
形式化方法导引
第 2 章 经典数理逻辑-问题定义

黄文超
https://faculty.ustc.edu.cn/huangwenchao

−→ 教学课程 −→ 形式化方法导引

https://faculty.ustc.edu.cn/huangwenchao

本章内容

Define verification

M ⊨ ϕ

A method of define M and ϕ: Logics

Propositional logic

Predicate logic

Higher-order logic

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 2 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

回顾: 定义: Verifier
A verifier for a language A is an algorithm V , where

A = {w | V accepts 〈w, c〉 for some string c }.

回顾: 验证过程
（1）构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c

(4) 使用验证器 V , 输入 c, 输出是否w ∈ A

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 3 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

回顾: 验证过程
（1）构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c

(4) 使用验证器 V , 输入 c, 输出是否w ∈ A

定义: Verification in Logics
Most logics used in the design, specification, and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

回顾: 验证过程
（1）构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c

(4) 使用验证器 V , 输入 c, 输出是否w ∈ A

定义: Verification in Logics
Most logics used in the design, specification, and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

回顾: 验证过程
（1）构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c

(4) 使用验证器 V , 输入 c, 输出是否w ∈ A

定义: Verification in Logics
Most logics used in the design, specification, and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

回顾: 验证过程
（1）构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c

(4) 使用验证器 V , 输入 c, 输出是否w ∈ A

定义: Verification in Logics
Most logics used in the design, specification, and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

回顾: 验证过程
（1）构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c

(4) 使用验证器 V , 输入 c, 输出是否w ∈ A

定义: Verification in Logics
Most logics used in the design, specification, and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

定义: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

下一个问题:
问: 如何统一化定义 M 和 ϕ? 答: Logics
问: 如何支持 ⊨ 和 algorithms? 答: Rules

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

定义: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

下一个问题:
问: 如何统一化定义 M 和 ϕ? 答: Logics
问: 如何支持 ⊨ 和 algorithms? 答: Rules

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

定义: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

下一个问题:
问: 如何统一化定义 M 和 ϕ? 答: Logics
问: 如何支持 ⊨ 和 algorithms? 答: Rules

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

定义: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

下一个问题:
问: 如何统一化定义 M 和 ϕ? 答: Logics
问: 如何支持 ⊨ 和 algorithms? 答: Rules

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

定义: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

下一个问题:
问: 如何统一化定义 M 和 ϕ? 答: Logics
问: 如何支持 ⊨ 和 algorithms? 答: Rules

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 33

https://faculty.ustc.edu.cn/huangwenchao

Verifier —— Logic

定义: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

M is some sort of situation or model of a system
ϕ is a specification, a formula of that logic, expressing what should be
true in situation M.
At the heart of this set-up is that one can often specify and
implement algorithms for computing ⊨.

下一个问题:
问: 如何统一化定义 M 和 ϕ? 答: Logics
问: 如何支持 ⊨ 和 algorithms? 答: Rules

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics

回顾: 如何定义一个问题? – 问题 3
Given a set S, a machine M , and x ∈ S, compute whether x ∈ L(M).

M is a machine, e.g., finite automaton.
L(M) is the language of M .

Define a special group of languages: Logics
Propositional logic (命题逻辑)

Predicate logic (谓词逻辑)
a.k.a., First-order Logic (一阶逻辑)

Higher-Order Logic (高阶逻辑)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics

回顾: 如何定义一个问题? – 问题 3
Given a set S, a machine M , and x ∈ S, compute whether x ∈ L(M).

M is a machine, e.g., finite automaton.
L(M) is the language of M .

Define a special group of languages: Logics
Propositional logic (命题逻辑)

Predicate logic (谓词逻辑)
a.k.a., First-order Logic (一阶逻辑)

Higher-Order Logic (高阶逻辑)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Basic elements: Atomic Propositions

定义: Propositions (命题)
Declarative sentences which one can argue as being true or false, e.g.,

The sum of the numbers 3 and 5 equals 8.
Jane reacted violently to Jack’s accusations.
Every even natural number >2 is the sum of two prime numbers.
All Martians like pepperoni on their pizza.

问题: 过于繁杂...
解决方法: 从原子开始组建...

定义: Atomic Propositions (原子命题)
Propositions which is indecomposable, e.g.,

The number 5 is even.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 7 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Basic elements: Atomic Propositions

定义: Propositions (命题)
Declarative sentences which one can argue as being true or false, e.g.,

The sum of the numbers 3 and 5 equals 8.
Jane reacted violently to Jack’s accusations.
Every even natural number >2 is the sum of two prime numbers.
All Martians like pepperoni on their pizza.

问题: 过于繁杂...
解决方法: 从原子开始组建...

定义: Atomic Propositions (原子命题)
Propositions which is indecomposable, e.g.,

The number 5 is even.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 7 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Basic elements: Atomic Propositions

定义: Propositions (命题)
Declarative sentences which one can argue as being true or false, e.g.,

The sum of the numbers 3 and 5 equals 8.
Jane reacted violently to Jack’s accusations.
Every even natural number >2 is the sum of two prime numbers.
All Martians like pepperoni on their pizza.

问题: 过于繁杂...
解决方法: 从原子开始组建...

定义: Atomic Propositions (原子命题)
Propositions which is indecomposable, e.g.,

The number 5 is even.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 7 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Basic elements: Logical Operators

定义: Propositions (命题)
Declarative sentences which one can argue as being true or false.

定义: Atomic Propositions (原子命题)
Propositions which is indecomposable.

Symbols representing Atomic Propositions
We assign certain distinct symbols p, q, r, ..., or sometimes p1, p2, p3, ... to
each of these atomic sentences

Symbols representing Logical Operators
{¬,∨,∧,→}

We can then code up more complex sentences in a compositional way

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Basic elements: Logical Operators

定义: Propositions (命题)
Declarative sentences which one can argue as being true or false.

定义: Atomic Propositions (原子命题)
Propositions which is indecomposable.

Symbols representing Atomic Propositions
We assign certain distinct symbols p, q, r, ..., or sometimes p1, p2, p3, ... to
each of these atomic sentences

Symbols representing Logical Operators
{¬,∨,∧,→}

We can then code up more complex sentences in a compositional way

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Basic elements: Logical Operators

定义: Propositions (命题)
Declarative sentences which one can argue as being true or false.

定义: Atomic Propositions (原子命题)
Propositions which is indecomposable.

Symbols representing Atomic Propositions
We assign certain distinct symbols p, q, r, ..., or sometimes p1, p2, p3, ... to
each of these atomic sentences

Symbols representing Logical Operators
{¬,∨,∧,→}

We can then code up more complex sentences in a compositional way

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences
p: ‘I won the lottery last week.’
q: ‘I purchased a lottery ticket.’
r: ‘I won last week’s sweepstakes.’

Definition of the Logical Operators
¬: Negation. ¬p denotes negation of p

i.e., it is not true that I won the lottery last week.
∨: Disjunction (析取). p ∨ r denotes at least one of {p, r} is true.

i.e., I won the lottery last week, or I won last week’s sweepstakes
∧: Conjunction (合取). p ∧ r denotes both p and r are true.

i.e., Last week I won the lottery and the sweepstakes.
→: Implication (蕴含). p → q denotes q is a logical consequence of p.

i.e., If I won the lottery last week, then I purchased a lottery ticket.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences
p: ‘I won the lottery last week.’
q: ‘I purchased a lottery ticket.’
r: ‘I won last week’s sweepstakes.’

Definition of the Logical Operators
¬: Negation. ¬p denotes negation of p

i.e., it is not true that I won the lottery last week.
∨: Disjunction (析取). p ∨ r denotes at least one of {p, r} is true.

i.e., I won the lottery last week, or I won last week’s sweepstakes
∧: Conjunction (合取). p ∧ r denotes both p and r are true.

i.e., Last week I won the lottery and the sweepstakes.
→: Implication (蕴含). p → q denotes q is a logical consequence of p.

i.e., If I won the lottery last week, then I purchased a lottery ticket.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences
p: ‘I won the lottery last week.’
q: ‘I purchased a lottery ticket.’
r: ‘I won last week’s sweepstakes.’

Definition of the Logical Operators
¬: Negation. ¬p denotes negation of p

i.e., it is not true that I won the lottery last week.
∨: Disjunction (析取). p ∨ r denotes at least one of {p, r} is true.

i.e., I won the lottery last week, or I won last week’s sweepstakes
∧: Conjunction (合取). p ∧ r denotes both p and r are true.

i.e., Last week I won the lottery and the sweepstakes.
→: Implication (蕴含). p → q denotes q is a logical consequence of p.

i.e., If I won the lottery last week, then I purchased a lottery ticket.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences
p: ‘I won the lottery last week.’
q: ‘I purchased a lottery ticket.’
r: ‘I won last week’s sweepstakes.’

Definition of the Logical Operators
¬: Negation. ¬p denotes negation of p

i.e., it is not true that I won the lottery last week.
∨: Disjunction (析取). p ∨ r denotes at least one of {p, r} is true.

i.e., I won the lottery last week, or I won last week’s sweepstakes
∧: Conjunction (合取). p ∧ r denotes both p and r are true.

i.e., Last week I won the lottery and the sweepstakes.
→: Implication (蕴含). p → q denotes q is a logical consequence of p.

i.e., If I won the lottery last week, then I purchased a lottery ticket.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences
p: ‘I won the lottery last week.’
q: ‘I purchased a lottery ticket.’
r: ‘I won last week’s sweepstakes.’

Definition of the Logical Operators
¬: Negation. ¬p denotes negation of p

i.e., it is not true that I won the lottery last week.
∨: Disjunction (析取). p ∨ r denotes at least one of {p, r} is true.

i.e., I won the lottery last week, or I won last week’s sweepstakes
∧: Conjunction (合取). p ∧ r denotes both p and r are true.

i.e., Last week I won the lottery and the sweepstakes.
→: Implication (蕴含). p → q denotes q is a logical consequence of p.

i.e., If I won the lottery last week, then I purchased a lottery ticket.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 33

https://faculty.ustc.edu.cn/huangwenchao

回顾: 自动机

如何定义一个问题? – 问题 3
Given a set S, a machine M , and x ∈ S, compute whether x ∈ L(M).

M is a machine, e.g., finite automaton.
L(M) is the language of M .

M 的类型?
regular languages

例: 正则表达式匹配、词法分析
context-free languages

例：语法分析

regular
languages

context-free
languages

Define Propositional logic using a context-free language
Backus-Naur Form (BNF) (巴科斯范式)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 10 / 33

https://faculty.ustc.edu.cn/huangwenchao

回顾: 自动机

如何定义一个问题? – 问题 3
Given a set S, a machine M , and x ∈ S, compute whether x ∈ L(M).

M is a machine, e.g., finite automaton.
L(M) is the language of M .

M 的类型?
regular languages

例: 正则表达式匹配、词法分析
context-free languages

例：语法分析

regular
languages

context-free
languages

Define Propositional logic using a context-free language
Backus-Naur Form (BNF) (巴科斯范式)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 10 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Definition of the language (Propositional Logic)

定义: Propositional Logic in BNF

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)

where p stands for any atomic proposition and each occurrence of ϕ to the
right of ::= stands for any already constructed formula.

Well-formed formula, 例:
(((¬p) ∧ q) → (p ∧ (q ∨ (¬r))))

Not well-formed formula, 例:
(¬)() ∨ pq →

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 11 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Definition of the language (Propositional Logic)

定义: Propositional Logic in BNF

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)

where p stands for any atomic proposition and each occurrence of ϕ to the
right of ::= stands for any already constructed formula.

Well-formed formula, 例:
(((¬p) ∧ q) → (p ∧ (q ∨ (¬r))))

Not well-formed formula, 例:
(¬)() ∨ pq →

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 11 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Definition of the language (Propositional Logic)

定义: Propositional Logic in BNF

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)

where p stands for any atomic proposition and each occurrence of ϕ to the
right of ::= stands for any already constructed formula.

Well-formed formula, 例:
(((¬p) ∧ q) → (p ∧ (q ∨ (¬r))))

Not well-formed formula, 例:
(¬)() ∨ pq →

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 11 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Truth table

问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ?
基本方法: 使用 Bool 真值表

定义: T and F
The set of truth values contains two elements T and F, where T
represents ‘true’and F represents ‘false’.
A valuation or model of a formula ϕ is an assignment of each
propositional atom in ϕ to a truth value.

ϕ ψ ϕ ∧ ψ

T T T
T F F
F T F
F F F

ϕ ψ ϕ ∨ ψ

T T T
T F T
F T T
F F F

ϕ ψ ϕ → ψ

T T T
T F F
F T T
F F T

ϕ ¬ϕ
T F
F T

>
T

⊥
F

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Truth table

问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ?
基本方法: 使用 Bool 真值表

定义: T and F
The set of truth values contains two elements T and F, where T
represents ‘true’and F represents ‘false’.
A valuation or model of a formula ϕ is an assignment of each
propositional atom in ϕ to a truth value.

ϕ ψ ϕ ∧ ψ

T T T
T F F
F T F
F F F

ϕ ψ ϕ ∨ ψ

T T T
T F T
F T T
F F F

ϕ ψ ϕ → ψ

T T T
T F F
F T T
F F T

ϕ ¬ϕ
T F
F T

>
T

⊥
F

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Truth table

问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ?
基本方法: 使用 Bool 真值表

定义: T and F
The set of truth values contains two elements T and F, where T
represents ‘true’and F represents ‘false’.
A valuation or model of a formula ϕ is an assignment of each
propositional atom in ϕ to a truth value.

ϕ ψ ϕ ∧ ψ

T T T
T F F
F T F
F F F

ϕ ψ ϕ ∨ ψ

T T T
T F T
F T T
F F F

ϕ ψ ϕ → ψ

T T T
T F F
F T T
F F T

ϕ ¬ϕ
T F
F T

>
T

⊥
F

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Truth table

问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ?
基本方法: 使用 Bool 真值表

定义: T and F
The set of truth values contains two elements T and F, where T
represents ‘true’and F represents ‘false’.
A valuation or model of a formula ϕ is an assignment of each
propositional atom in ϕ to a truth value.

ϕ ψ ϕ ∧ ψ

T T T
T F F
F T F
F F F

ϕ ψ ϕ ∨ ψ

T T T
T F T
F T T
F F F

ϕ ψ ϕ → ψ

T T T
T F F
F T T
F F T

ϕ ¬ϕ
T F
F T

>
T

⊥
F

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Truth table

问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ?
基本方法: 使用 Bool 真值表

定义: T and F
The set of truth values contains two elements T and F, where T
represents ‘true’and F represents ‘false’.
A valuation or model of a formula ϕ is an assignment of each
propositional atom in ϕ to a truth value.

ϕ ψ ϕ ∧ ψ

T T T
T F F
F T F
F F F

ϕ ψ ϕ ∨ ψ

T T T
T F T
F T T
F F F

ϕ ψ ϕ → ψ

T T T
T F F
F T T
F F T

ϕ ¬ϕ
T F
F T

>
T

⊥
F

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Truth table

问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ?
基本方法: 使用 Bool 真值表

定义: T and F
The set of truth values contains two elements T and F, where T
represents ‘true’and F represents ‘false’.
A valuation or model of a formula ϕ is an assignment of each
propositional atom in ϕ to a truth value.

ϕ ψ ϕ ∧ ψ

T T T
T F F
F T F
F F F

ϕ ψ ϕ ∨ ψ

T T T
T F T
F T T
F F F

ϕ ψ ϕ → ψ

T T T
T F F
F T T
F F T

ϕ ¬ϕ
T F
F T

>
T

⊥
F

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Example

例：真值表

p q ¬p ¬q p → ¬q q ∨ ¬p ϕ = (p → ¬q) → (q ∨ ¬p)
T T F F F T T
T F F T T F F
F T T F T T T
F F T T T T T

回到主题: 对于如下 M 和 ϕ, 是否满足 M ⊨ ϕ?
M = {p, q}, ϕ = (p → ¬q) → (q ∨ ¬p)

Yes, 即 M ⊨ ϕ
M = {p,¬q}, ϕ = (p → ¬q) → (q ∨ ¬p)

No, 即 M ⊭ ϕ
M = {p}, ϕ = (p → ¬q) → (q ∨ ¬p)

无法确定，原因：公理不完备 (建模出现问题)
M = {p,¬p}, ϕ = (p → ¬q) → (q ∨ ¬p)

公理存在矛盾 (建模出现问题)
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Example

例：真值表

p q ¬p ¬q p → ¬q q ∨ ¬p ϕ = (p → ¬q) → (q ∨ ¬p)
T T F F F T T
T F F T T F F
F T T F T T T
F F T T T T T

回到主题: 对于如下 M 和 ϕ, 是否满足 M ⊨ ϕ?
M = {p, q}, ϕ = (p → ¬q) → (q ∨ ¬p)

Yes, 即 M ⊨ ϕ
M = {p,¬q}, ϕ = (p → ¬q) → (q ∨ ¬p)

No, 即 M ⊭ ϕ
M = {p}, ϕ = (p → ¬q) → (q ∨ ¬p)

无法确定，原因：公理不完备 (建模出现问题)
M = {p,¬p}, ϕ = (p → ¬q) → (q ∨ ¬p)

公理存在矛盾 (建模出现问题)
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Example

例：真值表

p q ¬p ¬q p → ¬q q ∨ ¬p ϕ = (p → ¬q) → (q ∨ ¬p)
T T F F F T T
T F F T T F F
F T T F T T T
F F T T T T T

回到主题: 对于如下 M 和 ϕ, 是否满足 M ⊨ ϕ?
M = {p, q}, ϕ = (p → ¬q) → (q ∨ ¬p)

Yes, 即 M ⊨ ϕ
M = {p,¬q}, ϕ = (p → ¬q) → (q ∨ ¬p)

No, 即 M ⊭ ϕ
M = {p}, ϕ = (p → ¬q) → (q ∨ ¬p)

无法确定，原因：公理不完备 (建模出现问题)
M = {p,¬p}, ϕ = (p → ¬q) → (q ∨ ¬p)

公理存在矛盾 (建模出现问题)
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Example

例：真值表

p q ¬p ¬q p → ¬q q ∨ ¬p ϕ = (p → ¬q) → (q ∨ ¬p)
T T F F F T T
T F F T T F F
F T T F T T T
F F T T T T T

回到主题: 对于如下 M 和 ϕ, 是否满足 M ⊨ ϕ?
M = {p, q}, ϕ = (p → ¬q) → (q ∨ ¬p)

Yes, 即 M ⊨ ϕ
M = {p,¬q}, ϕ = (p → ¬q) → (q ∨ ¬p)

No, 即 M ⊭ ϕ
M = {p}, ϕ = (p → ¬q) → (q ∨ ¬p)

无法确定，原因：公理不完备 (建模出现问题)
M = {p,¬p}, ϕ = (p → ¬q) → (q ∨ ¬p)

公理存在矛盾 (建模出现问题)
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Example

例：真值表

p q ¬p ¬q p → ¬q q ∨ ¬p ϕ = (p → ¬q) → (q ∨ ¬p)
T T F F F T T
T F F T T F F
F T T F T T T
F F T T T T T

回到主题: 对于如下 M 和 ϕ, 是否满足 M ⊨ ϕ?
M = {p, q}, ϕ = (p → ¬q) → (q ∨ ¬p)

Yes, 即 M ⊨ ϕ
M = {p,¬q}, ϕ = (p → ¬q) → (q ∨ ¬p)

No, 即 M ⊭ ϕ
M = {p}, ϕ = (p → ¬q) → (q ∨ ¬p)

无法确定，原因：公理不完备 (建模出现问题)
M = {p,¬p}, ϕ = (p → ¬q) → (q ∨ ¬p)

公理存在矛盾 (建模出现问题)
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Evaluate ϕ: Example

例：真值表

p q ¬p ¬q p → ¬q q ∨ ¬p ϕ = (p → ¬q) → (q ∨ ¬p)
T T F F F T T
T F F T T F F
F T T F T T T
F F T T T T T

回到主题: 对于如下 M 和 ϕ, 是否满足 M ⊨ ϕ?
M = {p, q}, ϕ = (p → ¬q) → (q ∨ ¬p)

Yes, 即 M ⊨ ϕ
M = {p,¬q}, ϕ = (p → ¬q) → (q ∨ ¬p)

No, 即 M ⊭ ϕ
M = {p}, ϕ = (p → ¬q) → (q ∨ ¬p)

无法确定，原因：公理不完备 (建模出现问题)
M = {p,¬p}, ϕ = (p → ¬q) → (q ∨ ¬p)

公理存在矛盾 (建模出现问题)
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Semantic entailment relation

回到主题: 对于如下 M 和 ϕ, 是否满足 M ⊨ ϕ?
M = {p, q}, ϕ = (p → ¬q) → (q ∨ ¬p)

Yes, 即 M ⊨ ϕ
M = {p,¬q}, ϕ = (p → ¬q) → (q ∨ ¬p)

No, 即 M ⊨ ¬ϕ
M = {p}, ϕ = (p → ¬q) → (q ∨ ¬p)

无法确定，原因：公理不完备 (建模出现问题)
M = {p,¬p}, ϕ = (p → ¬q) → (q ∨ ¬p)

公理存在矛盾 (建模出现问题)

定义: Semantic entailment relation
If, for all valuations in which all ϕ1, ϕ2, . . . , ϕn evaluate to T, ψ evaluates
to T as well, we say that

ϕ1, ϕ2, . . . , ϕn ⊨ ψ

holds and call ⊨ the semantic entailment relation.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 14 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Semantic entailment relation

回到主题: 对于如下 M 和 ϕ, 是否满足 M ⊨ ϕ?
M = {p, q}, ϕ = (p → ¬q) → (q ∨ ¬p)

Yes, 即 M ⊨ ϕ
M = {p,¬q}, ϕ = (p → ¬q) → (q ∨ ¬p)

No, 即 M ⊨ ¬ϕ
M = {p}, ϕ = (p → ¬q) → (q ∨ ¬p)

无法确定，原因：公理不完备 (建模出现问题)
M = {p,¬p}, ϕ = (p → ¬q) → (q ∨ ¬p)

公理存在矛盾 (建模出现问题)

定义: Semantic entailment relation
If, for all valuations in which all ϕ1, ϕ2, . . . , ϕn evaluate to T, ψ evaluates
to T as well, we say that

ϕ1, ϕ2, . . . , ϕn ⊨ ψ

holds and call ⊨ the semantic entailment relation.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 14 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Complexity

例：真值表

p q ¬p ¬q p → ¬q q ∨ ¬p ϕ = (p → ¬q) → (q ∨ ¬p)
T T F F F T T
T F F T T F F
F T T F T T T
F F T T T T T

复杂度?
若 M 原子命题的个数为 n, 判定所需时间为 O(2n).
怎么办？

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
1. Propositional Logic | Complexity

例：真值表

p q ¬p ¬q p → ¬q q ∨ ¬p ϕ = (p → ¬q) → (q ∨ ¬p)
T T F F F T T
T F F T T F F
F T T F T T T
F F T T T T T

复杂度?
若 M 原子命题的个数为 n, 判定所需时间为 O(2n).
怎么办？

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Introduction

问题: Consider the declarative sentence:
Every student is younger than some instructor.

How to define when there are 1,000,000,000 students?
Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):
Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)

Inherit Propositional Logic
Introduce Predicate

S(andy) to denote that Andy is a student.
I(paul) to say that Paul is an instructor.
Y (andy, paul) could mean that Andy is younger than Paul.
The symbols S, I and Y are called predicates.

Introduce quantifiers ∀ and ∃
∀: for all, ∃: there exists

答案: ∀x (S(x) → (∃y (I(y) ∧ Y (x, y))))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Introduction

问题: Consider the declarative sentence:
Every student is younger than some instructor.

How to define when there are 1,000,000,000 students?
Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):
Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)

Inherit Propositional Logic
Introduce Predicate

S(andy) to denote that Andy is a student.
I(paul) to say that Paul is an instructor.
Y (andy, paul) could mean that Andy is younger than Paul.
The symbols S, I and Y are called predicates.

Introduce quantifiers ∀ and ∃
∀: for all, ∃: there exists

答案: ∀x (S(x) → (∃y (I(y) ∧ Y (x, y))))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Introduction

问题: Consider the declarative sentence:
Every student is younger than some instructor.

How to define when there are 1,000,000,000 students?
Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):
Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)

Inherit Propositional Logic
Introduce Predicate

S(andy) to denote that Andy is a student.
I(paul) to say that Paul is an instructor.
Y (andy, paul) could mean that Andy is younger than Paul.
The symbols S, I and Y are called predicates.

Introduce quantifiers ∀ and ∃
∀: for all, ∃: there exists

答案: ∀x (S(x) → (∃y (I(y) ∧ Y (x, y))))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Introduction

问题: Consider the declarative sentence:
Every student is younger than some instructor.

How to define when there are 1,000,000,000 students?
Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):
Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)

Inherit Propositional Logic
Introduce Predicate

S(andy) to denote that Andy is a student.
I(paul) to say that Paul is an instructor.
Y (andy, paul) could mean that Andy is younger than Paul.
The symbols S, I and Y are called predicates.

Introduce quantifiers ∀ and ∃
∀: for all, ∃: there exists

答案: ∀x (S(x) → (∃y (I(y) ∧ Y (x, y))))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Introduction

问题: Consider the declarative sentence:
Every student is younger than some instructor.

How to define when there are 1,000,000,000 students?
Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):
Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)

Inherit Propositional Logic
Introduce Predicate

S(andy) to denote that Andy is a student.
I(paul) to say that Paul is an instructor.
Y (andy, paul) could mean that Andy is younger than Paul.
The symbols S, I and Y are called predicates.

Introduce quantifiers ∀ and ∃
∀: for all, ∃: there exists

答案: ∀x (S(x) → (∃y (I(y) ∧ Y (x, y))))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Introduction

问题: Consider the declarative sentence:
Every student is younger than some instructor.

How to define when there are 1,000,000,000 students?
Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):
Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)

Inherit Propositional Logic
Introduce Predicate

S(andy) to denote that Andy is a student.
I(paul) to say that Paul is an instructor.
Y (andy, paul) could mean that Andy is younger than Paul.
The symbols S, I and Y are called predicates.

Introduce quantifiers ∀ and ∃
∀: for all, ∃: there exists

答案: ∀x (S(x) → (∃y (I(y) ∧ Y (x, y))))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Introduction

问题: Consider the declarative sentence:
Every student is younger than some instructor.

How to define when there are 1,000,000,000 students?
Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):
Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)

Inherit Propositional Logic
Introduce Predicate

S(andy) to denote that Andy is a student.
I(paul) to say that Paul is an instructor.
Y (andy, paul) could mean that Andy is younger than Paul.
The symbols S, I and Y are called predicates.

Introduce quantifiers ∀ and ∃
∀: for all, ∃: there exists

答案: ∀x (S(x) → (∃y (I(y) ∧ Y (x, y))))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Introduction

问题: Consider the declarative sentence:
Every student is younger than some instructor.

How to define when there are 1,000,000,000 students?
Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):
Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)

Inherit Propositional Logic
Introduce Predicate

S(andy) to denote that Andy is a student.
I(paul) to say that Paul is an instructor.
Y (andy, paul) could mean that Andy is younger than Paul.
The symbols S, I and Y are called predicates.

Introduce quantifiers ∀ and ∃
∀: for all, ∃: there exists

答案: ∀x (S(x) → (∃y (I(y) ∧ Y (x, y))))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Introduction

问题: Consider the declarative sentence:
Every student is younger than some instructor.

How to define when there are 1,000,000,000 students?
Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):
Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)

Inherit Propositional Logic
Introduce Predicate

S(andy) to denote that Andy is a student.
I(paul) to say that Paul is an instructor.
Y (andy, paul) could mean that Andy is younger than Paul.
The symbols S, I and Y are called predicates.

Introduce quantifiers ∀ and ∃
∀: for all, ∃: there exists

答案: ∀x (S(x) → (∃y (I(y) ∧ Y (x, y))))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Introduction

问题: Consider the declarative sentence:
Every student is younger than some instructor.

How to define when there are 1,000,000,000 students?
Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):
Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)

Inherit Propositional Logic
Introduce Predicate

S(andy) to denote that Andy is a student.
I(paul) to say that Paul is an instructor.
Y (andy, paul) could mean that Andy is younger than Paul.
The symbols S, I and Y are called predicates.

Introduce quantifiers ∀ and ∃
∀: for all, ∃: there exists

答案: ∀x (S(x) → (∃y (I(y) ∧ Y (x, y))))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Definition of the language (First-order Logic)

定义: Term
Any variable is a term.
If c ∈ F is a nullary function, then c is a term.
If t1, t2, ..., tn are terms and f ∈ F has arity n > 0, then
f(t1, t2, ..., tn) is a term.
Nothing else is a term.

定义: Term in BNF
t ::= x | c | f(t, ..., t)

where x ranges over a set of variables var, c over nullary function symbols
in F , and f over those elements of F with arity n > 0.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 17 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Definition of the language (First-order Logic)

定义: Term in BNF
t ::= x | c | f(t, ..., t)

where x ranges over a set of variables var, c over nullary function symbols
in F , and f over those elements of F with arity n > 0.

定义: First-order Logic in BNF

ϕ ::= P (t1, t2, . . . , tn) | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ → ϕ) | (∀x ϕ) | (∃x ϕ)

where P ∈ P is a predicate symbol of arity n ≥ 1, ti are terms over F and
x is a variable.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 18 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Definition of the language (First-order Logic)

定义: Term in BNF
t ::= x | c | f(t, ..., t)

where x ranges over a set of variables var, c over nullary function symbols
in F , and f over those elements of F with arity n > 0.

定义: First-order Logic in BNF

ϕ ::= P (t1, t2, . . . , tn) | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ → ϕ) | (∀x ϕ) | (∃x ϕ)

where P ∈ P is a predicate symbol of arity n ≥ 1, ti are terms over F and
x is a variable.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 18 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Define M

回到主题: 如何定义 M?

定义: M
Let F be a set of function symbols and P a set of predicate symbols, each
symbol with a fixed number of required arguments. A model M of the
pair (F ,P) consists of the following set of data:

1 A non-empty set A, the universe of concrete values
2 for each nullary function symbol f ∈ F , a concrete element fM of A
3 for each f ∈ F with arity n > 0, a concrete function fM : An → A

from An, the set of n-tuples over A, to A
4 for each P ∈ P with arity n > 0, a subset PM ⊆ An of n-tuples over
A.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 19 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Define M

回到主题: 如何定义 M?
例 (自动机):
Let F def= {i} and P = {R,F};

i is a constant
F a predicate symbol with one
argument
R a predicate symbol with two
arguments

A model M may contain:
A: a set of states of a computer
program.
iM: a designated initial state.
RM: a state transition relation.
FM: a set of final (accepting) states.

M 的实例:
A

def= {a, b, c}
iM = a

RM def= {(a, a), (a, b),
(a, c), (b, c), (c, c)}
FM = {b, c}.

ϕ 的实例:
∃y R(i, y)
¬F (i)
∀x∀y∀z (R(x, y) ∧
R(x, z) → y = z)
∀x∃y R(x, y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Define M

回到主题: 如何定义 M?
例 (自动机):
Let F def= {i} and P = {R,F};

i is a constant
F a predicate symbol with one
argument
R a predicate symbol with two
arguments

A model M may contain:
A: a set of states of a computer
program.
iM: a designated initial state.
RM: a state transition relation.
FM: a set of final (accepting) states.

M 的实例:
A

def= {a, b, c}
iM = a

RM def= {(a, a), (a, b),
(a, c), (b, c), (c, c)}
FM = {b, c}.

ϕ 的实例:
∃y R(i, y)
¬F (i)
∀x∀y∀z (R(x, y) ∧
R(x, z) → y = z)
∀x∃y R(x, y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Define M

回到主题: 如何定义 M?
例 (自动机):
Let F def= {i} and P = {R,F};

i is a constant
F a predicate symbol with one
argument
R a predicate symbol with two
arguments

A model M may contain:
A: a set of states of a computer
program.
iM: a designated initial state.
RM: a state transition relation.
FM: a set of final (accepting) states.

M 的实例:
A

def= {a, b, c}
iM = a

RM def= {(a, a), (a, b),
(a, c), (b, c), (c, c)}
FM = {b, c}.

ϕ 的实例:
∃y R(i, y)
¬F (i)
∀x∀y∀z (R(x, y) ∧
R(x, z) → y = z)
∀x∃y R(x, y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Define M

回到主题: 如何定义 M?
例 (自动机):
Let F def= {i} and P = {R,F};

i is a constant
F a predicate symbol with one
argument
R a predicate symbol with two
arguments

A model M may contain:
A: a set of states of a computer
program.
iM: a designated initial state.
RM: a state transition relation.
FM: a set of final (accepting) states.

M 的实例:
A

def= {a, b, c}
iM = a

RM def= {(a, a), (a, b),
(a, c), (b, c), (c, c)}
FM = {b, c}.

ϕ 的实例:
∃y R(i, y)
¬F (i)
∀x∀y∀z (R(x, y) ∧
R(x, z) → y = z)
∀x∃y R(x, y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Define M

回到主题: 如何定义 M?
例 (自动机):
Let F def= {i} and P = {R,F};

i is a constant
F a predicate symbol with one
argument
R a predicate symbol with two
arguments

A model M may contain:
A: a set of states of a computer
program.
iM: a designated initial state.
RM: a state transition relation.
FM: a set of final (accepting) states.

M 的实例:
A

def= {a, b, c}
iM = a

RM def= {(a, a), (a, b),
(a, c), (b, c), (c, c)}
FM = {b, c}.

ϕ 的实例:
∃y R(i, y)
¬F (i)
∀x∀y∀z (R(x, y) ∧
R(x, z) → y = z)
∀x∃y R(x, y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Define M

回到主题: 如何定义 M?
例 (自动机):
Let F def= {i} and P = {R,F};

i is a constant
F a predicate symbol with one
argument
R a predicate symbol with two
arguments

A model M may contain:
A: a set of states of a computer
program.
iM: a designated initial state.
RM: a state transition relation.
FM: a set of final (accepting) states.

M 的实例:
A

def= {a, b, c}
iM = a

RM def= {(a, a), (a, b),
(a, c), (b, c), (c, c)}
FM = {b, c}.

ϕ 的实例:
∃y R(i, y)
¬F (i)
∀x∀y∀z (R(x, y) ∧
R(x, z) → y = z)
∀x∃y R(x, y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Define M

回到主题: 如何定义 M?
例 (自动机):
Let F def= {i} and P = {R,F};

i is a constant
F a predicate symbol with one
argument
R a predicate symbol with two
arguments

A model M may contain:
A: a set of states of a computer
program.
iM: a designated initial state.
RM: a state transition relation.
FM: a set of final (accepting) states.

M 的实例:
A

def= {a, b, c}
iM = a

RM def= {(a, a), (a, b),
(a, c), (b, c), (c, c)}
FM = {b, c}.

ϕ 的实例:
∃y R(i, y)
¬F (i)
∀x∀y∀z (R(x, y) ∧
R(x, z) → y = z)
∀x∃y R(x, y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Define M

回到主题: 如何定义 M?
例 (自动机):
Let F def= {i} and P = {R,F};

i is a constant
F a predicate symbol with one
argument
R a predicate symbol with two
arguments

A model M may contain:
A: a set of states of a computer
program.
iM: a designated initial state.
RM: a state transition relation.
FM: a set of final (accepting) states.

M 的实例:
A

def= {a, b, c}
iM = a

RM def= {(a, a), (a, b),
(a, c), (b, c), (c, c)}
FM = {b, c}.

ϕ 的实例:
∃y R(i, y)
¬F (i)
∀x∀y∀z (R(x, y) ∧
R(x, z) → y = z)
∀x∃y R(x, y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

回到主题: 对于给定 M 和 ϕ, 是否满足 M ⊨ ϕ?
基本方法：类似 Propositional Logic, 枚举所有情况

1 定义 Environment l
2 定义 ⊨l

3 枚举 ⊨l 求解 ⊨

定义: Environment l

l : var → A

Type: from the set of variables var to A
A look-up table or environment for a universe A of concrete values

l[x 7→ a]
the look-up table
maps x to a and any other variable y to l(y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

回到主题: 对于给定 M 和 ϕ, 是否满足 M ⊨ ϕ?
基本方法：类似 Propositional Logic, 枚举所有情况

1 定义 Environment l
2 定义 ⊨l

3 枚举 ⊨l 求解 ⊨

定义: Environment l

l : var → A

Type: from the set of variables var to A
A look-up table or environment for a universe A of concrete values

l[x 7→ a]
the look-up table
maps x to a and any other variable y to l(y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

回到主题: 对于给定 M 和 ϕ, 是否满足 M ⊨ ϕ?
基本方法：类似 Propositional Logic, 枚举所有情况

1 定义 Environment l
2 定义 ⊨l

3 枚举 ⊨l 求解 ⊨

定义: Environment l

l : var → A

Type: from the set of variables var to A
A look-up table or environment for a universe A of concrete values

l[x 7→ a]
the look-up table
maps x to a and any other variable y to l(y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

回到主题: 对于给定 M 和 ϕ, 是否满足 M ⊨ ϕ?
基本方法：类似 Propositional Logic, 枚举所有情况

1 定义 Environment l
2 定义 ⊨l

3 枚举 ⊨l 求解 ⊨

定义: Environment l

l : var → A

Type: from the set of variables var to A
A look-up table or environment for a universe A of concrete values

l[x 7→ a]
the look-up table
maps x to a and any other variable y to l(y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

回到主题: 对于给定 M 和 ϕ, 是否满足 M ⊨ ϕ?
基本方法：类似 Propositional Logic, 枚举所有情况

1 定义 Environment l
2 定义 ⊨l

3 枚举 ⊨l 求解 ⊨

定义: Environment l

l : var → A

Type: from the set of variables var to A
A look-up table or environment for a universe A of concrete values

l[x 7→ a]
the look-up table
maps x to a and any other variable y to l(y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

回到主题: 对于给定 M 和 ϕ, 是否满足 M ⊨ ϕ?
基本方法：类似 Propositional Logic, 枚举所有情况

1 定义 Environment l
2 定义 ⊨l

3 枚举 ⊨l 求解 ⊨

定义: Environment l

l : var → A

Type: from the set of variables var to A
A look-up table or environment for a universe A of concrete values

l[x 7→ a]
the look-up table
maps x to a and any other variable y to l(y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

回到主题: 对于给定 M 和 ϕ, 是否满足 M ⊨ ϕ?
基本方法：类似 Propositional Logic, 枚举所有情况

1 定义 Environment l
2 定义 ⊨l

3 枚举 ⊨l 求解 ⊨

定义: Environment l

l : var → A

Type: from the set of variables var to A
A look-up table or environment for a universe A of concrete values

l[x 7→ a]
the look-up table
maps x to a and any other variable y to l(y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

定义: Environment l

l : var → A

A look-up table or environment for a universe A of concrete values

定义 ⊨l

Given a model M for a pair (F ,P) and given an environment l, we
define the satisfaction relation M ⊨l ϕ for each logical formula ϕ over the
pair (F ,P) and look-up table l by structural induction on ϕ.

If M ⊨l ϕ holds, we say that ϕ computes to T in the model M with
respect to the environment l.

定义 M ⊨ ϕ

M ⊨ ϕ holds, iff for all choices of l, M ⊨l ϕ

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

定义: Environment l

l : var → A

A look-up table or environment for a universe A of concrete values

定义 ⊨l

Given a model M for a pair (F ,P) and given an environment l, we
define the satisfaction relation M ⊨l ϕ for each logical formula ϕ over the
pair (F ,P) and look-up table l by structural induction on ϕ.

If M ⊨l ϕ holds, we say that ϕ computes to T in the model M with
respect to the environment l.

定义 M ⊨ ϕ

M ⊨ ϕ holds, iff for all choices of l, M ⊨l ϕ

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

定义: Environment l

l : var → A

A look-up table or environment for a universe A of concrete values

定义 ⊨l

Given a model M for a pair (F ,P) and given an environment l, we
define the satisfaction relation M ⊨l ϕ for each logical formula ϕ over the
pair (F ,P) and look-up table l by structural induction on ϕ.

If M ⊨l ϕ holds, we say that ϕ computes to T in the model M with
respect to the environment l.

定义 M ⊨ ϕ

M ⊨ ϕ holds, iff for all choices of l, M ⊨l ϕ

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

头疼的问题: 计算复杂度相比于命题逻辑的复杂度似乎更大
更头疼的问题: 先考虑可计算性?

回顾: 问题可以解么? – 问题 4
Given a set A ⊆ S, and x ∈ S, whether there is a machine that can
compute whether x ∈ A.

Define a new machine, named Turing machine, 图灵机.
If yes, i.e., there is a Turing machine M for A, language A is
decidable.
If no, but there is a Turing machine M that can only accept s, if
s ∈ A, language A is still Turing-recognizable.

定理（Undecidability in First-order logic）
The decision problem of validity in predicate logic is undecidable: no
program exists which, given any ϕ, decides whether ⊨ ϕ.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

头疼的问题: 计算复杂度相比于命题逻辑的复杂度似乎更大
更头疼的问题: 先考虑可计算性?

回顾: 问题可以解么? – 问题 4
Given a set A ⊆ S, and x ∈ S, whether there is a machine that can
compute whether x ∈ A.

Define a new machine, named Turing machine, 图灵机.
If yes, i.e., there is a Turing machine M for A, language A is
decidable.
If no, but there is a Turing machine M that can only accept s, if
s ∈ A, language A is still Turing-recognizable.

定理（Undecidability in First-order logic）
The decision problem of validity in predicate logic is undecidable: no
program exists which, given any ϕ, decides whether ⊨ ϕ.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

头疼的问题: 计算复杂度相比于命题逻辑的复杂度似乎更大
更头疼的问题: 先考虑可计算性?

回顾: 问题可以解么? – 问题 4
Given a set A ⊆ S, and x ∈ S, whether there is a machine that can
compute whether x ∈ A.

Define a new machine, named Turing machine, 图灵机.
If yes, i.e., there is a Turing machine M for A, language A is
decidable.
If no, but there is a Turing machine M that can only accept s, if
s ∈ A, language A is still Turing-recognizable.

定理（Undecidability in First-order logic）
The decision problem of validity in predicate logic is undecidable: no
program exists which, given any ϕ, decides whether ⊨ ϕ.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
2. First-order Logic | Evaluation

头疼的问题: 计算复杂度相比于命题逻辑的复杂度似乎更大
更头疼的问题: 先考虑可计算性?

回顾: 问题可以解么? – 问题 4
Given a set A ⊆ S, and x ∈ S, whether there is a machine that can
compute whether x ∈ A.

Define a new machine, named Turing machine, 图灵机.
If yes, i.e., there is a Turing machine M for A, language A is
decidable.
If no, but there is a Turing machine M that can only accept s, if
s ∈ A, language A is still Turing-recognizable.

定理（Undecidability in First-order logic）
The decision problem of validity in predicate logic is undecidable: no
program exists which, given any ϕ, decides whether ⊨ ϕ.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

另一个问题: First-order Logic 的表达能力?
能表达所有问题么?

解答: 考虑一个反例——有向图 (directed graph) 的建模
Software models, design standards, and execution models of hardware
or programs often are described in terms of directed graphs.

反例:
Given a set of states A = {s0, s1, s2, s3}, let RM be the set
{(s0, s1), (s1, s0), (s1, s1), (s1, s2), (s2, s0), (s3, s0), (s3, s2)}. We may
depict this model as a directed graph in a figure, where an edge (a
transition) leads from a node s to a node s′ iff (s, s′) ∈ RM.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 24 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

另一个问题: First-order Logic 的表达能力?
能表达所有问题么?

解答: 考虑一个反例——有向图 (directed graph) 的建模
Software models, design standards, and execution models of hardware
or programs often are described in terms of directed graphs.

反例:
Given a set of states A = {s0, s1, s2, s3}, let RM be the set
{(s0, s1), (s1, s0), (s1, s1), (s1, s2), (s2, s0), (s3, s0), (s3, s2)}. We may
depict this model as a directed graph in a figure, where an edge (a
transition) leads from a node s to a node s′ iff (s, s′) ∈ RM.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 24 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

另一个问题: First-order Logic 的表达能力?
能表达所有问题么?

解答: 考虑一个反例——有向图 (directed graph) 的建模
Software models, design standards, and execution models of hardware
or programs often are described in terms of directed graphs.

反例:
Given a set of states A = {s0, s1, s2, s3}, let RM be the set
{(s0, s1), (s1, s0), (s1, s1), (s1, s2), (s2, s0), (s3, s0), (s3, s2)}. We may
depict this model as a directed graph in a figure, where an edge (a
transition) leads from a node s to a node s′ iff (s, s′) ∈ RM.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 24 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

反例:
Given a set of states A = {s0, s1, s2, s3}, let RM be the set
{(s0, s1), (s1, s0), (s1, s1), (s1, s2), (s2, s0), (s3, s0), (s3, s2)}. We may
depict this model as a directed graph in a figure, where an edge (a
transition) leads from a node s to a node s′ iff (s, s′) ∈ RM.2.6 Expressiveness of predicate logic 137

s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-
bol R with two arguments. A pair of nodes (n, n′) is in the interpretation
RM of R iff there is a transition (an edge) from node n to node n′ in
that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2

are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .

This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ ! ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ ' ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and

反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

反例:
Given a set of states A = {s0, s1, s2, s3}, let RM be the set
{(s0, s1), (s1, s0), (s1, s1), (s1, s2), (s2, s0), (s3, s0), (s3, s2)}. We may
depict this model as a directed graph in a figure, where an edge (a
transition) leads from a node s to a node s′ iff (s, s′) ∈ RM.2.6 Expressiveness of predicate logic 137

s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-
bol R with two arguments. A pair of nodes (n, n′) is in the interpretation
RM of R iff there is a transition (an edge) from node n to node n′ in
that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2

are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .

This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ ! ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ ' ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and

反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

反例:
Given a set of states A = {s0, s1, s2, s3}, let RM be the set
{(s0, s1), (s1, s0), (s1, s1), (s1, s2), (s2, s0), (s3, s0), (s3, s2)}. We may
depict this model as a directed graph in a figure, where an edge (a
transition) leads from a node s to a node s′ iff (s, s′) ∈ RM.2.6 Expressiveness of predicate logic 137

s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-
bol R with two arguments. A pair of nodes (n, n′) is in the interpretation
RM of R iff there is a transition (an edge) from node n to node n′ in
that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2

are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .

This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ ! ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ ' ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and

反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

2.6 Expressiveness of predicate logic 137

s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-
bol R with two arguments. A pair of nodes (n, n′) is in the interpretation
RM of R iff there is a transition (an edge) from node n to node n′ in
that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2

are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .

This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ ! ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ ' ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and

反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

反例：一种答案
(u = v)∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨...

This is infinite, so it’s not a well-formed formula.
Can we find a well-formed formula with the same meaning? No!

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

2.6 Expressiveness of predicate logic 137

s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-
bol R with two arguments. A pair of nodes (n, n′) is in the interpretation
RM of R iff there is a transition (an edge) from node n to node n′ in
that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2

are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .

This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ ! ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ ' ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and

反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

反例：一种答案
(u = v)∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨...

This is infinite, so it’s not a well-formed formula.
Can we find a well-formed formula with the same meaning? No!

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

2.6 Expressiveness of predicate logic 137

s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-
bol R with two arguments. A pair of nodes (n, n′) is in the interpretation
RM of R iff there is a transition (an edge) from node n to node n′ in
that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2

are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .

This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ ! ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ ' ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and

反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

反例：一种答案
(u = v)∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨...

This is infinite, so it’s not a well-formed formula.
Can we find a well-formed formula with the same meaning? No!

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

2.6 Expressiveness of predicate logic 137

s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-
bol R with two arguments. A pair of nodes (n, n′) is in the interpretation
RM of R iff there is a transition (an edge) from node n to node n′ in
that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2

are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .

This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ ! ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ ' ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and

反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

反例：一种答案
(u = v)∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨...

This is infinite, so it’s not a well-formed formula.
Can we find a well-formed formula with the same meaning? No!

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

2.6 Expressiveness of predicate logic 137

s1

s0 s3

s2

Figure 2.5. A directed graph, which is a model M for a predicate sym-
bol R with two arguments. A pair of nodes (n, n′) is in the interpretation
RM of R iff there is a transition (an edge) from node n to node n′ in
that graph.

Reachability: Given nodes n and n′ in a directed graph, is there a finite
path of transitions from n to n′?

In Figure 2.5, state s2 is reachable from state s0, e.g. through the path
s0 → s1 → s2. By convention, every state reaches itself by a path of length
0. State s3, however, is not reachable from s0; only states s0, s1, and s2

are reachable from s0. Given the evident importance of this concept, can
we express reachability in predicate logic – which is, after all, so expressive
that it is undecidable? To put this question more precisely: can we find a
predicate-logic formula φ with u and v as its only free variables and R as
its only predicate symbol (of arity 2) such that φ holds in directed graphs
iff there is a path in that graph from the node associated to u to the node
associated to v? For example, we might try to write:

u = v ∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨ . . .

This is infinite, so it’s not a well-formed formula. The question is: can we
find a well-formed formula with the same meaning?

Surprisingly, this is not the case. To show this we need to record an im-
portant consequence of the completeness of natural deduction for predicate
logic.

Theorem 2.24 (Compactness Theorem) Let Γ be a set of sentences of
predicate logic. If all finite subsets of Γ are satisfiable, then so is Γ.

PROOF: We use proof by contradiction: Assume that Γ is not satisfiable.
Then the semantic entailment Γ ! ⊥ holds as there is no model in which
all φ ∈ Γ are true. By completeness, this means that the sequent Γ ' ⊥
is valid. (Note that this uses a slightly more general notion of sequent in
which we may have infinitely many premises at our disposal. Soundness and

反例：How to define Reachability as ϕ

Given nodes n and n′ in a directed graph, is there a finite path of
transitions from n to n′?

反例：一种答案
(u = v)∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨...

This is infinite, so it’s not a well-formed formula.
Can we find a well-formed formula with the same meaning? No!

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

进一步问题: 既然 First-order Logic 不能表达 ϕ，那怎么表达
使用 Second-order Logic
怎么用?

This can be realized by applying quantifiers not only to variables, but
also to predicate symbols.

回顾: 定义: First-order Logic in BNF

ϕ ::= P (t1, t2, . . . , tn) | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ → ϕ) | (∀x ϕ) | (∃x ϕ)

where P ∈ P is a predicate symbol of arity n ≥ 1, ti are terms over F and
x is a variable.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

进一步问题: 既然 First-order Logic 不能表达 ϕ，那怎么表达
使用 Second-order Logic
怎么用?

This can be realized by applying quantifiers not only to variables, but
also to predicate symbols.

回顾: 定义: First-order Logic in BNF

ϕ ::= P (t1, t2, . . . , tn) | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ → ϕ) | (∀x ϕ) | (∃x ϕ)

where P ∈ P is a predicate symbol of arity n ≥ 1, ti are terms over F and
x is a variable.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

进一步问题: 既然 First-order Logic 不能表达 ϕ，那怎么表达
使用 Second-order Logic
怎么用?

This can be realized by applying quantifiers not only to variables, but
also to predicate symbols.

回顾: 定义: First-order Logic in BNF

ϕ ::= P (t1, t2, . . . , tn) | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ → ϕ) | (∀x ϕ) | (∃x ϕ)

where P ∈ P is a predicate symbol of arity n ≥ 1, ti are terms over F and
x is a variable.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Limitation of first-order logic

进一步问题: 既然 First-order Logic 不能表达 ϕ，那怎么表达
使用 Second-order Logic
怎么用?

This can be realized by applying quantifiers not only to variables, but
also to predicate symbols.

回顾: 定义: First-order Logic in BNF

ϕ ::= P (t1, t2, . . . , tn) | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ → ϕ) | (∀x ϕ) | (∃x ϕ)

where P ∈ P is a predicate symbol of arity n ≥ 1, ti are terms over F and
x is a variable.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Second-order Logic

回顾: 定义: First-order Logic in BNF

ϕ ::= P (t1, t2, . . . , tn) | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ → ϕ) | (∀x ϕ) | (∃x ϕ)

where P ∈ P is a predicate symbol of arity n ≥ 1, ti are terms over F and
x is a variable.

解决思路
For a predicate symbol P with n ≥ 1 arguments, consider formulas of the
form:

∃P ϕ

where ϕ is a formula of predicate logic in which P occurs.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Second-order Logic

回顾: 定义: First-order Logic in BNF

ϕ ::= P (t1, t2, . . . , tn) | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ → ϕ) | (∀x ϕ) | (∃x ϕ)

where P ∈ P is a predicate symbol of arity n ≥ 1, ti are terms over F and
x is a variable.

解决思路
For a predicate symbol P with n ≥ 1 arguments, consider formulas of the
form:

∃P ϕ

where ϕ is a formula of predicate logic in which P occurs.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Second-order Logic

反例：一种答案 First-order Logic (Not well-formed)
(u = v)∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨...

具体答案: Second-order Logic

¬∃P∀x∀y∀z (C1 ∧ C2 ∧ C3 ∧ C4)

where

C1
def= P (x, x)

C2
def= P (x, y) ∧ P (y, z) → P (x, z)

C3
def= P (u, v) → ⊥

C4
def= R(x, y) → P (x, y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 29 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic | Second-order Logic

反例：一种答案 First-order Logic (Not well-formed)
(u = v)∨∃x(R(u, x)∧R(x, v))∨∃x1∃x2(R(u, x1)∧R(x1, x2)∧R(x2, v))∨...

具体答案: Second-order Logic

¬∃P∀x∀y∀z (C1 ∧ C2 ∧ C3 ∧ C4)

where

C1
def= P (x, x)

C2
def= P (x, y) ∧ P (y, z) → P (x, z)

C3
def= P (u, v) → ⊥

C4
def= R(x, y) → P (x, y)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 29 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...?
答案: 有

First-order logic quantifies only variables that range over individuals
Second-order logic, in addition, also quantifies over sets

e.g., we can define P (x, y) def= (x, y) ∈ P, where P is a set.
Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, …, nth-order logic
i.e., higher-order logic admits quantification over sets that are nested
arbitrarily deeply.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...?
答案: 有

First-order logic quantifies only variables that range over individuals
Second-order logic, in addition, also quantifies over sets

e.g., we can define P (x, y) def= (x, y) ∈ P, where P is a set.
Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, …, nth-order logic
i.e., higher-order logic admits quantification over sets that are nested
arbitrarily deeply.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...?
答案: 有

First-order logic quantifies only variables that range over individuals
Second-order logic, in addition, also quantifies over sets

e.g., we can define P (x, y) def= (x, y) ∈ P, where P is a set.
Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, …, nth-order logic
i.e., higher-order logic admits quantification over sets that are nested
arbitrarily deeply.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...?
答案: 有

First-order logic quantifies only variables that range over individuals
Second-order logic, in addition, also quantifies over sets

e.g., we can define P (x, y) def= (x, y) ∈ P, where P is a set.
Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, …, nth-order logic
i.e., higher-order logic admits quantification over sets that are nested
arbitrarily deeply.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...?
答案: 有

First-order logic quantifies only variables that range over individuals
Second-order logic, in addition, also quantifies over sets

e.g., we can define P (x, y) def= (x, y) ∈ P, where P is a set.
Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, …, nth-order logic
i.e., higher-order logic admits quantification over sets that are nested
arbitrarily deeply.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...?
答案: 有

First-order logic quantifies only variables that range over individuals
Second-order logic, in addition, also quantifies over sets

e.g., we can define P (x, y) def= (x, y) ∈ P, where P is a set.
Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, …, nth-order logic
i.e., higher-order logic admits quantification over sets that are nested
arbitrarily deeply.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 33

https://faculty.ustc.edu.cn/huangwenchao

定义 M 和 ϕ? Logics
3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...?
答案: 有

First-order logic quantifies only variables that range over individuals
Second-order logic, in addition, also quantifies over sets

e.g., we can define P (x, y) def= (x, y) ∈ P, where P is a set.
Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, …, nth-order logic
i.e., higher-order logic admits quantification over sets that are nested
arbitrarily deeply.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 33

https://faculty.ustc.edu.cn/huangwenchao

作业

a. Compute the complete truth table of the formula:
1 ((p → q) → p) → p

2 (p ∧ q) → (p ∨ q)
3 (p → q) ∨ (p → ¬q)
4 ((p ∨ q) → r) → ((p → r) ∨ (q → r))

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 31 / 33

https://faculty.ustc.edu.cn/huangwenchao

作业
2.8 Exercises 157

2.8 Exercises
Exercises 2.1
1.* Use the predicates

A(x, y) : x admires y
B(x, y) : x attended y

P (x) : x is a professor
S(x) : x is a student
L(x) : x is a lecture

and the nullary function symbol (constant)

m : Mary

to translate the following into predicate logic:
(a) Mary admires every professor.

(The answer is not ∀xA(m,P (x)).)
(b) Some professor admires Mary.
(c) Mary admires herself.
(d) No student attended every lecture.
(e) No lecture was attended by every student.
(f) No lecture was attended by any student.

2. Use the predicate specifications

B(x, y) : x beats y
F (x) : x is an (American) football team

Q(x, y) : x is quarterback of y
L(x, y) : x loses to y

and the constant symbols

c : Wildcats
j : Jayhawks

to translate the following into predicate logic.
(a) Every football team has a quarterback.
(b) If the Jayhawks beat the Wildcats, then the Jayhawks do not lose to every

football team.
(c) The Wildcats beat some team, which beat the Jayhawks.

3.* Find appropriate predicates and their specification to translate the following
into predicate logic:
(a) All red things are in the box.
(b) Only red things are in the box.
(c) No animal is both a cat and a dog.
(d) Every prize was won by a boy.
(e) A boy won every prize.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 32 / 33

https://faculty.ustc.edu.cn/huangwenchao

作业

2.8 Exercises 163

15. Discuss in what sense the equivalences of Theorem 2.13 (page 117) form the
basis of an algorithm which, given φ, pushes quantifiers to the top of the for-
mula’s parse tree. If the result is ψ, what can you say about commonalities and
differences between φ and ψ?

Exercises 2.4
1.* Consider the formula φ def= ∀x∀y Q(g(x, y), g(y, y), z), where Q and g have arity

3 and 2, respectively. Find two models M and M′ with respective environments
l and l′ such that M !l φ but M′ "!l′ φ.

2. Consider the sentence φ
def= ∀x∃y ∃z (P (x, y) ∧ P (z, y) ∧ (P (x, z) → P (z, x))).

Which of the following models satisfies φ?
(a) The model M consists of the set of natural numbers with PM def= {(m,n) |

m < n}.
(b) The model M′ consists of the set of natural numbers with PM′ def= {(m, 2 ∗

m) | m natural number}.
(c) The model M′′ consists of the set of natural numbers with PM′′ def= {(m,n) |

m < n + 1}.
3. Let P be a predicate with two arguments. Find a model which satisfies the

sentence ∀x¬P (x, x); also find one which doesn’t.
4. Consider the sentence ∀x(∃yP (x, y) ∧ (∃zP (z, x) → ∀yP (x, y))). Please simu-

late the evaluation of this sentence in a model and look-up table of your choice,
focusing on how the initial look-up table l grows and shrinks like a stack when
you evaluate its subformulas according to the definition of the satisfaction
relation.

5. Let φ be the sentence ∀x∀y ∃z (R(x, y) → R(y, z)), where R is a predicate sym-
bol of two arguments.
(a)* Let A

def= {a, b, c, d} and RM def= {(b, c), (b, b), (b, a)}. Do we have M ! φ? Jus-
tify your answer, whatever it is.

(b)* Let A′ def= {a, b, c} and RM′ def= {(b, c), (a, b), (c, b)}. Do we have M′ ! φ? Jus-
tify your answer, whatever it is.

6.* Consider the three sentences

φ1
def= ∀xP (x, x)

φ2
def= ∀x∀y (P (x, y) → P (y, x))

φ3
def= ∀x∀y ∀z ((P (x, y) ∧ P (y, z) → P (x, z)))

which express that the binary predicate P is reflexive, symmetric and transitive,
respectively. Show that none of these sentences is semantically entailed by the
other ones by choosing for each pair of sentences above a model which satisfies
these two, but not the third sentence – essentially, you are asked to find three
binary relations, each satisfying just two of these properties.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 33 / 33

https://faculty.ustc.edu.cn/huangwenchao

