XU TTESS

£ 4 B BEEEKE— B RKMETT L SAT/SMT K
41 KR

BB

https://faculty.ustc.edu.cn/huangwenchao
— HFRE — BXUFESS

https://faculty.ustc.edu.cn/huangwenchao

FE E

o F1E: Az, WitEN. EXEIER
o MBMEML T AIUBAL? B
o 2 EHRAZEREN—EIEsEEMm?

e Propositional logic, first-order logic, higher-order logic

° £3E: ERHA—TEN—MEEMMrules SRPERKFNER"?

e The proof calculus of natural deduction

o AE: M3t LikAY rulesSKfi#?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

O MA: WTRAIEMRZRFIEEXAIEE 7

o SAT,SMT [5)&R
o EAFKEITH 73
o RHIKIH

Satisfiability

Validity

Numbers and inequalities
Eight Queens problem
Binary Arithmetic
Rectangle fitting

Solving Sudoku

o HERA: Symbolic execution

o HEif: X

& T AMBROEER?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z

1.1 SAT and SMT Problem | [E]JE

TE X.: Propositional Logic in BNF
¢pu=p| (@) [(@A) | (V)]|(P—)

where p stands for any atomic proposition and each occurrence of ¢ to the
right of ::= stands for any already constructed formula.

TE N : Verification in Logics

Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

MEo
B MF ¢ ERRIZEREFENREZMTA T

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. bz
1.1 SAT and SMT Problem | EEHEHIFTRIL?

B MFE ¢ EMmRIZEPERENRERMTA?

5138 (Xfk M)

Given formulas ¢1, ¢o, ..., ¢, and ¥ of propositional logic,
G1,02, ..., 0n E Y holds iff E 1 — (d2 = (¢35 — -+ = (D — ©)))

holds.
% KB M5, K& validity (LITTEN)

=

We call ¢ valid, if E ¢ holds.
o We also call ¢ as a tautology (BEER), if ¢ is valid.

T—A R E4XKMR validity ?
% #m—ANEEKRAR: Satisfiability (WD)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z

1.1 SAT and SMT Problem | Z{4 o] &7

TEN: Satisfiability
Given a formula ¢ in propositional logic, we say that ¢ is satisfiable if it
has a valuation in which is evaluates to T.

BIF:

pV q — p is satisfiable, since it computes T if we assign T to p.
Note that p vV ¢ — p is not valid.

Let ¢ be a formula of propositional logic. Then ¢ is satisfiable iff —¢ is
not valid.

In other words, ¢ is valid iff —¢ is not satisfiable.

B4 kg ME o KE Validity

KR Satisfiability.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z

1.1 SAT and SMT Problem | [a]ER7E X

EX: SAT o]
SAT is the decision problem: given a propositional formula, is it satisfiable?
SAT [E)ZHAT A FAS R LA |

[/ jE)RE AT IR A7 — (B 4

Given a set A C S, and x € S, whether there is a machine that can
compute whether = € A.

@ Define a new machine, named Turing machine, B R #.

o If yes, i.e., there is a Turing machine M for A, language A is
decidable.

@ If no, but there is a Turing machine M that can only accept s, if
s € A, language A is still Turing-recognizable.

SAT Bt EM (AT)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z

1.1 SAT and SMT Problem | [a]&i4y#f

EX: SAT (8] 7

SAT is the decision problem: given a propositional formula, is it satisfiable?

SAT ZrIit&ERY:
@ Essentially, this consists of computing the values of the formula for all
2™ ways to choose T or F for the n variables.

ia]: SAT BFW—ZKiE? (SFE)
& SAT BF £l NP-Complete (818 (1970 £ FFE4FH5T)(Bad news).

Em: EMX: NP-complete and NP-hard

A language B is NP-complete if it satisfies two conditions:
@ B isin NP, and

@ every A in NP is polynomial time reducible to B.
Here, B is NP-hard if it satisfies condition 2.
Classical NP-complete problem: SAT (XXX FiZHEE Mz —).

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z

1.1 SAT and SMT Problem | [a]8i7E X

Good news: Current SAT solvers are successful for several big formulas.

o f5|F: solving the n-queens problem for n=100 yields a 50Mb formula
over 10000 variables, but is solved in 10 seconds by the SAT solver
Z3.

TEN: SMT problem
Extension of SAT, to deal with numbers and inequalities.

SAT, SMT kfg T R:
e 73, YICES, CVC4

@ For non-commercial use they are free to download and to use

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z

1.2 @@EKRBIE (23)

Z3
@ Z3 is a theorem prover from Microsoft Research.
Z3 interfaces

@ Default input format is SMTLIB2
@ Other native foreign function interfaces:

o C++ API
.NET API
Java API
Python API
C

OCaml
Julia

e SAT/SMT by Example

E#B https://faculty.ustc.edu.cn/hu: R FEFS

http://staff.ustc.edu.cn/~huangwc/book/SAT_SMT_by_example.pdf
https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 RGIKI | Satisfiability

[B]8R: s ¢ satisfiable?
p=@pP—=>q AT g A(-pVrT)

from z3 import *

p = Bool(’'p’)

q = Bool(’q’)

r = Bool(’'r’)

solve(Implies(p, q), r == Not(q), Or(Not(p), r))

IBITER:
$python3 z3-1-sat.py
[q = True, p = False, r = False]
FE AT
BB, BE o BHq=TAp=FAr—F

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 IS | Validity

from z3 import *
p, 9 = Bools(’p q’)

demorgan = \ |‘E];EE@Z Is C) valid ? (i.e., = GD?)
And(p, a) == ¢=(pAq) < ~(=pV —q)
Not (Or (Not(p), Not(qg)))
def prove(f): IBITER:
s = Solver() $python3 z3-2-valid.py
s.add (Not (£)) proved
if s.check() == unsat: R
print ("proved") ¢ is valid,
else: iff =¢ is not satisfiable.

print("failed to prove") So, ¢ is valid.
prove (demorgan)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 222 | numbers and inequalities

[B]&h: Solve the following system of constraints
x>2ANy <10Ax+ 2y =7, where x,y are integers.

from z3 import x*
x = Int(’x’)
y = Int(C’'y’)

solve(x > 2, y < 10, x + 2%y == 7)
IBITEHER:
$python3 z3-3-inequalities.py
[y=0,x=7]
FRAT:

ZEIE A SMT [a] 3

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 ZHISEIR | Eight-Queens

[B)&h: Eight-Queens

The eight queens puzzle is the problem of placing eight chess queens on
an 8 x 8 chessboard so that no two queens attack each other. Thus, a
solution requires that no two queens share the same row, column, or
diagonal.

As usual in SAT/SMT, don't think about how to
solve it, but only specify the problem.
@ Pure SAT: only boolean variables, no numbers,
no inequalities.
@ For every position (7,) on the board: boolean
variable p;; expresses whether there is a queen
or not.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 Z25IEE) | Eight-Queens

(1) At least one queen on row i:

@ pi1 VP2 Vi3 VpiaVpis V pig V
DPi7 V Pig

P11|P12|P13|P14|P15|P16 |P17|P18
D21 |P22 | P23 | P24 | D25 | P26 | P27 | P28
P31 |P32 | P33 | P34 | P35 | P36 | P37 | P38 \/ Pij
P41 | P42 | P43 | P44 | P45 | P46 | P47 | D48]
P51 |P52 | P53 | P54 | P55 | P56 | P57 | P58
P61 | P62 | P63 | P64 | P65 | P66 | P67 | P68
P71 |P72|P73|P74 | P75 | P76 | P77 | P78
P81 | P82 | P83 | P84 | P85 | P86 | P87 | P88

(2) At most one queen on row i:

@ For every j < k not both p;;
and p;j are true

N (=pij V i)

0<j<k<8

Requirements until now (on every row):

8 8
_/ AN N (e Vi)

i=1 0<j<k<8

|I>oo

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 £33 | Eight-Queens

P11|P12|P13|P14|P15 | P16 | P17 | P18
P21 |P22 | P23 | D24 | P25 | P26 | P27 | P28
P31 |P32|P33|P34|P35 | P36 | P37 | P38
P41 | P42 | P43 | D44 | P45 | P46 | PAT | P48 DIY
P51 |P52 | P53 | P54 | P55 | P56 | P57 | P58
P61 | P62 | P63 | P64 | P65 | P66 | P67 | P68
P71|P72 | P73 | P74 | P75 | P76 | P77 | P78
P81 |Ps2 | P83 | Ps4 | P85 | P86 | P87 | P8s

Similarly, on every column:

8 8 8
A Ve ~ A (=pij V —prj)
j=1 i=1 j

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 £33 | Eight-Queens

P11|P12|P13 |P14 | P15 | P16 | P17 | P18
P21 |P22 | P23 | P24 | P25 | P26 | P27 | P28
P31 |P32 | P33 | P34 | P35 | P36 | P37 | P38
D1 |Pa2 | P43 |Paa |pas | pas| paz|pas| Pij and pijr on such a diagnoal
P51 |P52 | P53 | P54 | P55 | P56 | P57 | P58
P61 | P62 | P63 | P64 | P65 | P66 | P67 | P68
P71 |P72|P73 | P74 | P75 | P76 | P77 | P78
P81 |P82 | P83 | P84 | P85 | P86 | P87 | P88

i—j=i-J

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 £33 | Eight-Queens

P11|P12|P13|P14 | P15 | P16 | P17 | P18
P21 | P22 | P23 | P24 | P25 | P26 | P27 | P28
D31 |P32 | P33 | P34 |P35| P36 | P37 | P38 pij and p;i» on such a diagonal
P41 | P42 | P43 | P44 | P45 | P46 | PAT | P48
P51 | P52 | P53 | P54 | P55 | P56 | P57 | P58 i+j=1i+j
P61 | P62 | P63 | P64 | P65 | P66 | P67 | P6s
P71 |P72|P73|P74 | P75 | P76 | P77 | P78
P81 |P82 | P83 | P84 | P85 | P86 | P87 | P88

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 £33 | Eight-Queens

So far all 4, 7,4, ' with (4,7) # (¢, j') satisfying i +j =i’ + j' or
i— =i — "
i V iy
stating that on (i,7) and (¢, j’) being two distinct positions on a diagonal,
no two queens are allowed.
We may restrict to i < 4/, yielding

/\ (/\ —pij V Dirjr)

0<i<i!<8 j,j'si+j=i'+5'Vi—j=i'—j’

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 £33 | Eight-Queens
8 8 8
pij/\/\ /\ (=pijV=pik) A /\

1 i=1 0<j<k<8 j=114

/\ (/\ —pij V i)

0<i<i!<8 j,j'si+j=i'+5'Vi—j=i'—j’

8 8
pij/\/\ /\ (=pijV—prj)
=1 j=1 0<i<k<8

=1 j

from z3 import x*
Q=[Int(C’Q_%i’ % (i + 1)) for i in range(8)]
val_c = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]
col_c = [Distinct(Q)]
diag_c = [If(i == j, True,
And (i+Q[i]'=3+Q[j]1, i+Q[j1!'=j+Q[i1))

for i in range(8) for j in range(i)]

solve(val_c + col_c + diag_c)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 Z25IEE) | Eight-Queens

BITER:
o $python3 z3-4-queens.py
0 [Q5=1,Q8=7,Q_3=8,Q_2=2,
0 Q_6=3Q_4=6Q_7=5 Q_1=4
o fEA:
0 From Eight-Queens to N-Queens?
o 26s for 40 queens
o BE RER SMT, MREZ BB E (pure
o| |SAT), HELFSER"
BT EHE

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 Z=2ISEER | Arithmetic in pure SAT

Arithmetic: addition, subtraction, multiplication of integers

Compute 13+77 \

f247: Covered by SMT, why do it in pure SAT?
@ Interesting how to express a non-SAT looking problem in SAT

@ Introduces flavor of bounded model checking

o BMC, HRERIET, WEE 5 &
e one of the most important applications of SAT/SMT

e Often (e.g., in hardware verification), SAT encoding of arithmetic
outperforms SMT

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 I3 | Arithmetic in pure SAT

In SAT we only have Boolean variables.

[a]&&: Binary representation

How to Express a number by a sequence of Boolean values?

f#: Binary representation
a1a2 .. an

of number a:
a; € {0,1} and
n
a=ap+2a,-1+4a,_9+ - = Zai*2”_i
i=1

:
@ 01101 represents 8+4+1=13
o 00111 represents 4+2+1=7

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 Z=2ISEER | Arithmetic in pure SAT

[a)&: Add
How to compute d = a + b?

@ Basic rules: Take care of carry c

00+4+0+4+0=0,carry =0 e0+1+4+1=0,carry=1
e 0+0+4+1=1carry=0 el+1+4+1=1carry=1

Start by rightmost carry = 0, compute from right to left

carries c: 0 1.1 1 1 O
number a=13: 0 1 1 0 1
number b=7: 0O 01 1 1
result d 1 01 0 O

indeed yielding 10100 representing 20

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 I3 | Arithmetic in pure SAT

[aEh: d=a+b?
Result d; in a formulafori=1,...,n:

correct, since (a; <+ (b; <> ¢;) yields true if and only if 1 or 3 among
{a;, b, ¢;} yield true

Carry ¢;—1 in a formula fori =1,...,n:
Ci—1 > ((az VAN bz) \Y (ai A Ci) vV (bl VAN CZ)) (2)

correct, since (a; A b;) V (a; A c;) V (b; A ¢;) yields true if and only at least
2 among {a;, b;, ¢;} yield true.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 Z=2ISEER | Arithmetic in pure SAT

To express that we start by rightmost carry = 0, we state

—Cn (3)
To express that the result should fit in n bits, at the end we should not
have a carry left, and we state

—co (4)

Let ¢ be the conjunction of all these requirements; this expresses the
correctness of the corresponding binary addition

To compute a + b for a = 13,b = 7, we apply a SAT solver to

¢ N\ —ay Aas Aag A —ag N\ as A—by A —bg Abs Abgy A by
a=13=01101 b=7=00111

The resulting satisfying assignment will contain dy, —ds, ds, —dy, —ds
representing the result d = 20

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 I3 | Arithmetic in pure SAT

Concluding,

In this way computing d = a + b can be done by SAT solving for any
binary numbers a, b.

By adding given values for a;, d; to the formula ¢ expressing d = a + b,
and reading b; from resulting satisfying assignment, we can compute
b = d — a by exploiting the same formula.

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 Z2ISEE] | Rectangle fitting

[a)&: Rectangle fitting
Given a big rectangle and a number of small rectangles, can you fit the
small rectangles in the big one such that no two overlap.

How to specify this problem?
@ Number rectangles from 1 to n
@ for i =1...n introduce variables:
e wj is the width of rectangle i
e h; is the height of rectangle 4
e x; is the x-coordinate of the left
lower corner of rectangle ¢
e y; is the y-coordinate of the left
lower corner of rectangle 4

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 =4I | Rectangle fitting

How to specify this problem?
o Configuration of small rectangles:
o fB]F: First rectangle has width 4 and height 6:
o (wp=4Ah; =6)V(wy =6Ah; =4)
@ Configuration of the big rectangle

o (0,0) = lower left corner of big rectangle.
o W = width of big rectangle.
e H = height of big rectangle.

@ Requirements:
;2 0Nz +w; <W

yi > 0Ny +h; < H

foralli=1,...,n

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 =4I | Rectangle fitting

(i, yi + hs) Rectangles i and j overlap if
0 r; <w+ w;
(zj,97) | (wj+wjy) @ andzi <zjt+w
e and y; < y; + h;
(zi,9i) (zi + wi, yi) e and y; < y; + hj
So foralli,j=1,...,n,i < j, we should add the negation of this

overlappingness:
—|(:Uj <zitwi ANz <xj+wi ANy <yi+hi ANy <yj+hj)
or, equivalently

ri>witw Vo, >rj+wiVy; >y +hi Vy >y +hy

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 =4I | Rectangle fitting

The following formula is satisfiable iff the fitting problem has a solution
n
/\((wl =W,ANh; = HZ) V (wi =H;\Nh; = WZ))
i=1
n
AN@i > 0Nz +w <W Ay > 0Ay; +h < H)
i=1
A /\ (j>xi+w Vo >a;+wi Vy >y +hi Vy >y + hyj)
1<i<j<n
If the formula is satisfiable, then the SMT solver yields a satisfying
assignment, that is, the corresponding values of x;, y;, w;, h;

Applying a standard SMT solver like Z3, Yices, or CVC4: feasible for
rectangle fitting problems up to 20 or 25 rectangles

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 Z2IEER | Suduku

B]&: Sudoku (HyIMifFXK)

Fill the blank cells in such a way that 8ol 4
@ every row, and | | |28
@ every column, and 1 6.2 2, 1] 3
@ every fat 3 block Z B
contains the numbers 1 to 9, all occurring 9: :6 5|
4 9 7

exactly once

v

B8 K% ? : The puzzle may by very hard, and backtracking and/or
advanced solving techniques are required.

For SAT/SMT it is peanuts: just specify the problem.

How?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 4322} | Suduku

Several approaches, all working well
@ Pure SAT: for every cell and every number 1 to 9, introduce boolean
variable describing whether that number is on that position, so
93 = 729 boolean variables.
@ SMT: for every cell define an integer variable for the corresponding
number.
We elaborate the latter.
[B]&A: How to specify that every row (and column, and 3 x 3 block)
contains the numbers 1 to 9, all occurring once?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 224 | Suduku

Define 9 x 9 matrix of integer variables.
@ Each cell contains avalueinl, ..., 9

X =[[Int("x_%s_%s" % (i+1, j+1)) for j in range(9) 1]
for i in range(9)]
cells_c¢ = [And(1 <= X[i][j1, X[il[j] <= 9)
for i in range(9) for j in range(9)]

Each row/column/fat 3 block contains a number at most once.

rows_c=[Distinct(X[i]) for i in range(9) 1]
cols_c=[Distinct([X[i][j] for i in range(9) 1)
for j in range(9)]
sq_c =[Distinct([X[3%i® + i][3%jO® + j]
for i in range(3) for j in range(3) 1)
for i® in range(3) for jO® in range(3) 1]

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 4322} | Suduku

sudoku_c = cells_c + rows_c + cols_c + sqg_c
instance = ((0,0,0,0,9,4,0,3,0),
0,0,0,5,1,0,0,0,7),
(0,8,9,0,0,0,0,4,0),
(0,0,0,0,0,0,2,0,8),
(0,6,0,2,0,1,0,5,0),
(1,60,2,0,0,0,0,0,0),
0,7,0,0,0,0,5,2,0),
9,060,0,0,6,5,0,0,0),
©,4,0,9,7,0,0,0,0))
instance_c = [If(instance[i][j] == 0,
True,
X[i1[j] == instance[i][j])

for i in range(9) for j in range(9)]

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z A

1.3 224 | Suduku

s = Solver() EITER
_ $python3 z3-5-sudoku.py

s.add(sudoku_c + instance_c) [[7.1,5,8,9 46,3, 2]
if s.check() == sat: [2’345 1, 689,7]v
m=s.model () o [6,8,9, 7,2 3,1, 4,5,
r=[[m.evaluate(X[i]1[j1) [4,9,3,6,5 7, 2 1, 8
for j in range(9)] [8, 6, 7231 9, 5’ 4]'
for i in range(9)] [1’ 5Y 2, 4Y 8’ 9, 7’ 6Y 3]’
print_matrix(r) [3, 7’ 6, 1’ 4, 8’ 5, 2’ 9]'
else: . . [9,2,8,3,65,4, 7, 1],
print("failed to solve") 5,4, 1,9,7 2 3, 8, 6]

@ Solutions of sudoku puzzles are quickly found by just specifying the
rules of the game in SMT format, and apply an SMT solver.

@ For several other types of puzzles (kakuro, killer sudoku, binario, ...)
the SAT/SMT approach to solve or generate them works well too.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z

1.4 HfF: Symbolic Execution

SMT ZER MK —NEZERA: FFSHIT (Symbolic Execution)

e 3LHk: Symbolic Execution for Software Testing: Three Decades Later
[a]&h: How to explore different
program paths and for each path to

@ generate a set of concrete input }
values exercising that path

int twice (int v) {
return 2xv;

o check for the presence of various Yoid testme (int x, int y) {

kinds of errors z = twice (y);
int main() { if (z==x){
X = sym_input(); if (x >y+10)
y = sym_input(); ERROR;
testme (X, y); }
return O; }

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

1. [z

1.4 HfF: Symbolic Execution

int twice (int v) { l
return 2x*v;

} 2%y ==x
fali/ \true
void testme (int x, int y) { oo x> y+10
z = twice (y); y=1 fals:a/ kue
if (z==x){

if (x >y+10) ;:i ::ig
ERROR; ERROR!

) } [a]&&: How to reach code ERROR?

} SMT problem: Solve z,y satisfying

r=2yNz>y+10

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

fel

SEG/MENME 1: {EF pure SAT K& N-Queen [, F3ttk PPT i SMT
RISEBRRIE . E3K:

o XA3: {EH SMT LAY, F0 PureSAT LIPKEG

o XY EHZIWIEE, EkXItk N BUEARER, WmERRE
SEBG/MENL 2(=3%k—): {EH pure SAT Kf# d=a+b B d=a-b, HH1,a,b
AIEEE. EXK:

o MEFREMBINEM—T, BiENZEUIHES

o K75

o XY HEESHmEER, KERANXEIIKEER

KRR (FTik): 4350 A Z3 MECDIRITHIEIEKRR rectangle fitting.
=K:
o fLH: (1) fEA 73 L3 PPT miyikit (2) A2 &itHE (fE£R C.

C++ 1 1|:| =i)
o Xt (1) MEBRECHWEXRK (2) &itikgE, LA FH X
g

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

REXEWS R

RIEWAISHIE L (BARRFTIIRN):
o [ifd
o Notary: A device for secure transaction approval
o THXY
e Z3: An Efficient SMT Solver
o Deep Cooperation of CDCL and Local Search for SAT

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

http://www.abelay.me/data/notary_sosp19.pdf
https://link.springer.com/chapter/10.1007/978-3-540-78800-3_24
https://link.springer.com/chapter/10.1007/978-3-030-80223-3_6
https://faculty.ustc.edu.cn/huangwenchao

