FAHEiES5|

5 2 B fHHIHPIE-[aIE X
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@ Define verification

e ME¢®

@ A method of define M and ¢: Logics
e Propositional logic
o Predicate logic

o Higher-order logic
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[BIFR: M. Verifier

A verifier for a language A is an algorithm V', where

A ={w |V accepts (w,c) for some string ¢ }.

[BlER: IRIESFE

(1) HEE w. (2) RITHL A (3) (FahatEah) MEBIER
(4) EFERGUERS V, BN ¢, R Bw e A
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[BlET: IEGUESTE

(1) MIEEREL w. (2) I A. (3) (FEheiEah) HERIER ¢
(4) (ERIGIERR V, BIA ¢, BiHESw € A

TEM.: Verification in Logics

Most logics used in the design, specification, and verification of computer
systems fundamentally deal with a satisfaction relation:

ME@

@ M is some sort of situation or model of a system

@ ¢ is a specification, a formula of that logic, expressing what should be
true in situation M.

@ At the heart of this set-up is that one can often specify and
implement algorithms for computing F.
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Verifier Logic

TEN.: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

ME@

@ M is some sort of situation or model of a system

@ ¢ is a specification, a formula of that logic, expressing what should be
true in situation M.

@ At the heart of this set-up is that one can often specify and
implement algorithms for computing E.

—NajE:
o A AMAIF—ILEN M F1 ¢? & Logics
o [A): WNfAISZ4E E F algorithms? &F: Rules
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[EIR: 40{AJE X —ANEJRR? — jA)RR 3
Given a set S, a machine M, and z € S, compute whether z € L(M).

@ M is a machine, e.g., finite automaton.
e L(M) is the language of M.

Define a special group of languages: Logics
e Propositional logic (FpUZ4E)

o Predicate logic (1B1aiZ4E)
e a.k.a., First-order Logic (—PiZ48)

e Higher-Order Logic (Bl ZiE)
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1. Propositional Logic | Basic elements: Atomic Propositions

TEM.: Propositions (ApRR)

Declarative sentences which one can argue as being true or false, e.g.,
@ The sum of the numbers 3 and 5 equals 8.
Jane reacted violently to Jack’ s accusations.

°
@ Every even natural number >2 is the sum of two prime numbers.
°

All Martians like pepperoni on their pizza.

AR T
o MRIRTE: MNRFFFIREE. .

TEMX.: Atomic Propositions (JRFApRR)

Propositions which is indecomposable, e.g.,

@ The number 5 is even.
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The logics we intend to design are symbolic in nature. We translate a
certain sufficiently large subset of all English declarative sentences into
strings of symbols. This gives us a compressed but still complete encoding
of declarative sentences and allows us to concentrate on the mere mechan-
ics of our argumentation. This is important since specifications of systems
or software are sequences of such declarative sentences. It further opens
up the possibility of automatic manipulation of such specifications, a job
that computers just love to. Our strategy is to consider certain declarative
sentences as atomic or indecomposable.



TENX M F ¢? Logics

1. Propositional Logic | Basic elements: Logical Operators

TEMX.: Propositions (ApRk)
Declarative sentences which one can argue as being true or false.

TEMX.: Atomic Propositions (JEFApRR)

Propositions which is indecomposable.

Symbols representing Atomic Propositions

We assign certain distinct symbols p, ¢, r, ..., or sometimes p1, ps, p3, ... to
each of these atomic sentences

Symbols representing Logical Operators
{_‘7 \/7 /\7 _>}
@ We can then code up more complex sentences in a compositional way
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1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences
@ p: 'l won the lottery last week.’
@ ¢: 'l purchased a lottery ticket.’

o 7. 'l won last week' s sweepstakes.’

Definition of the Logical Operators

—: Negation. —p denotes negation of p

e i.e., it is not true that | won the lottery last week.
V: Disjunction (#TBX). p V r denotes at least one of {p, r} is true.

o i.e., | won the lottery last week, or | won last week' s sweepstakes
A: Conjunction (FEX). p A r denotes both p and r are true.

e i.e., Last week | won the lottery and the sweepstakes.

—s: Implication (). p — q denotes q is a logical consequence of p.
e i.e., If I won the lottery last week, then | purchased a lottery ticket.
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Given a set S, a machine M, and = € S, compute whether z € L(M).
@ M is a machine, e.g., finite automaton.
o L(M) is the language of M.

regular

M R9EEL?
languages

@ regular languages
o fBll: IEMZRIATVICEL, 1EIEDHT
@ context-free languages

o BIl: IEEDHT

context-free
languages

Define Propositional logic using a context-free language
e Backus-Naur Form (BNF) (BERIEBE)
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1. Propositional Logic | Definition of the language (Propositional Logic)

pu=p|(=¢) [ (@NnQ)|(¢Ve)]|(d—9)

where p stands for any atomic proposition and each occurrence of ¢ to the
right of ::= stands for any already constructed formula.

Well-formed formula, 151:

((=p)Ag) = (pA (g V(=)

Not well-formed formula, 1

(=)0 Vpg —
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Not well-formed formula, fl:

TEN.: The well-formed formulas of propositional logic are those which we
obtain by using the construction rules below, and only those, finitely many
times:

= atom: Every propositional atom p, g, r, ... and p1,ps2,p3, ... is a
well-formed formula.

= —: If ¢ is a well-formed formula, then so is (—¢).

A: If ¢ and 1) are well-formed formulas, then so is (¢ A 1).

V: If ¢ and ¢ are well-formed formulas, then so is (¢ V 9).

= —: If ¢ and 1 are well-formed formulas, then so is (¢ — ).



TENX M F ¢? Logics

1. Propositional Logic | Evaluate ¢: Truth table

o [AJRA: /EAXEFIAE atomic propositions F[ logical operators SEi+E ¢7?
o EAT%: {#F Bool E{EXR

@ The set of truth values contains two elements T and F, where T
represents ‘true’ and F represents ‘false’

@ A valuation or model of a formula ¢ is an assignment of each
propositional atom in ¢ to a truth value.

ol |ony dld oV ¢ lY oY o6 T
T(T| T T|T| T T[T| T T F T
T/F| F T|F| T T|F| F FI T

FIT| F FIT| T F|T| T i
FIF| F FIF| F FIF| T F
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1. Propositional Logic | Evaluate ¢: Example

Bl BER

EFEFED: XFOT M ¢, BEERHE M E ¢7?
o M={p,q}, o= (p——q) = (¢V D)
o Yes, B M E ¢
o M ={p,~q}, ¢=(p——q) — (qV-p)
o No, B) M ¥ ¢
o M={p}, ¢=(p——q) — (¢V-p)
o TTEHE, FRR: AEBATE (EEHIIEM)
o M= {p,—p}, ¢=(p——q) = (¢V-p)
o NEFEFE (BEHIAE)
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1. Propositional Logic | Semantic entailment relation

EFEFED: XFOT M ¢, BEERHE M E ¢7?
o M={p,q}, o= (p——q) = (¢V-p)
o Yes, Bl M E ¢
o M={p,~q}, ¢=(p——q) — (qV-p)
o No, Bl M E —¢
o M={p} ¢=(p——q) — (¢V-p)
o TEHE, FRR: AEATE (BEHINE)
o M ={p,—p}, o= (p— —q) = (¢V —p)
o NEFEFE (BEHINAE)

TENX: Semantic entailment relation

If, for all valuations in which all ¢1, ¢o, ..., ¢, evaluate to T, 1) evaluates
to T as well, we say that

¢17¢27~~7¢n':¢

holds and call E the semantic entailment relation.
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1. Propositional Logic | Complexity

fl: HEx
plal-p|l-a|p=-q|lqv-p|loé=p——q —(qV-p
T|T|F|F F T T
TIFIF|T| T F F
FIT|T|F T T T
FIF|T|T| T T T
S5E?
o B M [RFBAINEA n, FIEFEIBEA O(2").
o BAN?
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2. First-order Logic | Introduction

[BJ@&: Consider the declarative sentence:
@ Every student is younger than some instructor.

o How to define when there are 1,000,000,000 students?
e Moreover, how to specify an instructor for each student?

f#IRT5i%: Design a richer language (logic):
e Predicate Logic (1B1aliZ48), a.k.a, First-order Logic (—[iZ4E)
o Inherit Propositional Logic
o Introduce Predicate

S(andy) to denote that Andy is a student.

o I(paul) to say that Paul is an instructor.

e Y (andy, paul) could mean that Andy is younger than Paul.
@ The symbols S, I and Y are called predicates.

e Introduce quantifiers ¥V and 3

e V: for all, 3: there exists

BR: Yz (S() = Gy (L) AY(2,9))))
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S

We begin this second chapter by pointing out the limitations of proposi-
tional logic with respect to encoding declarative sentences. Propositional
logic dealt quite satisfactorily with sentence components like not, and, or
and if ... then, but the logical aspects of natural and artificial languages
are much richer than that. What can we do with modifiers like there exists
.., all ..., among ... and only ...? Here, propositional logic shows clear
limitations and the desire to express more subtle declarative sentences led
to the design of predicate logic, which is also called first-order logic.

In propositional logic, we could identify this assertion with a proposi-
tional atom p. However, that fails to reflect the finer logical structure of
this sentence. What is this statement about? Well, it is about being a
student, being an instructor and being younger than somebody else. These
are all properties of some sort, so we would like to have a mechanism for
expressing them together with their logical relationships and dependences.



TENX M F ¢? Logics

2. First-order Logic | Definition of the language (First-order Logic)

ENX: Term
@ Any variable is a term.

@ If ¢ € F is a nullary function, then c is a term.

o If t1,to,...,t, are terms and f € F has arity n > 0, then
f(t1,ta, ..., ty) is a term.

o Nothing else is a term.

ENX: Term in BNF

| A\,

tu=zxlc| ft,....t)

where = ranges over a set of variables var, ¢ over nullary function symbols
in F, and f over those elements of F with arity n > 0.

\
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A predicate vocabulary consists of three sets: a set of predicate symbols P,
a set of function symbols F and a set of constant symbols C. Each pred-
icate symbol and each function symbol comes with an arity, the number
of arguments it expects. In fact, constants can be thought of as functions
which don't take any arguments (and we even drop the argument brackets)
—therefore, constants live in the set F together with the ‘true’ functions
which do take arguments. From now on, we will drop the set C, since it
is convenient to do so, and stipulate that constants are O-arity, so-called
nullary, functions.



TENX M F ¢? Logics

2. First-order Logic | Definition of the language (First-order Logic)

ENX: Term in BNF

tu=ux|c| f(t,..,t)

where = ranges over a set of variables var, ¢ over nullary function symbols
in F, and f over those elements of F with arity n > 0.

TEM.: First-order Logic in BNF

¢ = Pt t2,. ., tn) | (79) [ (9A Q) [ (9V @) [ (¢ = ¢) | (Vz ¢) | (3 )

where P € P is a predicate symbol of arity n > 1, t; are terms over F and
x is a variable.
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TEMX: We define the set of formulas over (F, P) inductively, using the
already defined set of terms over F':

If P € P is a predicate symbol of arity n > 1, and if ¢1,to, ..., ¢, are
terms over F, then P(ty,ts,...,t,) is a formula.

If ¢ is a formula, then so is (—¢).
If ¢ and ¢ are formulas, then so are (¢ A ), (¢ V 1) and (¢ — ).

If ¢ is a formula and z is a variable, then (Vz ¢) and (3z ¢) are
formulas.

Nothing else is a formula.

Recall that each occurrence of ¢ on the right-hand side of the ::= stands

for any formula already constructed by these rules.



TENX M F ¢? Logics

2. First-order Logic | Define M

[EIZ)E: IMAIENX M?

ENM: M

Let F be a set of function symbols and P a set of predicate symbols, each
symbol with a fixed number of required arguments. A model M of the
pair (F,P) consists of the following set of data:

@ A non-empty set A, the universe of concrete values
@ for each nullary function symbol f € F, a concrete element fM of A

© for each f € F with arity n > 0, a concrete function fM: A" — A
from A™, the set of n-tuples over A, to A

Q for each P € P with arity n > 0, a subset P C A™ of n-tuples over
A.

v
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XEBRIE L BRIV, WNRARLATITIE (IR C IESXKLY), #
RS RBET

= CIEESH, WEN.c 34, HAF main() REHHEIST M.
» F,P 1BHEFER, N struct EH9KETRER

= A EHTF enum, BEITEHE int32 longb4 BUESBEIRYIRE

« M PMIEETF main() PEAIED



X M F ¢? Logics

2. First-order Logic | Define M

[EIZJERR: ANEIEN M?

Bl (Eap):

Let F & {i} and P ={R, F};
@ ¢ is a constant

@ F' a predicate symbol with one
argument

@ R a predicate symbol with two
arguments
A model M may contain:
@ A: a set of states of a computer

program.

o iM: a designated initial state.

@ RM: a state transition relation.

o FM: a set of final (accepting) states.

M BISEAI:

o RM  {(4,q), (a,b),
(a,¢), (b, ¢), (¢, c)}

o FM ={b c}.

¢ HISLH:

° 3y R(i,y)

e —F (i)

o VaVyVz (R(z,y) A
R(z,z) > y=2)

e Vz3dy R(x,y)

EHB nhttps://faculty.ustc.edu.cn/hu: R EESS]


https://faculty.ustc.edu.cn/huangwenchao

2024-02-13

A 75iESS

TEX M F ¢? Logics

Jy R(i,y): there is a transition from the initial state to some state;
this is true in our model, as there are transitions from the initial
state a to a, b, and c.

—F(7): the initial state is not a final, accepting state. This is true in
our model as b and c¢ are the only final states and a is the intitial
one.

VavVyVz (R(z,y) A R(z,z) — y = z): makes use of the equality
predicate and states that the transition relation is deterministic: all
transitions from any state can go to at most one state (there may
be no transitions from a state as well). This is false in our model
since state a has transitions to b and c.

Vz3y R(z,y): the model is free of states that deadlock: all states
have a transition to some state. This is true in our model: a can
move to a, b or ¢; and b and ¢ can move to c.



TENX M F ¢? Logics

2. First-order Logic | Evaluation

BIZIFRR: XFLEE M F ¢, BEBE M E ¢?
BHAKF%: 2K Propositional Logic, BaRFB &R
O TN Environment [
Q0 EX K
Q HE F KiEE

@ /:var— A

e Type: from the set of variables var to A
o A look-up table or environment for a universe A of concrete values

o [[x+— d]
o the look-up table
e maps z to a and any other variable y to (y)
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2. First-order Logic | Evaluation

@ /[:var -+ A

o A look-up table or environment for a universe A of concrete values

EX F

Given a model M for a pair (F,P) and given an environment [, we
define the satisfaction relation M &; ¢ for each logical formula ¢ over the
pair (F,P) and look-up table [ by structural induction on ¢.

If M E; ¢ holds, we say that ¢ computes to 7" in the model M with
respect to the environment /.

M E ¢ holds, iff for all choices of I, M F; ¢
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If ¢ is of the form P(ty,to,...,t,), then we interpret the terms
t1,to,...,t, in our set A by replacing all variables with their values
according to [. In this way we compute concrete values a1, as, ..., a,
of A for each of these terms, where we interpret any function
symbol f € F by f™. Now M k; P(ty,ts, ..., t,) holds iff
(a1,as,...,a,) is in the set PM.

The relation M F; V ¢ holds iff M &, 4 % holds for all a € A.
M E; z 1 holds iff M E; 1 holds for some a € A.

The relation M E; —p holds iff it is not the case that M F; v holds.
The relation M F; 11 V 15 holds iff M E; 11 or M E; 15 holds.
The relation M E; 11 A 15 holds iff M E; 11 and M E; 15 holds.

The relation M E; 11 — 15 holds iff M E; 15 holds whenever
M E; 41 holds.



TENX M F ¢? Logics

2. First-order Logic | Evaluation

SPEIEE. HESREEL T o EmBENSMENTEA
EEMI: SRR

[BIER: [AIRAATLARRA? — (A)RK 4
Given a set A C S, and x € S, whether there is a machine that can
compute whether z € A.

@ Define a new machine, named Turing machine, BR¥1.

@ If yes, i.e., there is a Turing machine M for A, language A is
decidable.

@ If no, but there is a Turing machine M that can only accept s, if
s € A, language A is still Turing-recognizable.

TEI8 (Undecidability in First-order logic)

The decision problem of validity in predicate logic is undecidable: no
program exists which, given any ¢, decides whether F ¢.
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HXAMAELRE, ATIASERES (HAE—RAZE) : Post corre-
spondence problem (PCP)

= Page 132 in {Logic in Computer Science
- XEERNETHIF

= Page 227 in {Introduction to the theory of Compuation})
- XENETURGE



X M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

B—ME@&: First-order Logic HIFRIABEST?
o BERIAFTBIRIRAA?
fRE: BB RHI—AME (directed graph) AR
@ Software models, design standards, and execution models of hardware
or programs often are described in terms of directed graphs.

Given a set of states A = {sq, 51, 52,53}, let RM be the set

{(505 51)7 (817 50)7 (517 81)7 (517 52)7 (52a 50)’ (535 50)7 (837 52)}' We may
depict this model as a directed graph in a figure, where an edge (a
transition) leads from a node s to a node s’ iff (s,s') € RM.
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3. Higher-order Logic | Limitation of first-order logic

Given a set of states A = {sg, 51, 52,53}, let RM be the set
{(s0,51), (s1,50), (51, 51), (51, 82), (52, 50), (83, 50), (83, 52) }. We may
depict this model as a directed graph in a figure where an edge (a
transition) leads from a node s to a node s’ iff (s,s") € RM.

245: How to define Reachability as ¢

Given nodes n and n’ in a directed graph, is there a finite path of
transitions from n to n'?
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3. Higher-order Logic | Limitation of first-order logic

>
S1 So

245: How to define Reachability as ¢

Given nodes n and n’ in a directed graph, is there a finite path of
transitions from n to n/?

[ —FpESEE
(u = v)VIz(R(u, z) AR(x,v))VIx1Ize(R(u, 1) AR(z1, x2) AR(22,v)) V...

e This is infinite, so it’ s not a well-formed formula.

@ Can we find a well-formed formula with the same meaning? No!
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TERIERBI P-137 in {Logic in Computer Science)




TENX M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

BH—2oa): BEAA First-order Logic ABERIA ¢, APFEATRIA
o {#FH Second-order Logic
o BAFE?

e This can be realized by applying quantifiers not only to variables, but
also to predicate symbols.

Bl EX.: First-order Logic in BNF

¢ = Pt t2,..,tn) | (9) [ (9 A Q) [ (9V @) [ (¢ = ¢) | (Vz ¢) | (3z )

where P € P is a predicate symbol of arity n > 1, ¢; are terms over F and
x is a variable.
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3. Higher-order Logic | Second-order Logic

Bl EX.: First-order Logic in BNF

¢ = P(t1,t2,...,tn) | (=9) [ (9 A Q) [ (9V @) [ (¢ = ¢) | (Vz ¢) | (3z &)

where P € P is a predicate symbol of arity n > 1, ¢; are terms over F and
x is a variable.

fRR R
For a predicate symbol P with n > 1 arguments, consider formulas of the
form:

o

P ¢

where ¢ is a formula of predicate logic in which P occurs.
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3. Higher-order Logic | Second-order Logic

[2f5l: —FhE& =2 First-order Logic (Not well-formed)
(u = v)VIx(R(u,x) AR(x,v))VIzi1Ize(R(u, 1) AR(x1, £2) AR(22,))V...

B{RZZ: Second-order Logic

—3APVzVyVz (01 A Cy A Cs A\ C4)
where
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3. Higher-order Logic

T—/NaJfR: Bi&AF Third-order Logic, Fourth-order Logic,...?
]
o First-order logic quantifies only variables that range over individuals
@ Second-order logic, in addition, also quantifies over sets
e e.g., we can define P(z,y) = (z,y) € P, where P is a set.
@ Third-order logic also quantifies over sets of sets, and so on.
Higher-order logic is the union of first-, second-, third-, ..., nth-order logic

@ i.e., higher-order logic admits quantification over sets that are nested
arbitrarily deeply.
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a. Compute the complete truth table of the formula:

O (p—9—p—p

@ (pAg)— (pVa)

Q@ (p—~aVp——q

Q@ ((pvg)—r)=((p—=r)Vig—r))
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1. Use the predicates

A(z,y): x admires y
B(z,y): =z attended y
P(z): =z is a professor
S(x): zis a student
L(z): =z is alecture
and the nullary function symbol (constant)

m: Mary

to translate the following into predicate logic:
(a) Mary admires every professor.
(The answer is not Vo A(m, P(z)).)
(b) Some professor admires Mary.
(c) Mary admires herself.
(d) No student attended every lecture.
(e) No lecture was attended by every student.
(f) No lecture was attended by any student.
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2. Consider the sentence ¢ = Va 3y 3z (P(z,y) A P(z,y) A (P(x,2) — P(z,2))).

Which of the following models satisfies ¢7

(a) The model M consists of the set of natural numbers with PM < {(m, n) |
m < n}.

(b) The model M’ consists of the set of natural numbers with PM" % {(m, 2 «
m) | m natural number}.

(¢) The model M” consists of the set of natural numbers with PM" % {(m_n) |
m <mn+ 1}
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