形式化方法导引

第2章经典数理逻辑-问题定义

黄文超

https://faculty.ustc.edu.cn/huangwenchao

→ 教学课程 → 形式化方法导引

本章内容

- Define verification
 - $\mathcal{M} \models \phi$
- ullet A method of define ${\mathcal M}$ and ϕ : Logics
 - Propositional logic
 - Predicate logic
 - Higher-order logic

回顾: 定义: Verifier

A *verifier* for a language A is an algorithm V, where

 $A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}.$

回顾: 验证过程

- (1) 构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c
- (4) 使用验证器 V, 输入 c, 输出是否 $w \in A$

回顾: 验证过程

- (1) 构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c
- (4) 使用验证器 V, 输入 c, 输出是否 $w \in A$

定义: Verification in Logics

$$\mathcal{M} \models \phi$$

- ullet ${\cal M}$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing ⊨.

回顾: 验证过程

- (1) 构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c
- (4) 使用验证器 V, 输入 c, 输出是否 $w \in A$

定义: Verification in Logics

$$\mathcal{M} \models \phi$$

- ullet \mathcal{M} is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing ⊨.

回顾: 验证过程

- (1) 构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c
- (4) 使用验证器 V, 输入 c, 输出是否 $w \in A$

定义: Verification in Logics

$$\mathcal{M} \models \phi$$

- ullet $\mathcal M$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the *heart* of this set-up is that one can often *specify and implement algorithms* for computing \models .

回顾: 验证过程

- (1) 构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c
- (4) 使用验证器 V, 输入 c, 输出是否 $w \in A$

定义: Verification in Logics

$$\mathcal{M} \models \phi$$

- ullet $\mathcal M$ is some sort of situation or model of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing ⊨.

回顾: 验证过程

- (1) 构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c
- (4) 使用验证器 V, 输入 c, 输出是否 $w \in A$

定义: Verification in Logics

$$\mathcal{M} \vDash \phi$$

- ullet $\mathcal M$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing ⊨.

定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet ${\cal M}$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing =.

- 问: 如何统一化定义 Μ 和 φ? 答: Logics
- 问: 如何支持 ⊨ 和 algorithms? 答: Rules

定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet ${\cal M}$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing ⊨.

- 问: 如何统一化定义 Μ 和 φ? 答: Logics
- 问: 如何支持 ⊨ 和 algorithms? 答: Rules

定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet $\mathcal M$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing =.

- 问: 如何统一化定义 Μ 和 φ? 答: Logics
- 问: 如何支持 ⊨ 和 algorithms? 答: Rules

定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet $\mathcal M$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing ⊨.

- 问: 如何统一化定义 M 和 φ? 答: Logics
- 问: 如何支持 ⊨ 和 algorithms? 答: Rules

定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet ${\cal M}$ is some sort of situation or ${\it model}$ of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing ⊨.

- 问: 如何统一化定义 M 和 φ? 答: Logics
- 问: 如何支持 ⊨ 和 algorithms? 答: Rules

定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet $\mathcal M$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing ⊨.

- 问: 如何统一化定义 Μ 和 φ? 答: Logics
- 问: 如何支持 ⊨ 和 algorithms? 答: Rules

回顾: 如何定义一个问题? – 问题 3

Given a set S, a machine M, and $x \in S$, compute whether $x \in L(M)$.

- M is a machine, e.g., finite automaton.
- L(M) is the *language* of M.

Define a special group of languages: Logics

- Propositional logic (命题逻辑)
- Predicate logic (谓词逻辑)
 - a.k.a., First-order Logic (一阶逻辑)
- Higher-Order Logic (高阶逻辑)

回顾: 如何定义一个问题? – 问题 3

Given a set S, a machine M, and $x \in S$, compute whether $x \in L(M)$.

- ullet M is a machine, e.g., finite automaton.
- L(M) is the *language* of M.

Define a special group of languages: Logics

- Propositional logic (命题逻辑)
- Predicate logic (谓词逻辑)
 - a.k.a., First-order Logic (一阶逻辑)
- Higher-Order Logic (高阶逻辑)

1. Propositional Logic | Basic elements: Atomic Propositions

定义: Propositions (命题)

Declarative sentences which one can argue as being true or false, e.g.,

- The sum of the numbers 3 and 5 equals 8.
- Jane reacted violently to Jack's accusations.
- ullet Every even natural number >2 is the sum of two prime numbers.
- All Martians like pepperoni on their pizza.
- 问题: 过于繁杂...
 - 解决方法: 从原子开始组建...

定义: Atomic Propositions (原子命题)

Propositions which is indecomposable, e.g.,

• The number 5 is even.

1. Propositional Logic | Basic elements: Atomic Propositions

定义: Propositions (命题)

Declarative sentences which one can argue as being true or false, e.g.,

- The sum of the numbers 3 and 5 equals 8.
- Jane reacted violently to Jack's accusations.
- Every even natural number >2 is the sum of two prime numbers.
- All Martians like pepperoni on their pizza.
- 问题: 过于繁杂...
 - 解决方法: 从原子开始组建...

定义: Atomic Propositions (原子命题)

Propositions which is indecomposable, e.g.,

• The number 5 is even.

定义 Μ 和 φ? Logics

1. Propositional Logic | Basic elements: Atomic Propositions

定义: Propositions (命题)

Declarative sentences which one can argue as being true or false, e.g.,

- The sum of the numbers 3 and 5 equals 8.
- Jane reacted violently to Jack's accusations.
- Every even natural number >2 is the sum of two prime numbers.
- All Martians like pepperoni on their pizza.
- 问题: 过于繁杂...
 - 解决方法: 从原子开始组建...

定义: Atomic Propositions (原子命题)

Propositions which is indecomposable, e.g.,

• The number 5 is even.

定义 M 和 ϕ ? Logics

1. Propositional Logic | Basic elements: Logical Operators

定义: Propositions (命题)

Declarative sentences which one can argue as being true or false.

定义: Atomic Propositions (原子命题)

Propositions which is *indecomposable*.

Symbols representing Atomic Propositions

We assign certain distinct symbols p, q, r, ..., or sometimes $p_1, p_2, p_3, ...$ to each of these atomic sentences

Symbols representing Logical Operators

 $\{\neg, \lor, \land, \rightarrow\}$

• We can then code up more complex sentences in a compositional way

1. Propositional Logic | Basic elements: Logical Operators

定义: Propositions (命题)

Declarative sentences which one can argue as being true or false.

定义: Atomic Propositions (原子命题)

Propositions which is *indecomposable*.

Symbols representing Atomic Propositions

We assign certain distinct symbols p, q, r, ..., or sometimes $p_1, p_2, p_3, ...$ to each of these atomic sentences

Symbols representing Logical Operators

 $\{\neg, \lor, \land, \rightarrow\}$

• We can then code up more complex sentences in a compositional way

定义 M 和 ϕ ? Logics

1. Propositional Logic | Basic elements: Logical Operators

定义: Propositions (命题)

Declarative sentences which one can argue as being true or false.

定义: Atomic Propositions (原子命题)

Propositions which is *indecomposable*.

Symbols representing Atomic Propositions

We assign certain distinct symbols p, q, r, ..., or sometimes $p_1, p_2, p_3, ...$ to each of these atomic sentences

Symbols representing Logical Operators

$$\{\neg, \lor, \land, \rightarrow\}$$

• We can then code up more complex sentences in a compositional way

1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences

- p: 'I won the lottery last week.'
- q: 'I purchased a lottery ticket.'
- r: 'I won last week' s sweepstakes.'

- \neg : Negation. $\neg p$ denotes negation of p
 - i.e., it is *not true* that I won the lottery last week.
- \vee : Disjunction (析取). $p \vee r$ denotes at least one of $\{p, r\}$ is true.
 - \bullet i.e., I won the lottery last week, or I won last week's sweepstakes
- \wedge : Conjunction (合取). $p \wedge r$ denotes both p and r are true.
 - i.e., Last week I won the lottery and the sweepstakes.
- \rightarrow : Implication (蕴含). $p \rightarrow q$ denotes q is a logical consequence of p.
 - i.e., If I won the lottery last week, then I purchased a lottery ticket.

1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences

- p: 'I won the lottery last week.'
- q: 'I purchased a lottery ticket.'
- r: 'I won last week' s sweepstakes.'

- \neg : Negation. $\neg p$ denotes negation of p
 - i.e., it is *not true* that I won the lottery last week.
- \lor : Disjunction (析取). $p \lor r$ denotes at least one of $\{p, r\}$ is true.
 - i.e., I won the lottery last week, or I won last week's sweepstakes
- \wedge : Conjunction (合取). $p \wedge r$ denotes both p and r are true.
 - i.e., Last week I won the lottery and the sweepstakes.
- \rightarrow : Implication (蕴含). $p \rightarrow q$ denotes q is a logical consequence of p.
 - i.e., if I won the lottery last week, then I purchased a lottery ticke

1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences

- p: 'I won the lottery last week.'
- q: 'I purchased a lottery ticket.'
- r: 'I won last week' s sweepstakes.'

- \neg : Negation. $\neg p$ denotes negation of p
 - i.e., it is *not true* that I won the lottery last week.
- \vee : Disjunction (析取). $p \vee r$ denotes at least one of $\{p, r\}$ is true.
 - i.e., I won the lottery last week, or I won last week's sweepstakes
- \wedge : Conjunction (合取). $p \wedge r$ denotes both p and r are true.
 - i.e., Last week I won the lottery and the sweepstakes.
- \rightarrow : Implication (蕴含). $p \rightarrow q$ denotes q is a logical consequence of p.
 - i.e., it I won the lottery last week, then I purchased a lottery ticke

1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences

- p: 'I won the lottery last week.'
- q: 'I purchased a lottery ticket.'
- r: 'I won last week' s sweepstakes.'

- \neg : Negation. $\neg p$ denotes negation of p
 - i.e., it is *not true* that I won the lottery last week.
- \vee : Disjunction (析取). $p \vee r$ denotes at least one of $\{p, r\}$ is true.
 - i.e., I won the lottery last week, or I won last week's sweepstakes
- \wedge : Conjunction (合取). $p \wedge r$ denotes both p and r are true.
 - i.e., Last week I won the lottery and the sweepstakes.
- ightarrow: Implication (蕴含). p
 ightarrow q denotes q is a logical consequence of p.
 - i.e., if I won the lottery last week, then I purchased a lottery ticked

1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences

- p: 'I won the lottery last week.'
- q: 'I purchased a lottery ticket.'
- r: 'I won last week' s sweepstakes.'

- \neg : Negation. $\neg p$ denotes negation of p
 - i.e., it is *not true* that I won the lottery last week.
- \vee : Disjunction (析取). $p \vee r$ denotes at least one of $\{p, r\}$ is true.
 - i.e., I won the lottery last week, or I won last week's sweepstakes
- \wedge : Conjunction (合取). $p \wedge r$ denotes both p and r are true.
 - i.e., Last week I won the lottery and the sweepstakes.
- \rightarrow : Implication (蕴含). $p \rightarrow q$ denotes q is a logical consequence of p.
 - i.e., If I won the lottery last week, then I purchased a lottery ticket.

回顾: 自动机

如何定义一个问题? - 问题 3

Given a set S, a machine M, and $x \in S$, compute whether $x \in L(M)$.

- M is a machine, e.g., finite automaton.
- L(M) is the *language* of M.

M 的类型?

- regular languages
 - 例: 正则表达式匹配、词法分析
- context-free languages
 - 例: 语法分析

regular languages

context-free languages

Define Propositional logic using a context-free language

• Backus-Naur Form (BNF) (巴科斯范式)

回顾: 自动机

如何定义一个问题? - 问题 3

Given a set S, a machine M, and $x \in S$, compute whether $x \in L(M)$.

- M is a machine, e.g., finite automaton.
- L(M) is the *language* of M.

M 的类型?

- regular languages
 - 例: 正则表达式匹配、词法分析
- context-free languages
 - 例: 语法分析

regular languages

context-free languages

Define Propositional logic using a context-free language

• Backus-Naur Form (BNF) (巴科斯范式)

定义 M 和 φ? Logics

1. Propositional Logic | Definition of the language (Propositional Logic)

定义: Propositional Logic in BNF

$$\phi ::= p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$

where p stands for any atomic proposition and each occurrence of ϕ to the right of ::= stands for any already constructed formula.

Well-formed formula, 例:

$$(((\neg p) \land q) \to (p \land (q \lor (\neg r))))$$

Not well-formed formula, 例:

$$(\neg)() \lor pq \to$$

1. Propositional Logic | Definition of the language (Propositional Logic)

定义: Propositional Logic in BNF

$$\phi ::= p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$

where p stands for any atomic proposition and each occurrence of ϕ to the right of ::= stands for any already constructed formula.

Well-formed formula, 例:

$$(((\neg p) \land q) \to (p \land (q \lor (\neg r))))$$

Not well-formed formula, 例:

$$(\neg)() \lor pq \rightarrow$$

1. Propositional Logic | Definition of the language (Propositional Logic)

定义: Propositional Logic in BNF

$$\phi ::= p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$

where p stands for any atomic proposition and each occurrence of ϕ to the right of ::= stands for any already constructed formula.

Well-formed formula, 例:

$$(((\neg p) \land q) \to (p \land (q \lor (\neg r))))$$

Not well-formed formula, 例:

$$(\neg)() \lor pq \rightarrow$$

- 1. Propositional Logic | Evaluate ϕ : Truth table
 - 问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ ?
 - 基本方法: 使用 Bool 真值表

- The set of truth values contains two elements T and F, where T represents 'true' and F represents 'false'.
- A valuation or model of a formula ϕ is an assignment of each propositional atom in ϕ to a truth value.

								$\phi \to \psi$			
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	F	Т
Т	F	F	Т	F	Т	Т	F	F	F	Т	
F	Т	F	F	Т	Т	F	Т	Т			
F	F	F	F	F	F	F	F	Т			F

- 1. Propositional Logic | Evaluate ϕ : Truth table
 - 问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ ?
 - 基本方法: 使用 Bool 真值表

- The set of truth values contains two elements T and F, where T represents 'true' and F represents 'false'.
- A valuation or model of a formula ϕ is an assignment of each propositional atom in ϕ to a truth value.

ϕ	ψ	$\phi \wedge \psi$						$\phi \to \psi$			
Т	Т	Т	Т	Т	Т	Т	Т	Т	T	F	Т
Т	F	F	Т	F	Т	Т	F	F	F	Т	
F	Т	F	F	Т	Т	F	Т	Т			
F	F	F	F	F	F	F	F	Т			F

- 1. Propositional Logic | Evaluate ϕ : Truth table
 - 问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ ?
 - 基本方法: 使用 Bool 真值表

- The set of truth values contains two elements T and F, where T represents 'true' and F represents 'false'.
- A valuation or model of a formula ϕ is an assignment of each propositional atom in ϕ to a truth value.

ϕ	ψ	$\phi \wedge \psi$	ϕ	ψ	$\phi \lor \psi$			$\phi \to \psi$			
Т	Т	Т	T	Т	Т	Т	Т	Т	Т	F	Т
Т	F	F	Т	F	Т	Т	F	F	F	Т	
F	Т	F	F	Т	Т	F	Т	Т			
F	F	F	F	F	F	F	F	T F T			F

- 1. Propositional Logic | Evaluate ϕ : Truth table
 - 问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ ?
 - 基本方法: 使用 Bool 真值表

- The set of truth values contains two elements T and F, where T represents 'true' and F represents 'false'.
- A valuation or model of a formula ϕ is an assignment of each propositional atom in ϕ to a truth value.

ϕ	ψ	$\phi \wedge \psi$	ϕ	ψ	$\phi \lor \psi$	ϕ	ψ	$\phi \to \psi$			
T	Т	Т	T	Т	Т	T	Т	Т	Т	F	Т
Т	F	F	Т	F	Т	Т		F	F	Т	
F	Т	F	F	Т	Т	F	T	Т			
F	F	F	F	F	F	F	F	T			F

- 1. Propositional Logic | Evaluate ϕ : Truth table
 - 问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ ?
 - 基本方法: 使用 Bool 真值表

定义: T and F

- The set of truth values contains two elements T and F, where T represents 'true' and F represents 'false'.
- A valuation or model of a formula ϕ is an assignment of each propositional atom in ϕ to a truth value.

ϕ	ψ	$\phi \wedge \psi$	ϕ	$ \psi$	$\phi \lor \psi$	ϕ	ψ	$\phi \to \psi$	ϕ	$\neg \phi$	
Т	Т	Т	Т	Т	Т	T	Т	Т			Т
Т	F	F	Т	F	Т	Т	F		F	Т	
F	Т	F	F	T	Т		Т				
F	F	F	F	F	F	F	F	T			F

- 1. Propositional Logic | Evaluate ϕ : Truth table
 - 问题: 怎样利用 atomic propositions 和 logical operators 来计算 ϕ ?
 - 基本方法: 使用 Bool 真值表

定义: T and F

- The set of truth values contains two elements T and F, where T represents 'true' and F represents 'false'.
- A valuation or model of a formula ϕ is an assignment of each propositional atom in ϕ to a truth value.

ϕ	ψ	$\phi \wedge \psi$	ϕ	ψ	$\phi \lor \psi$	ϕ	ψ	$\phi \to \psi$	ϕ	$\neg \phi$	Τ
Т	Т	Т	Т	Т	Т	T	Т	Т	Т	F	T
Т	F	F	Т	F	Т	Т	F	F	F	Т	
F	Т	F	F	Т	Т	F	Т	T F T		ı	\perp
F	F	F	F	F	F	F	F	T			F

1. Propositional Logic | Evaluate ϕ : Example

例: 真值表

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$q \lor \neg p$	$\phi = (p \to \neg q) \to (q \lor \neg p)$
Т	Т	F	F	F	Т	Т
Т	F	F	Т	T	F	F
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

回到主题: 对于如下 M 和 ϕ , 是否满足 $M \models \phi$?

- $\mathcal{M} = \{p, q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • Yes, $\mathbb{H} \mathcal{M} \models \phi$
- $\mathcal{M}=\{p,\neg q\},\ \phi=(p\to \neg q)\to (q\vee \neg p)$ • No, $\mbox{RP }\mathcal{M}\nvDash \phi$
- $\mathcal{M} = \{p\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$
 - 无法确定,原因:公理不完备(建模出现问题)
- $\bullet \ \mathcal{M} = \{p, \neg p\}, \ \phi = (p \to \neg q) \to (q \vee \neg p)$
 - 公理存在矛盾 (建模出现问题)

1. Propositional Logic | Evaluate ϕ : Example

例: 真值表

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$q \lor \neg p$	$\phi = (p \to \neg q) \to (q \lor \neg p)$
Т	Т	F	F	F	Т	Т
Т	F	F	Т	Т Т	F	F
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

- $\mathcal{M} = \{p, q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • Yes, $\mathbb{H} \ \mathcal{M} \models \phi$
- $\bullet \ \mathcal{M} = \{p, \neg q\}, \ \phi = (p \to \neg q) \to (q \vee \neg p)$ $\bullet \ \text{No, } \ \mathbb{R} \mathbb{P} \ \mathcal{M} \nvDash \phi$
- $\mathcal{M} = \{p\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • 无法确定,原因:公理不完备 (建模出现问题)
- $\mathcal{M} = \{p, \neg p\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • 公理存在矛盾 (建模出现问题)

1. Propositional Logic | Evaluate ϕ : Example

例: 真值表

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$q \lor \neg p$	$\phi = (p \to \neg q) \to (q \lor \neg p)$
Т	Т	F	F	F	Т	Т
Т	F	F	Т	Т Т	F	F
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

- $\mathcal{M} = \{p, q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • Yes, $\mathbb{D} \ \mathcal{M} \models \phi$
- $\bullet \ \mathcal{M} = \{p, \neg q\}, \ \phi = (p \to \neg q) \to (q \vee \neg p)$ $\bullet \ \text{No, } \ \mathbb{P} \ \mathcal{M} \nvDash \phi$
- $\mathcal{M} = \{p\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • 无法确定,原因:公理不完备 (建模出现问题)
- $\mathcal{M} = \{p, \neg p\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • 公理存在矛盾 (建模出现问题)

1. Propositional Logic | Evaluate ϕ : Example

例: 真值表

					$q \lor \neg p$	$\phi = (p \to \neg q) \to (q \vee \neg p)$
Т	Т	F	F	F	Т	Т
Т	F	F	Т	T T	F	F
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	T	Т	Т

- $\mathcal{M} = \{p, q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • Yes, $\mathbb{D} \ \mathcal{M} \models \phi$
- $\mathcal{M} = \{p, \neg q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • No. $\biguplus \mathcal{M} \nvDash \phi$
- $\mathcal{M} = \{p\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$
 - 无法确定,原因:公理不完备(建模出现问题)
- $\bullet \ \mathcal{M} = \{p, \neg p\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$
 - 公理存在矛盾 (建模出现问题)

定义 M 和 ϕ ? Logics

1. Propositional Logic | Evaluate ϕ : Example

例: 真值表

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$q \lor \neg p$	$\phi = (p \to \neg q) \to (q \vee \neg p)$
Т	Т	F	F	F	Т	Т
Т	F	F	Т	T	F	F
F	Т	Т	F	T	Т	Т
F	F	Т	Т	T	Т	Т

- $\mathcal{M} = \{p, q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • Yes, $\mathbb{D} \ \mathcal{M} \models \phi$
- $\mathcal{M} = \{p, \neg q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • No, $\mathbb{P} \ \mathcal{M} \nvDash \phi$
- $\bullet \ \mathcal{M} = \{p\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$
 - 无法确定,原因:公理不完备(建模出现问题)

1. Propositional Logic | Evaluate ϕ : Example

例: 真值表

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$q \lor \neg p$	$\phi = (p \to \neg q) \to (q \lor \neg p)$
Т	Т	F	F	F	Т	Т
Т	F	F	Т	Т Т	F	F
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

- $\mathcal{M} = \{p, q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • Yes, $\mathbb{D} \ \mathcal{M} \models \phi$
- $\mathcal{M} = \{p, \neg q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ No. $\biguplus \ \mathcal{M} \nvDash \phi$
- $\mathcal{M} = \{p\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$
 - 无法确定,原因:公理不完备(建模出现问题)
- $\mathcal{M} = \{p, \neg p\}, \ \phi = (p \rightarrow \neg q) \rightarrow (q \lor \neg p)$
 - 公理存在矛盾 (建模出现问题)

定义 M 和 ϕ ? Logics

1. Propositional Logic | Semantic entailment relation

回到主题: 对于如下 \mathcal{M} 和 ϕ , 是否满足 $\mathcal{M} \models \phi$?

- $\mathcal{M} = \{p, q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • Yes, $\ \ \mathcal{M} \models \phi$
- $\mathcal{M} = \{p\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • 无法确定,原因:公理不完备 (建模出现问题)
- $\mathcal{M} = \{p, \neg p\}, \ \phi = (p \rightarrow \neg q) \rightarrow (q \lor \neg p)$ • 公理存在矛盾 (建模出现问题)

定义: Semantic entailment relation

If, for all valuations in which all $\phi_1,\phi_2,\dots,\phi_n$ evaluate to ${\bf T}$, ψ evaluates to ${\bf T}$ as well, we say that

$$\phi_1, \phi_2, \dots, \phi_n \vDash \psi$$

holds and call ⊨ the *semantic* entailment relation

1. Propositional Logic | Semantic entailment relation

回到主题: 对于如下 \mathcal{M} 和 ϕ , 是否满足 $\mathcal{M} \models \phi$?

- $\mathcal{M} = \{p, q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • Yes, $\ \ \mathbb{M} \models \phi$
- $\mathcal{M} = \{p, \neg q\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • No. $\biguplus \mathcal{M} \models \neg \phi$
- $\mathcal{M} = \{p\}, \ \phi = (p \to \neg q) \to (q \lor \neg p)$ • 无法确定,原因:公理不完备 (建模出现问题)
- $\mathcal{M} = \{p, \neg p\}, \ \phi = (p \rightarrow \neg q) \rightarrow (q \lor \neg p)$
 - 公理存在矛盾 (建模出现问题)

定义: Semantic entailment relation

If, for all valuations in which all $\phi_1, \phi_2, \dots, \phi_n$ evaluate to \mathbf{T} , ψ evaluates to \mathbf{T} as well, we say that

$$\phi_1, \phi_2, \dots, \phi_n \vDash \psi$$

holds and call ⊨ the *semantic* entailment relation.

定义 M 和 ϕ ? Logics

1. Propositional Logic | Complexity

例: 真值表

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$q \lor \neg p$	$\phi = (p \to \neg q) \to (q \lor \neg p)$
				F	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

复杂度?

- 若 M 原子命题的个数为 n, 判定所需时间为 $O(2^n)$.
- 怎么办?

定义 M 和 ϕ ? Logics

1. Propositional Logic | Complexity

例: 真值表

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$q \lor \neg p$	$\phi = (p \to \neg q) \to (q \lor \neg p)$
				F	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

复杂度?

- 若 \mathcal{M} 原子命题的个数为 n, 判定所需时间为 $O(2^n)$.
- 怎么办?

2. First-order Logic | Introduction

问题: Consider the declarative sentence:

- Every student is younger than some instructor.
 - How to define when there are 1,000,000,000 students?
 - Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):

- Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)
 - Inherit Propositional Logic
 - Introduce Predicate
 - S(andy) to denote that Andy is a student.
 - I(paul) to say that Paul is an instructor.
 - ullet Y(andy, paul) could mean that Andy is younger than Paul.
 - ullet The symbols S, I and Y are called *predicates*.
 - Introduce quantifiers \forall and \exists
 - ∀: for all. ∃: there exists

答案:
$$\forall x \ (S(x) \to (\exists y \ (I(y) \land Y(x,y))))$$

2. First-order Logic | Introduction

问题: Consider the declarative sentence:

- Every student is younger than some instructor.
 - How to define when there are 1,000,000,000 students?
 - Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):

- Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)
 - Inherit Propositional Logic
 - Introduce Predicate
 - S(andy) to denote that Andy is a student.
 - I(paul) to say that Paul is an instructor.
 - ullet Y(andy, paul) could mean that Andy is younger than Paul.
 - ullet The symbols S, I and Y are called *predicates*.
 - Introduce *quantifiers* \forall and \exists
 - ∀: for all. ∃: there exists

答案:
$$\forall x \ (S(x) \to (\exists y \ (I(y) \land Y(x,y))))$$

2. First-order Logic | Introduction

问题: Consider the declarative sentence:

- Every student is younger than some instructor.
 - How to define when there are 1,000,000,000 students?
 - Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):

- Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)
 - Inherit Propositional Logic
 - Introduce Predicate
 - S(andy) to denote that Andy is a student.
 - I(paul) to say that Paul is an instructor.
 - ullet Y(andy, paul) could mean that Andy is younger than Paul.
 - ullet The symbols S, I and Y are called *predicates*.
 - Introduce quantifiers \forall and \exists
 - ∀: for all. ∃: there exists

2. First-order Logic | Introduction

问题: Consider the declarative sentence:

- Every student is younger than some instructor.
 - How to define when there are 1,000,000,000 students?
 - Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):

- Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)
 - Inherit Propositional Logic
 - Introduce Predicate
 - S(andy) to denote that Andy is a student.
 - I(paul) to say that Paul is an instructor.
 - ullet Y(andy, paul) could mean that Andy is younger than Paul.
 - ullet The symbols S, I and Y are called *predicates*.
 - Introduce *quantifiers* \forall and \exists
 - ∀: for all. ∃: there exists

2. First-order Logic | Introduction

问题: Consider the declarative sentence:

- Every student is younger than some instructor.
 - How to define when there are 1,000,000,000 students?
 - Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):

- Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)
 - Inherit Propositional Logic
 - Introduce Predicate
 - S(andy) to denote that Andy is a student.
 - I(paul) to say that Paul is an instructor.
 - ullet Y(andy, paul) could mean that Andy is younger than Paul.
 - ullet The symbols S, I and Y are called *predicates*.
 - Introduce quantifiers \forall and \exists
 - ∀: for all. ∃: there exists

2. First-order Logic | Introduction

问题: Consider the declarative sentence:

- Every student is younger than some instructor.
 - How to define when there are 1,000,000,000 students?
 - Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):

- Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)
 - Inherit Propositional Logic
 - Introduce Predicate
 - \bullet S(andy) to denote that Andy is a student.
 - \bullet I(paul) to say that Paul is an instructor.
 - \bullet Y(andy, paul) could mean that Andy is younger than Paul.
 - ullet The symbols S, I and Y are called *predicates*.
 - Introduce *quantifiers* \forall and \exists
 - ∀: for all. ∃: there exists

2. First-order Logic | Introduction

问题: Consider the declarative sentence:

- Every student is younger than some instructor.
 - How to define when there are 1,000,000,000 students?
 - Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):

- Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)
 - Inherit Propositional Logic
 - Introduce Predicate
 - \bullet S(andy) to denote that Andy is a student.
 - \bullet I(paul) to say that Paul is an instructor.
 - \bullet Y(andy, paul) could mean that Andy is younger than Paul.
 - ullet The symbols S, I and Y are called *predicates*.
 - Introduce *quantifiers* \forall and \exists
 - ∀: for all. ∃: there exists

2. First-order Logic | Introduction

问题: Consider the declarative sentence:

- Every student is younger than some instructor.
 - How to define when there are 1,000,000,000 students?
 - Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):

- Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)
 - Inherit Propositional Logic
 - Introduce Predicate
 - S(andy) to denote that Andy is a student.
 - I(paul) to say that Paul is an instructor.
 - ullet Y(andy, paul) could mean that Andy is younger than Paul.
 - ullet The symbols S, I and Y are called *predicates*.
 - Introduce *quantifiers* \forall and \exists
 - ∀: for all, ∃: there exists

2. First-order Logic | Introduction

问题: Consider the declarative sentence:

- Every student is younger than some instructor.
 - How to define when there are 1,000,000,000 students?
 - Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):

- Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)
 - Inherit Propositional Logic
 - Introduce Predicate
 - S(andy) to denote that Andy is a student.
 - I(paul) to say that Paul is an instructor.
 - ullet Y(andy, paul) could mean that Andy is younger than Paul.
 - ullet The symbols S, I and Y are called *predicates*.
 - Introduce quantifiers \forall and \exists
 - \forall : for all, \exists : there exists

2. First-order Logic | Introduction

问题: Consider the declarative sentence:

- Every student is younger than some instructor.
 - How to define when there are 1,000,000,000 students?
 - Moreover, how to specify an instructor for each student?

解决方法: Design a richer language (logic):

- Predicate Logic (谓词逻辑), a.k.a, First-order Logic (一阶逻辑)
 - Inherit Propositional Logic
 - Introduce Predicate
 - \bullet S(andy) to denote that Andy is a student.
 - \bullet I(paul) to say that Paul is an instructor.
 - \bullet Y(andy, paul) could mean that Andy is younger than Paul.
 - ullet The symbols S, I and Y are called *predicates*.
 - Introduce quantifiers \forall and \exists
 - ∀: for all. ∃: there exists

定义 Μ 和 φ? Logics

2. First-order Logic | Definition of the language (First-order Logic)

定义: Term

- Any variable is a term.
- If $c \in \mathcal{F}$ is a nullary function, then c is a term.
- If $t_1,t_2,...,t_n$ are terms and $f\in\mathcal{F}$ has arity n>0, then $f(t_1,t_2,...,t_n)$ is a term.
- Nothing else is a term.

定义: Term in BNF

$$t ::= x \mid c \mid f(t, ..., t)$$

where x ranges over a set of variables var, c over nullary function symbols in \mathcal{F} , and f over those elements of \mathcal{F} with arity n>0.

2. First-order Logic | Definition of the language (First-order Logic)

定义: Term in BNF

$$t ::= x \mid c \mid f(t, ..., t)$$

where x ranges over a set of variables var, c over nullary function symbols in \mathcal{F} , and f over those elements of \mathcal{F} with arity n>0.

定义: First-order Logic in BNF

$$\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\forall x \ \phi) \mid (\exists x \ \phi)$$

where $P \in \mathcal{P}$ is a predicate symbol of arity $n \geq 1$, t_i are terms over \mathcal{F} and x is a variable.

2. First-order Logic | Definition of the language (First-order Logic)

定义: Term in BNF

$$t ::= x \mid c \mid f(t, ..., t)$$

where x ranges over a set of variables var, c over nullary function symbols in \mathcal{F} , and f over those elements of \mathcal{F} with arity n>0.

定义: First-order Logic in BNF

$$\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\forall x \ \phi) \mid (\exists x \ \phi)$$

where $P \in \mathcal{P}$ is a predicate symbol of arity $n \geq 1$, t_i are terms over \mathcal{F} and x is a variable.

2. First-order Logic | Define \mathcal{M}

回到主题: 如何定义 M?

定义: M

Let $\mathcal F$ be a set of function symbols and $\mathcal P$ a set of predicate symbols, each symbol with a fixed number of required arguments. A *model* $\mathcal M$ of the pair $(\mathcal F,\mathcal P)$ consists of the following set of data:

- lacktriangledown A non-empty set A, the universe of *concrete* values
- ② for each nullary function symbol $f \in \mathcal{F}$, a *concrete* element $f^{\mathcal{M}}$ of A
- **3** for each $f \in \mathcal{F}$ with arity n > 0, a *concrete* function $f^{\mathcal{M}}: A^n \to A$ from A^n , the set of n-tuples over A, to A
- for each $P \in \mathcal{P}$ with arity n > 0, a subset $P^{\mathcal{M}} \subseteq A^n$ of n-tuples over A.

定义 M 和 ϕ ? Logics

2. First-order Logic | Define \mathcal{M}

回到主题: 如何定义 M?

例 (自动机):

Let
$$\mathcal{F} \stackrel{\mathsf{def}}{=} \{i\}$$
 and $\mathcal{P} = \{R, F\}$;

- i is a constant
- F a predicate symbol with one argument
- R a predicate symbol with two arguments

A model $\mathcal M$ may contain:

- A: a set of states of a computer program.
- $i^{\mathcal{M}}$: a designated initial state.
- $R^{\mathcal{M}}$: a state transition relation.
- $F^{\mathcal{M}}$: a set of final (accepting) states.

M 的实例

- $\bullet \ A \stackrel{\mathsf{def}}{=} \{a, b, c\}$
- $i^{\mathcal{M}} = a$
- $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$
- $F^{\mathcal{M}} = \{b, c\}.$

- $\exists y \ R(i,y)$
- $\bullet \neg F(i)$
- $\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$
- $\bullet \ \forall x \exists y \ R(x,y)$

2. First-order Logic | Define \mathcal{M}

回到主题: 如何定义 M?

例 (自动机):

Let
$$\mathcal{F} \stackrel{\mathsf{def}}{=} \{i\}$$
 and $\mathcal{P} = \{R, F\}$;

- i is a constant
- F a predicate symbol with one argument
- R a predicate symbol with two arguments

A model ${\mathcal M}$ may contain:

- A: a set of states of a computer program.
- $i^{\mathcal{M}}$: a designated initial state.
- $R^{\mathcal{M}}$: a state transition relation.
- $F^{\mathcal{M}}$: a set of final (accepting) states.

M 的实例

- $\bullet \ A \stackrel{\mathsf{def}}{=} \{a, b, c\}$
- $i^{\mathcal{M}} = a$
- $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$
- $F^{\mathcal{M}} = \{b, c\}.$

φ 的实例:

- $\exists y \ R(i,y)$
- $\bullet \neg F(i)$
- $\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$
- $\forall x \exists y \ R(x,y)$

2. First-order Logic | Define \mathcal{M}

回到主题: 如何定义 M?

例 (自动机):

Let
$$\mathcal{F} \stackrel{\text{def}}{=} \{i\}$$
 and $\mathcal{P} = \{R, F\}$;

- i is a constant
- F a predicate symbol with one argument
- R a predicate symbol with two arguments

A model ${\mathcal M}$ may contain:

- A: a set of states of a computer program.
- $i^{\mathcal{M}}$: a designated initial state.
- $R^{\mathcal{M}}$: a state transition relation.
- $F^{\mathcal{M}}$: a set of final (accepting) states.

M 的实例:

- $\bullet \ A \stackrel{\mathsf{def}}{=} \{a, b, c\}$
- $i^{\mathcal{M}} = a$
- $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$
- $\bullet \ F^{\mathcal{M}} = \{b, c\}.$

φ 的实例:

- $\bullet \ \exists y \ R(i,y)$
- $\bullet \neg F(i)$
- $\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$
- $\forall x \exists y \ R(x,y)$

2. First-order Logic | Define \mathcal{M}

回到主题: 如何定义 M?

例 (自动机):

Let
$$\mathcal{F} \stackrel{\text{def}}{=} \{i\}$$
 and $\mathcal{P} = \{R, F\}$;

- i is a constant
- F a predicate symbol with one argument
- R a predicate symbol with two arguments

A model ${\mathcal M}$ may contain:

- A: a set of states of a computer program.
- $i^{\mathcal{M}}$: a designated initial state.
- $R^{\mathcal{M}}$: a state transition relation.
- $F^{\mathcal{M}}$: a set of final (accepting) states.

M 的实例:

- $\bullet \ A \stackrel{\mathsf{def}}{=} \{a, b, c\}$
- $i^{\mathcal{M}} = a$
- $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$
- $F^{\mathcal{M}} = \{b, c\}.$

- $\exists y \ R(i,y)$
- $\bullet \neg F(i)$
- $\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$
- $\forall x \exists y \ R(x,y)$

2. First-order Logic | Define \mathcal{M}

回到主题: 如何定义 M?

例 (自动机):

Let
$$\mathcal{F} \stackrel{\text{def}}{=} \{i\}$$
 and $\mathcal{P} = \{R, F\}$;

- i is a constant
- F a predicate symbol with one argument
- R a predicate symbol with two arguments

A model ${\mathcal M}$ may contain:

- A: a set of states of a computer program.
- $i^{\mathcal{M}}$: a designated initial state.
- $R^{\mathcal{M}}$: a state transition relation.
- $F^{\mathcal{M}}$: a set of final (accepting) states.

M 的实例:

- $\bullet \ A \stackrel{\mathsf{def}}{=} \{a, b, c\}$
- $i^{\mathcal{M}} = a$
- $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$
- $F^{\mathcal{M}} = \{b, c\}.$

- $\bullet \ \exists y \ R(i,y)$
- $\bullet \neg F(i)$
- $\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$
- $\forall x \exists y \ R(x,y)$

定义 M 和 ϕ ? Logics

2. First-order Logic | Define \mathcal{M}

回到主题: 如何定义 M?

例 (自动机):

Let
$$\mathcal{F} \stackrel{\text{def}}{=} \{i\}$$
 and $\mathcal{P} = \{R, F\}$;

- i is a constant
- F a predicate symbol with one argument
- R a predicate symbol with two arguments

A model \mathcal{M} may contain:

- A: a set of states of a computer program.
- $i^{\mathcal{M}}$: a designated initial state.
- $R^{\mathcal{M}}$: a state transition relation.
- $F^{\mathcal{M}}$: a set of final (accepting) states.

M 的实例:

- $\bullet \ A \stackrel{\mathsf{def}}{=} \{a, b, c\}$
- $i^{\mathcal{M}} = a$
- $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$
- $F^{\mathcal{M}} = \{b, c\}.$

- $\exists y \ R(i,y)$
- $\bullet \neg F(i)$
- $\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$
- $\bullet \ \forall x \exists y \ R(x,y)$

2. First-order Logic | Define \mathcal{M}

回到主题: 如何定义 M?

例 (自动机):

Let
$$\mathcal{F} \stackrel{\text{def}}{=} \{i\}$$
 and $\mathcal{P} = \{R, F\}$;

- i is a constant
- F a predicate symbol with one argument
- R a predicate symbol with two arguments

A model \mathcal{M} may contain:

- A: a set of states of a computer program.
- $i^{\mathcal{M}}$: a designated initial state.
- $R^{\mathcal{M}}$: a state transition relation.
- $F^{\mathcal{M}}$: a set of final (accepting) states.

M 的实例:

- $\bullet \ A \stackrel{\mathsf{def}}{=} \{a, b, c\}$
- $i^{\mathcal{M}} = a$
- $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$
- $F^{\mathcal{M}} = \{b, c\}.$

- $\exists y \ R(i,y)$
- $\bullet \neg F(i)$
- $\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$
- $\forall x \exists y \ R(x,y)$

2. First-order Logic | Define \mathcal{M}

回到主题: 如何定义 M?

例 (自动机):

Let
$$\mathcal{F} \stackrel{\text{def}}{=} \{i\}$$
 and $\mathcal{P} = \{R, F\}$;

- i is a constant
- F a predicate symbol with one argument
- R a predicate symbol with two arguments

A model \mathcal{M} may contain:

- A: a set of states of a computer program.
- $i^{\mathcal{M}}$: a designated initial state.
- $R^{\mathcal{M}}$: a state transition relation.
- $F^{\mathcal{M}}$: a set of final (accepting) states.

M 的实例:

- $\bullet \ A \stackrel{\mathsf{def}}{=} \{a, b, c\}$
- $i^{\mathcal{M}} = a$
- $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$
- $F^{\mathcal{M}} = \{b, c\}.$

- $\bullet \exists y \ R(i,y)$
- $\bullet \neg F(i)$
- $\forall x \forall y \forall z \ (R(x,y) \land R(x,z) \rightarrow y = z)$
- $\forall x \exists y \ R(x,y)$

2. First-order Logic | Evaluation

回到主题: 对于给定 \mathcal{M} 和 ϕ , 是否满足 $\mathcal{M} \models \phi$?

基本方法: 类似 Propositional Logic, 枚举所有情况

- ① 定义 Environment l
- ②定义⊨』
- ③ 枚举 ⊨ 求解 ⊨

定义: Environment l

- \bullet $l: var <math>\rightarrow A$
 - \bullet Type: from the set of variables var to A
 - ullet A look-up table or environment for a universe A of concrete values
- $l[x \mapsto a]$
 - the look-up table
 - maps x to a and any other variable y to l(y)

2. First-order Logic | Evaluation

回到主题: 对于给定 \mathcal{M} 和 ϕ , 是否满足 $\mathcal{M} \models \phi$?

基本方法: 类似 Propositional Logic, 枚举所有情况

- ① 定义 Environment l
- ②定义⊨』
- ③ 枚举 ⊨ 求解 ⊨

定义: Environment i

- $l : var \rightarrow A$
 - \bullet Type: from the set of variables var to A
 - ullet A look-up table or environment for a universe A of concrete values
- $l[x \mapsto a]$
 - the look-up table
 - maps x to a and any other variable y to l(y)

2. First-order Logic | Evaluation

回到主题: 对于给定 \mathcal{M} 和 ϕ , 是否满足 $\mathcal{M} \models \phi$?

基本方法: 类似 Propositional Logic, 枚举所有情况

- 定义 Environment l
- ② 定义 ⊨』
- ③ 枚举 ⊨ 求解 ⊨

定义: Environment i

- \bullet $l: var <math>\rightarrow A$
 - \bullet Type: from the set of variables var to A
 - ullet A look-up table or environment for a universe A of concrete values
- $l[x \mapsto a]$
 - the look-up table
 - maps x to a and any other variable y to l(y)

2. First-order Logic | Evaluation

回到主题: 对于给定 M 和 ϕ , 是否满足 $M \models \phi$?

基本方法: 类似 Propositional Logic, 枚举所有情况

- 定义 Environment l
- ② 定义 ⊨ l
- ③ 枚举 ⊨ 求解 ⊨

定义: Environment

- \bullet $l: var <math>\rightarrow A$
 - \bullet Type: from the set of variables var to A
 - ullet A look-up table or environment for a universe A of concrete values
- $l[x \mapsto a]$
 - the look-up table
 - maps x to a and any other variable y to l(y)

2. First-order Logic | Evaluation

回到主题: 对于给定 M 和 ϕ , 是否满足 $M \models \phi$?

基本方法: 类似 Propositional Logic, 枚举所有情况

- 定义 Environment l
- ② 定义 ⊨ l
- ◆ 枚举 ⊨ 求解 ⊨

定义: Environment

- $l : var \rightarrow A$
 - \bullet Type: from the set of variables var to A
 - ullet A look-up table or environment for a universe A of concrete values
- $l[x \mapsto a]$
 - the look-up table
 - maps x to a and any other variable y to l(y)

2. First-order Logic | Evaluation

回到主题: 对于给定 \mathcal{M} 和 ϕ , 是否满足 $\mathcal{M} \models \phi$?

基本方法: 类似 Propositional Logic, 枚举所有情况

- 定义 Environment l
- ② 定义 ⊨ l
- ③ 枚举 ⊨ 求解 ⊨

定义: Environment l

- \bullet $l: var <math>\rightarrow A$
 - ullet Type: from the set of variables var to A
 - \bullet A look-up table or environment for a universe A of concrete values
- \bullet $l[x \mapsto a]$
 - the look-up table
 - maps x to a and any other variable y to l(y)

2. First-order Logic | Evaluation

回到主题: 对于给定 \mathcal{M} 和 ϕ , 是否满足 $\mathcal{M} \models \phi$?

基本方法: 类似 Propositional Logic, 枚举所有情况

- 定义 Environment l
- ② 定义 ⊨ l
- ③ 枚举 ⊨』 求解 ⊨

定义: Environment l

- \bullet $l: var <math>\rightarrow A$
 - ullet Type: from the set of variables var to A
 - ullet A look-up table or environment for a universe A of concrete values
- $l[x \mapsto a]$
 - the look-up table
 - ullet maps x to a and any other variable y to l(y)

2. First-order Logic | Evaluation

定义: Environment l

- $l: \mathsf{var} \to A$
 - ullet A look-up table or environment for a universe A of concrete values

定义⊨』

Given a model \mathcal{M} for a pair $(\mathcal{F},\mathcal{P})$ and given an environment l, we define the satisfaction relation $\mathcal{M} \vDash_l \phi$ for each logical formula ϕ over the pair $(\mathcal{F},\mathcal{P})$ and look-up table l by structural induction on ϕ .

If $M \vDash_l \phi$ holds, we say that ϕ computes to T in the model M with respect to the environment l.

定义 $\mathcal{M} \models \emptyset$

 $\mathcal{M} \vDash \phi$ holds, iff for all choices of l, $\mathcal{M} \vDash_l \phi$

2. First-order Logic | Evaluation

定义: Environment l

- $l: \mathsf{var} \to A$
 - ullet A look-up table or environment for a universe A of concrete values

定义⊨』

Given a model $\mathcal M$ for a pair $(\mathcal F,\mathcal P)$ and given an environment l, we define the satisfaction relation $\mathcal M \vDash_l \phi$ for each logical formula ϕ over the pair $(\mathcal F,\mathcal P)$ and look-up table l by structural induction on ϕ .

If $M \vDash_l \phi$ holds, we say that ϕ computes to T in the model M with respect to the environment l.

定义 $\mathcal{M} \models \phi$

 $\mathcal{M} \vDash \phi$ holds, iff for all choices of l, $\mathcal{M} \vDash_l \phi$

2. First-order Logic | Evaluation

定义: Environment l

- $l: \mathsf{var} \to A$
 - ullet A look-up table or environment for a universe A of concrete values

定义⊨』

Given a model \mathcal{M} for a pair $(\mathcal{F},\mathcal{P})$ and given an environment l, we define the satisfaction relation $\mathcal{M} \vDash_l \phi$ for each logical formula ϕ over the pair $(\mathcal{F},\mathcal{P})$ and look-up table l by structural induction on ϕ .

If $M \vDash_l \phi$ holds, we say that ϕ computes to T in the model M with respect to the environment l.

定义 $\mathcal{M} \models \phi$

 $\mathcal{M} \vDash \phi$ holds, iff for all choices of l, $\mathcal{M} \vDash_l \phi$

2. First-order Logic | Evaluation

头疼的问题: 计算复杂度相比于命题逻辑的复杂度似乎更大

更头疼的问题: 先考虑可计算性?

回顾: 问题可以解么? – 问题 4

Given a set $A \subseteq S$, and $x \in S$, whether there is a machine that can compute whether $x \in A$.

- Define a new machine, named *Turing machine*, 图灵机.
- ullet If yes, i.e., there is a Turing machine M for A, language A is decidable.
- If no, but there is a Turing machine M that can only accept s, if $s \in A$, language A is still Turing-recognizable.

定理(*Undecidability* in First-order logic)

2. First-order Logic | Evaluation

头疼的问题: 计算复杂度相比于命题逻辑的复杂度似乎更大更头疼的问题: 先考虑可计算性?

回顾: 问题可以解么? - 问题 4

Given a set $A\subseteq S$, and $x\in S$, whether there is a machine that can compute whether $x\in A$.

- Define a new machine, named *Turing machine*, 图灵机.
- ullet If yes, i.e., there is a Turing machine M for A, language A is decidable.
- If no, but there is a Turing machine M that can only accept s, if $s \in A$, language A is still Turing-recognizable.

定理 (Undecidability in First-order logic)

2. First-order Logic | Evaluation

头疼的问题: 计算复杂度相比于命题逻辑的复杂度似乎更大更头疼的问题: 先考虑可计算性?

回顾: 问题可以解么? - 问题 4

Given a set $A \subseteq S$, and $x \in S$, whether there is a machine that can compute whether $x \in A$.

- Define a new machine, named *Turing machine*, 图灵机.
- If yes, i.e., there is a Turing machine M for A, language A is decidable.
- If no, but there is a Turing machine M that can only accept s, if $s \in A$, language A is still Turing-recognizable.

定理 (Undecidability in First-order logic)

2. First-order Logic | Evaluation

头疼的问题: 计算复杂度相比于命题逻辑的复杂度似乎更大 更头疼的问题: 先考虑可计算性?

回顾: 问题可以解么? - 问题 4

Given a set $A \subseteq S$, and $x \in S$, whether there is a machine that can compute whether $x \in A$.

- Define a new machine, named Turing machine, 图灵机.
- If yes, i.e., there is a Turing machine M for A, language A is decidable.
- If no, but there is a Turing machine M that can only accept s, if $s \in A$, language A is still Turing-recognizable.

定理 (Undecidability in First-order logic)

3. Higher-order Logic | Limitation of first-order logic

另一个问题: First-order Logic 的表达能力?

• 能表达所有问题么?

解答: 考虑一个反例——有向图 (directed graph) 的建模

• Software models, design standards, and execution models of hardware or programs often are described in terms of directed graphs.

反例:

Given a set of states $A = \{s_0, s_1, s_2, s_3\}$, let $R^{\mathcal{M}}$ be the set $\{(s_0, s_1), (s_1, s_0), (s_1, s_1), (s_1, s_2), (s_2, s_0), (s_3, s_0), (s_3, s_2)\}$. We may depict this model as a directed graph in a figure, where an edge (a transition) leads from a node s to a node s' iff $(s, s') \in R^{\mathcal{M}}$.

3. Higher-order Logic | Limitation of first-order logic

另一个问题: First-order Logic 的表达能力?

• 能表达所有问题么?

解答: 考虑一个反例——有向图 (directed graph) 的建模

 Software models, design standards, and execution models of hardware or programs often are described in terms of directed graphs.

反例

Given a set of states $A = \{s_0, s_1, s_2, s_3\}$, let $R^{\mathcal{M}}$ be the set $\{(s_0, s_1), (s_1, s_0), (s_1, s_1), (s_1, s_2), (s_2, s_0), (s_3, s_0), (s_3, s_2)\}$. We may depict this model as *a directed graph* in a figure, where an edge (a transition) leads from a node s to a node s' iff $(s, s') \in R^{\mathcal{M}}$.

3. Higher-order Logic | Limitation of first-order logic

另一个问题: First-order Logic 的表达能力?

• 能表达所有问题么?

解答: 考虑一个反例——有向图 (directed graph) 的建模

 Software models, design standards, and execution models of hardware or programs often are described in terms of directed graphs.

反例:

Given a set of states $A = \{s_0, s_1, s_2, s_3\}$, let $R^{\mathcal{M}}$ be the set $\{(s_0, s_1), (s_1, s_0), (s_1, s_1), (s_1, s_2), (s_2, s_0), (s_3, s_0), (s_3, s_2)\}$. We may depict this model as a directed graph in a figure, where an edge (a transition) leads from a node s to a node s' iff $(s, s') \in R^{\mathcal{M}}$.

定义 Μ 和 φ? Logics

3. Higher-order Logic | Limitation of first-order logic

反例:

Given a set of states $A=\{s_0,s_1,s_2,s_3\}$, let $R^{\mathcal{M}}$ be the set $\{(s_0,s_1),(s_1,s_0),(s_1,s_1),(s_1,s_2),(s_2,s_0),(s_3,s_0),(s_3,s_2)\}$. We may depict this model as a directed graph in a figure, where an edge (a transition) leads from a node s to a node s' iff $(s,s')\in R^{\mathcal{M}}$.

反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

定义 $\overline{\mathcal{M}}$ 和 ϕ ? Logics

3. Higher-order Logic | Limitation of first-order logic

反例:

Given a set of states $A=\{s_0,s_1,s_2,s_3\}$, let $R^{\mathcal{M}}$ be the set $\{(s_0,s_1),(s_1,s_0),(s_1,s_1),(s_1,s_2),(s_2,s_0),(s_3,s_0),(s_3,s_2)\}$. We may depict this model as a directed graph in a figure, where an edge (a transition) leads from a node s to a node s' iff $(s,s')\in R^{\mathcal{M}}$.

反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

3. Higher-order Logic | Limitation of first-order logic

反例:

Given a set of states $A = \{s_0, s_1, s_2, s_3\}$, let $R^{\mathcal{M}}$ be the set $\{(s_0, s_1), (s_1, s_0), (s_1, s_1), (s_1, s_2), (s_2, s_0), (s_3, s_0), (s_3, s_2)\}$. We may depict this model as a directed graph in a figure, where an edge (a transition) leads from a node s to a node s' iff $(s, s') \in R^{\mathcal{M}}$.

反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

3. Higher-order Logic | Limitation of first-order logic

反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

$$(u=v) \vee \exists x (R(u,x) \wedge R(x,v)) \vee \exists x_1 \exists x_2 (R(u,x_1) \wedge R(x_1,x_2) \wedge R(x_2,v)) \vee \dots$$

- This is infinite, so it's not a well-formed formula.
- Can we find a well-formed formula with the same meaning? No!

3. Higher-order Logic | Limitation of first-order logic

反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

$$(u=v) \vee \exists x (R(u,x) \wedge R(x,v)) \vee \exists x_1 \exists x_2 (R(u,x_1) \wedge R(x_1,x_2) \wedge R(x_2,v)) \vee \dots$$

- This is infinite, so it's not a well-formed formula.
- Can we find a well-formed formula with the same meaning? No!

3. Higher-order Logic | Limitation of first-order logic

反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

$$(u=v) \vee \exists x (R(u,x) \wedge R(x,v)) \vee \exists x_1 \exists x_2 (R(u,x_1) \wedge R(x_1,x_2) \wedge R(x_2,v)) \vee \dots$$

- This is infinite, so it's not a well-formed formula.
- Can we find a well-formed formula with the same meaning? No!

3. Higher-order Logic | Limitation of first-order logic

反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

$$(u=v) \vee \exists x (R(u,x) \wedge R(x,v)) \vee \exists x_1 \exists x_2 (R(u,x_1) \wedge R(x_1,x_2) \wedge R(x_2,v)) \vee \dots$$

- This is infinite, so it's not a well-formed formula.
- Can we find a well-formed formula with the same meaning? No.

3. Higher-order Logic | Limitation of first-order logic

反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

$$(u=v) \vee \exists x (R(u,x) \wedge R(x,v)) \vee \exists x_1 \exists x_2 (R(u,x_1) \wedge R(x_1,x_2) \wedge R(x_2,v)) \vee \dots$$

- This is infinite, so it's not a well-formed formula.
- Can we find a well-formed formula with the same meaning? No!

3. Higher-order Logic | Limitation of first-order logic

进一步问题: 既然 First-order Logic 不能表达 ϕ , 那怎么表达

- 使用 Second-order Logic
- 怎么用?
 - This can be realized by applying *quantifiers* not only to variables, but also to *predicate symbols*.

回顾: 定义: First-order Logic in BNF

 $\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\forall x \ \phi) \mid (\exists x \ \phi)$

where $P \in \mathcal{P}$ is a predicate symbol of arity $n \geq 1$, t_i are terms over \mathcal{F} and x is a variable.

3. Higher-order Logic | Limitation of first-order logic

进一步问题: 既然 First-order Logic 不能表达 ϕ , 那怎么表达

- 使用 Second-order Logic
- 怎么用?
 - This can be realized by applying *quantifiers* not only to variables, but also to *predicate symbols*.

回顾: 定义: First-order Logic in BNF

 $\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\forall x \ \phi) \mid (\exists x \ \phi)$

where $P \in \mathcal{P}$ is a predicate symbol of arity $n \geq 1$, t_i are terms over \mathcal{F} and x is a variable.

3. Higher-order Logic | Limitation of first-order logic

进一步问题: 既然 First-order Logic 不能表达 ϕ , 那怎么表达

- 使用 Second-order Logic
- 怎么用?
 - This can be realized by applying quantifiers not only to variables, but also to predicate symbols.

回顾: 定义: First-order Logic in BNF

 $\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\forall x \ \phi) \mid (\exists x \ \phi)$

where $P\in\mathcal{P}$ is a predicate symbol of arity $n\geq 1$, t_i are terms over \mathcal{F} and x is a variable.

3. Higher-order Logic | Limitation of first-order logic

进一步问题: 既然 First-order Logic 不能表达 ϕ , 那怎么表达

- 使用 Second-order Logic
- 怎么用?
 - This can be realized by applying *quantifiers* not only to variables, but also to *predicate symbols*.

回顾: 定义: First-order Logic in BNF

 $\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\forall x \ \phi) \mid (\exists x \ \phi)$

where $P \in \mathcal{P}$ is a predicate symbol of arity $n \geq 1$, t_i are terms over \mathcal{F} and x is a variable.

3. Higher-order Logic | Second-order Logic

回顾: 定义: First-order Logic in BNF

$$\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\forall x \ \phi) \mid (\exists x \ \phi)$$

where $P \in \mathcal{P}$ is a predicate symbol of arity $n \geq 1$, t_i are terms over \mathcal{F} and x is a variable.

解决思路

For a predicate symbol P with $n \ge 1$ arguments, consider formulas of the form:

$$\exists P \phi$$

where ϕ is a formula of predicate logic in which P occurs.

3. Higher-order Logic | Second-order Logic

回顾: 定义: First-order Logic in BNF

$$\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\forall x \ \phi) \mid (\exists x \ \phi)$$

where $P \in \mathcal{P}$ is a predicate symbol of arity $n \geq 1$, t_i are terms over \mathcal{F} and x is a variable.

解决思路

For a predicate symbol P with $n \geq 1$ arguments, consider formulas of the form:

$$\exists P \ \phi$$

where ϕ is a formula of predicate logic in which P occurs.

3. Higher-order Logic | Second-order Logic

<u> 反例:一种答</u>案 First-order Logic (Not well-formed)

$$(u=v) \vee \exists x (R(u,x) \wedge R(x,v)) \vee \exists x_1 \exists x_2 (R(u,x_1) \wedge R(x_1,x_2) \wedge R(x_2,v)) \vee \dots$$

$$\neg \exists P \forall x \forall y \forall z \ (C_1 \land C_2 \land C_3 \land C_4)$$

$$C_1 \stackrel{\mathsf{def}}{=} P(x, x)$$
 $C_2 \stackrel{\mathsf{def}}{=} P(x, y) \land P(y, z) \rightarrow P(x, z)$
 $C_3 \stackrel{\mathsf{def}}{=} P(u, v) \rightarrow \bot$
 $C_4 \stackrel{\mathsf{def}}{=} R(x, y) \rightarrow P(x, y)$

3. Higher-order Logic | Second-order Logic

反例: 一种答案 First-order Logic (Not well-formed)

$$(u=v) \vee \exists x (R(u,x) \wedge R(x,v)) \vee \exists x_1 \exists x_2 (R(u,x_1) \wedge R(x_1,x_2) \wedge R(x_2,v)) \vee \dots$$

具体答案: Second-order Logic

$$\neg \exists P \forall x \forall y \forall z \ (C_1 \land C_2 \land C_3 \land C_4)$$

where

$$C_1 \stackrel{\text{def}}{=} P(x, x)$$

$$C_2 \stackrel{\text{def}}{=} P(x, y) \land P(y, z) \rightarrow P(x, z)$$

$$C_3 \stackrel{\text{def}}{=} P(u, v) \rightarrow \bot$$

$$C_4 \stackrel{\text{def}}{=} R(x, y) \rightarrow P(x, y)$$

3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...?

答案: 有

- First-order logic quantifies only variables that range over individuals
- Second-order logic, in addition, also quantifies *over sets*
 - e.g., we can define $P(x,y) \stackrel{\text{def}}{=} (x,y) \in \mathbf{P}$, where \mathbf{P} is a set.
- Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, ..., nth-order logic

3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...? 答案: 有

- First-order logic quantifies only variables that range over individuals
- Second-order logic, in addition, also quantifies over sets
 - e.g., we can define $P(x,y) \stackrel{\text{def}}{=} (x,y) \in \mathbf{P}$, where \mathbf{P} is a set.
- Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, ..., nth-order logic

3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...? 答案: 有

- First-order logic quantifies only variables that range over individuals
- Second-order logic, in addition, also quantifies over sets
 - e.g., we can define $P(x,y) \stackrel{\text{def}}{=} (x,y) \in \mathbf{P}$, where \mathbf{P} is a set.
- Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, ..., nth-order logic

3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...? 答案: 有

- First-order logic quantifies only variables that range over individuals
- Second-order logic, in addition, also quantifies over sets
 - e.g., we can define $P(x,y) \stackrel{\text{def}}{=} (x,y) \in \mathbf{P}$, where \mathbf{P} is a set.
- Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, ..., nth-order logic

3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...? 答案: 有

- First-order logic quantifies only variables that range over individuals
- Second-order logic, in addition, also quantifies *over sets*
 - e.g., we can define $P(x,y) \stackrel{\mathsf{def}}{=} (x,y) \in \mathbf{P}$, where \mathbf{P} is a set.
- Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, ..., nth-order logic

3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...? 答案: 有

- First-order logic quantifies only variables that range over individuals
- Second-order logic, in addition, also quantifies over sets
 - e.g., we can define $P(x,y) \stackrel{\mathsf{def}}{=} (x,y) \in \mathbf{P}$, where \mathbf{P} is a set.
- Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, ..., nth-order logic

3. Higher-order Logic

下一个问题: 有没有 Third-order Logic, Fourth-order Logic,...? 答案: 有

- First-order logic quantifies only variables that range over individuals
- Second-order logic, in addition, also quantifies over sets
 - e.g., we can define $P(x,y) \stackrel{\mathsf{def}}{=} (x,y) \in \mathbf{P}$, where \mathbf{P} is a set.
- Third-order logic also quantifies over sets of sets, and so on.

Higher-order logic is the union of first-, second-, third-, ..., nth-order logic

作业

- a. Compute the complete truth table of the formula:

 - $(p \land q) \to (p \lor q)$

作业

1. Use the predicates

```
A(x,y): x admires y
B(x,y): x attended y
P(x): x is a professor
S(x): x is a student
L(x): x is a lecture
```

and the nullary function symbol (constant)

```
m: Mary
```

to translate the following into predicate logic:

- (a) Mary admires every professor. (The answer is not $\forall x \, A(m, P(x))$.)
- (b) Some professor admires Mary.
- (c) Mary admires herself.
- (d) No student attended every lecture.
- (e) No lecture was attended by every student.
- (f) No lecture was attended by any student.

作业

- 2. Consider the sentence $\phi \stackrel{\text{def}}{=} \forall x \exists y \exists z (P(x,y) \land P(z,y) \land (P(x,z) \rightarrow P(z,x)))$. Which of the following models satisfies ϕ ?
 - (a) The model \mathcal{M} consists of the set of natural numbers with $P^{\mathcal{M}} \stackrel{\text{def}}{=} \{(m,n) \mid m < n\}$.
 - (b) The model \mathcal{M}' consists of the set of natural numbers with $P^{\mathcal{M}'} \stackrel{\text{def}}{=} \{(m, 2 * m) \mid m \text{ natural number}\}.$
 - (c) The model \mathcal{M}'' consists of the set of natural numbers with $P^{\mathcal{M}''} \stackrel{\text{def}}{=} \{(m,n) \mid m < n+1\}$.