Contemporary Cryptography: Principles and Practice

Chapter 4 Finite Field

Fuyou Miao, Wenchao Huang

202498 27 H

http://staff.ustc.edu.cn/~huangwc/crypto.html \

Fuyou Miao Wenchao Huang Chapter 4 Finite Field 2024 £ 9 B 27 H


http://staff.ustc.edu.cn/~huangwc/crypto.html

@ The problem of DES
@ AES cipher and elliptic curve

Fuyou Miao Wenchao Huang Chapter 4 Finite Field 2024 £ 9 B 27 H



o A field (&) is a set of elements on which two arithmetic operations
(addition and multiplication) have been defined and which has the
properties of ordinary arithmetic, such as closure, associativity,
commutativity, distributivity, and having both additive and
multiplicative inverses.

e Modular arithmetic (&) is a kind of integer arithmetic that
reduces all numbers to one of a fixed set [0, ..., n - 1] for some
number n. Any integer outside this range is reduced to one in this
range by taking the remainder after divi- sion by n.

@ The greatest common divisor (BRAKZEF) of two integers is the
largest positive integer that exactly divides both integers.

e A finite field (BPRIgk) is simply a field with a finite number of
elements. It can be shown that the order of a finite field (number of
elements in the field) must be a power of a prime p”, where n is a
positive integer.

e Finite fields of order (Bft) p can be defined using arithmetic mod p.

o Finite fields of order p™, for n > 1, can be defined using arithmetic
over polynomials.
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@ Groups, Rings, Fields (Bf. K. iF)
@ Euclid Algorithm (EXJLEEEX)
© Modular arithmetic (HHEAR)

© Galois Fields GF(p)

© Polynomial Arithmetic (ZIRzE)

@ Galois Fields GF(2)
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@ Groups, Rings, Fields (Bf. K. iF)
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2% Groups

Definition: &f {G, -}
A group G, sometimes denoted by {G, -}, is a set of elements with a

binary operation denoted by that associates to each ordered pair (a,b) of
elements in G an element (a - b) in G, such that:

A1 =A% Closure: If a and b belongs to G, then a - b belongs to G.

A2 Z551E Associative: a-(b-c) = (a-b)-c for all a,b,cin G

A3 ER{/7T Identity element: There is an element e in G such that
a-e=e-a=a

.

A4 35T Inverse element: For each a in G, there is an element o’ in G,
suchthata-a=a-a=c¢e
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2% Groups

Example: Groups

Let N,, = {1,2,,n} denote a set of n distinct symbols.
A permutation (E##) of n distinct symbols is a one-to-one mapping from

N, to N,,.
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2% Groups

Example: Groups

Let N,, = {1,2,,n} denote a set of n distinct symbols.

A permutation (E##) of n distinct symbols is a one-to-one mapping from
N, to N,,.

Define S,, to be the set of all permutations of n distinct symbols.

Each element of S,, is a permutation of the integers p in {1,2,,n}.
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2% Groups

Example: Groups

Let N,, = {1,2,,n} denote a set of n distinct symbols.

A permutation (E##) of n distinct symbols is a one-to-one mapping from
N, to N,,.

Define S,, to be the set of all permutations of n distinct symbols.

Each element of S,, is a permutation of the integers p in {1,2,,n}.

Al If m,p € Sy, then the composite mapping 7 - p is formed by
permuting the elements of p according to the permutation 7. For
example, {3,2,1}{1,3,2} = {2,3,1}. Clearly, 7- p € S,,.
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2% Groups

Example: Groups

Let N,, = {1,2,,n} denote a set of n distinct symbols.

A permutation (E##) of n distinct symbols is a one-to-one mapping from
N, to N,,.

Define S,, to be the set of all permutations of n distinct symbols.

Each element of S,, is a permutation of the integers p in {1,2,,n}.

Al If m,p € Sy, then the composite mapping 7 - p is formed by
permuting the elements of p according to the permutation 7. For
example, {3,2,1}{1,3,2} = {2,3,1}. Clearly, 7- p € S,,.

A2 The composition of mappings is also easily seen to be associative
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2% Groups

Example: Groups

Let N,, = {1,2,,n} denote a set of n distinct symbols.

A permutation (E##) of n distinct symbols is a one-to-one mapping from
N, to N,,.

Define S,, to be the set of all permutations of n distinct symbols.

Each element of S,, is a permutation of the integers p in {1,2,,n}.

Al If m,p € Sy, then the composite mapping 7 - p is formed by
permuting the elements of p according to the permutation 7. For
example, {3,2,1}{1,3,2} = {2,3,1}. Clearly, 7- p € S,,.

A2 The composition of mappings is also easily seen to be associative

A3 The identity mapping is the permutation that does not alter the order
of the n elements. For S,,, the identity element is {1,2,,n}.
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2% Groups

Example: Groups

Let N,, = {1,2,,n} denote a set of n distinct symbols.

A permutation (E##) of n distinct symbols is a one-to-one mapping from
N, to N,,.

Define S,, to be the set of all permutations of n distinct symbols.

Each element of S,, is a permutation of the integers p in {1,2,,n}.

Al If m,p € Sy, then the composite mapping 7 - p is formed by
permuting the elements of p according to the permutation 7. For
example, {3,2,1}{1,3,2} = {2,3,1}. Clearly, 7- p € S,,.

A2 The composition of mappings is also easily seen to be associative

A3 The identity mapping is the permutation that does not alter the order
of the n elements. For S,,, the identity element is {1,2,,n}.

A4 For any m € S,,, the mapping that undoes the permutation defined by
p is the inverse element for p. There will always be such an inverse.
For example {2,3,1}{3,1,2} = {1,2,3}
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Definition: Finite Group (BPRE¥) and Infinite Group (FPREF)

@ If a group has a finite number of elements, it is referred to as a finite

group. The order (Pft) of the group is equal to the number of
elements in the group

o Otherwise, the group is an infinite group.

Definition: Abelian Group (PRJIU/REF, 3ZHREE)
A5 ZZ#fE Commutative: a-b=b-a for all a,b in G

Definition: Cyclic Group (B3 E¥)
e A group G is cyclic if every element of G is a power a¥ (kis an
integer) of a fixed element a (a € G)
@ The element a is said to generate the group G or to be a generator

(Z#EB%TT) of G.

— —r = — S kel
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Definition: Rings (¥8) {R, +, x}

A ring R, sometimes denoted by { R, +, x }, is a set of elements with two
binary operations, called addition and multiplication, such that:

e [AL-A5] R is an abelian group with respect to addition. Denote the
identity element as 0 and the inverse of a as a.

M1 Closure &A% If a and b belongs to R, then ab belongs to R.
M2 Associativity FIEEERTE a(bc) = (ab)c for all a,b,c in R
M3 Distributive laws 95 ECE a(b+ c) = ab+ ac for all a,b,cin R

Definition: Commutative Ring (3Z#8IR)

M4 Commutativity of multiplication JE;E3ZH1E ab = ba for all a,b in R
Definition: Integral Domain (E3R)

M5 Multiplicative identity 1 JEEER{IJC al =la=aforallain R
M6 No zero divisors ToZ=E+F a, b€ RAab=0=a=0V b= 0.

= =
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Definition: Fields (1) {F, +, x }

A set of elements (F') with two binary operations, called addition and
multiplication

e [A1-M6] F'is an integral domain

M7 Multiplicative inverse (3€Z1¥JT) For each a in F, except 0, there is
an element a~! in F such that aa™! = (¢ Y)a = 1.

e rational numbers (BIEEER)
o the real numbers (SCEIER)
@ the complex number (S#E&ESR)

Counter-Examples

The set of all integers (%ﬁ%‘é) is not a field, because not every element
of the set has a multiplicative inverse.
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@ Euclid Algorithm (BRJ1ERBE%)
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Euclid Algorithm (RRJLEEBELX)

Definition: Divisibility (E2&)

We say that a nonzero b divides a if a = mb for some m, where a,b and
m are integers

Definition: b | a

The notation b | a is commonly used to mean b divides a

Definition: Divisor (%)

If b | a, we say that b is a divisor of a
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Euclid Algorithm (RRJLEEBELX)

The Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a

by n, we get an integer quotient (f) ¢ and an integer remainder (R%§)
r that obey the following relationship:

a=qgn+r

where 0 < r < n;q = |a/n], and |z] is the largest integer less than or
equal to =
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Euclid Algorithm (RRJLEEBELX)

The Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a

by n, we get an integer quotient (f) ¢ and an integer remainder (R%§)
r that obey the following relationship:

a=qn—+r

where 0 < r < n;q = |a/n], and |z] is the largest integer less than or
equal to =

Definition: Greatest Common Divisor (R AZYEF) ged(a, b)

The positive integer c is said to be the greatest common divisor of a
and b if

@ cis a divisor of @ and of b

@ Any divisor of a and b is a divisor of ¢

= = = = =
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Euclid Algorithm (RXJLEBEEX)

Example: Compute gcd (1970, 1066)

1970 =1 x 1066 + 904 ged(1066,904)
1066 =1 x 904 + 162 d(904 162)
A B = 904 =5x162+94 ged(162,94)
© Zi ;g (;e’tl‘)‘)m 162 =1x94+68 ged(94, 68)
© R— A mod B 94 =1x68+26 gcd(68,26)
0 Ae B 68 =2x26+16 gcd(26 16)
o Be Rt 2% =1x16+10 ged(16,10)
0 goto 2 16 =1x104+6  gcd(10,6)
’ 10 =1x6+4 ged(6,4)
6 =1x4+2 ged(4,2)
4 =2x2+0 ged(2,0) )

= = = >
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Modular arithmetic (&)

The Modulus (1£)

If a is an integer and n is a positive integer,
@ We define ¢_mod n to be the remainder when a is divided by n.

@ The integer n is called the modulus

Rewrite 7 in Equations

a=la/n] xn+(a mod n)
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Modular arithmetic (&)

Definition: Congruent Modulo n ([E5R)
Two integers a and b are said to be congruent modulo 7, if (a
mod n) = (b mod n)

@ written as a = b (mod n)

Properties of Congruences
Q@ a=0b(modn),ifn|(a—>b)
@ a =) (mod n) implies b = a (mod n)
© a=b (mod n) and b = ¢ (mod n) imply a = ¢ (mod n) )
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Modular arithmetic (&)
Definition : Modular arithmetic (&)

Note that the mod n operator maps all integers into the set of integers

{0,1,...,(n— 1)}

Thus, modular arithmetics performs arithmetic operations within the set.

v

Properties of modular arithmetics
@ [(a mod n)+ (b mod n)] modn=(a+0b) mod n

@ [(a mod n)— (b mod n)] mod n=(a—b) modn

@ [(a mod n) x (b mod n)] mod n = (axb) modn
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Modular arithmetic (&)

Definition: additive inverse

If there exists z, such that
w+2z=0 modn

then z is additive inverse of w,
denoted as —w

Definition: multiplicative inverse

If there exists z, such that
wxz=1 modn

then z is multiplicative inverse of
w, denoted as w™!

v

Fuyou Miao Wenchao Huang

Chapter 4 Finite Field

Z=: Additive and multiplicative inverses
modulo 8

w [0]1]27]3 6
—w|0]l7]6]5[4[3][2]1
w [ =-]1]-]3]-]5]-
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Modular arithmetic (&)

Definition: set of residues, or residue classes (FIRZEE FIRE)

Define the set Z,, as the set of nonnegative integers less than n:

Z, ={0,1,,(n—1)}

Definition: residue class (FlIRE)

We can label the residue classes (mod n) as [0], [1], [2], ..., [n — 1], where

[rj={ala€ZA(a=r modn)}

Example: the residue classes (mod 4)

0] ={..,-8-4048,...,}, [1]={..,-7,-3,1,5,9,...,}

[2]={...,-6,-2,2,6,10,....}, [3]={...,—5,—-1,3,7,11,...,}
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Modular arithmetic (&)

Z=: Properties of Modular Arithmetic for Integers in Z,

Property

Commutative Laws

Expression
(w+2) modn = (xr+w) modn
(wx ) modn=(zxw) modn

Associative Laws

[(w+2z)+y] modn=[|w+ (x+y)] modn
[(wxz)xy] modn=[wx (zxy)] modn

Distributive law

[wx (z+y)] modn=[(wxz)+ (wxy) modn

Identities

(0+w) mod n=w modn
(1 xw) modn=w modn

Additive inverse

Yw € Z,, there exists z such that w + 2z =0 mod n
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Outline

@ Galois Fields GF(p)
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Galois Fields GF(p)

Definition: GF(p)

For a given prime, p, we define the finite field of
order p, GF(p), as the set

Zp

together with the arithmetic operations modulo p.

V bia

Definition: GF(p™)

For a given prime, p, we define the finite field of
order p, GF(p), as the set

Zs

together with the arithmetic operations 7777.
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Galois Fields GF(p)

Definition: GF(p)
For a given prime, p, we define the finite field of order p, GF(p), as the set

Zp

together with the arithmetic operations modulo p.

Property: Multiplicative inverse (w™!)
For each w € Z,, w # 0, there exists z € Z,, such that

wXxXz=1 modp

. Multiplicative inverses modulo e
= P 8 = Multiplicative inverses modulo 7

w [0]1]2]3[4]5]6
wt[=11]4]5]2]3]6

w [0]1]2]3[4]5]6]7
wt=]1]=-13]-]5]-17
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Galois Fields GF(p)

Finding the Multiplicative Inverse in GF(p): Extended EUCLID(m,b)

(A1, Ay, Ag) < (1,0,m); (B1, B2, Bg) + (0,1,b)

if B3 = 0 return "There exists no multiplicative inverse”
if B3 =1 return B, =b~' mod m

Q=5

(11, T, T3) < (A1 — QB1, A2 — QB2, A3 — QB3)

(A1, Az, A3) < (B1, B2, Bs)

(B, By, B3) < (T1,T5,T3)

goto 2

©00000O0CO0

Property: Loop Invariant — And finally bB; =1 mod m

The property that holds at every beginning of the loop:

mIy + bl = T3,mA1 + bAy = A3,m31 + bBy = Bsg

= — oyt
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Galois Fields GF(p)

Example: Compute the multiplicative inverse of 550 in GF(1759)
Q[ A [ A | A [ B | B [ B |
- 1 0 1759 0 1 550
3 0 1 550 1 -3 | 109
5 1 -3 109 -5 16
21| -5 16 5 106 | -339
1 | 106 | -339 4 -111 | 355

=ialo
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© Polynomial Arithmetic (ZIRzE)
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Polynomial Arithmetic (ZINZLIEH)

Three classes of polynomial arithmetic

© Ordinary polynomial arithmetic, using the basic rules of algebra.
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Polynomial Arithmetic (ZINZLIEH)

Three classes of polynomial arithmetic

© Ordinary polynomial arithmetic, using the basic rules of algebra.

@ Polynomial arithmetic in which the arithmetic on the coefficients
(F#Y) is performed modulo p ; that is, the coefficients are in GF(p).
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Polynomial Arithmetic (ZINZLIEH)

Three classes of polynomial arithmetic

© Ordinary polynomial arithmetic, using the basic rules of algebra.

@ Polynomial arithmetic in which the arithmetic on the coefficients
(F#Y) is performed modulo p ; that is, the coefficients are in GF(p).

© Polynomial arithmetic in which the coefficients are in GF(p), and the
polynomials are defined modulo a polynomial m(x) whose highest
power is some integer n
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Polynomial Arithmetic (ZINZLIEH)

Three classes of polynomial arithmetic

© Ordinary polynomial arithmetic, using the basic rules of algebra.

@ Polynomial arithmetic in which the arithmetic on the coefficients
(Z%)) is performed modulo p ; that is, the coefficients are in GF(p).

© Polynomial arithmetic in which the coefficients are in GF(p), and the
polynomials are defined modulo a polynomial m(x) whose highest
power is some integer n

Arithmetic 1: Ordinary polynomial arithmetic

A polynomial of degree n (integer (n > 0)) is an expression of the form

n
f(z) = apz™ +an_12" 14+ + a1z +ag = Zaixl
i=0
where the a; are elements of some designated set of numbers S, called the
coefficient set, and a,, # 0.

We say that such polynomials are defined over the coefficient set S.

— = = = = =~
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Polynomial Arithmetic (ZINZLIEH)

Arithmetic 1: Addition and Multiplication
If f(z) = Xlpaia’, g(x) = Yo biat, n > m,
then addition is defined as:

flz)+g(z) = i(ai + b))z’ + i a;xt
i=0 i=m—+1

then multiplication is defined as:

n+m

f(z) x glz) =Y aa’, e, = aobk + arbp—1 + -+ + ag—1b1 + axby
i=0

v

Fuyou Miao Wenchao Huang Chapter 4 Finite Field 2024 F£9 B 27 H 30/49



S\ —

Polynomial Arithmetic (ZINZLIEH)

Arithmetic 1: Example

If f(x) =2+ 22+2,9(x) =2% — z+1 then:

fz)+g(x) = 23+222 —z+3
fx)—glx) = 2B+z+1

f(z) x g(x) = z°+32% 2242
f(@) [ g(x) = 77
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Polynomial Arithmetic (ZINZLIEH)

Arithmetic 2: Polynomial Arithmetic with Coefficients in Z,

The coefficients are elements of some field Z,

Example :p = 2, such that coefficients are 0 or 1
If f(x) =23+ 22 g(x) =22 +2+1, then

f@)+g@x)=z*+z+1
fx) x g(z) =2° + =
If fz)=2"+2°+a* +23+2+1, g(z) =23 + 2 + 1, then
f@)+g(z) = f(z) — g(z) =2" + 2° + z*
f@)xglz) =20+t +22+1

f(x)/g(x) = [ |
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Polynomial Arithmetic (ZINZLIEH)

Definition: Irreducible

A polynomial f(x) over a field F is called irreducible (AREJ£Y) if and
only if:

@ f(z) cannot be expressed as a product of two polynomials, both over
F', and both of degree lower than that of f(x).

Example: reducible

The polynomial f(x) = 2* 4 1 over GF(2) is reducible, because

ttl=(+ D)@ +22+z+1)
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Polynomial Arithmetic (ZINZLIEH)

Definition: Greatest Common Divisor ¢(z) BANET

The polynomial ¢(x) is said to be the greatest common divisor of a(x) and
b(x), if

@ ¢(x) divides both a(x) and b(x)

@ Any divisor of a(z) and b(x) is a divisor of ¢(z)

Property

| A\

gedfa(z), b(z)] = ged[b(x),a(z) mod b(x)]
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Polynomial Arithmetic (ZINZLIEH)

EUCLID(a, b) (EE%%I/B(EE)) b(z))

(RALETF)

Q@ A+—a;B+b ° ;‘tg)*a@)’B(’“’)%
() Zi;g(ftz)rn Q if B(z) =0 return

, Az) = gedfa(@), b(a)]
©@ R=A mod B @ R(x) = A(x) mod B(z)
© A+ B @ A(x) « B(x)
Q@ B« R Q@ B(z) « R(z)
O goto 2 J Q goto 2
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Polynomial Arithmetic (ZINZLIEH)

Example: Compute gedla(z), b(x)]

Heh, a(z) =2+ 22 +2* + 22+ 22+ 2+ 1, b(2) =t + 22 + 2 + 1
@ A(z) =a(z),B(z) =b(z),R(z) =23+ 22+ 1
Q@ Alz)=2*+22+2+1,B(x) =23 +22+1,R(z) =0
Q gedla(x),b(x)] = 22 + 22 +1
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Outline

@ Galois Fields GF(2)
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Galois Fields GF(2")

For a given prime, p, we define the finite field of
order p, GF(p), as the set

Zp

together with the arithmetic operations modulo p.

V bia

Definition: GF(p™)

For a given prime, p, we define the finite field of
order p, GF(p), as the set

Zs

together with the arithmetic operations 7777.
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Galois Fields GF(2")

Recall Definition: GF(p)

For a given prime, p, we define the finite field of
order p, GF(p), as the set

Zp

Enable Block cipher:

together with the arithmetic operations modulo p. -
— o Finite fields

Definition: GF(p™) e multiplicative
E 7 defi he fi field of inverse
or a given prime, p, we define the finite field o )
order p, GF(p), as the set o bit block )

Zn

together with the arithmetic operations 7777.
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Galois Fields GF(2")

Recall: Three classes of polynomial arithmetic

© Ordinary polynomial arithmetic, using the basic rules of algebra.

@ Polynomial arithmetic in which the arithmetic on the coefficients

(FZ£Y) is performed modulo p ; that is, the coefficients are in GF(p).
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Galois Fields GF(2")

Recall: Three classes of polynomial arithmetic

© Ordinary polynomial arithmetic, using the basic rules of algebra.

@ Polynomial arithmetic in which the arithmetic on the coefficients
(FZ£Y) is performed modulo p ; that is, the coefficients are in GF(p).

© Polynomial arithmetic in which the coefficients are in GF(p), and the
polynomials are defined modulo a polynomial m(x) whose highest
power is some integer n
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Galois Fields GF(2")

Arithmetic 3: Modular Polynomial Arithmetic

Consider the set S of all polynomials of degree n — 1 or less over the field
Zp. Thus, each polynomial has the form

n—1
f(z)=apn_12"  +- - +arx+ag = Z a;z’
=0

where a; € {0,1,...,p—1}.
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Galois Fields GF(2")

Arithmetic 3: Modular Polynomial Arithmetic

Consider the set S of all polynomials of degree n — 1 or less over the field
Zp. Thus, each polynomial has the form

n—1
f(z)=apn_12"  +- - +arx+ag = Z a;z’
=0

where a; € {0,1,...,p—1}.

@ Arithmetic follows the ordinary rules of polynomial arithmetic using
the basic rules of algebra, with the following two refinements.

@ Arithmetic on the coefficients is performed modulo p. That is, we use
the rules of arithmetic for the finite field Z,.

@ If multiplication results in a polynomial of degree greater than n — 1,
then the polynomial is reduced modulo some irreducible polynomial
m(x) of degree n. That is, we divide by m(x) and keep the
remainder. For a polynomial f(x), the remainder is expressed as
r(z) = f(z) mod m(x).
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Galois Fields GF(2")

The Advanced Encryption Standard (AES) uses arithmetic in the finite
field GF(2%), with the irreducible polynomial

m(z) = 28 + 2* + 23 + 2 + 1. Consider the two polynomials
flx)=284+2*+ 22+ x+1and g(z) =" +z+ 1. Then
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Galois Fields GF(2")

Example

The Advanced Encryption Standard (AES) uses arithmetic in the finite
field GF(2%), with the irreducible polynomial

m(z) = 28 + 2* + 23 + 2 + 1. Consider the two polynomials
flx)=284+2*+ 22+ x+1and g(z) =" +z+ 1. Then

f@)+gx) =2 +a*+2> +z+1+a2"+z+1

=" + a2 + 2" + 22
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Galois Fields GF(2")

Example

The Advanced Encryption Standard (AES) uses arithmetic in the finite
field GF(2%), with the irreducible polynomial
m(z) = 2® + 2% + 23 + x + 1. Consider the two polynomials
flx)=284+2*+ 22+ x+1and g(z) =" +z+ 1. Then
f@) x glz) =2 + 2™ + 2% + 28 + 27
+z'+2°+ ¥+ +
+28+ 2t 4?4 +1
=rB et +2% 428 +af + 2+t + 2P+ 1
=z"+2%+1
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Galois Fields GF(2")

Finding the Multiplicative Inverse in GF(2")
Refer to: Extended Euclid Algorithm
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Galois Fields GF(2") — Using a Generator

Definition: Generator g

A generator (%EBTT) g of a finite field F of order ¢ (contains ¢
elements) is an element whose first ¢ — 1 powers generate all the nonzero
elements of F.

07907917' * '7gq_2

Properties

Consider a field F' defined by a polynomial f(x). An element b contained
in F' is called a root of the polynomial if f(b) = 0.

Finally, it can be shown that a root g of an irreducible polynomial is a
generator of the finite field defined on that polynomial.
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Galois Fields GF(2")

Using a Generator

Example

Let us consider the finite field GF(23), defined over the irreducible

polynomial 23 4+ x + 1, discussed previously. Thus, the generator g must

satisfy f(g) =¢>+g+1=0
0 =

= g
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Conclusion

@ Groups, Rings, Fields (Bf. K. iF)
@ Euclid Algorithm (EXJLEEEX)
© Modular arithmetic (HHEAR)

© Galois Fields GF(p)

© Polynomial Arithmetic (ZIRzE)

@ Galois Fields GF(2)

Fuyou Miao Wenchao Huang Chapter 4 Finite Field 2024 £ 9 B 27 H



Homework

4.6 For each of the following equations, find an integer x that satisfies the equation.

a. 5x = 4 (mod 3)
b. 7x = 6 (mod5)
c. 9x = 8 (mod?7)

4.7 In this text, we assume that the modulus is a positive integer. But the definition of
the expression a mod n also makes perfect sense if n is negative. Determine the
following:

a. 5mod3

b. 5mod —3
c. —5mod3
d. —5mod -3

4.9 In Section 4.3, we define the congruence relationship as follows: Two integers a and b
are said to be congruent modulo »n if (¢ mod n) = (b mod n). We then proved that
a = b (modn)if nl|(a — b). Some texts on number theory use this latter relation-
ship as the definition of congruence: Two integers a and b are said to be congruent
modulo n if n | (a — b). Using this latter definition as the starting point, prove that, if
(a mod n) = (b mod n), then n divides (a — b).
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Homework

4.11

4.12

4.13
4.19

Prove the following:

a. a = b (mod n) implies b = a (mod n)

b. a = b (modn)and b = ¢ (mod n) imply a = ¢ (mod n)
Prove the following:

a. [(@amodn) — (bmodn)lmodn = (a — b) mod n

b. [(@amodn) X (bmodn)lmodn = (a X b) mod n

Find the multiplicative inverse of each nonzero element in Zs.
Using the extended Euclidean algorithm, find the multiplicative inverse of
a. 1234 mod 4321

b. 24140 mod 40902

c. 550 mod 1769
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Homework

For polynomial arithmetic with coefficients in Z;,;, perform the following
calculations.

a. (7x +2) — (x> +5)

b. (6x* + x + 3) X (5x% + 2)

Determine which of the following are reducible over GF(2).

a. x>+ 1

b. x>+ x>+ 1

c. x* + 1 (be careful)

Determine the multiplicative inverse of x>+ x+ 1 in GF(Q2% with
m(x) =x*+x + 1.
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