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Motivation

The problem of DES
AES cipher and elliptic curve
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A field (域) is a set of elements on which two arithmetic operations
(addition and multiplication) have been defined and which has the
properties of ordinary arithmetic, such as closure, associativity,
commutativity, distributivity, and having both additive and
multiplicative inverses.
Modular arithmetic (模算术) is a kind of integer arithmetic that
reduces all numbers to one of a fixed set [0, ..., n - 1] for some
number n. Any integer outside this range is reduced to one in this
range by taking the remainder after divi- sion by n.
The greatest common divisor (最大公因子) of two integers is the
largest positive integer that exactly divides both integers.
A finite field (有限域) is simply a field with a finite number of
elements. It can be shown that the order of a finite field (number of
elements in the field) must be a power of a prime pn, where n is a
positive integer.
Finite fields of order (阶) p can be defined using arithmetic mod p.
Finite fields of order pn, for n > 1, can be defined using arithmetic
over polynomials.
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群 Groups

Definition: 群 {G, ·}
A group G, sometimes denoted by {G, ·}, is a set of elements with a
binary operation denoted by that associates to each ordered pair (a, b) of
elements in G an element (a · b) in G, such that:
A1 封闭性 Closure: If a and b belongs to G, then a · b belongs to G.
A2 结合律 Associative: a · (b · c) = (a · b) · c for all a, b, c in G

A3 单位元 Identity element: There is an element e in G such that
a · e = e · a = a

A4 逆元 Inverse element: For each a in G, there is an element a′ in G,
such that a · a = a · a = e
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群 Groups

Example: Groups
Let Nn = {1, 2, , n} denote a set of n distinct symbols.
A permutation (置换) of n distinct symbols is a one-to-one mapping from
Nn to Nn.

Define Sn to be the set of all permutations of n distinct symbols.
Each element of Sn is a permutation of the integers p in {1, 2, , n}.
A1 If π, ρ ∈ Sn, then the composite mapping π · ρ is formed by

permuting the elements of ρ according to the permutation π. For
example, {3, 2, 1}{1, 3, 2} = {2, 3, 1}. Clearly, π · ρ ∈ Sn.

A2 The composition of mappings is also easily seen to be associative
A3 The identity mapping is the permutation that does not alter the order

of the n elements. For Sn, the identity element is {1, 2, , n}.
A4 For any π ∈ Sn, the mapping that undoes the permutation defined by

p is the inverse element for p. There will always be such an inverse.
For example {2, 3, 1}{3, 1, 2} = {1, 2, 3}
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群 Groups

Definition：Finite Group (有限群) and Infinite Group (无限群)
If a group has a finite number of elements, it is referred to as a finite
group. The order (阶) of the group is equal to the number of
elements in the group
Otherwise, the group is an infinite group.

Definition：Abelian Group （阿贝尔群, 交换群）
A5 交换律 Commutative: a · b = b · a for all a, b in G

Definition：Cyclic Group (循环群)
A group G is cyclic if every element of G is a power ak (k is an
integer) of a fixed element a (a ∈ G)
The element a is said to generate the group G or to be a generator
(生成元) of G.
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环 Rings
Definition: Rings (环) {R, +,×}
A ring R, sometimes denoted by {R, +,×}, is a set of elements with two
binary operations, called addition and multiplication, such that:

[A1-A5] R is an abelian group with respect to addition. Denote the
identity element as 0 and the inverse of a as a.

M1 Closure 乘法封闭性 If a and b belongs to R, then ab belongs to R.
M2 Associativity 乘法结合律 a(bc) = (ab)c for all a, b, c in R

M3 Distributive laws 分配律 a(b + c) = ab + ac for all a, b, c in R

Definition: Commutative Ring (交换环)
M4 Commutativity of multiplication 乘法交换律 ab = ba for all a, b in R

Definition: Integral Domain (整环)
M5 Multiplicative identity 1 乘法单位元 a1 = 1a = a for all a in R

M6 No zero divisors 无零因子 a, b ∈ R ∧ ab = 0⇒ a = 0 ∨ b = 0.
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域 Fields

Definition: Fields (域) {F, +,×}
A set of elements (F ) with two binary operations, called addition and
multiplication

[A1-M6] F is an integral domain
M7 Multiplicative inverse (乘法逆元) For each a in F , except 0, there is

an element a−1 in F such that aa−1 = (a−1)a = 1.

Examples
rational numbers (有理数集合)
the real numbers (实数集合)
the complex number (复数集合)

Counter-Examples
The set of all integers (整数集合) is not a field, because not every element
of the set has a multiplicative inverse.
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群、环、域的关系
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Euclid Algorithm (欧几里得算法)

Definition: Divisibility (整除)
We say that a nonzero b divides a if a = mb for some m, where a, b and
m are integers

Definition: b | a
The notation b | a is commonly used to mean b divides a

Definition: Divisor (因数)
If b | a, we say that b is a divisor of a
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Euclid Algorithm (欧几里得算法)

The Division Algorithm
Given any positive integer n and any nonnegative integer a, if we divide a
by n, we get an integer quotient (商) q and an integer remainder (余数)
r that obey the following relationship:

a = qn + r

where 0 ≤ r < n; q = ⌊a/n⌋, and ⌊x⌋ is the largest integer less than or
equal to x

Definition: Greatest Common Divisor (最大公因子) gcd(a, b)
The positive integer c is said to be the greatest common divisor of a
and b if

1 c is a divisor of a and of b

2 Any divisor of a and b is a divisor of c
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Euclid Algorithm (欧几里得算法)

EUCLID(a, b)
1 A← a; B ← b

2 if B = 0 return
A = gcd(a, b)

3 R = A mod B

4 A← B

5 B ← R

6 goto 2

Example：Compute gcd(1970, 1066)

1970 = 1× 1066 + 904 gcd(1066, 904)
1066 = 1× 904 + 162 gcd(904, 162)
904 = 5× 162 + 94 gcd(162, 94)
162 = 1× 94 + 68 gcd(94, 68)
94 = 1× 68 + 26 gcd(68, 26)
68 = 2× 26 + 16 gcd(26, 16)
26 = 1× 16 + 10 gcd(16, 10)
16 = 1× 10 + 6 gcd(10, 6)
10 = 1× 6 + 4 gcd(6, 4)
6 = 1× 4 + 2 gcd(4, 2)
4 = 2× 2 + 0 gcd(2, 0)
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Modular arithmetic (模算术)

The Modulus (模)
If a is an integer and n is a positive integer,

We define a mod n to be the remainder when a is divided by n.
The integer n is called the modulus

Rewrite r in Equations

a = ⌊a/n⌋ × n + (a mod n)
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Modular arithmetic (模算术)

Definition: Congruent Modulo n (同余)
Two integers a and b are said to be congruent modulo n, if (a
mod n) = (b mod n)

written as a ≡ b (mod n)

Properties of Congruences
1 a ≡ b (mod n), if n | (a− b)
2 a ≡ b (mod n) implies b ≡ a (mod n)
3 a ≡ b (mod n) and b ≡ c (mod n) imply a ≡ c (mod n)
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Modular arithmetic (模算术)

Definition : Modular arithmetic (模算术)
Note that the mod n operator maps all integers into the set of integers
{0, 1, . . . , (n− 1)}.
Thus, modular arithmetics performs arithmetic operations within the set.

Properties of modular arithmetics
[(a mod n) + (b mod n)] mod n = (a + b) mod n

[(a mod n)− (b mod n)] mod n = (a− b) mod n

[(a mod n)× (b mod n)] mod n = (a× b) mod n
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Modular arithmetic (模算术)

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1
3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6

表: Addition Modulo 8

× 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

表: Multiplication modulo 8
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Modular arithmetic (模算术)

Definition: additive inverse
If there exists z, such that

w + z = 0 mod n

then z is additive inverse of w,
denoted as −w

Definition: multiplicative inverse
If there exists z, such that

w ∗ z = 1 mod n

then z is multiplicative inverse of
w, denoted as w−1

表: Additive and multiplicative inverses
modulo 8

w 0 1 2 3 4 5 6 7
−w 0 7 6 5 4 3 2 1
w−1 – 1 – 3 – 5 – 7
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Modular arithmetic (模算术)

Definition：set of residues, or residue classes (剩余类集 剩余集)
Define the set Zn as the set of nonnegative integers less than n:

Zn = {0, 1, , (n− 1)}

Definition: residue class (剩余类)
We can label the residue classes (mod n) as [0], [1], [2], . . . , [n− 1], where

[r] = {a | a ∈ Z ∧ (a ≡ r mod n)}

Example: the residue classes (mod 4)

[0] = {. . . ,−8,−4, 0, 4, 8, . . . , }, [1] = {. . . ,−7,−3, 1, 5, 9, . . . , }

[2] = {. . . ,−6,−2, 2, 6, 10, . . . , }, [3] = {. . . ,−5,−1, 3, 7, 11, . . . , }
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Modular arithmetic (模算术)

表: Properties of Modular Arithmetic for Integers in Zn

Property Expression

Commutative Laws (w + x) mod n = (x + w) mod n
(w × x) mod n = (x× w) mod n

Associative Laws [(w + x) + y] mod n = [w + (x + y)] mod n
[(w × x)× y] mod n = [w × (x× y)] mod n

Distributive law [w × (x + y)] mod n = [(w × x) + (w × y)] mod n

Identities (0 + w) mod n = w mod n
(1× w) mod n = w mod n

Additive inverse ∀w ∈ Zn，there exists z such that w + z = 0 mod n
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Galois Fields GF(p)

Definition: GF(p)
For a given prime, p, we define the finite field of
order p, GF(p), as the set

Zp

together with the arithmetic operations modulo p.

Definition: GF(pn) ????
For a given prime, p, we define the finite field of
order p, GF(p), as the set

Zpn

together with the arithmetic operations ????.
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Galois Fields GF(p)

Definition: GF(p)
For a given prime, p, we define the finite field of order p, GF(p), as the set

Zp

together with the arithmetic operations modulo p.

Property: Multiplicative inverse （w−1）
For each w ∈ Zp, w ̸= 0, there exists z ∈ Zp, such that

w × z ≡ 1 mod p

表: Multiplicative inverses modulo 8

w 0 1 2 3 4 5 6 7
w−1 – 1 – 3 – 5 – 7

表: Multiplicative inverses modulo 7

w 0 1 2 3 4 5 6
w−1 – 1 4 5 2 3 6
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Galois Fields GF(p)

Finding the Multiplicative Inverse in GF(p): Extended EUCLID(m,b)
1 (A1, A2, A3)← (1, 0, m); (B1, B2, B3)← (0, 1, b)
2 if B3 = 0 return ”There exists no multiplicative inverse”
3 if B3 = 1 return B2 = b−1 mod m

4 Q = ⌊A3
B3
⌋

5 (T1, T2, T3)← (A1 −QB1, A2 −QB2, A3 −QB3)
6 (A1, A2, A3)← (B1, B2, B3)
7 (B1, B2, B3)← (T1, T2, T3)
8 goto 2

Property：Loop Invariant — And finally bB2 ≡ 1 mod m

The property that holds at every beginning of the loop:

mT1 + bT2 = T3, mA1 + bA2 = A3, mB1 + bB2 = B3
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Galois Fields GF(p)

Example：Compute the multiplicative inverse of 550 in GF(1759)
Q A1 A2 A3 B1 B2 B3

– 1 0 1759 0 1 550
3 0 1 550 1 -3 109
5 1 -3 109 -5 16 5
21 -5 16 5 106 -339 4
1 106 -339 4 -111 355 1
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Polynomial Arithmetic (多项式运算)
Three classes of polynomial arithmetic

1 Ordinary polynomial arithmetic, using the basic rules of algebra.

2 Polynomial arithmetic in which the arithmetic on the coefficients
(系数) is performed modulo p ; that is, the coefficients are in GF(p).

3 Polynomial arithmetic in which the coefficients are in GF(p), and the
polynomials are defined modulo a polynomial m(x) whose highest
power is some integer n

Arithmetic 1: Ordinary polynomial arithmetic
A polynomial of degree n (integer (n ≥ 0)) is an expression of the form

f(x) = anxn + an−1xn−1 + · · ·+ a1x + a0 =
n∑

i=0
aix

i

where the ai are elements of some designated set of numbers S, called the
coefficient set, and an ̸= 0.
We say that such polynomials are defined over the coefficient set S.
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2 Polynomial arithmetic in which the arithmetic on the coefficients

(系数) is performed modulo p ; that is, the coefficients are in GF(p).
3 Polynomial arithmetic in which the coefficients are in GF(p), and the

polynomials are defined modulo a polynomial m(x) whose highest
power is some integer n

Arithmetic 1: Ordinary polynomial arithmetic
A polynomial of degree n (integer (n ≥ 0)) is an expression of the form

f(x) = anxn + an−1xn−1 + · · ·+ a1x + a0 =
n∑

i=0
aix

i

where the ai are elements of some designated set of numbers S, called the
coefficient set, and an ̸= 0.
We say that such polynomials are defined over the coefficient set S.
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Polynomial Arithmetic (多项式运算)

Arithmetic 1: Addition and Multiplication
If f(x) =

∑n
i=0 aix

i, g(x) =
∑m

i=0 bix
i, n ≥ m,

then addition is defined as:

f(x) + g(x) =
m∑

i=0
(ai + bi)xi +

n∑
i=m+1

aix
i

then multiplication is defined as:

f(x)× g(x) =
n+m∑
i=0

cix
i, ck = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0
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Polynomial Arithmetic (多项式运算)

Arithmetic 1: Example
If f(x) = x3 + x2 + 2, g(x) = x2 − x + 1 then：

f(x) + g(x) = x3 + 2x2 − x + 3
f(x)− g(x) = x3 + x + 1
f(x)× g(x) = x5 + 3x2 − 2x + 2
f(x) / g(x) = ??

Fuyou Miao Wenchao Huang Chapter 4 Finite Field 2024 年 9 月 27 日 31 / 49



Polynomial Arithmetic (多项式运算)

Arithmetic 2: Polynomial Arithmetic with Coefficients in Zp

The coefficients are elements of some field Zp

Example :p = 2，such that coefficients are 0 or 1
If f(x) = x3 + x2, g(x) = x2 + x + 1，then

f(x) + g(x) = x3 + x + 1

f(x)× g(x) = x5 + x

If f(x) = x7 + x5 + x4 + x3 + x + 1, g(x) = x3 + x + 1, then

f(x) + g(x) = f(x)− g(x) = x7 + x5 + x4

f(x)× g(x) = x10 + x4 + x2 + 1

f(x)/g(x) = x4 + 1
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Polynomial Arithmetic (多项式运算)

Definition: Irreducible
A polynomial f(x) over a field F is called irreducible (不可约) if and
only if:

f(x) cannot be expressed as a product of two polynomials, both over
F , and both of degree lower than that of f(x).

Example: reducible
The polynomial f(x) = x4 + 1 over GF(2) is reducible, because

x4 + 1 = (x + 1)(x3 + x2 + x + 1)
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Polynomial Arithmetic (多项式运算)

Definition：Greatest Common Divisor c(x) 最大公因式
The polynomial c(x) is said to be the greatest common divisor of a(x) and
b(x), if

c(x) divides both a(x) and b(x)
Any divisor of a(x) and b(x) is a divisor of c(x)

Property

gcd[a(x), b(x)] = gcd[b(x), a(x) mod b(x)]
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Polynomial Arithmetic (多项式运算)

EUCLID(a, b)
(最大公因子)

1 A← a; B ← b

2 if B = 0 return
A = gcd(a, b)

3 R = A mod B

4 A← B

5 B ← R

6 goto 2

EUCLID(a(x), b(x))
(最大公因式)

1 A(x)← a(x); B(x)←
b(x)

2 if B(x) = 0 return
A(x) = gcd[a(x), b(x)]

3 R(x) = A(x) mod B(x)
4 A(x)← B(x)
5 B(x)← R(x)
6 goto 2

Fuyou Miao Wenchao Huang Chapter 4 Finite Field 2024 年 9 月 27 日 35 / 49



Polynomial Arithmetic (多项式运算)

Example：Compute gcd[a(x), b(x)]
其中，a(x) = x6 + x5 + x4 + x3 + x2 + x + 1, b(x) = x4 + x2 + x + 1

1 A(x) = a(x), B(x) = b(x), R(x) = x3 + x2 + 1
2 A(x) = x4 + x2 + x + 1, B(x) = x3 + x2 + 1, R(x) = 0
3 gcd[a(x), b(x)] = x3 + x2 + 1
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Outline

1 Groups, Rings, Fields (群、环、域)

2 Euclid Algorithm (欧几里得算法)

3 Modular arithmetic (模算术)

4 Galois Fields GF(p)

5 Polynomial Arithmetic (多项式运算)

6 Galois Fields GF(2n)
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Galois Fields GF(2n)

Recall Definition: GF(p)
For a given prime, p, we define the finite field of
order p, GF(p), as the set

Zp

together with the arithmetic operations modulo p.

Definition: GF(pn) ????
For a given prime, p, we define the finite field of
order p, GF(p), as the set

Zpn

together with the arithmetic operations ????.
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Galois Fields GF(2n)

Recall Definition: GF(p)
For a given prime, p, we define the finite field of
order p, GF(p), as the set

Zp

together with the arithmetic operations modulo p.

Definition: GF(pn) ????
For a given prime, p, we define the finite field of
order p, GF(p), as the set

Zpn

together with the arithmetic operations ????.

Motivation
Enable Block cipher:

Finite fields
multiplicative
inverse
bit block
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Galois Fields GF(2n)

Recall: Three classes of polynomial arithmetic
1 Ordinary polynomial arithmetic, using the basic rules of algebra.
2 Polynomial arithmetic in which the arithmetic on the coefficients

(系数) is performed modulo p ; that is, the coefficients are in GF(p).

3 Polynomial arithmetic in which the coefficients are in GF(p), and the
polynomials are defined modulo a polynomial m(x) whose highest
power is some integer n
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Galois Fields GF(2n)

Recall: Three classes of polynomial arithmetic
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Galois Fields GF(2n)
Arithmetic 3: Modular Polynomial Arithmetic
Consider the set S of all polynomials of degree n− 1 or less over the field
Zp. Thus, each polynomial has the form

f(x) = an−1xn−1 + · · ·+ a1x + a0 =
n−1∑
i=0

aix
i

where ai ∈ {0, 1, . . . , p− 1}.

Arithmetic follows the ordinary rules of polynomial arithmetic using
the basic rules of algebra, with the following two refinements.
Arithmetic on the coefficients is performed modulo p. That is, we use
the rules of arithmetic for the finite field Zp.
If multiplication results in a polynomial of degree greater than n− 1,
then the polynomial is reduced modulo some irreducible polynomial
m(x) of degree n. That is, we divide by m(x) and keep the
remainder. For a polynomial f(x), the remainder is expressed as
r(x) = f(x) mod m(x).
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Galois Fields GF(2n)

Example
The Advanced Encryption Standard (AES) uses arithmetic in the finite
field GF(28), with the irreducible polynomial
m(x) = x8 + x4 + x3 + x + 1. Consider the two polynomials
f(x) = x6 + x4 + x2 + x + 1 and g(x) = x7 + x + 1. Then
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Galois Fields GF(2n)

Example
The Advanced Encryption Standard (AES) uses arithmetic in the finite
field GF(28), with the irreducible polynomial
m(x) = x8 + x4 + x3 + x + 1. Consider the two polynomials
f(x) = x6 + x4 + x2 + x + 1 and g(x) = x7 + x + 1. Then

f(x) + g(x) = x6 + x4 + x2 + x + 1 + x7 + x + 1
= x7 + x6 + x4 + x2
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Galois Fields GF(2n)

Example
The Advanced Encryption Standard (AES) uses arithmetic in the finite
field GF(28), with the irreducible polynomial
m(x) = x8 + x4 + x3 + x + 1. Consider the two polynomials
f(x) = x6 + x4 + x2 + x + 1 and g(x) = x7 + x + 1. Then

f(x)× g(x) = x13 + x11 + x9 + x8 + x7

+ x7 + x5 + x3 + x2 + x

+ x6 + x4 + x2 + x + 1
= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1
= x7 + x6 + 1
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Galois Fields GF(2n)

Finding the Multiplicative Inverse in GF(2n)
Refer to: Extended Euclid Algorithm
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Galois Fields GF(2n) – Using a Generator

Definition: Generator g

A generator (生成元) g of a finite field F of order q (contains q
elements) is an element whose first q − 1 powers generate all the nonzero
elements of F .

0, g0, g1, . . . , gq−2

Properties
Consider a field F defined by a polynomial f(x). An element b contained
in F is called a root of the polynomial if f(b) = 0.
Finally, it can be shown that a root g of an irreducible polynomial is a
generator of the finite field defined on that polynomial.
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Galois Fields GF(2n)

Using a Generator

Example
Let us consider the finite field GF(23), defined over the irreducible
polynomial x3 + x + 1, discussed previously. Thus, the generator g must
satisfy f(g) = g3 + g + 1 = 0

0 = 0
g0 = 1
g1 = g
g2 = g2

g3 = g + 1
g4 = g(g3) = g(g + 1) = g2 + g
g5 = g(g4) = g(g2 + g) = g2 + g + 1
g6 = g(g5) = g(g2 + g + 1) = g2 + 1
g7 = g(g6) = g(g2 + 1) = 1
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Conclusion

1 Groups, Rings, Fields (群、环、域)

2 Euclid Algorithm (欧几里得算法)

3 Modular arithmetic (模算术)

4 Galois Fields GF(p)

5 Polynomial Arithmetic (多项式运算)

6 Galois Fields GF(2n)
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Homework

142 CHAPTER 4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS

Review Questions

4.1 Briefly define a group.
4.2 Briefly define a ring.
4.3 Briefly define a field.
4.4 What does it mean to say that is a divisor of ?
4.5 What is the difference between modular arithmetic and ordinary arithmetic?
4.6 List three classes of polynomial arithmetic.

Problems

4.1 For the group of all permutations of distinct symbols,
a. what is the number of elements in ?
b. show that is not abelian for .

4.2 Does the set of residue classes ( ) form a group
a. with respect to modular addition?
b. with respect to modular multiplication?

4.3 Consider the set with addition and multiplication defined by the following
tables.

a b a b
a a b a a a
b b a b a b

Is a ring? Justify your answer.
4.4 Reformulate Equation (4.1), removing the restriction that is a nonnegative integer.

That is, let be any integer.
4.5 Draw a figure similar to Figure 4.1 for .
4.6 For each of the following equations, find an integer that satisfies the equation.

a.
b.
c.

4.7 In this text, we assume that the modulus is a positive integer. But the definition of
the expression also makes perfect sense if is negative. Determine the
following:
a.
b.
c.
d. -5 mod -3

-5 mod 3
5 mod -3
5 mod 3

na mod n

9x K 8 (mod 7)
7x K 6 (mod 5)
5x K 4 (mod 3)

x
a 6 0

a
a

S

*+

S = {a, b}

mod3
n 7 2Sn

Sn

nSn

ab

finite field
finite group
finite ring
generator
greatest common divisor
group
identity element
infinite field
infinite group

infinite ring
integral domain
inverse element
irreducible polynomial
modular arithmetic
modular polynomial arithmetic
modulo operator
modulus
monic polynomial

order
polynomial
polynomial arithmetic
polynomial ring
prime number
prime polynomial
relatively prime
residue
ring

4.9 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 143

4.8 A modulus of 0 does not fit the definition but is defined by convention as follows:
. With this definition in mind, what does the following expression mean:
?

4.9 In Section 4.3, we define the congruence relationship as follows: Two integers and 
are said to be congruent modulo if . We then proved that

. Some texts on number theory use this latter relation-
ship as the definition of congruence: Two integers and are said to be congruent
modulo if . Using this latter definition as the starting point, prove that, if

, then divides .
4.10 What is the smallest positive integer that has exactly divisors, for ?
4.11 Prove the following:

a. implies
b. and imply 

4.12 Prove the following:
a.
b.

4.13 Find the multiplicative inverse of each nonzero element in .
4.14 Show that an integer is congruent modulo 9 to the sum of its decimal digits. For

example, ( ). This is the basis for the
familiar procedure of “casting out 9’s” when checking computations in arithmetic.

4.15 a. Determine .
b. Determine .

4.16 The purpose of this problem is to set an upper bound on the number of iterations of
the Euclidean algorithm.
a. Suppose that with and . Show that .
b. Let be the value of in the Euclidean algorithm after the ith iteration. Show that

c. Show that if , , and are integers with , then the Euclidean
algorithm takes at most steps to find .

4.17 The Euclidean algorithm has been known for over 2000 years and has always been a
favorite among number theorists. After these many years, there is now a potential
competitor, invented by J. Stein in 1961. Stein’s algorithms is as follows. Determine

with .
STEP 1 Set
STEP 2 n (1) If stop.

(2) If and are both even, set 
(3) If is even and is odd, set 
(4) If is odd and is even, set 
(5) If and are both odd, set ,

Continue to step .
a. To get a feel for the two algorithms, compute using both the

Euclidean and Stein’s algorithm.
b. What is the apparent advantage of Stein’s algorithm over the Euclidean algorithm?

4.18 a. Show that if Stein’s algorithm does not stop before the nth step, then

b. Show that if the algorithm does not stop before step , then

An + 2Bn + 2 …
AnBn

2

(n - 1)

Cn + 1 * gcd(An + 1, Bn + 1) = Cn * gcd(An, Bn)

gcd(2152, 764)
n + 1

Cn + 1 = Cn

Bn + 1 =  min (Bn, An),An + 1 = ƒ An - Bn |BnAn

An + 1 = An, Bn + 1 = Bn/2, Cn + 1 = CnBnAn

An + 1 = An/2, Bn + 1 = Bn, Cn + 1 = CnBnAn

An + 1 = An/2, Bn + 1 = Bn/2, Cn + 1 = 2CnBnAn

gcd(A, B) = AnCnAn = Bn

A1 = A, B1 = B, C1 = 1
A, B Ú 1gcd(A, B)

gcd(m, n)2N
(1 … m, n, … 2N)Nnm

Ai + 2 6
Ai

2

AAi

m/2 7 r0 … r 6 nq 7 0m = qn + r

gcd(4655, 12075)
gcd(24140, 16762)

mod 9475 K 4 + 7 + 5 K 16 K 1 + 6 K 7
N

Z5

[(a mod n) * (b mod n)] mod n = (a * b) mod n
[(a mod n) - (b mod n)] mod n = (a - b) mod n

a K c (mod n)b K c (mod n)a K b (mod n)
b K a (mod n)a K b (mod n)

1 … k … 6k
(a - b)n(a mod n) = (b mod n)

n ƒ  (a - b)n
ba

a K b (mod n) if n ƒ  (a - b)
(a mod n) = (b mod n)n

ba
a K b (mod 0)
a mod 0 = a
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a K c (mod n)b K c (mod n)a K b (mod n)
b K a (mod n)a K b (mod n)

1 … k … 6k
(a - b)n(a mod n) = (b mod n)

n ƒ  (a - b)n
ba
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c. Show that if , then Stein’s algorithm takes at most steps to find
. Thus, Stein’s algorithm works in roughly the same number of steps as

the Euclidean algorithm.
d. Demonstrate that Stein’s algorithm does indeed return .

4.19 Using the extended Euclidean algorithm, find the multiplicative inverse of
a.
b.
c.

4.20 Develop a set of tables similar to Table 4.5 for .
4.21 Demonstrate that the set of polynomials whose coefficients form a field is a ring.
4.22 Demonstrate whether each of these statements is true or false for polynomials

over a field.
a. The product of monic polynomials is monic.
b. The product of polynomials of degrees and has degree .
c. The sum of polynomials of degrees and has degree .

4.23 For polynomial arithmetic with coefficients in , perform the following
calculations.
a.
b.

4.24 Determine which of the following are reducible over .
a.
b.
c. (be careful)

4.25 Determine the gcd of the following pairs of polynomials.
a. and over 
b. and over 
c. and over 
d. and over GF(101)

4.26 Develop a set of tables similar to Table 4.7 for with .
4.27 Determine the multiplicative inverse of in with

.
4.28 Develop a table similar to Table 4.9 for with .

Programming Problems

4.29 Write a simple four-function calculator in . You may use table lookups for the
multiplicative inverses.

4.30 Write a simple four-function calculator in . You should compute the multi-
plicative inverses on the fly.

APPENDIX 4A THE MEANING OF MOD

The operator mod is used in this book and in the literature in two different ways: as
a binary operator and as a congruence relation. This appendix explains the distinc-
tion and precisely defines the notation used in this book regarding parentheses.This
notation is common but, unfortunately, not universal.

GF(28)

GF(24)

m(x) = x4 + x + 1GF(24)
m(x) = x4 + x + 1

GF(24)x3 + x + 1
m(x) = x2 + x + 1 GF(4)

x3 + 97x2 + 40x + 38x5 + 88x4 + 73x3 + 83x2 + 51x + 67
GF(3)x3 + x2 + x + 1x5 + x4 + x3 - x2 - x + 1
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GF(2)x2 + x + 1x3 + x + 1

x4 + 1
x3 + x2 + 1
x3 + 1

 GF(2)
(6x2 + x + 3) * (5x2 + 2)
(7x + 2) - (x2 + 5)

Z10

max [m, n]nm
m + nnm

 GF(5)
550 mod 1769
24140 mod 40902
1234 mod 4321

gcd(A, B)

gcd(m, n)
4N1 … A, B … 2N
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c. Show that if , then Stein’s algorithm takes at most steps to find
. Thus, Stein’s algorithm works in roughly the same number of steps as
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b.
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4.21 Demonstrate that the set of polynomials whose coefficients form a field is a ring.
4.22 Demonstrate whether each of these statements is true or false for polynomials

over a field.
a. The product of monic polynomials is monic.
b. The product of polynomials of degrees and has degree .
c. The sum of polynomials of degrees and has degree .

4.23 For polynomial arithmetic with coefficients in , perform the following
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b.
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