形式化方法导引

第3章 经典数理逻辑-问题求解基础

黄文超

https://faculty.ustc.edu.cn/huangwenchao

→ 教学课程 → 形式化方法导引

本章内容

回顾:

- Define verification
 - $\mathcal{M} \models \phi$
- A method of define \mathcal{M} and ϕ : Logics
 - Propositional logic
 - Predicate logic
 - Higher-order logic

本章内容:

- A method of verification
 - Rules of Natural Deduction

Verifier —— Logic (回顾)

回顾: 定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \models \phi$$

- ullet $\mathcal M$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing =.

下一个问题:

- 问: 如何统一化定义 \mathcal{M} 和 ϕ ? 答: Logics (已介绍)
- 问: 如何支持 ⊨ 和 algorithms? 答: Rules

Verifier —— Logic (回顾)

回顾: 定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet $\mathcal M$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing =.

下一个问题:

- 问: 如何统一化定义 \mathcal{M} 和 ϕ ? 答: Logics (已介绍)
- 问: 如何支持 ⊨ 和 algorithms? 答: Rules

Verifier —— Logic (回顾)

回顾: 定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet $\mathcal M$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing =.

下一个问题:

- 问: 如何统一化定义 \mathcal{M} 和 ϕ ? 答: Logics (已介绍)
- 问: 如何支持 ⊨ 和 algorithms? 答: Rules

(回顾) 命题逻辑-真值表-复杂度?

- 若 \mathcal{M} 原子命题的个数为 n, 判定所需时间为 $O(2^n)$.
- 一阶逻辑-复杂度
 - 至少不比命题逻辑简单
- 一阶逻辑-可计算性?

定理(*Undecidability* in First-order logic)

The decision problem of validity in predicate logic is *undecidable*: no program exists which, given any ϕ , decides whether $\vDash \phi$.

针对复杂度: 怎么办? 首先, 定义新的rules, 即本章内容

针对可计算性: 怎么办?利用前述定理, 推导出后续方法的极限

(回顾) 命题逻辑-真值表-复杂度?

- 若 \mathcal{M} 原子命题的个数为 n, 判定所需时间为 $O(2^n)$.
- 一阶逻辑-复杂度?
 - 至少不比命题逻辑简单
- 一阶逻辑-可计算性?

定理(*Undecidability* in First-order logic)

The decision problem of validity in predicate logic is *undecidable*: no program exists which, given any ϕ , decides whether $\models \phi$.

针对复杂度:怎么办?首先,定义新的rules,即本章内容

针对可计算性: 怎么办?利用前述定理, 推导出后续方法的极限

(回顾) 命题逻辑-真值表-复杂度?

- 若 \mathcal{M} 原子命题的个数为 n, 判定所需时间为 $O(2^n)$.
- 一阶逻辑-复杂度?
 - 至少不比命题逻辑简单
- 一阶逻辑-可计算性?

定理 (Undecidability in First-order logic)

The decision problem of validity in predicate logic is *undecidable*: no program exists which, given any ϕ , decides whether $\models \phi$.

针对复杂度: 怎么办? 首先, 定义新的rules, 即本章内容针对可计算性: 怎么办? 利用前述定理, 推导出后续方法的极限下面: 先介绍命题逻辑的求解基础

(回顾) 命题逻辑-真值表-复杂度?

- 若 \mathcal{M} 原子命题的个数为 n, 判定所需时间为 $O(2^n)$.
- 一阶逻辑-复杂度?
 - 至少不比命题逻辑简单
- 一阶逻辑-可计算性?

定理 (Undecidability in First-order logic)

The decision problem of validity in predicate logic is *undecidable*: no program exists which, given any ϕ , decides whether $\models \phi$.

针对复杂度:怎么办?首先,定义新的rules,即本章内容

针对可计算性: 怎么办?利用前述定理, 推导出后续方法的极限

(回顾) 命题逻辑-真值表-复杂度?

- 若 \mathcal{M} 原子命题的个数为 n, 判定所需时间为 $O(2^n)$.
- 一阶逻辑-复杂度?
 - 至少不比命题逻辑简单
- 一阶逻辑-可计算性?

定理 (Undecidability in First-order logic)

The decision problem of validity in predicate logic is *undecidable*: no program exists which, given any ϕ , decides whether $\models \phi$.

针对复杂度: 怎么办? 首先, 定义新的rules, 即本章内容

针对可计算性:怎么办?利用前述定理,推导出后续方法的极限

(回顾) 命题逻辑-真值表-复杂度?

- 若 \mathcal{M} 原子命题的个数为 n, 判定所需时间为 $O(2^n)$.
- 一阶逻辑-复杂度?
 - 至少不比命题逻辑简单
- 一阶逻辑-可计算性?

定理 (Undecidability in First-order logic)

The decision problem of validity in predicate logic is *undecidable*: no program exists which, given any ϕ , decides whether $\models \phi$.

针对复杂度:怎么办?首先,定义新的rules,即本章内容

针对可计算性: 怎么办? 利用前述定理, 推导出后续方法的极限

(回顾) 命题逻辑-真值表-复杂度?

- 若 \mathcal{M} 原子命题的个数为 n, 判定所需时间为 $O(2^n)$.
- 一阶逻辑-复杂度?
 - 至少不比命题逻辑简单
- 一阶逻辑-可计算性?

定理(*Undecidability* in First-order logic)

The decision problem of validity in predicate logic is *undecidable*: no program exists which, given any ϕ , decides whether $\models \phi$.

针对复杂度:怎么办?<mark>首先</mark>,定义新的*rules*,即本章内容 针对可计算性:怎么办?利用前述定理,推导出后续方法的极限

(回顾) 命题逻辑-真值表-复杂度?

- 若 \mathcal{M} 原子命题的个数为 n, 判定所需时间为 $O(2^n)$.
- 一阶逻辑-复杂度?
 - 至少不比命题逻辑简单
- 一阶逻辑-可计算性?

定理(*Undecidability* in First-order logic)

The decision problem of validity in predicate logic is *undecidable*: no program exists which, given any ϕ , decides whether $\models \phi$.

针对复杂度: 怎么办? 首先, 定义新的rules, 即本章内容

针对可计算性: 怎么办?利用前述定理, 推导出后续方法的极限

1. Propositional Logic | Natural Deduction

回顾, 定义: Semantic entailment relation

If, for all valuations in which all $\phi_1,\phi_2,\dots,\phi_n$ evaluate to ${\bf T}$, ψ evaluates to ${\bf T}$ as well, we say that

$$\phi_1, \phi_2, \dots, \phi_n \vDash \psi$$

holds and call \models the *semantic* entailment relation.

问题: ⊨ 求解复杂度过高

解决方法: New rules: a collection of *proof rules* in *natural deduction*.

- 不使用 Truth Tables 进行求解
- 定义并使用 proof rules
- 使用 proof rules 产生结论 (即 ⊢), 取代 ⊨, 即

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

1. Propositional Logic | Natural Deduction

回顾, 定义: Semantic entailment relation

If, for all valuations in which all $\phi_1,\phi_2,\dots,\phi_n$ evaluate to ${\bf T}$, ψ evaluates to ${\bf T}$ as well, we say that

$$\phi_1, \phi_2, \dots, \phi_n \vDash \psi$$

holds and call \models the *semantic* entailment relation.

问题: ⊨ 求解复杂度过高

解决方法: New rules: a collection of *proof rules* in *natural deduction*.

- 不使用 Truth Tables 进行求解
- 定义并使用 proof rules
- 使用 proof rules 产生结论 (即 ⊢), 取代 ⊨, 即

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

1. Propositional Logic | Natural Deduction

回顾, 定义: Semantic entailment relation

If, for all valuations in which all $\phi_1,\phi_2,\dots,\phi_n$ evaluate to ${\bf T}$, ψ evaluates to ${\bf T}$ as well, we say that

$$\phi_1, \phi_2, \dots, \phi_n \vDash \psi$$

holds and call \models the *semantic* entailment relation.

问题: ⊨ 求解复杂度过高

解决方法: New rules: a collection of *proof rules* in *natural deduction*.

- 不使用 Truth Tables 进行求解
- 定义并使用 proof rules
- 使用 proof rules 产生结论 (即 ⊢), 取代 ⊨, 即

 $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$

1. Propositional Logic | Natural Deduction

回顾, 定义: Semantic entailment relation

If, for all valuations in which all $\phi_1,\phi_2,\dots,\phi_n$ evaluate to ${\bf T}$, ψ evaluates to ${\bf T}$ as well, we say that

$$\phi_1, \phi_2, \dots, \phi_n \vDash \psi$$

holds and call \models the *semantic* entailment relation.

问题: ⊨ 求解复杂度过高

解决方法: New rules: a collection of *proof rules* in *natural deduction*.

- 不使用 Truth Tables 进行求解
- 定义并使用 proof rules
- 使用 proof rules 产生结论 (即 ⊢), 取代 ⊨, 即

 $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$

◆ロト 4周ト 4 章 ト 4 章 ト 章 めなべ

1. Propositional Logic | Natural Deduction

回顾, 定义: Semantic entailment relation

If, for all valuations in which all $\phi_1,\phi_2,\dots,\phi_n$ evaluate to ${\bf T}$, ψ evaluates to ${\bf T}$ as well, we say that

$$\phi_1, \phi_2, \dots, \phi_n \vDash \psi$$

holds and call \models the *semantic* entailment relation.

问题: ⊨ 求解复杂度过高

解决方法: New rules: a collection of *proof rules* in *natural deduction*.

- 不使用 Truth Tables 进行求解
- 定义并使用 proof rules
- 使用 proof rules 产生结论 (即 ⊢), 取代 ⊨, 即

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for conjunction: $\land i$, $\land e_1$, $\land e_2$

$$\frac{\phi \quad \psi}{\phi \wedge \psi}$$

$$\wedge i$$

$$\frac{\phi \wedge \psi}{\phi}$$

$$\wedge e_1$$

$$\wedge \psi$$

 $\wedge e_2$

例: Prove that $p \wedge q$, $r \vdash q \wedge r$ is valid

$$q \wedge r$$

$$\wedge e_2 1$$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for conjunction: $\wedge i$, $\wedge e_1$, $\wedge e_2$

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \quad \wedge i$$

$$\frac{\phi \wedge \psi}{}$$

$$\wedge \psi$$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for conjunction: $\wedge i$, $\wedge e_1$, $\wedge e_2$

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \quad \wedge i$$

$$\frac{\phi \wedge \psi}{\phi}$$

 $\wedge e_1$

$$\phi \wedge \psi$$

$$\frac{p \wedge q}{r}$$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for conjunction: $\land i$, $\land e_1$, $\land e_2$

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \quad \wedge i$$

$$\frac{\phi \wedge \phi}{\phi}$$

 $\wedge e_1$

$$\frac{b \wedge \psi}{d}$$

 $\wedge e_2$

例: Prove that $p \wedge q$, $r \vdash q \wedge r$ is valid

q

 $\alpha \wedge r$

Nea 1

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for conjunction: $\wedge i$, $\wedge e_1$, $\wedge e_2$

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \quad \wedge i$$

$$\wedge \, i$$

$$\frac{\phi \wedge \psi}{\phi} \wedge$$

$$\frac{\phi \wedge \psi}{\psi}$$

premise

premise $\wedge e_2$ 1

例: Prove that $p \wedge q$, $r \vdash q \wedge r$ is valid

$$\begin{array}{ccc}
1 & & p \wedge q \\
2 & & r \\
3 & & q
\end{array}$$

$$q \wedge r$$
 $\wedge i \ 3, 2$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for conjunction: $\wedge i$, $\wedge e_1$, $\wedge e_2$

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \quad \wedge i$$

$$\wedge \, i$$

$$\frac{\phi \wedge \psi}{\phi}$$

$$\wedge e_1$$

$$\frac{\partial \wedge \psi}{\partial x}$$

例: Prove that $p \wedge q$, $r \vdash q \wedge r$ is valid

 $p \wedge q$

$$q \wedge r$$

$$\wedge e_2 1$$

$$\wedge i \ 3, 2$$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for conjunction: $\wedge i$, $\wedge e_1$, $\wedge e_2$

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \quad \wedge i$$

$$\frac{\phi \wedge \psi}{}$$

$$\frac{\partial \wedge \psi}{\partial x}$$

例: Prove that $p \wedge q$, $r \vdash q \wedge r$ is valid

 $p \wedge q$

premise

premise

 $\wedge e_2$ 1

 $q \wedge r$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for conjunction: $\wedge i$, $\wedge e_1$, $\wedge e_2$

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \quad \wedge i$$

$$\frac{\phi \wedge \psi}{\phi}$$

$$\frac{\phi \wedge \psi}{\phi}$$

例: Prove that $p \wedge q$, $r \vdash q \wedge r$ is valid

 $p \wedge q$

premise

premise

 $\wedge e_2$ 1

 $q \wedge r$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for conjunction: $\wedge i$, $\wedge e_1$, $\wedge e_2$

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \quad \wedge i$$

$$\wedge \, i$$

$$\frac{\phi \wedge \psi}{\phi}$$

$$\wedge e_1$$

$$\frac{b \wedge \psi}{\psi}$$

$$\wedge e_2$$

例: Prove that $p \wedge q$, $r \vdash q \wedge r$ is valid

$$egin{array}{ccc} p \wedge q \ 2 & r \end{array}$$

$$q \wedge r$$

$$\wedge e_2$$
 1

$$\wedge i \ 3, 2$$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for double negation: $\neg \neg e, \neg \neg i$

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg e$

$$\frac{\varphi}{\neg \neg \phi}$$
 $\neg \neg \gamma$

例: Prove that $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$ is valid

 $\neg \neg p \wedge r$

$$\begin{array}{ccc}
2 & \neg \neg (q \land r) \\
3 & \neg \neg p \\
4 & q \land r \\
5 & r
\end{array}$$

premise premise
$$\neg \neg i \ 1$$
 $\neg \neg e \ 2$ $\land e_2 \ 4$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for double negation: $\neg \neg e, \neg \neg i$

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg \epsilon$

$$\frac{\varphi}{\neg \neg \phi}$$
 $\neg \neg$

 $\neg \neg i \ 1$

 $\neg \neg e \ 2$ $\wedge e_2 \ 4$

 $\wedge i \ 3, 5$

Prove that $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$ is valid

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for double negation: $\neg \neg e, \neg \neg i$

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg e$

$$\frac{\phi}{\neg \neg \phi}$$
 $\neg \neg \phi$

例: Prove that $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$ is valid

$$\begin{array}{ccc}
 & p \\
2 & \neg \neg (q \land r) \\
3 & \neg \neg p \\
4 & q \land r \\
5 & r \\
6 & \neg \neg p \land r
\end{array}$$

premise $\neg \neg i \ 1$

premise

 $\neg \neg e \ 2$

 $\wedge e_2 \ 4$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for double negation: $\neg \neg e, \neg \neg i$

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg e$

$$\frac{\phi}{\neg \neg \phi}$$
 $\neg \neg \phi$

例: Prove that $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$ is valid

$$\begin{array}{ccc}
 & p \\
2 & \neg \neg (q \land r) \\
3 & \neg \neg p \\
4 & q \land r \\
5 & r \\
6 & \neg \neg p \land r
\end{array}$$

premise $\neg \neg i \ 1$

premise

 $\neg \neg e \ 2$

 $\wedge e_2 \ 4$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for double negation: $\neg \neg e, \neg \neg i$

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg e$

$$\frac{\varphi}{\neg \neg \phi}$$
 $\neg \neg$

例: Prove that $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$ is valid

$$\neg \neg (q \land r)$$

$$\neg \neg p$$

$$\neg \neg (q \land r)$$
 premise
 $\neg \neg p$ $\neg \neg i 1$
 $q \land r$ $\neg \neg e 2$
 r $\land e_2 4$

6
$$\neg \neg p \wedge r$$

premise

$$\wedge e_2 \ 4$$

$$\wedge i \ 3, 5$$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for double negation: $\neg \neg e, \neg \neg i$

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg \epsilon$

$$\frac{\varphi}{\neg \neg \phi}$$
 $\neg \neg \gamma$

例: Prove that $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$ is valid

$$\begin{array}{ccc}
2 & \neg \neg (q \wedge r) \\
& \neg \neg p \\
& & a \wedge r
\end{array}$$

$$q \wedge r$$
 r

6
$$\neg \neg p \wedge r$$

premise premise

$$\neg \neg i \ 1$$

$$\neg \neg e \ 2$$

$$\wedge e_2 \ 4$$

$$\wedge i \ 3, 5$$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for double negation: $\neg \neg e, \neg \neg i$

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg \epsilon$

$$\frac{\varphi}{\neg \neg \phi}$$
 $\neg \neg$

Prove that $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$ is valid

$$\neg \neg p$$

$$q \wedge r$$

6
$$\neg \neg p \wedge r$$

$$\neg \neg i \ 1$$

$$\neg \neg e \ 2$$

$$\wedge e_2 \ 4$$

$$\wedge i \ 3, 5$$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for double negation: $\neg \neg e, \neg \neg i$

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg \epsilon$

$$\frac{\varphi}{\neg \neg \phi}$$
 $\neg \neg$

例: Prove that $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$ is valid

$$\begin{array}{ccc}
2 & & \neg \neg (q \land r) \\
3 & & \neg \neg p \\
4 & & q \land r
\end{array}$$

$$\neg \neg p
q \wedge r
r
\neg \neg p \wedge r$$

premise premise

 $\neg \neg i \ 1$

 $\neg \neg e \ 2$

 $\wedge e_2 \ 4$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for double negation: $\neg \neg e, \neg \neg i$

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg \epsilon$

$$\frac{\phi}{\neg \neg \phi}$$
 $\neg \neg$

例: Prove that $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$ is valid

 $\neg\neg p \wedge r$

$$\begin{array}{ccc}
2 & & \neg \neg (q \wedge r) \\
3 & & \neg \neg p \\
4 & & q \wedge r \\
5 & & r
\end{array}$$

premise premise
$$\neg i \ 1$$
 $\neg e \ 2$ $\land e_2 \ 4$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for double negation: $\neg \neg e, \neg \neg i$

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg \epsilon$

$$\frac{\varphi}{\neg \neg \phi}$$
 $\neg \neg$

Prove that $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$ is valid

 $\neg \neg p \wedge r$

$$\begin{array}{ccc}
2 & & \neg \neg (q \wedge r) \\
3 & & \neg \neg p \\
4 & & q \wedge r \\
5 & & r
\end{array}$$

premise premise
$$\neg \neg i \ 1$$

$$\neg \neg e \ 2$$
 $\land e_2 \ 4$
 $\land i \ 3, 5$

6

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for eliminating implication: $\rightarrow e$

$$\frac{\phi \quad \phi \to \psi}{\psi} \quad \to \epsilon$$

例: Prove that $p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r$ is valid

1	$p \to (q \to r)$	premise
2	$p \to q$	premise
3	p	premise
4	$q \rightarrow r$	$\rightarrow e 1, 3$
5	q	$\rightarrow e 2, 3$
6	r	e 4, 5

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for eliminating implication: $\rightarrow e$

$$\frac{\phi \quad \phi \to \psi}{\psi} \quad \to \epsilon$$

1	$p \to (q \to r)$	premise
2	$p \to q$	premise
3	p	premise
4	$q \to r$	$\rightarrow e 1, 3$
5	q	$\rightarrow e 2, 3$
6	r	e 4.5

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for eliminating implication: $\rightarrow e$

$$\frac{\phi \quad \phi \to \psi}{\psi} \quad \to \epsilon$$

1	$p \to (q \to r)$	premise
2	p o q	premise
3	p	premise
4	$q \rightarrow r$	$\rightarrow e 1, 3$
5	q	$\rightarrow e 2, 3$
6	r	e 4.5

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for eliminating implication: $\rightarrow e$

$$\frac{\phi \quad \phi \to \psi}{\psi} \quad \to \epsilon$$

1	$p \to (q \to r)$	premise
2	$p \to q$	premise
3	p	premise
4	q o r	$\rightarrow e 1, 3$
5	q	$\rightarrow e 2, 3$
6	r	e 4, 5

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for eliminating implication: $\rightarrow e$

$$\frac{\phi \quad \phi \to \psi}{\psi} \quad \to \epsilon$$

1	$p \to (q \to r)$	premise
2	$p \rightarrow q$	premise
3	p	premise
4	$q \rightarrow r$	$\rightarrow e 1, 3$
5	q	$\rightarrow e 2, 3$
6	r	e 4, 5

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for eliminating implication: $\rightarrow e$

$$\frac{\phi \quad \phi \to \psi}{\psi} \quad \to \epsilon$$

例: Prove that $p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r$ is valid

1	$p \to (q \to r)$	premise
2	$p \to q$	premise
3	p	premise
4	$q \rightarrow r$	$\rightarrow e 1, 3$
5	q	$\rightarrow e 2, 3$
6	r	e 4, 5

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for eliminating implication: $\rightarrow e$

$$\frac{\phi \quad \phi \to \psi}{\psi} \quad \to \epsilon$$

1	$p \to (q \to r)$	premise
2	p o q	premise
3	p	premise
4	$q \rightarrow r$	$\rightarrow e 1, 3$
5	q	$\rightarrow e 2, 3$
6	r	e 4, 5

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for elminiating implication: modus tollens, MT

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \quad \text{MT}$$

例: If Abraham Lincoln was Ethiopian, then he was African.

• Abraham Lincoln was *not* African; therefore he was *not* Ethiopian.

注意: MT is not a primitive rule.

1	$p \to (q \to r)$	premise
2		premise
3		premise
4	$q \rightarrow r$	$\rightarrow e 1, 2$
5		MT 4-3

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for elminiating implication: modus tollens, MT

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \quad \text{MT}$$

例: If Abraham Lincoln was Ethiopian, then he was African.

• Abraham Lincoln was *not* African; therefore he was *not* Ethiopian.

1	$p \to (q \to r)$	premise
2		premise
3		premise
4	$q \rightarrow r$	$\rightarrow e 1, 2$
5		MT 4.3

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for elminiating implication: modus tollens, MT

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \quad \text{MT}$$

例: If Abraham Lincoln was Ethiopian, then he was African.

• Abraham Lincoln was *not* African; therefore he was *not* Ethiopian.

注意: MT is not a primitive rule.

1	$p \to (q \to r)$	premise
2		premise
3		premise
4	$q \rightarrow r$	$\rightarrow e 1, 2$
5		MT 4.3

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for elminiating implication: modus tollens, MT

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \quad \text{MT}$$

例: If Abraham Lincoln was Ethiopian, then he was African.

• Abraham Lincoln was *not* African; therefore he was *not* Ethiopian.

注意: MT is not a primitive rule.

1	$p \to (q \to r)$	premise
2		premise
3		premise
4	$q \rightarrow r$	$\rightarrow e 1, 2$
E		MT 4 9

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for elminiating implication: modus tollens, MT

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \quad \text{MT}$$

例: If Abraham Lincoln was Ethiopian, then he was African.

• Abraham Lincoln was *not* African; therefore he was *not* Ethiopian.

注意: MT is not a primitive rule.

1	$p \to (q \to r)$	premise
2	p	premise
3	$\neg r$	premise
4	$q \to r$	$\rightarrow e 1, 2$
5	$\neg a$	MT 4.3

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for elminiating implication: modus tollens, MT

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \quad \text{MT}$$

例: If Abraham Lincoln was Ethiopian, then he was African.

• Abraham Lincoln was *not* African; therefore he was *not* Ethiopian.

注意: MT is not a primitive rule.

1	$p \to (q \to r)$	premise
2	p	premise
3	$\lnot r$	premise
4	$q \rightarrow r$	$\rightarrow e 1, 2$
5	$\neg a$	MT 4.3

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for elminiating implication: modus tollens, MT

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \quad \text{MT}$$

例: If Abraham Lincoln was Ethiopian, then he was African.

Abraham Lincoln was not African; therefore he was not Ethiopian.

注意: MT is not a primitive rule.

1	$p \to (q \to r)$	premise
2	p	premise
3	$\neg r$	premise
4	q o r	$\rightarrow e 1, 2$
5	$\neg a$	MT 4.3

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for elminiating implication: modus tollens, MT

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \quad \text{MT}$$

例: If Abraham Lincoln was Ethiopian, then he was African.

• Abraham Lincoln was *not* African; therefore he was *not* Ethiopian.

注意: MT is not a primitive rule.

1	$p \to (q \to r)$	premise
2	p	premise
3	$\lnot r$	premise
4	$q \rightarrow r$	$\rightarrow e 1, 2$
5	$\neg q$	MT 4,3

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for elminiating implication: modus tollens, MT

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \quad \text{MT}$$

例: If Abraham Lincoln was Ethiopian, then he was African.

• Abraham Lincoln was *not* African; therefore he was *not* Ethiopian.

注意: MT is not a primitive rule.

1	$p \to (q \to r)$	premise
2	p	premise
3	eg r	premise
4	q o r	$\rightarrow e 1, 2$
5	$\neg q$	MT 4,3

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for elminiating implication: modus tollens, MT

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \quad \text{MT}$$

例: If Abraham Lincoln was Ethiopian, then he was African.

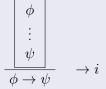
• Abraham Lincoln was *not* African; therefore he was *not* Ethiopian.

注意: MT is not a primitive rule.

1	$p \to (q \to r)$	premise
2	p	premise
3	$\lnot r$	premise
4	$q \rightarrow r$	$\rightarrow e 1, 2$
5	$\neg q$	MT 4, 3

1. Propositional Logic | Natural Deduction | Proof rules

定义: rule implies introduction: $\rightarrow i$



To prove $\phi \to \psi$, make a *temporary assumption* of ϕ and then prove ψ .

例: Prove that $\neg q \to \neg p \vdash p \to \neg \neg q$ is valid			
1	$\neg q \to \neg p$	premise	
2	p	assumption	
3	$\neg \neg p$	$\neg \neg i \ 2$	
4	$\neg \neg q$	MT 1,3	
5	$p \to \neg \neg q$	$\rightarrow i 2 - 4$	

1. Propositional Logic | Natural Deduction | Proof rules

例: Prove that $p \wedge q \to r \vdash p \to (q \to r)$ is valid $\begin{array}{cccc} 1 & p \wedge q \to r & \text{premise} \\ 2 & p & \text{assumption} \\ 3 & q & \text{assumption} \\ 4 & p \wedge q & \wedge i \ 2, 3 \\ 5 & r & \to e \ 1, 4 \\ 6 & q \to r & \to i \ 3 - 5 \\ 7 & p \to (q \to r) & \to i \ 2 - 6 \end{array}$

1. Propositional Logic | Natural Deduction | Proof rules

例: Prove that $p \to (q \to r) \vdash p \land q \to r$ is valid

1	$p \to (q \to r)$	premise
2	$p \wedge q$	assumption
3	p	$\wedge e_1 \ 2$
4	q	$\wedge e_2$ 2
5	$q \rightarrow r$	$\wedge e 1, 3$
6	r	$\wedge e 5, 4$
7	$p \wedge q \to r$	$\rightarrow i 2 - 6$

$$p \to (q \to r) \dashv \vdash p \land q \to r$$

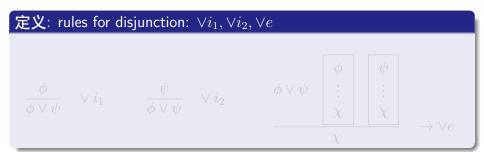
1. Propositional Logic | Natural Deduction | Proof rules

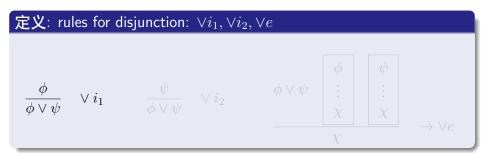
例: Prove that $p \to (q \to r) \vdash p \land q \to r$ is valid

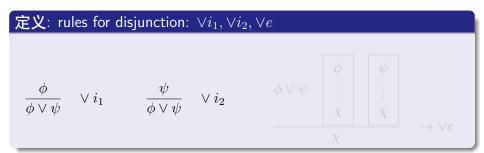
1	$p \to (q \to r)$	premise
2	$p \wedge q$	assumption
3	p	$\wedge e_1 \ 2$
4	q	$\wedge e_2$ 2
5	$q \rightarrow r$	$\wedge e 1, 3$
6	r	$\wedge e 5, 4$
7	$p \wedge q \rightarrow r$	$\rightarrow i \ 2-6$

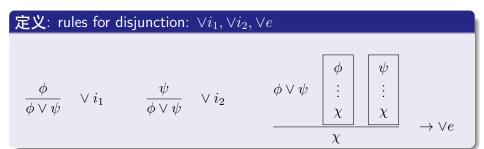
注: ⊹

$$p \to (q \to r) \dashv \vdash p \land q \to r$$









1. Propositional Logic | Natural Deduction | Proof rules

例: Prove that $p \lor q \vdash q \lor p$ is valid

1	$p\vee q$	premise
2	p	assumption
3	$q \lor p$	$\forall i_2 \ 2$
4	q	assumption
5	$q \lor p$	$\vee i_1$ 4
6	$q \lor p$	$\forall e \ 1, 2-3, 4-5$

1. Propositional Logic | Natural Deduction | Proof rules

定义: Contradictions (矛盾)

Contradictions are expressions of the form $\phi \land \neg \phi$ or $\neg \phi \land \phi$, where ϕ is any formula.

定理

Any formula can be derived from a contradiction:

$$p \land \neg p \vdash q$$

定义: rules for negation: $\perp e, \neg e$

$$\frac{\perp}{\phi}$$
 \perp

$$\frac{\phi - \phi}{|}$$

4□ > 4□ > 4□ > 4□ > 4□ > 9

1. Propositional Logic | Natural Deduction | Proof rules

定义: Contradictions (矛盾)

Contradictions are expressions of the form $\phi \land \neg \phi$ or $\neg \phi \land \phi$, where ϕ is any formula.

定理

Any formula can be derived from a contradiction:

$$p \land \neg p \vdash q$$

定义: rules for negation: $\perp e, \neg e$

$$\frac{\perp}{\phi}$$
 \perp

$$\frac{\phi - \phi}{|}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ り へ 。

1. Propositional Logic | Natural Deduction | Proof rules

定义: Contradictions (矛盾)

Contradictions are expressions of the form $\phi \land \neg \phi$ or $\neg \phi \land \phi$, where ϕ is any formula.

定理

Any formula can be derived from a contradiction:

$$p \land \neg p \vdash q$$

定义: rules for negation: $\bot e, \neg e$

$$\frac{\perp}{\phi}$$
 $\perp \epsilon$

1. Propositional Logic | Natural Deduction | Proof rules

定义: Contradictions (矛盾)

Contradictions are expressions of the form $\phi \land \neg \phi$ or $\neg \phi \land \phi$, where ϕ is any formula.

定理

Any formula can be derived from a contradiction:

$$p \land \neg p \vdash q$$

定义: rules for negation: $\bot e, \neg e$

$$\frac{\perp}{\phi}$$
 \perp

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q @

1. Propositional Logic | Natural Deduction | Proof rules

定义: Contradictions (矛盾)

Contradictions are expressions of the form $\phi \land \neg \phi$ or $\neg \phi \land \phi$, where ϕ is any formula.

定理

Any formula can be derived from a contradiction:

$$p \land \neg p \vdash q$$

定义: rules for negation: $\bot e, \neg e$

$$\frac{\perp}{\phi}$$
 \perp

$$\frac{\phi - \phi}{\Box} - \phi$$

4D > 4B > 4B > 4B > B 990

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for negation: $\bot e, \neg e$

$$\frac{\perp}{\phi}$$
 $\perp \epsilon$

$$\frac{\phi \quad \neg \phi}{\perp} \quad \neg \phi$$

例: Prove that $\neg p \lor q \vdash p \to q$ is valid

$$\begin{array}{cccc}
1 & \neg p \lor q & \text{premise} \\
2 & \neg p & \text{assumption} \\
3 & p & \text{assumption} \\
4 & \bot & \neg e \ 3, 2 \\
5 & q & \bot e \ 4 \\
6 & p \to q & \to i \ 3 - 5
\end{array}$$

otion
otion
- 4

 $\forall e 1, 2-6$

1. Propositional Logic | Natural Deduction | Proof rules

定义: rules for negation: $\bot e, \neg e$

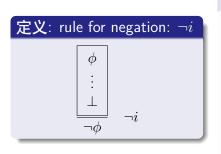
$$\frac{\perp}{\phi}$$
 $\perp e$

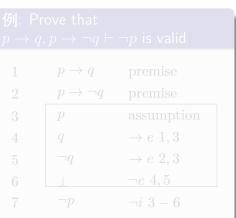
$$\frac{\phi \quad \neg \phi}{\perp} \quad \neg \epsilon$$

例: Prove that $\neg p \lor q \vdash p \to q$ is valid

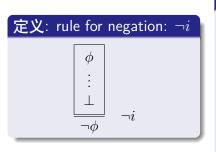
 $\begin{array}{cccc}
1 & \neg p \lor q & \text{premise} \\
2 & \neg p & \text{assumption} \\
3 & p & \text{assumption} \\
4 & \bot & \neg e \ 3, 2 \\
5 & q & \bot e \ 4 \\
6 & p \to q & \to i \ 3 - 5 \\
7 & p \to q
\end{array}$

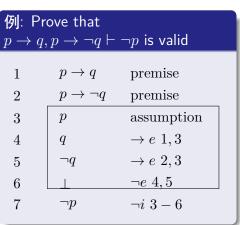
q	assumption
p	assumption
q	copy 2
$p \to q$	$\rightarrow i \ 3-4$
	$\forall e \ 1, 2-6$



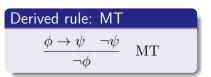


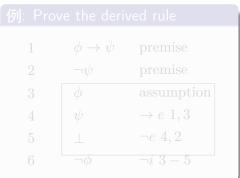
1. Propositional Logic | Natural Deduction | Proof rules





1. Propositional Logic | Natural Deduction | From Primitive rules to Derived rules





1. Propositional Logic | Natural Deduction | From Primitive rules to Derived rules

Derived rule: MT

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi}$$
 MT

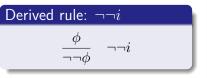
例: Prove the derived rule

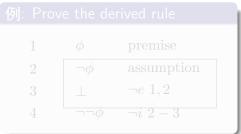
1	$\phi \to \psi$	premise
2	$\neg \psi$	premise
3	ϕ	assumption
4	ψ	$\rightarrow e 1, 3$
5	1 1	$\neg e \ 4, 2$

 $\neg i \ 3-5$

6

1. Propositional Logic | Natural Deduction | From Primitive rules to Derived rules





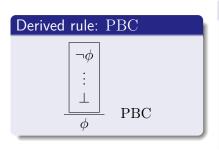
1. Propositional Logic | Natural Deduction | From Primitive rules to Derived rules

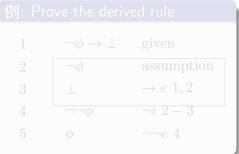
$$\frac{\phi}{\neg \neg \phi} \quad \neg \neg i$$

例: Prove the derived rule

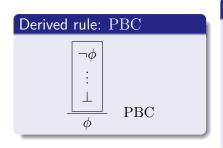
1	ϕ	premise
2	$\neg \phi$	assumption
3		$\neg e \ 1, 2$
4	$\Box \neg \neg \phi$	$\neg i \ 2-3$

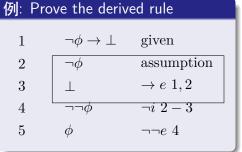
1. Propositional Logic | Natural Deduction | From Primitive rules to Derived rules





1. Propositional Logic | Natural Deduction | From Primitive rules to Derived rules

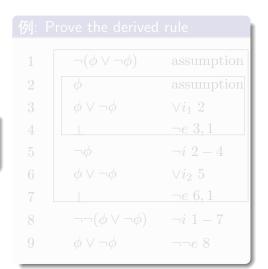




1. Propositional Logic | Natural Deduction | From Primitive rules to Derived rules

 $\overline{\phi \vee \neg \phi}$

LEM



1. Propositional Logic | Natural Deduction | From Primitive rules to Derived rules

Derived rule: LEM

 $\frac{}{\phi \vee \neg \phi}$ LEM

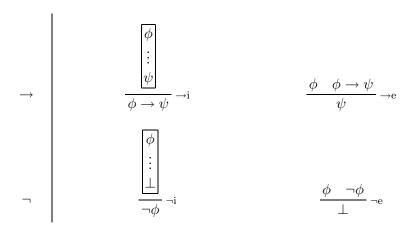
例: Prove the derived rule				
1	$\neg(\phi \vee \neg \phi)$	assumption		
2	ϕ	assumption		
3	$\phi \vee \neg \phi$	$\vee i_1 \ 2$		
4		$\neg e \ 3, 1$		
5	$\neg \phi$	$\neg i \ 2-4$		
6	$\phi \vee \neg \phi$	$\forall i_2 \ 5$		
7		$\neg e 6, 1$		
8	$\neg\neg(\phi \vee \neg\phi)$	$\neg i \ 1-7$		
9	$\phi \vee \neg \phi$	$\neg \neg e \ 8$		

1. Propositional Logic | Natural Deduction | Summary

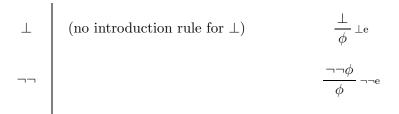
The basic rules of natural deduction:

	introduction	elimination	
٨	$\frac{\phi \psi}{\phi \wedge \psi} \wedge i$	$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$	
V	$\frac{\phi}{\phi \lor \psi} \lor_{i_1} \frac{\psi}{\phi \lor \psi} \lor_{i_2}$	$ \frac{\phi \lor \psi}{\chi} \frac{\begin{bmatrix} \phi \\ \vdots \\ \chi \end{bmatrix}}{\chi} \lor e $	

1. Propositional Logic | Natural Deduction | Summary



1. Propositional Logic | Natural Deduction | Summary



1. Propositional Logic | Natural Deduction | Summary

Some useful derived rules:

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \text{ MT} \qquad \qquad \frac{\phi}{\neg \neg \phi} \neg \neg i$$

$$\vdots$$

$$\vdots$$

$$\bot$$
PBC
$$\frac{\phi}{\neg \neg \phi} \to i$$
LEM

1. Propositional Logic | Natural Deduction | Summary

Provable equivalence:

1. Propositional Logic | Natural Deduction | Summary

回顾:问题: □ 求解复杂度过高

解决方法: New rules: a collection of *proof rules* in *natural deduction*.

- 不使用 Truth Tables 进行求解
- 定义并使用 proof rules
- 使用 proof rules 产生结论 (即 ⊢), 取代 ⊨, 即

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

新的问题:

- ① rules 太多: 推演过于复杂, 符号也有冗余
 - 减少冗余的符号,设计自动推演算法 (见第 4 章)
- ② 目前所给的是命题逻辑的 rule, 一阶逻辑会有哪些新的 rule?
 - =, ∀,∃ 怎样设计它们的 rules (见下页)

1. Propositional Logic | Natural Deduction | Summary

回顾:问题: □ 求解复杂度过高

解决方法: New rules: a collection of *proof rules* in *natural deduction*.

- 不使用 Truth Tables 进行求解
- 定义并使用 proof rules
- 使用 proof rules 产生结论 (即 ⊢), 取代 ⊨, 即

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

新的问题:

- ① rules 太多: 推演过于复杂, 符号也有冗余
 - 减少冗余的符号,设计自动推演算法 (见第 4 章)
- ② 目前所给的是命题逻辑的 rule, 一阶逻辑会有哪些新的 rule?
 - =, ∀,∃ 怎样设计它们的 rules (见下页)

1. Propositional Logic | Natural Deduction | Summary

回顾:问题: ⊨ 求解复杂度过高

解决方法: New rules: a collection of *proof rules* in *natural deduction*.

- 不使用 Truth Tables 进行求解
- 定义并使用 proof rules
- 使用 proof rules 产生结论 (即 ⊢), 取代 ⊨, 即

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

新的问题:

- ① rules 太多: 推演过于复杂, 符号也有冗余
 - 减少冗余的符号,设计自动推演算法 (见第 4 章)
- ② 目前所给的是命题逻辑的 rule, 一阶逻辑会有哪些新的 rule?
 - =, ∀,∃ 怎样设计它们的 rules (见下页)

2. First-order Logic | Natural Deduction

问题 2: =,∀,∃ 怎样设计它们的 rules?

解决方法

- 预定义
 - 构建 Parse tree
 - 定义 Free and bound variables
 - 定义 Substitution
- ② 设计 rules

2. First-order Logic | Natural Deduction

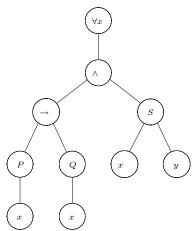
问题 2: =,∀,∃ **怎样设计它们的** rules? 解决方法:

- 预定义
 - 构建 Parse tree
 - 定义 Free and bound variables
 - 定义 Substitution
- ② 设计 rules

2. First-order Logic | Natural Deduction | Preparation

(1) 构建 Parse tree

• 例: $\forall x ((P(x) \rightarrow Q(x)) \land S(x,y))$



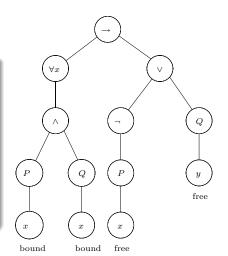
2. First-order Logic | Natural Deduction | Preparation

(2) 定义 Free and bound variables

定义: Free and bound variables

Let ϕ be a formula in predicate logic.

- An occurrence of x in ϕ is *free* in ϕ if it is a leaf node in the parse tree of ϕ such that there is no path upwards from that node x to a node $\forall x$ or $\exists x$.
- Otherwise, that occurrence of x is called bound.



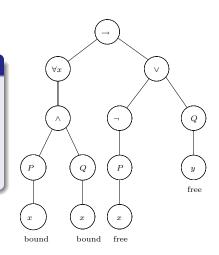
2. First-order Logic | Natural Deduction | Preparation

(3) 定义 Substitution

定义 Substitution

Given a variable x, a term t and a formula ϕ , define $\phi[t/x]$ to be the formula obtained by replacing each *free* occurrence of variable x in ϕ with t.

例: x replaced by the term f(x,y)



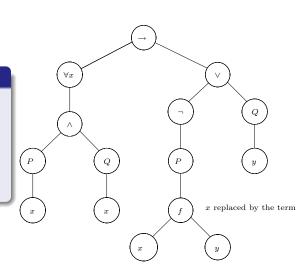
2. First-order Logic | Natural Deduction | Preparation

(3) 定义 Substitution

定义 Substitution

Given a variable x, a term t and a formula ϕ , define $\phi[t/x]$ to be the formula obtained by replacing each *free* occurrence of variable x in ϕ with t.

例: x replaced by the term f(x,y)



2. First-order Logic | Natural Deduction | Proof rules

定义: rules for equality: =i

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} = e$$

例: Prove the validity of the sequent

$$x+1 = 1+x, (x+1>1) \to (x+1>0) \vdash (1+x) > 1 \to (1+x) > 0$$

1
$$(x+1) = (1+x)$$
 premise

2
$$(x+1>1) \to (x+1>0)$$
 premise

3
$$(1+x>1) \to (1+x>0) = e 1, 2$$

2. First-order Logic | Natural Deduction | Proof rules

定义: rules for equality: =i

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} = e$$

例: Prove the validity of the sequent:

$$x+1 = 1+x, (x+1 > 1) \to (x+1 > 0) \vdash (1+x) > 1 \to (1+x) > 0$$

$$(x+1) = (1+x)$$

premise

$$(x+1>1)$$

premise

$$(1+x>1) \to (1+x>0)$$
 = e 1

2. First-order Logic | Natural Deduction | Proof rules

定义: rules for equality: =i

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} = e$$

例: Prove the validity of the sequent:

$$x+1=1+x, (x+1>1) \to (x+1>0) \vdash (1+x) > 1 \to (1+x) > 0$$

1
$$(x+1) = (1+x)$$
 premise

2
$$(x+1>1) \to (x+1>0)$$
 premise

$$3 (1+x>1) \to (1+x>0) = e \ 1,2$$

2. First-order Logic | Natural Deduction | Proof rules

定义: rules for equality: =i,=e

$$\overline{t=t}$$
 = i

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} \quad = e$$

例: Prove (symmetric relation 对称性): $t_1=t_2 \vdash t_2=t_1$

$$1 t_1 = t_2 premise$$

$$2 t_1 = t_1 = t_1$$

$$t_2 = t_1 = e \cdot 1, 2$$

2. First-order Logic | Natural Deduction | Proof rules

定义: rules for equality: =i,=e

$$\overline{t=t}$$
 = i

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} \quad = e$$

例: Prove (symmetric relation 对称性): $t_1 = t_2 \vdash t_2 = t_1$

1
$$t_1 = t_2$$
 premise

$$2 t_1 = t_1 = i$$

$$t_2 = t_1 = e \ 1, 2$$

2. First-order Logic | Natural Deduction | Proof rules

定义: rules for equality: =i,=e

$$\overline{t=t}$$
 = i

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} \quad = e$$

例: Prove (transive relation 传递性): $t_1=t_2, t_2=t_3 \vdash t_1=t_3$

$$1 t_2 = t_3 premise$$

$$t_1 = t_2$$
 premise

$$t_1 = t_3 = e \ 1, 2$$

2. First-order Logic | Natural Deduction | Proof rules

定义: rules for equality: =i,=e

$$\overline{t=t}$$
 = i

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} \quad = e$$

例: Prove (transive relation 传递性): $t_1 = t_2, t_2 = t_3 \vdash t_1 = t_3$

$$t_2 = t_3$$
 premise

$$t_1 = t_2$$
 premise

$$t_1 = t_3 = e \ 1, 2$$

定义: rules for universal quantification: $\forall x \ e, \forall x \ i$

$$\frac{\forall x \ \phi}{\phi[t/x]} \quad \forall x \ e$$

 $\forall x \ i$

例: Prove: $\forall x \ (P(x) \to Q(x)), \forall x \ P(x) \vdash \forall x \ Q(x)$

1
$$\forall x \ (P(x) \rightarrow Q(x))$$
 premise
2 $\forall x \ P(x)$ premise
3 $x_0 \quad P(x_0) \rightarrow Q(x_0)$ $\forall x \ e \ 1$
4 $P(x_0) \quad \forall x \ e \ 2$
5 $Q(x_0) \quad \rightarrow e \ 3, 4$
6 $\forall x \ Q(x) \quad \forall x \ i \ 3 - 5$

定义: rules for universal quantification: $\forall x \ e, \forall x \ i$

$$\frac{\forall x \ \phi}{\phi[t/x]} \quad \forall x \ e$$



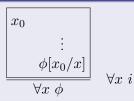
 $\forall x \ i$

例: Prove: $\forall x \ (P(x) \to Q(x)), \forall x \ P(x) \vdash \forall x \ Q(x)$

1
$$\forall x \ (P(x) \rightarrow Q(x))$$
 premise
2 $\forall x \ P(x)$ premise
3 $x_0 \qquad P(x_0) \rightarrow Q(x_0)$ $\forall x \ e \ 1$
4 $P(x_0) \qquad \forall x \ e \ 2$
5 $Q(x_0) \qquad \rightarrow e \ 3, 4$
6 $\forall x \ Q(x) \qquad \forall x \ i \ 3 - 5$

定义: rules for universal quantification: $\forall x \ e, \forall x \ i$

$$\frac{\forall x \ \phi}{\phi[t/x]} \quad \forall x \ e$$



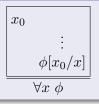
例: Prove: $\forall x \ (P(x) \to Q(x)), \forall x \ P(x) \vdash \forall x \ Q(x)$

1		$\forall x \ (P(x) \to Q(x))$	premise
2		$\forall x \ P(x)$	premise
3	x_0	$P(x_0) \to Q(x_0)$	$\forall x \ e \ 1$
4		$P(x_0)$	$\forall x \ e \ 2$
5		$Q(x_0)$	$\rightarrow e \ 3,4$
6		$\forall x \ Q(x)$	$\forall x \ i \ 3-5$

2. First-order Logic | Natural Deduction | Proof rules

定义: rules for universal quantification: $\forall x \ e, \forall x \ i$

$$\frac{\forall x \ \phi}{\phi[t/x]} \quad \forall x \ e$$



 $\forall x \ i$

例: Prove: $P(t), \forall x \ (P(x) \rightarrow \neg Q(x)) \vdash \neg Q(t)$

premise

premise

$$P(t) \rightarrow \neg Q$$

 $\forall x \ e \ 2$

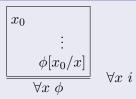
$$\neg ($$

 $\rightarrow e 3, 1$

2. First-order Logic | Natural Deduction | Proof rules

定义: rules for universal quantification: $\forall x \ e, \forall x \ i$

$$\frac{\forall x \ \phi}{\phi[t/x]} \quad \forall x \ e$$



例: Prove: $P(t), \forall x \ (P(x) \rightarrow \neg Q(x)) \vdash \neg Q(t)$

- P(t) $\forall x \ (P(x) \to \neg Q(x))$ premise 2

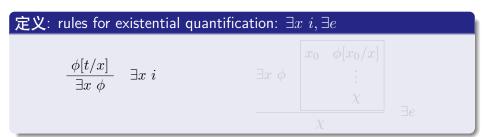
premise

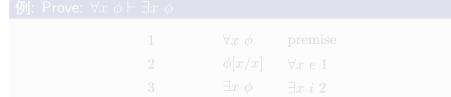
- 3 $P(t) \rightarrow \neg Q(t)$
- $\forall x \ e \ 2$

 $\neg Q(t)$

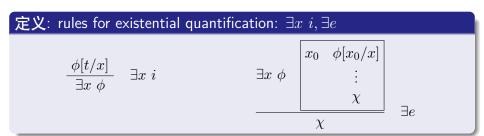
 $\rightarrow e 3.1$

2. First-order Logic | Natural Deduction | Proof rules





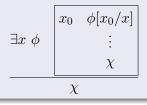
2. First-order Logic | Natural Deduction | Proof rules



2. First-order Logic | Natural Deduction | Proof rules

定义: rules for existential quantification: $\exists x \ i, \exists e$

$$\frac{\phi[t/x]}{\exists x \ \phi} \quad \exists x \ i$$



例: Prove: $\forall x \ \phi \vdash \exists x \ \phi$

1
$$\forall x \ \phi$$
 premise

$$2 \phi[x/x] \forall x \ e \ 1$$

$$\exists x \ \phi \qquad \exists x \ i \ 2$$

定义: rules for existential quantification: $\exists x \ i, \exists e$

$$\frac{\phi[t/x]}{\exists x \ \phi} \quad \exists x \ i \qquad \qquad \exists x \ \phi \qquad \begin{vmatrix} x_0 & \phi[x_0/x] \\ & \vdots \\ & \chi \end{vmatrix}$$

例: Prove: $\forall x \ (P(x) \to Q(x)), \exists x \ P(x) \vdash \exists x \ Q(x)$

1		$\forall x \ (P(x) \to Q(x))$	premise
2		$\exists x \ P(x)$	premise
3	x_0	$P(x_0)$	assumption
4		$P(x_0) \to Q(x_0)$	$\forall x \ e \ 1$
5		$Q(x_0)$	$\rightarrow e 4,3$
6		$\exists x \ Q(x)$	$\exists x \ i \ 5$
7		$\exists x \ Q(x)$	$\exists x \ e \ 2.3 - 6$

2. First-order Logic | Natural Deduction | Summary

$$\frac{t}{t=t} = i \qquad \frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} = e$$

$$\frac{\forall x \ \phi}{\phi[t/x]} \quad \forall x \ e \qquad \frac{\vdots}{\phi[x_0/x]} \quad \forall x \ i$$

$$\frac{\phi[t/x]}{\exists x \ \phi} \quad \exists x \ i \qquad \exists x \ \phi \qquad \frac{x_0 \quad \phi[x_0/x]}{\vdots}$$

 χ

2. First-order Logic | Natural Deduction | Summary

Quantifier equivalence

- \bullet \forall and \exists
 - $\bullet \neg \forall x \phi \dashv \vdash \exists x \neg \phi$
 - $\bullet \neg \exists x \phi \dashv \vdash \forall x \neg \phi$
- ∧ and ∨
 - $\forall x \ \phi \land \forall x \ \psi \dashv \vdash \forall x (\phi \land \psi)$
 - $\forall x \ \phi \lor \forall x \ \psi \dashv \vdash \forall x (\phi \lor \psi)$
- double ∀ or ∃
 - $\forall x \forall y \ \phi \dashv \vdash \forall y \forall x \ \phi$
 - $\exists x \exists y \ \phi \dashv \vdash \exists y \exists x \ \phi$

- \bullet Assuming that x is not free in ψ
 - $\forall x \ \phi \land \psi \dashv \vdash \forall x \ (\phi \land \psi)$
 - $\forall x \ \phi \lor \psi \dashv \vdash \forall x \ (\phi \lor \psi)$
 - $\exists x \phi \land \psi \dashv \vdash \exists x (\phi \land \psi)$
 - $\exists x \ \phi \lor \psi \dashv \vdash \exists x \ (\phi \lor \psi)$
 - $\forall x(\psi \to \phi) \dashv \vdash \psi \to \forall x \phi$
 - $\exists x(\psi \to \phi) \dashv \vdash \psi \to \exists x \phi$
 - $\exists x(\phi \to \psi) \dashv \vdash \forall x \ \phi \to \psi$
 - $\bullet \ \forall x(\phi \to \psi) \dashv \vdash \exists x \ \phi \to \psi$

4 D > 4 A > 4 B > 4 B > B 9 Q O

2. First-order Logic | Natural Deduction | Summary

- ullet and \exists
 - $\bullet \neg \forall x \phi \dashv \vdash \exists x \neg \phi$
 - $\bullet \neg \exists x \phi \dashv \vdash \forall x \neg \phi$
- ∧ and ∨
 - $\forall x \ \phi \land \forall x \ \psi \dashv \vdash \forall x (\phi \land \psi)$
 - $\bullet \ \forall x \ \phi \lor \forall x \ \psi \dashv \vdash \forall x (\phi \lor \psi)$
- double ∀ or ∃
 - $\forall x \forall y \ \phi \dashv \vdash \forall y \forall x \ \phi$
 - $\exists x \exists y \ \phi \dashv \vdash \exists y \exists x \ \phi$

- \bullet Assuming that x is not free in ψ
 - $\forall x \ \phi \land \psi \dashv \vdash \forall x \ (\phi \land \psi)$
 - $\forall x \ \phi \lor \psi \dashv \vdash \forall x \ (\phi \lor \psi)$
 - $\bullet \ \exists x \ \phi \land \psi \dashv \vdash \exists x \ (\phi \land \psi)$
 - $\exists x \ \phi \lor \psi \dashv \vdash \exists x \ (\phi \lor \psi)$
 - $\bullet \ \forall x(\psi \to \phi) \dashv \vdash \psi \to \forall x \ \phi$
 - $\exists x(\psi \to \phi) \dashv \vdash \psi \to \exists x \phi$
 - $\exists x(\phi \to \psi) \dashv \vdash \forall x \; \phi \to \psi$
 - $\bullet \ \forall x(\phi \to \psi) \dashv \vdash \exists x \ \phi \to \psi$

2. First-order Logic | Natural Deduction | Summary

- ullet and \exists
 - $\bullet \neg \forall x \phi \dashv \vdash \exists x \neg \phi$
 - $\bullet \neg \exists x \phi \dashv \vdash \forall x \neg \phi$
- ∧ and ∨
 - $\forall x \ \phi \land \forall x \ \psi \dashv \vdash \forall x (\phi \land \psi)$
 - $\forall x \ \phi \lor \forall x \ \psi \dashv \vdash \forall x (\phi \lor \psi)$
- double ∀ or ∃
 - $\forall x \forall y \ \phi \dashv \vdash \forall y \forall x \ \phi$
 - $\exists x \exists y \ \phi \dashv \vdash \exists y \exists x \ \phi$

- \bullet Assuming that x is not free in ψ
 - $\forall x \ \phi \land \psi \dashv \vdash \forall x \ (\phi \land \psi)$
 - $\forall x \ \phi \lor \psi \dashv \vdash \forall x \ (\phi \lor \psi)$
 - $\bullet \exists x \phi \land \psi \dashv \vdash \exists x (\phi \land \psi)$
 - $\exists x \ \phi \lor \psi \dashv \vdash \exists x \ (\phi \lor \psi)$
 - $\forall x(\psi \to \phi) \dashv \vdash \psi \to \forall x \phi$
 - $\exists x(\psi \to \phi) \dashv \vdash \psi \to \exists x \ \phi$
 - $\exists x(\phi \to \psi) \dashv \vdash \forall x \phi \to \psi$
 - $\forall x(\phi \to \psi) \dashv \vdash \exists x \phi \to \psi$

2. First-order Logic | Natural Deduction | Summary

- ullet and \exists
 - $\bullet \neg \forall x \phi \dashv \vdash \exists x \neg \phi$
 - $\bullet \neg \exists x \phi \dashv \vdash \forall x \neg \phi$
- ∧ and ∨
 - $\forall x \ \phi \land \forall x \ \psi \dashv \vdash \forall x (\phi \land \psi)$
 - $\forall x \ \phi \lor \forall x \ \psi \dashv \vdash \forall x (\phi \lor \psi)$
- double \forall or \exists
 - $\forall x \forall y \ \phi \dashv \vdash \forall y \forall x \ \phi$
 - $\bullet \ \exists x \exists y \ \phi \dashv \vdash \exists y \exists x \ \phi$

- \bullet Assuming that x is not free in ψ
 - $\forall x \ \phi \land \psi \dashv \vdash \forall x \ (\phi \land \psi)$
 - $\bullet \ \forall x \ \phi \lor \psi \dashv \vdash \forall x \ (\phi \lor \psi)$
 - $\exists x \ \phi \land \psi \dashv \vdash \exists x \ (\phi \land \psi)$
 - $\exists x \ \phi \lor \psi \dashv \vdash \exists x \ (\phi \lor \psi)$
 - $\bullet \ \forall x(\psi \to \phi) \dashv \vdash \psi \to \forall x \ \phi$
 - $\exists x(\psi \to \phi) \dashv \vdash \psi \to \exists x \phi$
 - $\exists x(\phi \to \psi) \dashv \vdash \forall x \ \phi \to \psi$
 - $\forall x(\phi \to \psi) \dashv \exists x \ \phi \to \psi$

2. First-order Logic | Natural Deduction | Summary

- ullet and \exists
 - $\bullet \neg \forall x \phi \dashv \vdash \exists x \neg \phi$
 - $\bullet \neg \exists x \phi \dashv \vdash \forall x \neg \phi$
- ∧ and ∨
 - $\forall x \ \phi \land \forall x \ \psi \dashv \vdash \forall x (\phi \land \psi)$
 - $\forall x \ \phi \lor \forall x \ \psi \dashv \vdash \forall x (\phi \lor \psi)$
- double \forall or \exists
 - $\forall x \forall y \ \phi \dashv \vdash \forall y \forall x \ \phi$
 - $\bullet \ \exists x \exists y \ \phi \dashv \vdash \exists y \exists x \ \phi$

- \bullet Assuming that x is not free in ψ
 - $\forall x \ \phi \land \psi \dashv \vdash \forall x \ (\phi \land \psi)$
 - $\forall x \ \phi \lor \psi \dashv \vdash \forall x \ (\phi \lor \psi)$
 - $\bullet \ \exists x \ \phi \land \psi \dashv \vdash \exists x \ (\phi \land \psi)$
 - $\exists x \ \phi \lor \psi \dashv \vdash \exists x \ (\phi \lor \psi)$
 - $\bullet \ \forall x(\psi \to \phi) \dashv \vdash \psi \to \forall x \ \phi$
 - $\exists x(\psi \to \phi) \dashv \vdash \psi \to \exists x \ \phi$
 - $\exists x(\phi \to \psi) \dashv \vdash \forall x \ \phi \to \psi$
 - $\bullet \ \forall x(\phi \to \psi) \dashv \vdash \exists x \ \phi \to \psi$

2. First-order Logic | Natural Deduction | Summary

- 问题 1: ⊢ 和 ⊨ 的演算结果是否相同?
 - 答: 是的, 即 Soundness and Completeness
 - 一种表达形式: ⊨ φ iff ⊢ φ
 - 命题逻辑和谓词逻辑均满足
- 问题 2: ⊢ 求解的可计算性?
 - 答:同戶,即 The decision problem of validity in predicate logic is undecidable.
- 问题 3: ⊢ 演算求解复杂度相对 ⊨ 降低了么?
 - 答: 看起来是的
- 问题 3.1: 怎样设计算法, 以提升效率?
 - 见下章, 求解算法的使用与实现

2. First-order Logic | Natural Deduction | Summary

- 问题 1: ⊢和 ⊨的演算结果是否相同?
 - 答: 是的,即 Soundness and Completeness
 - 一种表达形式: ⊨ φ iff ⊢ φ
 - 命题逻辑和谓词逻辑均满足
- 问题 2: ⊢ 求解的可计算性?
 - 答:同戶,即 The decision problem of validity in predicate logic is undecidable.
- 问题 3: ⊢ 演算求解复杂度相对 ⊨ 降低了么?
 - 答: 看起来是的
- 问题 3.1: 怎样设计算法,以提升效率?
 - 见下章, 求解算法的使用与实现

2. First-order Logic | Natural Deduction | Summary

- 问题 1: ⊢和 ⊨的演算结果是否相同?
 - 答: 是的, 即 Soundness and Completeness
 - 一种表达形式: ⊨ φ iff ⊢ φ
 - 命题逻辑和谓词逻辑均满足
- 问题 2: ⊢ 求解的可计算性?
 - 答:同戶,即 The decision problem of validity in predicate logic is undecidable.
- 问题 3: ⊢ 演算求解复杂度相对 ⊨ 降低了么?
 - 答: 看起来是的
- 问题 3.1: 怎样设计算法, 以提升效率?
 - 见下章, 求解算法的使用与实现

2. First-order Logic | Natural Deduction | Summary

- 问题 1: ⊢ 和 ⊨ 的演算结果是否相同?
 - 答: 是的, 即 Soundness and Completeness
 - 一种表达形式: ⊨ φ iff ⊢ φ
 - 命题逻辑和谓词逻辑均满足
- 问题 2: ⊢ 求解的可计算性?
 - 答:同⊨,即 The decision problem of validity in predicate logic is undecidable.
- 问题 3: ⊢ 演算求解复杂度相对 ⊨ 降低了么?
 - 答:看起来是的
- 问题 3.1: 怎样设计算法, 以提升效率?
 - 见下章, 求解算法的使用与实现

2. First-order Logic | Natural Deduction | Summary

- 问题 1: ⊢ 和 ⊨ 的演算结果是否相同?
 - 答: 是的, 即 Soundness and Completeness
 - 一种表达形式: ⊨ φ iff ⊢ φ
 - 命题逻辑和谓词逻辑均满足
- 问题 2: ⊢ 求解的可计算性?
 - 答:同 ⊨,即 The decision problem of validity in predicate logic is undecidable.
- 问题 3: □ 演算求解复杂度相对 □ 降低了么?
 - 答:看起来是的
- 问题 3.1: 怎样设计算法, 以提升效率?
 - 见下章, 求解算法的使用与实现

2. First-order Logic | Natural Deduction | Summary

- 问题 1: ⊢ 和 ⊨ 的演算结果是否相同?
 - 答: 是的, 即 Soundness and Completeness
 - 一种表达形式: ⊨ φ iff ⊢ φ
 - 命题逻辑和谓词逻辑均满足
- 问题 2: ⊢ 求解的可计算性?
 - 答:同 ⊨,即 The decision problem of validity in predicate logic is undecidable.
- 问题 3: ⊢ 演算求解复杂度相对 ⊨ 降低了么?
 - 答:看起来是的
- 问题 3.1: 怎样设计算法, 以提升效率?
 - 见下章, 求解算法的使用与实现

2. First-order Logic | Natural Deduction | Summary

- 问题 1: ⊢ 和 ⊨ 的演算结果是否相同?
 - 答: 是的, 即 Soundness and Completeness
 - 一种表达形式: ⊨ φ iff ⊢ φ
 - 命题逻辑和谓词逻辑均满足
- 问题 2: ⊢ 求解的可计算性?
 - 答:同 ⊨,即 The decision problem of validity in predicate logic is undecidable.
- 问题 3: ⊢ 演算求解复杂度相对 ⊨ 降低了么?
 - 答:看起来是的
- 问题 3.1: 怎样设计算法, 以提升效率?
 - 见下章,求解算法的使用与实现

作业

- 1. Prove the validity of the following sequents:

 - $\bullet \vdash q \to (p \to (p \to (q \to p)))$
- 2. Prove the validity of the following sequents in predicate logic, where P, and Q have arity 1, and S has arity 0 (a 'propositional atom'):

