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@ Define verification

e ME¢®

@ A method of define M and ¢: Logics
e Propositional logic
o Predicate logic

o Higher-order logic
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Logic

[BIFR: M. Verifier

A verifier for a language A is an algorithm V', where

A ={w |V accepts (w,c) for some string ¢ }.

[BlER: IRIESFE

(1) HEE w. (2) RITHL A (3) (FahatEah) MEBIER
(4) EFERGUERS V, BN ¢, R Bw e A
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Verifier Logic

B ISR
(1) MIEEREL w. (2) I A. (3) (FEheiEah) HERIER ¢
(4) (ERIGIERR V, BN ¢, BiHESw € A
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Verifier Logic

[BlER: IRIESFE
(1) MIEEREL w. (2) I A. (3) (FEheiEah) HERIER ¢
(4) (ERIGIERR V, BIA ¢, BiHESw € A

TEM.: Verification in Logics

Most logics used in the design, specification, and verification of computer
systems fundamentally deal with a satisfaction relation:

ME ¢
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Verifier Logic

[BlER: IRIESFE
(1) MIEEREL w. (2) I A. (3) (FEheiEah) HERIER ¢
(4) (ERIGIERR V, BIA ¢, BiHESw € A

TEM.: Verification in Logics

Most logics used in the design, specification, and verification of computer
systems fundamentally deal with a satisfaction relation:

ME@

@ M is some sort of situation or model of a system
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Verifier Logic

[BlET: IEGUESTE

(1) MIEEREL w. (2) I A. (3) (FEheiEah) HERIER ¢
(4) (ERIGIERR V, BIA ¢, BiHESw € A

TEM.: Verification in Logics

Most logics used in the design, specification, and verification of computer
systems fundamentally deal with a satisfaction relation:

ME@

@ M is some sort of situation or model of a system

@ ¢ is a specification, a formula of that logic, expressing what should be
true in situation M.
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Verifier Logic

[BlET: IEGUESTE

(1) MIEEREL w. (2) I A. (3) (FEheiEah) HERIER ¢
(4) (ERIGIERR V, BIA ¢, BiHESw € A

TEM.: Verification in Logics

Most logics used in the design, specification, and verification of computer
systems fundamentally deal with a satisfaction relation:

ME@

@ M is some sort of situation or model of a system

@ ¢ is a specification, a formula of that logic, expressing what should be
true in situation M.

@ At the heart of this set-up is that one can often specify and
implement algorithms for computing F.

— = = = >y
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Verifier Logic

TEN.: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

ME@

@ M is some sort of situation or model of a system

@ ¢ is a specification, a formula of that logic, expressing what should be
true in situation M.

@ At the heart of this set-up is that one can often specify and
implement algorithms for computing E.
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Verifier Logic

TEN.: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

ME@

@ M is some sort of situation or model of a system

@ ¢ is a specification, a formula of that logic, expressing what should be
true in situation M.

@ At the heart of this set-up is that one can often specify and
implement algorithms for computing E.

— AR
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Verifier Logic

TEM.: Verification in Logics

Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

ME@

@ M is some sort of situation or model of a system

@ ¢ is a specification, a formula of that logic, expressing what should be
true in situation M.

@ At the heart of this set-up is that one can often specify and
implement algorithms for computing E.

—MEJRR:
o |A: WMAIF—LENX M F0 ¢?
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Verifier Logic

TEM.: Verification in Logics

Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

ME@

@ M is some sort of situation or model of a system

@ ¢ is a specification, a formula of that logic, expressing what should be
true in situation M.

@ At the heart of this set-up is that one can often specify and
implement algorithms for computing E.

T—MAfRR:
o A AMAIF—ILEN M F1 ¢? & Logics
°
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Verifier Logic

TEN.: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

ME@

@ M is some sort of situation or model of a system

@ ¢ is a specification, a formula of that logic, expressing what should be
true in situation M.

@ At the heart of this set-up is that one can often specify and
implement algorithms for computing E.

T—MAfRR:
o A AMAIF—ILEN M F1 ¢? & Logics
o [A): MAISZHF = #0 algorithms?
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Verifier Logic

TEN.: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

ME@

@ M is some sort of situation or model of a system

@ ¢ is a specification, a formula of that logic, expressing what should be
true in situation M.

@ At the heart of this set-up is that one can often specify and
implement algorithms for computing E.

—NajE:
o A AMAIF—ILEN M F1 ¢? & Logics
o [A): WNfAISZ4E E F algorithms? &F: Rules
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X M F ¢? Logics

[B1ER: ROMATRE X —NEjR? — (A 3
Given a set S, a machine M, and z € S, compute whether z € L(M).

e M is a machine, e.g., finite automaton.
e L(M) is the language of M.
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TEX M F1 ¢? Logics

[EIR: 40{AJE X —ANEJRR? — jA)RR 3
Given a set S, a machine M, and z € S, compute whether z € L(M).

@ M is a machine, e.g., finite automaton.
e L(M) is the language of M.

Define a special group of languages: Logics
e Propositional logic (FpUZ4E)

o Predicate logic (1B1aiZ4E)
e a.k.a., First-order Logic (—PiZ48)

e Higher-Order Logic (Bl ZiE)
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TENX M F ¢? Logics

1. Propositional Logic | Basic elements: Atomic Propositions

TEM.: Propositions (ApRR)

Declarative sentences which one can argue as being true or false, e.g.,
@ The sum of the numbers 3 and 5 equals 8.

Jane reacted violently to Jack’ s accusations.

°
@ Every even natural number >2 is the sum of two prime numbers.
°

All Martians like pepperoni on their pizza.
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TENX M F ¢? Logics

1. Propositional Logic | Basic elements: Atomic Propositions

TEM.: Propositions (ApRR)

Declarative sentences which one can argue as being true or false, e.g.,
@ The sum of the numbers 3 and 5 equals 8.
@ Jane reacted violently to Jack’ s accusations.
@ Every even natural number >2 is the sum of two prime numbers.
o

All Martians like pepperoni on their pizza.

AR T
o MRIRTIE: NRFFHIREE. .
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TENX M F ¢? Logics

1. Propositional Logic | Basic elements: Atomic Propositions

TEM.: Propositions (ApRR)

Declarative sentences which one can argue as being true or false, e.g.,
@ The sum of the numbers 3 and 5 equals 8.
Jane reacted violently to Jack’ s accusations.

°
@ Every even natural number >2 is the sum of two prime numbers.
°

All Martians like pepperoni on their pizza.

AR T
o MRIRTE: MNRFFFIREE. .

TEMX.: Atomic Propositions (JRFApRR)

Propositions which is indecomposable, e.g.,

@ The number 5 is even.
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TEX M F1 ¢? Logics

1. Propositional Logic | Basic elements: Logical Operators

TEMX.: Propositions (ApRk)

Declarative sentences which one can argue as being true or false.

TEMX.: Atomic Propositions (JEFApRR)

Propositions which is indecomposable.
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TENX M F ¢? Logics

1. Propositional Logic | Basic elements: Logical Operators

TEMX.: Propositions (ApRk)

Declarative sentences which one can argue as being true or false.

TEMX.: Atomic Propositions (JEFApRR)

Propositions which is indecomposable.

Symbols representing Atomic Propositions

We assign certain distinct symbols p, ¢, r, ..., or sometimes py, p2, p3, ... to
each of these atomic sentences )
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TENX M F ¢? Logics

1. Propositional Logic | Basic elements: Logical Operators

TEMX.: Propositions (ApRk)
Declarative sentences which one can argue as being true or false.

TEMX.: Atomic Propositions (JEFApRR)

Propositions which is indecomposable.

Symbols representing Atomic Propositions

We assign certain distinct symbols p, ¢, r, ..., or sometimes p1, ps, p3, ... to
each of these atomic sentences

Symbols representing Logical Operators
{_‘7 \/7 /\7 _>}
@ We can then code up more complex sentences in a compositional way

EHB nhttps://faculty.ustc.edu.cn/hu: R EESS]


https://faculty.ustc.edu.cn/huangwenchao

TENX M F ¢? Logics

1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences

@ p: 'l won the lottery last week.’
@ ¢: 'l purchased a lottery ticket.’

o r: 'l won last week' s sweepstakes.’
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TENX M F ¢? Logics

1. Propositional Logic | Definition of the Logical Operators

tion: given the following atomic sentences

@ p: 'l won the lottery last week.’
@ ¢: 'l purchased a lottery ticket.’

o 7. 'l won last week' s sweepstakes.’

Definition of the Logical Operators

—: Negation. —p denotes negation of p

e i.e., it is not true that | won the lottery last week.
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TENX M F ¢? Logics

1. Propositional Logic | Definition of the Logical Operators

tion: given the following atomic sentences

@ p: 'l won the lottery last week.’
@ ¢: 'l purchased a lottery ticket.’

o 7. 'l won last week' s sweepstakes.’

Definition of the Logical Operators

—: Negation. —p denotes negation of p
e i.e., it is not true that | won the lottery last week.
V: Disjunction (#TBX). p V r denotes at least one of {p, r} is true.
o i.e., | won the lottery last week, or | won last week' s sweepstakes

EHB nhttps://faculty.ustc.edu.cn/hu: R EESS]



https://faculty.ustc.edu.cn/huangwenchao

TENX M F ¢? Logics

1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences

@ p: 'l won the lottery last week.’
@ ¢: 'l purchased a lottery ticket.’

o 7. 'l won last week' s sweepstakes.’

Definition of the Logical Operators

—: Negation. —p denotes negation of p

e i.e., it is not true that | won the lottery last week.
V: Disjunction (#TBX). p V r denotes at least one of {p, r} is true.

o i.e., | won the lottery last week, or | won last week' s sweepstakes
A: Conjunction (FEX). p A r denotes both p and r are true.

e i.e., Last week | won the lottery and the sweepstakes.
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TENX M F ¢? Logics

1. Propositional Logic | Definition of the Logical Operators

Preparation: given the following atomic sentences
@ p: 'l won the lottery last week.’
@ ¢: 'l purchased a lottery ticket.’

o 7. 'l won last week' s sweepstakes.’

Definition of the Logical Operators

—: Negation. —p denotes negation of p

e i.e., it is not true that | won the lottery last week.
V: Disjunction (#TBX). p V r denotes at least one of {p, r} is true.

o i.e., | won the lottery last week, or | won last week' s sweepstakes
A: Conjunction (FEX). p A r denotes both p and r are true.

e i.e., Last week | won the lottery and the sweepstakes.

—s: Implication (). p — q denotes q is a logical consequence of p.
e i.e., If I won the lottery last week, then | purchased a lottery ticket.
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FMAITE M —NEkER? — (AR 3

Given a set S, a machine M, and = € S, compute whether z € L(M).
@ M is a machine, e.g., finite automaton.
o L(M) is the language of M.

regular

M R9EEL?
languages

@ regular languages
o fBll: IEMZRIATVICEL, 1EIEDHT
@ context-free languages

o BIl: IEEDHT

context-free
languages
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FMAITE M —NEkER? — (AR 3

Given a set S, a machine M, and = € S, compute whether z € L(M).
@ M is a machine, e.g., finite automaton.
o L(M) is the language of M.

regular

M R9EEL?
languages

@ regular languages
o fBll: IEMZRIATVICEL, 1EIEDHT
@ context-free languages

o BIl: IEEDHT

context-free
languages

Define Propositional logic using a context-free language
e Backus-Naur Form (BNF) (BERIEBE)
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TENX M F ¢? Logics

1. Propositional Logic | Definition of the language (Propositional Logic)

pu=p|(=¢) [ (@NnQ)|(¢Ve)]|(d—9)

where p stands for any atomic proposition and each occurrence of ¢ to the
right of ::= stands for any already constructed formula.
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TENX M F ¢? Logics

1. Propositional Logic | Definition of the language (Propositional Logic)

pu=p|(=¢) [ (@NnQ)|(¢Ve)]|(d—9)

where p stands for any atomic proposition and each occurrence of ¢ to the
right of ::= stands for any already constructed formula.

Well-formed formula, 151:

((=p)Ag) = (pA (g V(=)

.
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TENX M F ¢? Logics

1. Propositional Logic | Definition of the language (Propositional Logic)

pu=p|(=¢) [ (@NnQ)|(¢Ve)]|(d—9)

where p stands for any atomic proposition and each occurrence of ¢ to the
right of ::= stands for any already constructed formula.

Well-formed formula, 151:

((=p)Ag) = (pA (g V(=)

Not well-formed formula, 1

(=)0 Vpg —
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TENX M F ¢? Logics

1. Propositional Logic | Evaluate ¢: Truth table

o [AJRA: /EAXEFIAE atomic propositions F[ logical operators SEi+E ¢7?
o EAT%: {#F Bool E{EXR

@ The set of truth values contains two elements T and F, where T
represents ‘true’ and F represents ‘false’

@ A valuation or model of a formula ¢ is an assignment of each
propositional atom in ¢ to a truth value.
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TENX M F ¢? Logics

1. Propositional Logic | Evaluate ¢: Truth table

o [AJRA: /EAXEFIAE atomic propositions F[ logical operators SEi+E ¢7?
o EAT%: {#F Bool E{EXR

@ The set of truth values contains two elements T and F, where T
represents ‘true’ and F represents ‘false’

@ A valuation or model of a formula ¢ is an assignment of each
propositional atom in ¢ to a truth value.

¢ || ony
T(T| T
T|F| F
F|T| F
FIF| F
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TENX M F ¢? Logics

1. Propositional Logic | Evaluate ¢: Truth table

o [AJRA: /EAXEFIAE atomic propositions F[ logical operators SEi+E ¢7?
o EAT%: {#F Bool E{EXR

@ The set of truth values contains two elements T and F, where T
represents ‘true’ and F represents ‘false’

@ A valuation or model of a formula ¢ is an assignment of each
propositional atom in ¢ to a truth value.

¢l Y|ony oY | oV
T(T| T T|T| T
TIF| F T|F| T
FIT| F F|T| T
FIF| F F|F| F

EHB nhttps://faculty.ustc.edu.cn/hu: R EESS]


https://faculty.ustc.edu.cn/huangwenchao

TENX M F ¢? Logics

1. Propositional Logic | Evaluate ¢: Truth table

o [AJRA: /EAXEFIAE atomic propositions F[ logical operators SEi+E ¢7?
o EAT%: {#F Bool E{EXR

@ The set of truth values contains two elements T and F, where T
represents ‘true’ and F represents ‘false’

@ A valuation or model of a formula ¢ is an assignment of each
propositional atom in ¢ to a truth value.

¢l |ony oYV b Y| o=y
T(T| T T[T, T T|T| T
T/F| F T|F| T T|F| F
FIT| F F|T| T F|T| T
FIF| F F|F| F F|F| T
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TENX M F ¢? Logics

1. Propositional Logic | Evaluate ¢: Truth table

o [AJRA: /EAXEFIAE atomic propositions F[ logical operators SEi+E ¢7?
o EAT%: {#F Bool E{EXR

@ The set of truth values contains two elements T and F, where T
represents ‘true’ and F represents ‘false’

@ A valuation or model of a formula ¢ is an assignment of each
propositional atom in ¢ to a truth value.

¢ lY|ony ¢ |Y |V G |Y o=y ¢ |9
T(T| T T|T| T T|T| T T|F
T/F| F T|F| T T|F| F FI T
FIT| F F|T| T F|T| T
FIF| F F|F| F F|F| T
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TENX M F ¢? Logics

1. Propositional Logic | Evaluate ¢: Truth table

o [AJRA: /EAXEFIAE atomic propositions F[ logical operators SEi+E ¢7?
o EAT%: {#F Bool E{EXR

@ The set of truth values contains two elements T and F, where T
represents ‘true’ and F represents ‘false’

@ A valuation or model of a formula ¢ is an assignment of each
propositional atom in ¢ to a truth value.

ol |ony dld oV ¢ lY oY o6 T
T(T| T T|T| T T[T| T T F T
T/F| F T|F| T T|F| F FI T

FIT| F FIT| T F|T| T i
FIF| F FIF| F FIF| T F
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TEX M F1 ¢? Logics

1. Propositional Logic | Evaluate ¢: Example

Bl BER

e B I By
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TEX M F1 ¢? Logics

1. Propositional Logic | Evaluate ¢: Example

fl: BER
plal-»p|-q|p=-q|lav-p|od=(p— g = (qV-p)
T|T|F|F F T T
TIFIF|T| T F F
FIT|T|F T T T
FIF|T|T| T T T
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EX M F ¢? Logics

1. Propositional Logic | Evaluate ¢: Example

fl: BER
plal-»p|-q|p=-q|lav-p|od=(p— g = (qV-p)
T|T|F|F F T T
TIFIF|T| T F F
FIT|T|F T T T
FIF|T|T| T T T

[EZIERR: T M M ¢, BERE M F ¢?

o M={p,q}, ¢=(p——q) — (¢V-p)
o Yes, B0 M F ¢
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TEX M F1 ¢? Logics

1. Propositional Logic | Evaluate ¢: Example

Bl BER

plal-»p|-q|p=-q|lav-p|od=(p— g = (qV-p)
T|T|F|F F T T
TIFIF|T| T F F
FIT|T|F T T T
FIF|T|T| T T T

EZE)FER: XFIT M 1 ¢, EERHE M E ¢?
o M={p,q}, ¢=(p——q) — (¢V-p)
o Yes, B0 M F ¢
o M ={p,~q}, ¢=(p——q) — (qV-p)
o No, Bl M ¥ ¢
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EX M F ¢? Logics

1. Propositional Logic | Evaluate ¢: Example

Bl BER

pla|l-»p|-q]|p

mm - -
m-—m-

EFEFED: XFOT M ¢, BEERHE M E ¢7?
o M={p,q}, o= (p——q) = (¢V D)
o Yes, B MF ¢
o M ={p,~q}, ¢=(p——q) — (qV-p)
o No, B) M ¥ ¢
o M={p}, ¢=(p——q) — (¢V-p)
o TTEHE, FRR: AEBATE (EEHIIEM)
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EX M F ¢? Logics

1. Propositional Logic | Evaluate ¢: Example

Bl BER

EFEFED: XFOT M ¢, BEERHE M E ¢7?
o M={p,q}, o= (p——q) = (¢V D)
o Yes, B M E ¢
o M ={p,~q}, ¢=(p——q) — (qV-p)
o No, B) M ¥ ¢
o M={p}, ¢=(p——q) — (¢V-p)
o TTEHE, FRR: AEBATE (EEHIIEM)
o M= {p,—p}, ¢=(p——q) = (¢V-p)
o NEFEFE (BEHIAE)
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EX M F ¢? Logics

1. Propositional Logic | Semantic entailment relation

EFEFED: XFOT M ¢, BEERHE M E ¢7?
o M={p,q}, o= (p——q) = (¢V-p)
o Yes, Bl M E ¢
o M={p,~q}, ¢=(p——q) — (qV-p)
o No, Bl M E —¢
o M={p} ¢=(p——q) — (¢V-p)
o TEHE, FRR: AEATE (BEHINE)
o M ={p,—p}, o= (p— —q) = (¢V —p)
o NEFEFE (BEHINAE)
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TENX M F ¢? Logics

1. Propositional Logic | Semantic entailment relation

EFEFED: XFOT M ¢, BEERHE M E ¢7?
o M={p,q}, o= (p——q) = (¢V-p)
o Yes, Bl M E ¢
o M={p,~q}, ¢=(p——q) — (qV-p)
o No, Bl M E —¢
o M={p} ¢=(p——q) — (¢V-p)
o TEHE, FRR: AEATE (BEHINE)
o M ={p,—p}, o= (p— —q) = (¢V —p)
o NEFEFE (BEHINAE)

TENX: Semantic entailment relation

If, for all valuations in which all ¢1, ¢o, ..., ¢, evaluate to T, 1) evaluates
to T as well, we say that

¢17¢27~~7¢n':¢

holds and call E the semantic entailment relation.
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1. Propositional Logic | Complexity

fl: HEx
plal-p|l-a|p=-q|lqv-p|loé=p——q —(qV-p
T T| F|F F T T
TIFIF|T| T F F
FIT|T|F T T T
FIFIT|T| T T T
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TEX M F1 ¢? Logics

1. Propositional Logic | Complexity

fl: HEx
plal-p|l-a|p=-q|lqv-p|loé=p——q —(qV-p
T|T|F|F F T T
TIFIF|T| T F F
FIT|T|F T T T
FIF|T|T| T T T
S5E?
o B M [RFBAINEA n, FIEFEIBEA O(2").
o BAN?
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X M F ¢? Logics

2. First-order Logic | Introduction

[BJ@&: Consider the declarative sentence:
@ Every student is younger than some instructor.
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X M F ¢? Logics

2. First-order Logic | Introduction

[B]8R: Consider the declarative sentence:
@ Every student is younger than some instructor.
o How to define when there are 1,000,000,000 students?
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X M F ¢? Logics

2. First-order Logic | Introduction

[BJ@&: Consider the declarative sentence:
@ Every student is younger than some instructor.

o How to define when there are 1,000,000,000 students?
e Moreover, how to specify an instructor for each student?
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X M F ¢? Logics

2. First-order Logic | Introduction

[BJ@&: Consider the declarative sentence:
@ Every student is younger than some instructor.
o How to define when there are 1,000,000,000 students?
e Moreover, how to specify an instructor for each student?
f#IRT5i%: Design a richer language (logic):
e Predicate Logic (1B1aliZ48), a.k.a, First-order Logic (—[iZ4E)
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X M F ¢? Logics

2. First-order Logic | Introduction

[BJ@&: Consider the declarative sentence:
@ Every student is younger than some instructor.
o How to define when there are 1,000,000,000 students?
e Moreover, how to specify an instructor for each student?
f#IRT5i%: Design a richer language (logic):
e Predicate Logic (1B1aliZ48), a.k.a, First-order Logic (—[iZ4E)

o Inherit Propositional Logic
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X M F ¢? Logics

2. First-order Logic | Introduction

[BJ@&: Consider the declarative sentence:
@ Every student is younger than some instructor.

o How to define when there are 1,000,000,000 students?
e Moreover, how to specify an instructor for each student?

f#IRT5i%: Design a richer language (logic):
e Predicate Logic (1B1aliZ48), a.k.a, First-order Logic (—[iZ4E)

o Inherit Propositional Logic
o Introduce Predicate

S(andy) to denote that Andy is a student.

I(paul) to say that Paul is an instructor.

Y (andy, paul) could mean that Andy is younger than Paul.

The symbols S, I and Y are called predicates.
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X M F ¢? Logics

2. First-order Logic | Introduction

[BJ@&: Consider the declarative sentence:
@ Every student is younger than some instructor.

o How to define when there are 1,000,000,000 students?
e Moreover, how to specify an instructor for each student?

f#IRT5i%: Design a richer language (logic):
e Predicate Logic (1B1aliZ48), a.k.a, First-order Logic (—[iZ4E)
o Inherit Propositional Logic
o Introduce Predicate

S(andy) to denote that Andy is a student.

o I(paul) to say that Paul is an instructor.

e Y (andy, paul) could mean that Andy is younger than Paul.
@ The symbols S, I and Y are called predicates.

e Introduce quantifiers ¥V and 3
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X M F ¢? Logics

2. First-order Logic | Introduction

[BJ@&: Consider the declarative sentence:
@ Every student is younger than some instructor.

o How to define when there are 1,000,000,000 students?
e Moreover, how to specify an instructor for each student?

f#IRT5i%: Design a richer language (logic):
e Predicate Logic (1B1aliZ48), a.k.a, First-order Logic (—[iZ4E)
o Inherit Propositional Logic
o Introduce Predicate

S(andy) to denote that Andy is a student.
o I(paul) to say that Paul is an instructor.
e Y (andy, paul) could mean that Andy is younger than Paul.
@ The symbols S, I and Y are called predicates.

e Introduce quantifiers ¥V and 3

e V: for all,
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X M F ¢? Logics

2. First-order Logic | Introduction

[BJ@&: Consider the declarative sentence:
@ Every student is younger than some instructor.

o How to define when there are 1,000,000,000 students?
e Moreover, how to specify an instructor for each student?

f#IRT5i%: Design a richer language (logic):
e Predicate Logic (1B1aliZ48), a.k.a, First-order Logic (—[iZ4E)
o Inherit Propositional Logic
o Introduce Predicate

S(andy) to denote that Andy is a student.

o I(paul) to say that Paul is an instructor.

e Y (andy, paul) could mean that Andy is younger than Paul.
@ The symbols S, I and Y are called predicates.

e Introduce quantifiers ¥V and 3

e V: for all, 3: there exists
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TEX M F1 ¢? Logics

2. First-order Logic | Introduction

[BJ@&: Consider the declarative sentence:
@ Every student is younger than some instructor.

o How to define when there are 1,000,000,000 students?
e Moreover, how to specify an instructor for each student?

f#IRT5i%: Design a richer language (logic):
e Predicate Logic (1B1aliZ48), a.k.a, First-order Logic (—[iZ4E)
o Inherit Propositional Logic
o Introduce Predicate

S(andy) to denote that Andy is a student.

o I(paul) to say that Paul is an instructor.

e Y (andy, paul) could mean that Andy is younger than Paul.
@ The symbols S, I and Y are called predicates.

e Introduce quantifiers ¥V and 3

e V: for all, 3: there exists

BR: Yz (S() = Gy (L) AY(2,9))))
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TENX M F ¢? Logics

2. First-order Logic | Definition of the language (First-order Logic)

ENX: Term
@ Any variable is a term.

@ If ¢ € F is a nullary function, then c is a term.

o If t1,to,...,t, are terms and f € F has arity n > 0, then
f(t1,ta, ..., ty) is a term.

o Nothing else is a term.

ENX: Term in BNF

| A\,

tu=zxlc| ft,....t)

where = ranges over a set of variables var, ¢ over nullary function symbols
in F, and f over those elements of F with arity n > 0.

\
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TEX M F1 ¢? Logics

2. First-order Logic | Definition of the language (First-order Logic)

ENX: Term in BNF
tu=ux|c| f(t,..,t)

where = ranges over a set of variables var, ¢ over nullary function symbols
in F, and f over those elements of F with arity n > 0.
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TENX M F ¢? Logics

2. First-order Logic | Definition of the language (First-order Logic)

ENX: Term in BNF

tu=ux|c| f(t,..,t)

where = ranges over a set of variables var, ¢ over nullary function symbols
in F, and f over those elements of F with arity n > 0.

TEM.: First-order Logic in BNF

¢ = Pt t2,. ., tn) | (79) [ (9A Q) [ (9V @) [ (¢ = ¢) | (Vz ¢) | (3 )

where P € P is a predicate symbol of arity n > 1, t; are terms over F and
x is a variable.
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TENX M F ¢? Logics

2. First-order Logic | Define M

[EIZ)E: IMAIENX M?

ENM: M

Let F be a set of function symbols and P a set of predicate symbols, each
symbol with a fixed number of required arguments. A model M of the
pair (F,P) consists of the following set of data:

@ A non-empty set A, the universe of concrete values
@ for each nullary function symbol f € F, a concrete element fM of A

© for each f € F with arity n > 0, a concrete function fM: A" — A
from A™, the set of n-tuples over A, to A

Q for each P € P with arity n > 0, a subset P C A™ of n-tuples over
A.

v
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X M F ¢? Logics

2. First-order Logic | Define M

[EIZJERR: ANEIEN M?

Bl (BzN):

Let F & {i} and P ={R, F};
@ 7 is a constant

@ F' a predicate symbol with one
argument

@ R a predicate symbol with two
arguments
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X M F ¢? Logics

2. First-order Logic | Define M

[EIZJERR: ANEIEN M?

Bl (Eap):

Let F & {i} and P ={R, F};
@ ¢ is a constant

@ F' a predicate symbol with one
argument

@ R a predicate symbol with two
arguments
A model M may contain:
@ A: a set of states of a computer

program.

o iM: a designated initial state.

@ RM: a state transition relation.

o FM: a set of final (accepting) states.
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TEX M F1 ¢? Logics

2. First-order Logic | Define M
[EIZJERT: WMEIEN. M?

Bl (Bshil): M RYSEH:
Let F & {i} and P ={R, F}; 0o A% {a,b,c}
@ ¢ is a constant o iM=q
@ F a predicate symbol with one o RMEf (a,a),(a,b),
argument (a,c), (b,c),(c,c)}
@ R a predicate symbol with two o FM =1b, c}.
arguments

A model M may contain:

@ A: a set of states of a computer
program.

o iM: a designated initial state.
e RM: a state transition relation.

o FM: a set of final (accepting) states.
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X M F ¢? Logics

2. First-order Logic | Define M

[EIZJERR: ANEIEN M?

Bl (Eap):

Let F & {i} and P ={R, F};
@ ¢ is a constant

@ F' a predicate symbol with one
argument

@ R a predicate symbol with two
arguments

A model M may contain:

@ A: a set of states of a computer
program.

o iM: a designated initial state.
e RM: a state transition relation.

o FM: a set of final (accepting) states.

M BISEAI:

o RME {(a,a),(a,b),
(a,¢), (b,0), (¢, 0)}
o FM ={b c}.
¢ HISCHR:
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X M F ¢? Logics

2. First-order Logic | Define M

[EIZJERR: ANEIEN M?

Bl (Eap):

Let F & {i} and P ={R, F};
@ ¢ is a constant

@ F' a predicate symbol with one
argument

@ R a predicate symbol with two
arguments

A model M may contain:

@ A: a set of states of a computer
program.

o iM: a designated initial state.
e RM: a state transition relation.

o FM: a set of final (accepting) states.

M BISEAI:

o RME {(a,a),(a,b),
(a,0), (b,¢). (e, )}

o FM ={b c}.
¢ HYSEH:
o Jy R(i,y)
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X M F ¢? Logics

2. First-order Logic | Define M

[EIZJERR: ANEIEN M?

Bl (Eap):

Let F & {i} and P ={R, F};
@ ¢ is a constant

@ F' a predicate symbol with one
argument

@ R a predicate symbol with two
arguments

A model M may contain:

@ A: a set of states of a computer
program.

o iM: a designated initial state.
e RM: a state transition relation.

o FM: a set of final (accepting) states.

M BISEAI:

o R”M ¥ ((4,a), (a,b),
(a,c), (b,c), (c,c)}
o FM ={b c}.
¢ HISEA3:
o Jy R(i,y)
e —F (i)
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X M F ¢? Logics

2. First-order Logic | Define M

[EIZJERR: ANEIEN M?

Bl (Eap):

Let F & {i} and P ={R, F};
@ ¢ is a constant

@ F' a predicate symbol with one
argument

@ R a predicate symbol with two
arguments
A model M may contain:
@ A: a set of states of a computer

program.

o iM: a designated initial state.

@ RM: a state transition relation.

o FM: a set of final (accepting) states.

M BISEAI:

o RME {(a,a),(a,b),
(a,c), (b,c), (c,c)}

o FM ={b c}.

¢ BISEH:

e Jy R(i,y)

e —F (i)

o VaVyVz (R(z,y) A
R(z,z) =y =2)
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2. First-order Logic | Define M

[EIZJERR: ANEIEN M?

Bl (Eap):

Let F & {i} and P ={R, F};
@ ¢ is a constant

@ F' a predicate symbol with one
argument

@ R a predicate symbol with two
arguments
A model M may contain:
@ A: a set of states of a computer

program.

o iM: a designated initial state.

@ RM: a state transition relation.

o FM: a set of final (accepting) states.

M BISEAI:

o RM  {(4,q), (a,b),
(a,¢), (b, ¢), (¢, c)}

o FM ={b c}.

¢ HISLH:

° 3y R(i,y)

e —F (i)

o VaVyVz (R(z,y) A
R(z,z) > y=2)

e Vz3dy R(x,y)
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EX M F ¢? Logics

2. First-order Logic | Evaluation

EZIER: ITLEE M M ¢, BEBE M F ¢?
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X M F ¢? Logics

2. First-order Logic | Evaluation

EZ)ER: JFFEE M 1 ¢, EEBHE M E ¢?
EARTE: L Propositional Logic, BZFTETER
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X M F ¢? Logics

2. First-order Logic | Evaluation

EZ)ER: JFFEE M 1 ¢, EEBHE M E ¢?
EARTE: L Propositional Logic, BZFTETER

O TN Environment [
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EX M F ¢? Logics

2. First-order Logic | Evaluation

EREFET: WFEE M 1 ¢, EBHE M E ¢7?
EARTE: L Propositional Logic, BZFTETER
Q@ EM Environment [
Q@ ENX F
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TEX M F1 ¢? Logics

2. First-order Logic | Evaluation

BIZIFRR: XFLEE M F ¢, BEBE M E ¢?
EARFE: UL Propositional Logic, MZFFBER
O TN Environment [
Q0 EX K
QO WM& K
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TENX M F ¢? Logics

2. First-order Logic | Evaluation

BIZIFRR: XFLEE M F ¢, BEBE M E ¢?
BHAKF%: 2K Propositional Logic, BaRFB &R
O TN Environment [
Q0 EX K
Q HE F KiEE

@ /:var— A

e Type: from the set of variables var to A
o A look-up table or environment for a universe A of concrete values
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TENX M F ¢? Logics

2. First-order Logic | Evaluation

BIZIFRR: XFLEE M F ¢, BEBE M E ¢?
BHAKF%: 2K Propositional Logic, BaRFB &R
O TN Environment [
Q0 EX K
Q HE F KiEE

@ /:var— A

e Type: from the set of variables var to A
o A look-up table or environment for a universe A of concrete values

o [[x+— d]
o the look-up table
e maps z to a and any other variable y to (y)
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TENX M F ¢? Logics

2. First-order Logic | Evaluation

ENX: Environment [

@ /:var— A
o A look-up table or environment for a universe A of concrete values
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TENX M F ¢? Logics

2. First-order Logic | Evaluation

@ /[:var -+ A

o A look-up table or environment for a universe A of concrete values

ENX F

Given a model M for a pair (F,P) and given an environment [, we
define the satisfaction relation M &; ¢ for each logical formula ¢ over the
pair (F,P) and look-up table [ by structural induction on ¢.

If M E; ¢ holds, we say that ¢ computes to 7" in the model M with
respect to the environment /.

| \
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TENX M F ¢? Logics

2. First-order Logic | Evaluation

@ /[:var -+ A

o A look-up table or environment for a universe A of concrete values

EX F

Given a model M for a pair (F,P) and given an environment [, we
define the satisfaction relation M &; ¢ for each logical formula ¢ over the
pair (F,P) and look-up table [ by structural induction on ¢.

If M E; ¢ holds, we say that ¢ computes to 7" in the model M with
respect to the environment /.

M E ¢ holds, iff for all choices of I, M F; ¢
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X M F ¢? Logics

2. First-order Logic | Evaluation

SERARE: HHESRERL T aRREENEREMFEX
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X M F ¢? Logics

2. First-order Logic | Evaluation

SERA: HHESRER T aRREENESREMFEX
BELERRRR: SE BRI
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TENX M F ¢? Logics

2. First-order Logic | Evaluation

SPEIEE. HESREEL T o EmBENSMENTEA
EEMI: SRR

[BIER: [AIRRELARRA? — [A)RR 4
Given aset A C S, and z € S, whether there is a machine that can
compute whether z € A.

@ Define a new machine, named Turing machine, BR¥1.

@ If yes, i.e., there is a Turing machine M for A, language A is
decidable.

@ If no, but there is a Turing machine M that can only accept s, if
s € A, language A is still Turing-recognizable.
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TENX M F ¢? Logics

2. First-order Logic | Evaluation

SPEIEE. HESREEL T o EmBENSMENTEA
EEMI: SRR

[BIER: [AIRAATLARRA? — (A)RK 4
Given a set A C S, and x € S, whether there is a machine that can
compute whether z € A.

@ Define a new machine, named Turing machine, BR¥1.

@ If yes, i.e., there is a Turing machine M for A, language A is
decidable.

@ If no, but there is a Turing machine M that can only accept s, if
s € A, language A is still Turing-recognizable.

TEI8 (Undecidability in First-order logic)

The decision problem of validity in predicate logic is undecidable: no
program exists which, given any ¢, decides whether F ¢.
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X M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

B—ME@&: First-order Logic HIFRIABEST?
o BERIAFFBIREA?
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X M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

B—ME@&: First-order Logic HIFRIABEST?
o BERIAFTBIRIRAA?
fRE: BB RHI—AME (directed graph) AR
@ Software models, design standards, and execution models of hardware
or programs often are described in terms of directed graphs.
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X M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

B—ME@&: First-order Logic HIFRIABEST?
o BERIAFTBIRIRAA?
fRE: BB RHI—AME (directed graph) AR
@ Software models, design standards, and execution models of hardware
or programs often are described in terms of directed graphs.

Given a set of states A = {sq, 51, 52,53}, let RM be the set

{(505 51)7 (817 50)7 (517 81)7 (517 52)7 (52a 50)’ (535 50)7 (837 52)}' We may
depict this model as a directed graph in a figure, where an edge (a
transition) leads from a node s to a node s’ iff (s,s') € RM.
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TEX M F1 ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

Given a set of states A = {sg, 51, 52,53}, let RM be the set
{(s0,51), (51, %0), (51, 51), (51, 82), (52, 50), (83, 50), (53, 82) }. We may
depict this model as a directed graph in a figure, where an edge (a
transition) leads from a node s to a node s’ iff (s,s") € RM.
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TENX M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

Given a set of states A = {sg, 51, 52,53}, let RM be the set
{(s0,51), (s1,50), (51, 51), (51, 82), (52, 50), (83, 50), (83, 52) }. We may
depict this model as a directed graph in a figure where an edge (a
transition) leads from a node s to a node s’ iff (s,s") € RM.
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TENX M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

Given a set of states A = {sg, 51, 52,53}, let RM be the set
{(s0,51), (s1,50), (51, 51), (51, 82), (52, 50), (83, 50), (83, 52) }. We may
depict this model as a directed graph in a figure where an edge (a
transition) leads from a node s to a node s’ iff (s,s") € RM.

245: How to define Reachability as ¢

Given nodes n and n’ in a directed graph, is there a finite path of
transitions from n to n'?

= =
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3. Higher-order Logic | Limitation of first-order logic

245: How to define Reachability as ¢

Given nodes n and n’ in a directed graph, is there a finite path of
transitions from n to n/?

EHB nhttps://faculty.ustc.edu.cn/hu: R EESS]



https://faculty.ustc.edu.cn/huangwenchao

TENX M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

>
S1 So

245: How to define Reachability as ¢

Given nodes n and n’ in a directed graph, is there a finite path of
transitions from n to n/?

[ —FpESEE
(u = v)VIz(R(u, z) AR(x,v))VIx1Ize(R(u, 1) AR(z1, x2) AR(22,v)) V...
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TENX M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

>
S1 So

245: How to define Reachability as ¢

Given nodes n and n’ in a directed graph, is there a finite path of
transitions from n to n/?

[ —FpESEE
(u = v)VIz(R(u, z) AR(x,v))VIx1Ize(R(u, 1) AR(z1, x2) AR(22,v)) V...

e This is infinite, so it’ s not a well-formed formula.
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TENX M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

>
S1 So

245: How to define Reachability as ¢

Given nodes n and n’ in a directed graph, is there a finite path of
transitions from n to n/?

[ —FpESEE
(u = v)VIz(R(u, z) AR(x,v))VIx1Ize(R(u, 1) AR(z1, x2) AR(22,v)) V...

e This is infinite, so it’ s not a well-formed formula.

@ Can we find a well-formed formula with the same meaning?
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TENX M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

>
S1 So

245: How to define Reachability as ¢

Given nodes n and n’ in a directed graph, is there a finite path of
transitions from n to n/?

[ —FpESEE
(u = v)VIz(R(u, z) AR(x,v))VIx1Ize(R(u, 1) AR(z1, x2) AR(22,v)) V...

e This is infinite, so it’ s not a well-formed formula.

@ Can we find a well-formed formula with the same meaning? No!
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X M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic
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EX M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

BH—2oa): BEAA First-order Logic ABERIA ¢, APFEATRIA
o {#FH Second-order Logic
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X M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

BH—2oa): BEAA First-order Logic ABERIA ¢, APFEATRIA
o {#FH Second-order Logic
o BAFE?

e This can be realized by applying quantifiers not only to variables, but
also to predicate symbols.
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TENX M F ¢? Logics

3. Higher-order Logic | Limitation of first-order logic

BH—2oa): BEAA First-order Logic ABERIA ¢, APFEATRIA
o {#FH Second-order Logic
o BAFE?

e This can be realized by applying quantifiers not only to variables, but
also to predicate symbols.

Bl EX.: First-order Logic in BNF

¢ = Pt t2,..,tn) | (9) [ (9 A Q) [ (9V @) [ (¢ = ¢) | (Vz ¢) | (3z )

where P € P is a predicate symbol of arity n > 1, ¢; are terms over F and
x is a variable.
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3. Higher-order Logic | Second-order Logic

Bl EX.: First-order Logic in BNF

¢ = P(t1,t2,...,tn) | (=9) [ (9 A Q) [ (9V @) [ (¢ = ¢) | (Vz ¢) | (3z &)

where P € P is a predicate symbol of arity n > 1, ¢; are terms over F and
x is a variable. )
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TENX M F ¢? Logics

3. Higher-order Logic | Second-order Logic

Bl EX.: First-order Logic in BNF

¢ = P(t1,t2,...,tn) | (=9) [ (9 A Q) [ (9V @) [ (¢ = ¢) | (Vz ¢) | (3z &)

where P € P is a predicate symbol of arity n > 1, ¢; are terms over F and
x is a variable.

fRR R
For a predicate symbol P with n > 1 arguments, consider formulas of the
form:

o

P ¢

where ¢ is a formula of predicate logic in which P occurs.
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TEX M F1 ¢? Logics

3. Higher-order Logic | Second-order Logic

[2f5l: —FhE& =2 First-order Logic (Not well-formed)
(u = v)VIx(R(u,x) AR(x,v))VIzi1Ize(R(u, 1) AR(x1, £2) AR(22,))V...
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3. Higher-order Logic | Second-order Logic

[2f5l: —FhE& =2 First-order Logic (Not well-formed)
(u = v)VIx(R(u,x) AR(x,v))VIzi1Ize(R(u, 1) AR(x1, £2) AR(22,))V...

B{RZZ: Second-order Logic

—3APVzVyVz (01 A Cy A Cs A\ C4)
where
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EX M F ¢? Logics

3. Higher-order Logic

T—"NalRE: Bi&8 Third-order Logic, Fourth-order Logic,...?
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EX M F ¢? Logics

3. Higher-order Logic

T—"NalRE: Bi&8 Third-order Logic, Fourth-order Logic,...?
B2 B
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TEX M F1 ¢? Logics

3. Higher-order Logic

T—"NalRE: Bi&8 Third-order Logic, Fourth-order Logic,...?
Ex A

o First-order logic quantifies only variables that range over individuals
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3. Higher-order Logic

T—"NalRE: Bi&8 Third-order Logic, Fourth-order Logic,...?
]
o First-order logic quantifies only variables that range over individuals
@ Second-order logic, in addition, also quantifies over sets
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TEX M F1 ¢? Logics

3. Higher-order Logic

T—"NalRE: Bi&8 Third-order Logic, Fourth-order Logic,...?
]
o First-order logic quantifies only variables that range over individuals
@ Second-order logic, in addition, also quantifies over sets

e e.g., we can define P(z,y) = (z,y) € P, where P is a set.
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TEX M F1 ¢? Logics

3. Higher-order Logic

T—"NalRE: Bi&8 Third-order Logic, Fourth-order Logic,...?
]
o First-order logic quantifies only variables that range over individuals
@ Second-order logic, in addition, also quantifies over sets
e e.g., we can define P(z,y) = (z,y) € P, where P is a set.

@ Third-order logic also quantifies over sets of sets, and so on.
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X M F ¢? Logics

3. Higher-order Logic

T—/NaJfR: Bi&AF Third-order Logic, Fourth-order Logic,...?
]
o First-order logic quantifies only variables that range over individuals
@ Second-order logic, in addition, also quantifies over sets
e e.g., we can define P(z,y) = (z,y) € P, where P is a set.
@ Third-order logic also quantifies over sets of sets, and so on.
Higher-order logic is the union of first-, second-, third-, ..., nth-order logic

@ i.e., higher-order logic admits quantification over sets that are nested
arbitrarily deeply.
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a. Compute the complete truth table of the formula:

O (p—9—p—p

@ (pAg)— (pVa)

Q@ (p—~aVp——q

Q@ ((pvg)—r)=((p—=r)Vig—r))
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1. Use the predicates

A(z,y): x admires y
B(z,y): =z attended y
P(z): =z is a professor
S(x): zis a student
L(z): =z is alecture
and the nullary function symbol (constant)

m: Mary

to translate the following into predicate logic:
(a) Mary admires every professor.
(The answer is not Vo A(m, P(z)).)
(b) Some professor admires Mary.
(c) Mary admires herself.
(d) No student attended every lecture.
(e) No lecture was attended by every student.
(f) No lecture was attended by any student.
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2. Consider the sentence ¢ = Va 3y 3z (P(z,y) A P(z,y) A (P(x,2) — P(z,2))).

Which of the following models satisfies ¢7

(a) The model M consists of the set of natural numbers with PM < {(m, n) |
m < n}.

(b) The model M’ consists of the set of natural numbers with PM" % {(m, 2 «
m) | m natural number}.

(¢) The model M” consists of the set of natural numbers with PM" % {(m_n) |
m <mn+ 1}
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