4: The Verification Conditions screen – with a partial predicate assignment.

When you click on Environments in the first line you get the possibility to choose
Verification Conditions, as covered in Chapter 3.

By pressing Get Covering Nodes you will get a list of the covering nodes: you have
the option of replacing their names with a textual presentation of the predicate that
should hold there and this corresponds to providing a partial predicate assignment.

By pressing Show Obligations you will then get a list of all the short path fragments,
presented in the form of a list of proof obligations (if you chose to write the partial
predicate assignment). This is shown in Figure D.4.
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D.4 Detection of Signs Analysis

Figure D.5: The Detection of Signs Analysis screen – with an analysis assignment.

When you click on Environments in the first line you get the possibility to choose
Detection of Signs Analysis, as covered in Chapter 4.

First you need to specify the collection M̂em⊳ of abstract memories holding initially.
Each abstract memory should be written on a separate line and you can use to
add additional lines.

When you click Show Sign Analysis you then get the least solution to the analysis
problem. This is shown in Figure D.5.
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D.5 Security Analysis

Figure D.6: The Security Analysis screen – with an example confidentiality analysis.

When you click on Environments in the first line you get the possibility to choose
Security Analysis, as covered in Chapter 5. You will be forced to choose the
deterministic semantics in order for the security analysis to work.

First you should specify the security lattice and then the security classification for
variables and arrays. By clicking on Show Security Analysis you then get the
result of the security analysis. This is shown in Figure D.6.



Symbols

Some of the symbols used in this book may be unfamiliar, and it may not be so
obvious how to ‘read them aloud’, so here is a bit of help.

 curly A
 curly B
 curly S
̂ curly A hat
̂ curly B hat
̂ curly S hat

𝑞⊳ initial node
𝑞� final node
⊳ initial� final
𝑞◦ q circle / source node
𝑞∙ q bullet / target node

Φ (Greek capital) Phi
Ψ (Greek capital) Psi
𝛼 (Greek) alpha
𝜂 (Greek) eta
𝛾 (Greek) gamma
𝜙 (Greek) phi
𝜋 (Greek) pi
𝜎 (Greek) sigma
𝜍 (Greek) varsigma / written sigma
𝜔 (Greek) omega

[[ ]] semantic brackets
( ) parentheses

⟶ long arrow / goes to
⟶∗ goes to in many steps
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⟹ double long arrow / goes to
⟹∗ goes to in many steps

⇒ implies
[ ↦ ] update

↦ maps to
→ arrow / maps to / flows to
⇝ leads to
↪ partially maps to
⇉ double arrow / flows to

∧ and
∨ or
¬ not

&& short-circuit and|| short-circuit or
^ exponentiation
[] or
:= becomes
? question mark / input
! exclamation mark / output

⊆ subset of
⊈ not subset of
⊑ less than or equal to
⊏ strictly less than
∪ union
⊔ join / least upper bound
∩ intersection
⊓ meet / greatest lower bound
⊕ oplus
⧵ set minus

{ } empty set

∃ exists
∀ for all
⊧ models
× times
@ at
# hash⌊ ⌋ floor of
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abstract memory, 48
abstract syntax tree, 16, 21
abstraction, x
actions, 2
actual parameters, 98
analysis assignment, 49
analysis domain, 55
analysis function, 52–55
array, 7
asynchronous semantics, 115
atomic propositions, 77
availability, xii, 61

back edge, 44, 45
blocks, 93
brackets, 16
broadcast, 119
broadcast execution step, 121

complete execution sequence, 6
complete lattice, 71
Computation Tree Logic, 80, 82
computation tree logic, xii
computationally valid, 57, 58
concrete memory, 48
concurrency, xii
confidentiality, xii, 61, 71
configuration, 5, 84, 97, 110, 116, 118
control structure, 77, 84
correct, 31, 35, 39, 50
covert channel, 69
cross edge, 44
CTL, 80, 82
curly brackets, 129

data structure, 77, 84
declarations, 91

declassification, 76
defining command, 98
depth-first spanning tree, 43
detection of signs, 47, 48, 56
deterministic, 25
deterministic system, 9
directed acyclic graph, 70
dubious, 62
dynamic, 47
dynamic pointer, 108
dynamic scope, xii, 98, 104

edges, 2
endorsement, 76
environment, 98
evolving, 26
evolving system, 10, 11, 67
execution sequence, 6
execution step, 5, 66, 84, 97, 110, 116
execution time, 69
explicit, 61–63
expressions, 32
extraction function, 48

final node, 1, 2
flow charts, 3
flow relation, 62
formal language, 3
formal methods, ix
formal parameters, 98
forward edge, 44
frame, 94
fresh nodes, 18
functions, 91

gathering, 119
gathering execution step, 122
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Guarded Commands, x, 15, 16
Guarded Commands with Blocks, 93, 96
Guarded Commands with Broadcast, 120
Guarded Commands with Communica-

tion, 112
Guarded Commands with Concurrency,

109
Guarded Commands with Predicates, 40
Guarded Commands with Procedures, 98

handler environment, 29
higher-order function, 4
holds on a transition system, 83

implicit, 61, 62, 64
individual execution step, 118
information flow, xii, 61, 62
initial node, 1, 2
initial states, 77
input parameter, 98
insertion sort, 8
instrumented program graph, 64, 65
integers, 11
integrity, xii, 61, 62, 72
interpreter, 137
invariant, xi, 34
isolation, 72

join, 71

labelling function, 77
language-based security, ix, xii, 61
lattice, 71
length, 7
local, 93
logical variables, 32

meet, 71
memory, 4, 94
MicroC, 129
model checkers, 86
model checking, ix, xii, 77, 126
models, x
monotonic function, 55
multi-level security, 70

nodes, 2

non-determinism, 70
non-interference, 73
non-termination, 69

output parameter, 98
over-approximating, xi

parentheses, 16
parsing, 17
partial correctness, 36, 39
partial function, 4
partially ordered set, 70
path, 79
path formulae, 82, 83
path fragment, 79
pointwise intersection, 59
predicate assignment, 34
predicates, 32
private, 61
procedure call, 98, 100
procedure declaration, 98, 99
procedures, xii, 91, 98
processes, 109
product program graph, 111
program analysis, ix, xi, 47, 125
program graph, x, 1, 2
program points, 3
program variables, 32
program verification, ix, xi, 31, 125
proof obligation, 39
properties, 48
public, 61

reachable, 79
reducible program graphs, 45
reference monitor, 63
reference-monitor semantics, 65
reflexive and transitive closure, 6
renaming variables apart, 105
reverse postorder numbering, 43
round brackets, 129

sanitised, 76
satisfiable, 33
scope, 93
security, xii, 61
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security classification, 70
security lattice, 71
semantically correct, 50, 58
semantically sound, 56, 58
semantics, ix, x, 4, 83, 126
semilattice, 71
shared variables, xiii
short-circuit, 8, 23
sign, 48
signed byte, 13, 53
signed numbers, 13
solution, 58
sound, 56
source, 2
specification of a program analysis, 55
state explosion, 86
state formulae, 82, 83
statement, 129
states, 77
static, 47
static pointer, 108
static scope, xii, 104
stuck, 5, 79
suitable, 34
synchronous execution step, 118
synchronous semantics, 117
syntactic tree structure, 16
syntax, x

target, 2
tautology, 33
termination, 85
total function, 4
transition relation, 77
transition system, 77
transitions, 77
tree edge, 44
trusted, 62

unsigned byte, 12
unsigned numbers, 12

valid, 57

AP, 77
Act, 2

Arr, 7
A, 49
Buf, 115
E, 2
Frame, 94, 96, 103
Int, 7
I, 77
L, 77
Mem, 4, 21, 23, 24, 115, 117
Mem𝖥, 94, 96, 103
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