形式化方法导引

第4章 逻辑问题求解——一种通用求解方法:SAT/SMT 求解 4.1 应用

黄文超

https://faculty.ustc.edu.cn/huangwenchao → 教学课程 → 形式化方法导引

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

第1章:自动机、可计算性、复杂度理论

- 问题是什么?可以解么? 有多难?
- 第 2 章: 怎样用逻辑来定义一个验证器问题?
 - Propositional logic, first-order logic, higher-order logic
- 第3章: 怎样进一步定义一种演算规则rules 来降低求解难度?
 - The proof calculus of natural deduction
- •本章:如何针对上述的 rules求解?

- 第1章:自动机、可计算性、复杂度理论
 - 问题是什么?可以解么? 有多难?
- 第 2 章: 怎样用逻辑来定义一个验证器问题?
 - Propositional logic, first-order logic, higher-order logic
- 第3章: 怎样进一步定义一种演算规则rules 来降低求解难度?
 - The proof calculus of natural deduction
- •本章:如何针对上述的 rules 求解?

- 第1章: 自动机、可计算性、复杂度理论
 - 问题是什么?可以解么? 有多难?
- 第2章: 怎样用逻辑来定义一个验证器问题?
 - Propositional logic, first-order logic, higher-order logic
- 第3章: 怎样进一步定义一种演算规则rules 来降低求解难度?
 - The proof calculus of natural deduction

•本章:如何针对上述的 rules求解?

- 第1章: 自动机、可计算性、复杂度理论
 - 问题是什么?可以解么? 有多难?
- 第2章: 怎样用逻辑来定义一个验证器问题?
 - Propositional logic, first-order logic, higher-order logic
- 第3章: 怎样进一步定义一种演算规则rules 来降低求解难度?
 - The proof calculus of natural deduction
- •本章:如何针对上述的 rules求解?

应用:如何用工具解决经典逻辑相关的问题?

- SAT,SMT 问题
- 问题求解工具 Z3
- 案例实现
 - Satisfiability
 - Validity
 - Numbers and inequalities
 - Eight Queens problem
 - Binary Arithmetic
 - Rectangle fitting
 - Solving Sudoku
- 其它应用: Symbolic execution

理论:这些工具的核心算法?

应用:如何用工具解决经典逻辑相关的问题?

- SAT,SMT 问题
- 问题求解工具 Z3
- 案例实现
 - Satisfiability
 - Validity
 - Numbers and inequalities
 - Eight Queens problem
 - Binary Arithmetic
 - Rectangle fitting
 - Solving Sudoku
- 其它应用: Symbolic execution

理论:这些工具的核心算法?

3 1 4 3 1

定义: Propositional Logic in BNF

$$\phi ::= p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$

where p stands for any atomic proposition and each occurrence of ϕ to the right of ::= stands for any already constructed formula.

定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M}\vDash\phi$$

问题: $\mathcal{M} \models \phi$ 在命题逻辑中更简单的表达是什么?

イロト イヨト イヨト イヨト

定义: Propositional Logic in BNF

$$\phi ::= p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$

where p stands for any atomic proposition and each occurrence of ϕ to the right of ::= stands for any already constructed formula.

定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M}\vDash\phi$$

问题: $\mathcal{M} \models \phi$ 在命题逻辑中更简单的表达是什么?

・ 同 ト ・ ヨ ト ・ ヨ ト

引理: (去除 *M*)

Given formulas $\phi_1, \phi_2, \ldots, \phi_n$ and ψ of propositional logic, $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$ holds iff $\vDash \phi_1 \rightarrow (\phi_2 \rightarrow (\phi_3 \rightarrow \cdots \rightarrow (\phi_n \rightarrow \psi)))$ holds.

答: 去除 *M* 后, 求解 validity (见如下定义)

定义: Validity

We call ϕ *valid*, if $\vDash \phi$ holds.

• We also call ϕ as a *tautology* (重言式), if ϕ is valid.

下一个问题:怎么求解 validity ? 答:换一个问题求解: Satisfiability (见下页)

イロト イヨト イヨト イヨト

引理: (去除 *M*)

Given formulas $\phi_1, \phi_2, \ldots, \phi_n$ and ψ of propositional logic, $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$ holds iff $\vDash \phi_1 \rightarrow (\phi_2 \rightarrow (\phi_3 \rightarrow \cdots \rightarrow (\phi_n \rightarrow \psi)))$ holds.

答: 去除 M 后, 求解 validity (见如下定义)

定义: Validity

We call ϕ *valid*, if $\vDash \phi$ holds.

• We also call ϕ as a *tautology* (重言式), if ϕ is valid.

下一个问题:怎么求解 validity ? 答:换一个问题求解: Satisfiability (见下页)

イロト イポト イヨト イヨト 一日

引理: (去除 *M*)

Given formulas $\phi_1, \phi_2, \ldots, \phi_n$ and ψ of propositional logic, $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$ holds iff $\vDash \phi_1 \rightarrow (\phi_2 \rightarrow (\phi_3 \rightarrow \cdots \rightarrow (\phi_n \rightarrow \psi)))$ holds.

答: 去除 M 后, 求解 validity (见如下定义)

定义: Validity

We call ϕ *valid*, if $\vDash \phi$ holds.

• We also call ϕ as a *tautology* (重言式), if ϕ is valid.

下一个问题: 怎么求解 validity ? 答: 换一个问题求解: Satisfiability (见下页)

イロト イポト イヨト イヨト 一日

引理: (去除 *M*)

Given formulas $\phi_1, \phi_2, \ldots, \phi_n$ and ψ of propositional logic, $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$ holds iff $\vDash \phi_1 \rightarrow (\phi_2 \rightarrow (\phi_3 \rightarrow \cdots \rightarrow (\phi_n \rightarrow \psi)))$ holds.

答: 去除 M 后, 求解 validity (见如下定义)

定义: Validity

We call ϕ *valid*, if $\vDash \phi$ holds.

• We also call ϕ as a *tautology* (重言式), if ϕ is valid.

下一个问题:怎么求解 validity?

答:换一个问题求解:Satisfiability (见下页)

イロト イ団ト イヨト イヨト 二日

引理: (去除 *M*)

Given formulas $\phi_1, \phi_2, \ldots, \phi_n$ and ψ of propositional logic, $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$ holds iff $\vDash \phi_1 \rightarrow (\phi_2 \rightarrow (\phi_3 \rightarrow \cdots \rightarrow (\phi_n \rightarrow \psi)))$ holds.

答: 去除 M 后, 求解 validity (见如下定义)

定义: Validity

We call ϕ *valid*, if $\vDash \phi$ holds.

• We also call ϕ as a *tautology* (重言式), if ϕ is valid.

下一个问题: 怎么求解 validity? 答: 换一个问题求解: Satisfiability (见下页)

イロト イ団ト イヨト イヨト 二日

Given a formula ϕ in propositional logic, we say that ϕ is *satisfiable* if it has a valuation in which is evaluates to **T**.

例子:

 $p \lor q \to p$ is *satisfiable*, since it computes **T** if we assign **T** to p. Note that $p \lor q \to p$ is *not valid*.

定理

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg\phi$ is not satisfiable.

Given a formula ϕ in propositional logic, we say that ϕ is *satisfiable* if it has a valuation in which is evaluates to **T**.

例子:

 $p \lor q \to p$ is *satisfiable*, since it computes **T** if we assign **T** to p. Note that $p \lor q \to p$ is *not valid*.

定理

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg\phi$ is not satisfiable.

Given a formula ϕ in propositional logic, we say that ϕ is *satisfiable* if it has a valuation in which is evaluates to **T**.

例子:

 $p \lor q \to p$ is *satisfiable*, since it computes **T** if we assign **T** to p. Note that $p \lor q \to p$ is *not valid*.

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

Given a formula ϕ in propositional logic, we say that ϕ is *satisfiable* if it has a valuation in which is evaluates to **T**.

例子:

 $p \lor q \to p$ is *satisfiable*, since it computes **T** if we assign **T** to p. Note that $p \lor q \to p$ is *not valid*.

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

Given a formula ϕ in propositional logic, we say that ϕ is *satisfiable* if it has a valuation in which is evaluates to **T**.

例子:

 $p \lor q \to p$ is *satisfiable*, since it computes **T** if we assign **T** to p. Note that $p \lor q \to p$ is *not valid*.

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

Given a formula ϕ in propositional logic, we say that ϕ is *satisfiable* if it has a valuation in which is evaluates to **T**.

例子:

 $p \lor q \to p$ is *satisfiable*, since it computes **T** if we assign **T** to p. Note that $p \lor q \to p$ is *not valid*.

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

Given a formula ϕ in propositional logic, we say that ϕ is *satisfiable* if it has a valuation in which is evaluates to **T**.

例子:

 $p \lor q \to p$ is *satisfiable*, since it computes **T** if we assign **T** to p. Note that $p \lor q \to p$ is *not valid*.

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

SAT 问题可用于模型的验证!

回顾:问题可以解么?-问题 4

Given a set $A \subseteq S$, and $x \in S$, whether there is a machine that can compute whether $x \in A$.

- Define a new machine, named Turing machine, 图灵机.
- If yes, i.e., there is a Turing machine *M* for *A*, language *A* is *decidable*.
- If no, but there is a Turing machine M that can only accept s, if $s \in A$, language A is still Turing-recognizable.

SAT 是可计算的 (见下页)

★ ∃ ► < ∃ ►</p>

定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

SAT 问题可用于模型的验证!

回顾:问题可以解么?-问题 4

Given a set $A \subseteq S$, and $x \in S$, whether there is a machine that can compute whether $x \in A$.

- Define a new machine, named Turing machine, 图灵机.
- If yes, i.e., there is a Turing machine *M* for *A*, language *A* is *decidable*.
- If no, but there is a Turing machine M that can only accept s, if $s \in A$, language A is still Turing-recognizable.

SAT 是可计算的 (见下页)

- E - - E -

定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

SAT 是可计算的:

• Essentially, this consists of computing the values of the formula for all 2^n ways to choose **T** or **F** for the n variables.

问: SAT 属于哪一类问题? (复杂度

答:SAT 属于经典的 NP-Complete 问题 (1970 年开始研究)(Bad news)。

回顾: 定义: NP-complete and NP-hard

A language B is *NP-complete* if it satisfies two conditions:

1 B is in NP, and

(2) every A in NP is polynomial time *reducible* to B.

Here, B is NP-hard if it satisfies condition 2.

Classical NP-complete problem: SAT (形式化方法的重要问题之一)

定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

SAT 是可计算的:

• Essentially, this consists of computing the values of the formula for all 2^n ways to choose **T** or **F** for the n variables.

问:SAT 属于哪一类问题? (复杂度) 答:SAT 属于经典的 NP-Complete 问题 (1970 <mark>年开始研究</mark>)(Bad news)。

回顾: 定义: NP-complete and NP-hard

A language B is *NP-complete* if it satisfies two conditions:

1 B is in NP, and

(2) every A in NP is polynomial time *reducible* to B.

Here, B is NP-hard if it satisfies condition 2.

Classical NP-complete problem: SAT (形式化方法的重要问题之一)

定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

SAT 是可计算的:

- Essentially, this consists of computing the values of the formula for all 2^n ways to choose **T** or **F** for the n variables.
- 问: SAT 属于哪一类问题? (复杂度)

答: SAT 属于经典的 NP-Complete 问题 (1970 年开始研究)(Bad news)。

回顾: 定义: NP-complete and NP-hard

A language B is *NP-complete* if it satisfies two conditions:

- 1 B is in NP, and
- (2) every A in NP is polynomial time *reducible* to B.
- Here, B is NP-hard if it satisfies condition 2.
- Classical NP-complete problem: SAT (形式化方法的重要问题之一)

定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

SAT 是可计算的:

- Essentially, this consists of computing the values of the formula for all 2^n ways to choose **T** or **F** for the n variables.
- 问: SAT 属于哪一类问题? (复杂度)
- 答: SAT 属于经典的 NP-Complete 问题 (1970 年开始研究)(Bad news)。

回顾: 定义: NP-complete and NP-hard

A language B is *NP-complete* if it satisfies two conditions:

- O B is in NP, and
- **2** every A in NP is polynomial time *reducible* to B.

Here, B is *NP-hard* if it satisfies condition 2.

Classical NP-complete problem: SAT (形式化方法的重要问题之一).

Good news: Current SAT solvers are successful for several big formulas.

• 例子: solving the n-queens problem for n=100 yields a 50Mb formula over 10000 variables, but is solved in 10 seconds by the SAT solver *Z3*.

定义: SMT problem

Extension of SAT, to deal with *numbers* and *inequalities*.

SAT, SMT **求解工具**:

- Z3, YICES, CVC4
- For non-commercial use they are free to download and to use

Good news: Current SAT solvers are successful for several big formulas.

• 例子: solving the n-queens problem for n=100 yields a 50Mb formula over 10000 variables, but is solved in 10 seconds by the SAT solver Z3.

定义: SMT problem

Extension of SAT, to deal with *numbers* and *inequalities*.

SAT, SMT 求解工具:

- Z3, YICES, CVC4
- For non-commercial use they are free to download and to use

Good news: Current SAT solvers are successful for several big formulas.

• 例子: solving the n-queens problem for n=100 yields a 50Mb formula over 10000 variables, but is solved in 10 seconds by the SAT solver Z3.

定义: SMT problem

Extension of SAT, to deal with *numbers* and *inequalities*.

SAT, SMT 求解工具:

- Z3, YICES, CVC4
- For non-commercial use they are free to download and to use

应用 1.2 问题求解工具 (Z3)

Ζ3

• Z3 is a theorem prover from Microsoft Research.

Z3 interfaces

- Default input format is SMTLIB2
- Other native foreign function interfaces:
 - C++ API
 - .NET API
 - Java API
 - Python API
 - C
 - OCaml
 - Julia

参考阅读

• SAT/SMT by Example

э

Ζ3

• Z3 is a theorem prover from Microsoft Research.

Z3 interfaces

- Default input format is SMTLIB2
- Other native foreign function interfaces:
 - C++ API
 - .NET API
 - Java API
 - Python API
 - C
 - OCaml
 - Julia

参考阅读

• SAT/SMT by Example

э

∃ ► < ∃ ►

Ζ3

• Z3 is a theorem prover from Microsoft Research.

Z3 interfaces

- Default input format is SMTLIB2
- Other native foreign function interfaces:
 - C++ API
 - .NET API
 - Java API
 - Python API
 - C
 - OCaml
 - Julia

参考阅读

• SAT/SMT by Example

э

▶ ∢ ∃ ▶

1. 应用 1.3 案例实现 | Satisfiability

问题: Is ϕ satisfiable?

$$\phi = (p \to q) \land (r \leftrightarrow \neg q) \land (\neg p \lor r)$$

```
from z3 import *
p = Bool('p')
q = Bool('q')
r = Bool('r')
solve(Implies(p, a), r == Not(a), Or(Not(p), r))
```

```
运行结果:

$python3 z3-1-sat.py

[q = True, p = False, r = False]

解析:

存在一个解,满足 \models \phi。解为 q = T \land p = F \land r = F
```

- 20

イロト イ団ト イヨト イヨト

1. 应用 1.3 案例实现 | Satisfiability

问题: Is ϕ satisfiable?

$$\phi = (p \to q) \land (r \leftrightarrow \neg q) \land (\neg p \lor r)$$

from z3 import *
p = Bool('p')
q = Bool('q')
r = Bool('r')
solve(Implies(p, q), r == Not(q), Or(Not(p), r))

```
运行结果:

$python3 z3-1-sat.py

[q = True, p = False, r = False]

解析:

存在一个解,满足 \models \phi。解为 q = T \land p = F \land r = F
```

- 20

イロト イ団ト イヨト イヨト

1. 应用 1.3 案例实现 | Satisfiability

问题: Is ϕ satisfiable?

$$\phi = (p \to q) \land (r \leftrightarrow \neg q) \land (\neg p \lor r)$$

from z3 import *
p = Bool('p')
q = Bool('q')
r = Bool('r')
solve(Implies(p, q), r == Not(q), Or(Not(p), r))

运行结果:
\$python3 z3-1-sat.py

$$[q = True, p = False, r = False]$$

解析:
存在一个解,满足 $\models \phi$ 。解为 $q = T \land p = F \land r = F$

э

イロト イポト イヨト イヨト

1. 应用 1.3 案例实现 | Satisfiability

问题: Is ϕ satisfiable?

$$\phi = (p \to q) \land (r \leftrightarrow \neg q) \land (\neg p \lor r)$$

from z3 import *
p = Bool('p')
q = Bool('q')
r = Bool('r')
solve(Implies(p, q), r == Not(q), Or(Not(p), r))

运行结果:
\$python3 z3-1-sat.py

$$[q = True, p = False, r = False]$$

解析:
存在一个解,满足 $\models \phi$ 。解为 $q = T \land p = F \land r = F$

э

イロト イポト イヨト イヨト

```
from z3 import *
p, q = Bools('p q')
demorgan = \setminus
    And(p, q) == \setminus
         Not(Or(Not(p), Not(q)))
def prove(f):
    s = Solver()
    s.add(Not(f))
    if s.check() == unsat:
         print("proved")
    else:
         print("failed to prove") So, \phi is valid.
prove(demorgan)
```

问题: ls
$$\phi$$
 valid ? (i.e., $\vDash \phi$?)
 $\phi = (p \land q) \leftrightarrow \neg(\neg p \lor \neg q)$

• = • • = •

```
from z3 import *
p, q = Bools('p q')
demorgan = \setminus
    And(p, q) == \setminus
         Not(Or(Not(p), Not(q)))
def prove(f):
    s = Solver()
    s.add(Not(f))
    if s.check() == unsat:
         print("proved")
    else:
         print("failed to prove") So, \phi is valid.
prove(demorgan)
```

问题: Is
$$\phi$$
 valid ? (i.e., $\models \phi$?)
 $\phi = (p \land q) \leftrightarrow \neg(\neg p \lor \neg q)$

运行结果: \$python3 z3-2-valid.py proved

3 K K 3 K

```
from z3 import *
p, q = Bools('p q')
demorgan = \setminus
    And(p, q) == \setminus
        Not(Or(Not(p), Not(q)))
                                    运行结果:
def prove(f):
    s = Solver()
    s.add(Not(f))
                                    解析:
    if s.check() == unsat:
        print("proved")
    else:
        print("failed to prove")
prove(demorgan)
```

问题: Is
$$\phi$$
 valid ? (i.e., $\vDash \phi$?)
 $\phi = (p \land q) \leftrightarrow \neg(\neg p \lor \neg q)$

运行结果: \$python3 z3-2-valid.py proved 解析: ϕ is valid, iff $\neg \phi$ is not satisfiable. So, ϕ is valid.

▶ ∢ ∃ ▶

 $x > 2 \land y < 10 \land x + 2y = 7$, where x, y are integers.

```
from z3 import *
x = Int('x')
y = Int('y')
solve(x > 2, y < 10, x + 2*y == 7)</pre>
```

运行结果: \$python3 z3-3-inequalities.p [y = 0, x = 7] 解析: 该问题为 SMT 问题

 $x > 2 \land y < 10 \land x + 2y = 7$, where x, y are integers.

from z3 import * x = Int('x') y = Int('y') solve(x > 2, y < 10, x + 2*y == 7)</pre>

```
运行结果:

$python3 z3-3-inequalities.py

[y = 0, x = 7]

解析:

该问题为 SMT 问题
```

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

 $x > 2 \land y < 10 \land x + 2y = 7$, where x, y are integers.

from z3 import * x = Int('x') y = Int('y') solve(x > 2, y < 10, x + 2*y == 7)</pre>

运行结果: \$python3 z3-3-inequalities.py [y = 0, x = 7] 解析: 该问题为 SMT 问题

· · · · · · · · ·

 $x > 2 \land y < 10 \land x + 2y = 7$, where x, y are integers.

from z3 import * x = Int('x') y = Int('y') solve(x > 2, y < 10, x + 2*y == 7)</pre>

运行结果: \$python3 z3-3-inequalities.py [y = 0, x = 7] 解析: 该问题为 SMT 问题

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that *no two queens attack each other*. Thus, a solution requires that *no two queens* share the *same row, column, or diagonal*.

As usual in SAT/SMT, don't think about how to solve it, but *only specify the problem*.

- Pure SAT: only boolean variables, no numbers, no inequalities.
- For every position (i, j) on the board: boolean variable p_{ij} expresses whether there is a queen or not.

- E > - E >

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that *no two queens attack each other*. Thus, a solution requires that *no two queens* share the *same row, column, or diagonal*.

As usual in SAT/SMT, don't think about how to solve it, but *only specify the problem*.

- Pure SAT: only boolean variables, no numbers, no inequalities.
- For every position (i, j) on the board: boolean variable p_{ij} expresses whether there is a queen or not.

4 3 4 3 4 3 4

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that *no two queens attack each other*. Thus, a solution requires that *no two queens* share the *same row, column, or diagonal*.

As usual in SAT/SMT, don't think about how to solve it, but *only specify the problem*.

- Pure SAT: only boolean variables, no numbers, no inequalities.
- For every position (i, j) on the board: boolean variable p_{ij} expresses whether there is a queen or not.

4 3 4 3 4 3 4

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that *no two queens attack each other*. Thus, a solution requires that *no two queens* share the *same row, column, or diagonal*.

As usual in SAT/SMT, don't think about how to solve it, but *only specify the problem*.

- Pure SAT: only boolean variables, no numbers, no inequalities.
- For every position (i, j) on the board: boolean variable p_{ij} expresses whether there is a queen or not.

- E > - E >

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

(1) At least one queen on row

• $p_{i1} \lor p_{i2} \lor p_{i3} \lor p_{i4} \lor p_{i5} \lor p_{i6} \lor p_{i7} \lor p_{i8}$

- (2) At most one queen on row i:
 - For every j < k not both p_{ij} and p_{ik} are true

 $\bigwedge_{0 < j < k \le 8} (\neg p_{ij} \lor \neg p_{ik})$

- E > - E >

Requirements until now (on *every* row):

$$\bigwedge_{i=1}^{8} \bigvee_{j=1}^{8} p_{ij} \wedge \bigwedge_{i=1}^{8} \bigwedge_{0 < j < k \le 8} (\neg p_{ij} \lor \neg p_{ik})$$

形式化方法导引

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

(1) At least one queen on row i:

• $p_{i1} \lor p_{i2} \lor p_{i3} \lor p_{i4} \lor p_{i5} \lor p_{i6} \lor p_{i7} \lor p_{i8}$

- (2) At most one queen on row *i*:
 - For every j < k not both p_{ij} and p_{ik} are true

 $\bigwedge_{0 < j < k \le 8} (\neg p_{ij} \lor \neg p_{ik})$

イロト イ部ト イヨト イヨト

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

(1) At least one queen on row i:

• $p_{i1} \lor p_{i2} \lor p_{i3} \lor p_{i4} \lor p_{i5} \lor p_{i6} \lor p_{i7} \lor p_{i8}$

(2) At most one queen on row i:

• For every j < k not both p_{ij} and p_{ik} are true

 $\bigwedge_{0 < j < k \le 8} (\neg p_{ij} \lor \neg p_{ik})$

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

(1) At least one queen on row i:

• $p_{i1} \lor p_{i2} \lor p_{i3} \lor p_{i4} \lor p_{i5} \lor p_{i6} \lor$ $p_{i7} \lor p_{i8}$

(2) At most one queen on row i:

• For every j < k not both p_{ij} and p_{ik} are true

$$\bigwedge_{0 < j < k \le 8} (\neg p_{ij} \lor \neg p_{ik})$$

< ロト < 同ト < ヨト < ヨト

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

(1) At least one queen on row i:

- $p_{i1} \lor p_{i2} \lor p_{i3} \lor p_{i4} \lor p_{i5} \lor p_{i6} \lor$ $p_{i7} \lor p_{i8}$ $\bigvee^{8} p_{ij}$
- j=1 (2) At most one queen on row i:
 - For every j < k not both p_{ij} and p_{ik} are true

 $\bigwedge_{0 < j < k \le 8} (\neg p_{ij} \lor \neg p_{ik})$

イロト (四) (三) (三)

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

(1) At least one queen on row i:

- $p_{i1} \lor p_{i2} \lor p_{i3} \lor p_{i4} \lor p_{i5} \lor p_{i6} \lor$ $p_{i7} \lor p_{i8}$ $\bigvee^{8} p_{ij}$
- j=1 (2) At most one queen on row i:

(

• For every j < k not both p_{ij} and p_{ik} are true

$$\bigwedge_{0 < j < k \le 8} (\neg p_{ij} \lor \neg p_{ik})$$

形式化方法导引

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

$$\bigwedge_{i=1}^{8} \bigvee_{j=1}^{8} p_{ij} \wedge \bigwedge_{i=1}^{8} \bigwedge_{0 < j < k \le 8} (\neg p_{ij} \vee \neg p_{ik})$$

黄文超 https://faculty.ustc.edu.cn/hua

形式化方法导引

(1) At least one queen on row i:

- $p_{i1} \lor p_{i2} \lor p_{i3} \lor p_{i4} \lor p_{i5} \lor p_{i6} \lor$ $p_{i7} \lor p_{i8}$ $\bigvee_{j=1}^{8} p_{ij}$
- (2) At most one queen on row i:
 - For every j < k not both p_{ij} and p_{ik} are true

$$\bigwedge_{0 < j < k \le 8} (\neg p_{ij} \lor \neg p_{ik})$$

∃ ► < ∃ ►

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

DIY

イロト イヨト イヨト イヨト

Similarly, on every *column*:

$$\bigwedge_{j=1}^{8} \bigvee_{i=1}^{8} p_{ij} \wedge \bigwedge_{j=1}^{8} \bigwedge_{0 < i < k \le 8} (\neg p_{ij} \vee \neg p_{kj})$$

形式化方法导引

æ

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

 p_{ij} and $p_{i'j'}$ on such a diagnoal

$$i-j=i'-j'$$

イロト イヨト イヨト イヨト

æ

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

 p_{ij} and $p_{i'j'}$ on such a diagonal

$$i+j=i'+j'$$

イロト イヨト イヨト イヨト

æ

So far all i, j, i', j' with $(i, j) \neq (i', j')$ satisfying i + j = i' + j' or i - j = i' - j': $\neg p_{ij} \lor \neg p_{i'j'}$

stating that on (i, j) and (i', j') being two distinct positions on a diagonal, no two queens are allowed.

We may restrict to i < i', yielding

$$\bigwedge_{0 < i < i' \le 8} \left(\bigwedge_{j,j': i+j=i'+j' \lor i-j=i'-j'} \neg p_{ij} \lor \neg p_{i'j'} \right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

So far all i, j, i', j' with $(i, j) \neq (i', j')$ satisfying i + j = i' + j' or i - j = i' - j': $\neg p_{ij} \lor \neg p_{i'j'}$

stating that on (i,j) and (i^\prime,j^\prime) being two distinct positions on a diagonal, no two queens are allowed.

We may restrict to i < i', yielding

$$\bigwedge_{0 < i < i' \le 8} \left(\bigwedge_{j,j': i+j=i'+j' \lor i-j=i'-j'} \neg p_{ij} \lor \neg p_{i'j'} \right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\bigwedge_{i=1}^{8} \bigvee_{j=1}^{8} p_{ij} \wedge \bigwedge_{i=1}^{8} \bigwedge_{0 < j < k \le 8} (\neg p_{ij} \vee \neg p_{ik}) \wedge \bigwedge_{j=1}^{8} \bigvee_{i=1}^{8} p_{ij} \wedge \bigwedge_{j=1}^{8} \bigwedge_{0 < i < k \le 8} (\neg p_{ij} \vee \neg p_{kj})$$
$$\bigwedge_{0 < i < i' \le 8} (\bigwedge_{j,j':i+j=i'+j' \vee i-j=i'-j'} \neg p_{ij} \vee \neg p_{i'j'})$$

э

イロト イボト イヨト イヨト

$$\bigwedge_{i=1}^{8} \bigvee_{j=1}^{8} p_{ij} \wedge \bigwedge_{i=1}^{8} \bigwedge_{0 < j < k \le 8} (\neg p_{ij} \vee \neg p_{ik}) \wedge \bigwedge_{j=1}^{8} \bigvee_{i=1}^{8} p_{ij} \wedge \bigwedge_{j=1}^{8} \bigwedge_{0 < i < k \le 8} (\neg p_{ij} \vee \neg p_{kj})$$
$$\bigwedge_{0 < i < i' \le 8} (\bigwedge_{j,j':i+j=i'+j' \vee i-j=i'-j'} \neg p_{ij} \vee \neg p_{i'j'})$$

イロト イポト イヨト イヨト

运行结果: \$python3 z3-4-queens.py [Q_5 = 1, Q_8 = 7, Q_3 = 8, Q_2 = 2, Q_6 = 3, Q_4 = 6, Q_7 = 5, Q_1 = 4] 解析: From Fight Ouepons to N Ouepon?

From Eight-Queens to N-Queens?

26s for 40 queens

思考:不使用 SMT, 而是换之前解释的方法 (pure SAT), 效率会不会更高?

看下面讲解

运行结果:
\$python3 z3-4-queens.py
$[Q_5 = 1, Q_8 = 7, Q_3 = 8, Q_2 = 2,$
$Q_6 = 3, Q_4 = 6, Q_7 = 5, Q_1 = 4$
解析:
From Eight-Queens to N-Queens?
26s for 40 queens
思考:不使用 SMT, 而是换之前解释的方法 (pur
SAT), 效率会不会更高?

イロン イ理 とくほとう ほん

昏下面讲解

21 / 40

- Introduces flavor of bounded model checking
 - BMC, 有界模型检测, 见第 5 章
 - one of the most important applications of SAT/SMT
- Often (e.g., in hardware verification), SAT encoding of arithmetic *outperforms* SMT

< 3 > < 3 >

问题 Compute 13+7? 解析: Covered by SMT, why do it in pure SAT? ● Interesting how to express a non-SAT looking problem in SAT

- Introduces flavor of bounded model checking
 - BMC, 有界模型检测, 见第 5 章
 - one of the most important applications of SAT/SMT
- Often (e.g., in hardware verification), SAT encoding of arithmetic *outperforms* SMT

∃ ► < ∃ ►

解析: Covered by SMT, why do it in pure SAT?

- Interesting how to express a non-SAT looking problem in SAT
- Introduces flavor of bounded model checking
 - BMC, 有界模型检测, 见第 5 章
 - one of the most important applications of SAT/SMT
- Often (e.g., in hardware verification), SAT encoding of arithmetic *outperforms* SMT

4 3 4 3 4 3 4

解析: Covered by SMT, why do it in pure SAT?

- Interesting how to express a non-SAT looking problem in SAT
- Introduces flavor of bounded model checking
 - BMC, 有界模型检测, 见第 5 章
 - one of the most important applications of SAT/SMT
- Often (e.g., in hardware verification), SAT encoding of arithmetic *outperforms* SMT

4 3 4 3 4 3 4

解析: Covered by SMT, why do it in pure SAT?

- Interesting how to express a non-SAT looking problem in SAT
- Introduces flavor of bounded model checking
 - BMC, 有界模型检测, 见第 5 章
 - one of the most important applications of SAT/SMT
- Often (e.g., in hardware verification), SAT encoding of arithmetic *outperforms* SMT

In SAT we only have Boolean variables.

问题: Binary representation

How to Express a number by a sequence of Boolean values?

解: Binary representation

 $a_1a_2\cdots a_n$

of number a:

 $a_i \in \{0, 1\}$ and

$$a = a_n + 2a_{n-1} + 4a_{n-2} + \dots = \sum_{i=1}^n a_i * 2^{n-i}$$

例:

- 01101 represents 8+4+1=13
- 00111 represents 4+2+1=7

3 1 4 3 1

In SAT we only have Boolean variables.

问题: Binary representation

How to Express a number by a sequence of Boolean values?

解: Binary representation

 $a_1a_2\cdots a_n$

of number a:

 $a_i \in \{0, 1\}$ and

$$a = a_n + 2a_{n-1} + 4a_{n-2} + \dots = \sum_{i=1}^n a_i * 2^{n-i}$$

例:

- 01101 represents 8+4+1=13
- 00111 represents 4+2+1=7

∃ ► < ∃ ►

In SAT we only have Boolean variables.

问题: Binary representation

How to Express a number by a sequence of Boolean values?

解: Binary representation

$$a_1a_2\cdots a_n$$

of number a:

 $a_i \in \{0, 1\}$ and

$$a = a_n + 2a_{n-1} + 4a_{n-2} + \dots = \sum_{i=1}^n a_i * 2^{n-i}$$

例:

- 01101 represents 8+4+1=13
- 00111 represents 4+2+1=7

In SAT we only have Boolean variables.

问题: Binary representation

How to Express a number by a sequence of Boolean values?

解: Binary representation

$$a_1a_2\cdots a_n$$

of number a:

 $a_i \in \{0, 1\}$ and

$$a = a_n + 2a_{n-1} + 4a_{n-2} + \dots = \sum_{i=1}^n a_i * 2^{n-i}$$

例:

- 01101 represents 8+4+1=13
- 00111 represents 4+2+1=7

问题: Add

- How to compute d = a + b?
 - Basic rules: Take care of carry \boldsymbol{c}

•
$$0 + 0 + 0 = 0$$
, carry = 0

• 0 + 0 + 1 = 1, carry = 0

• 0 + 1 + 1 = 0, carry = 1

•
$$1 + 1 + 1 = 1$$
, carry $= 1$

Start by rightmost carry = 0, compute from right to left

carries c:	1	1	1	1	
number $a=13$:		1	1		1
number <i>b</i> =7:			1	1	1
result d	1		1		

indeed yielding 10100 representing 20

问题: Add

How to compute d = a + b?

• Basic rules: Take care of carry c

•
$$0 + 0 + 0 = 0$$
, carry = 0

• 0 + 0 + 1 = 1, carry = 0

- 0 + 1 + 1 = 0, carry = 1
 1 + 1 + 1 = 1, carry = 1
- 1 + 1 + 1 = 1, carry =

Image: Image:

Start by rightmost carry = 0, compute from right to left

carries c:	1	1	1	1	
number $a=13$:		1	1		1
number <i>b</i> =7:			1	1	1
result d	1		1		

indeed yielding 10100 representing 20

问题: Add

How to compute d = a + b?

• Basic rules: Take care of carry c

•
$$0 + 0 + 0 = 0$$
, carry = 0

• 0 + 0 + 1 = 1, carry = 0

•
$$0 + 1 + 1 = 0$$
, carry = 1

•
$$1 + 1 + 1 = 1$$
, carry $= 1$

Image: A matrix

Start by rightmost carry = 0, compute from right to left

carries c:	0	1	1	1	1	0
number $a=13$:		0	1	1	0	1
number <i>b</i> =7:		0	0	1	1	1
result d		1	0	1	0	0

indeed yielding 10100 representing 20

$$d_i \leftrightarrow (a_i \leftrightarrow (b_i \leftrightarrow c_i)) \tag{1}$$

correct, since $(a_i \leftrightarrow (b_i \leftrightarrow c_i)$ yields true if and only if 1 or 3 among $\{a_i, b_i, c_i\}$ yield true

Carry c_{i-1} in a formula for $i = 1, \ldots, n$:

$$c_{i-1} \leftrightarrow ((a_i \wedge b_i) \lor (a_i \wedge c_i) \lor (b_i \wedge c_i))$$
(2)

$$d_i \leftrightarrow (a_i \leftrightarrow (b_i \leftrightarrow c_i)) \tag{1}$$

correct, since $(a_i \leftrightarrow (b_i \leftrightarrow c_i)$ yields true if and only if 1 or 3 among $\{a_i, b_i, c_i\}$ yield true

Carry c_{i-1} in a formula for $i = 1, \ldots, n$:

$$c_{i-1} \leftrightarrow ((a_i \wedge b_i) \lor (a_i \wedge c_i) \lor (b_i \wedge c_i))$$
(2)

$$d_i \leftrightarrow (a_i \leftrightarrow (b_i \leftrightarrow c_i)) \tag{1}$$

correct, since $(a_i \leftrightarrow (b_i \leftrightarrow c_i)$ yields true if and only if 1 or 3 among $\{a_i, b_i, c_i\}$ yield true

Carry c_{i-1} in a formula for $i = 1, \ldots, n$:

$$c_{i-1} \leftrightarrow ((a_i \wedge b_i) \lor (a_i \wedge c_i) \lor (b_i \wedge c_i))$$
(2)

$$d_i \leftrightarrow (a_i \leftrightarrow (b_i \leftrightarrow c_i)) \tag{1}$$

イロト 不得 トイヨト イヨト

correct, since $(a_i \leftrightarrow (b_i \leftrightarrow c_i)$ yields true if and only if 1 or 3 among $\{a_i, b_i, c_i\}$ yield true

Carry c_{i-1} in a formula for $i = 1, \ldots, n$:

$$c_{i-1} \leftrightarrow ((a_i \wedge b_i) \lor (a_i \wedge c_i) \lor (b_i \wedge c_i))$$
(2)

$$d_i \leftrightarrow (a_i \leftrightarrow (b_i \leftrightarrow c_i)) \tag{1}$$

イロト イヨト イヨト ・ ヨトー

correct, since $(a_i \leftrightarrow (b_i \leftrightarrow c_i)$ yields true if and only if 1 or 3 among $\{a_i, b_i, c_i\}$ yield true

Carry c_{i-1} in a formula for $i = 1, \ldots, n$:

$$c_{i-1} \leftrightarrow ((a_i \wedge b_i) \lor (a_i \wedge c_i) \lor (b_i \wedge c_i))$$
(2)

To express that we start by rightmost carry = 0, we state

To express that the result should fit in n bits, at the end we should not have a carry left, and we state

 $\neg c_n$

Let ϕ be the conjunction of all these requirements; this expresses the correctness of the corresponding binary addition

To compute a + b for a = 13, b = 7, we apply a SAT solver to

$$\phi \wedge \underbrace{\neg a_1 \wedge a_2 \wedge a_3 \wedge \neg a_4 \wedge a_5}_{a=13=01101} \wedge \underbrace{\neg b_1 \wedge \neg b_2 \wedge b_3 \wedge b_4 \wedge b_5}_{b=7=00111}$$

The resulting satisfying assignment will contain $d_1, \neg d_2, d_3, \neg d_4, \neg d_5$ representing the result d = 20 (3)

To express that we start by rightmost carry = 0, we state

To express that the result should fit in \boldsymbol{n} bits, at the end we should not have a carry left, and we state

 $\neg c_n$

 $\neg c_0$

Let ϕ be the conjunction of all these requirements; this expresses the correctness of the corresponding binary addition

To compute a+b for a=13,b=7, we apply a SAT solver to

$$\phi \wedge \underbrace{\neg a_1 \wedge a_2 \wedge a_3 \wedge \neg a_4 \wedge a_5}_{a=13=01101} \wedge \underbrace{\neg b_1 \wedge \neg b_2 \wedge b_3 \wedge b_4 \wedge b_5}_{b=7=00111}$$

The resulting satisfying assignment will contain $d_1, \neg d_2, d_3, \neg d_4, \neg d_5$ representing the result d = 20 (3)

(4)

To express that we start by rightmost carry = 0, we state

 $\neg c_n$ (3)

To express that the result should fit in \boldsymbol{n} bits, at the end we should not have a carry left, and we state

$$\neg c_0$$

Let ϕ be the conjunction of all these requirements; this expresses the correctness of the corresponding binary addition

To compute a + b for a = 13, b = 7, we apply a SAT solver to

$$\phi \wedge \underbrace{\neg a_1 \wedge a_2 \wedge a_3 \wedge \neg a_4 \wedge a_5}_{a=13=01101} \wedge \underbrace{\neg b_1 \wedge \neg b_2 \wedge b_3 \wedge b_4 \wedge b_5}_{b=7=00111}$$

The resulting satisfying assignment will contain $d_1, \neg d_2, d_3, \neg d_4, \neg d_5$ representing the result d = 20 To express that we start by rightmost carry = 0, we state

$$c_n$$
 (3)

To express that the result should fit in n bits, at the end we should not have a carry left, and we state

 $\neg c_0$

Let ϕ be the conjunction of all these requirements; this expresses the *correctness* of the corresponding binary addition

To compute a + b for a = 13, b = 7, we apply a SAT solver to

$$\phi \wedge \underbrace{\neg a_1 \wedge a_2 \wedge a_3 \wedge \neg a_4 \wedge a_5}_{a=13=01101} \wedge \underbrace{\neg b_1 \wedge \neg b_2 \wedge b_3 \wedge b_4 \wedge b_5}_{b=7=00111}$$

The resulting satisfying assignment will contain $d_1, \neg d_2, d_3, \neg d_4, \neg d_5$ representing the result d = 20 To express that we start by rightmost carry = 0, we state

$$c_n$$
 (3)

To express that the result should fit in n bits, at the end we should not have a carry left, and we state

 $\neg c_0$

Let ϕ be the conjunction of all these requirements; this expresses the *correctness* of the corresponding binary addition

To compute a + b for a = 13, b = 7, we apply a SAT solver to

$$\phi \wedge \underbrace{\neg a_1 \wedge a_2 \wedge a_3 \wedge \neg a_4 \wedge a_5}_{a=13=01101} \wedge \underbrace{\neg b_1 \wedge \neg b_2 \wedge b_3 \wedge b_4 \wedge b_5}_{b=7=00111}$$

The resulting satisfying assignment will contain d_1 , $\neg d_2$, d_3 , $\neg d_4$, $\neg d_5$ representing the result d = 20

Concluding,

In this way computing d = a + b can be done by SAT solving for any binary numbers a, b.

By adding given values for a_i, d_i to the formula ϕ expressing d = a + b, and reading b_i from resulting satisfying assignment, we can compute b = d - a by exploiting the same formula.

・ 何 ト ・ ヨ ト ・ ヨ ト

应用 条例实现 | Rectangle fitting

问题: Rectangle fitting

Given a big rectangle and a number of small rectangles, can you fit the small rectangles in the big one such that no two overlap.

low to specify this problem?

- Number rectangles from 1 to n
- for $i = 1 \dots n$ introduce variables:
 - w_i is the width of rectangle i
 - h_i is the height of rectangle i
 - x_i is the *x*-coordinate of the left lower corner of rectangle *i*
 - y_i is the y-coordinate of the left lower corner of rectangle i

4 3 4 3 4 3 4

应用 条例实现 | Rectangle fitting

问题: Rectangle fitting

Given a big rectangle and a number of small rectangles, can you fit the small rectangles in the big one such that no two overlap.

How to specify this problem?

- $\bullet\,$ Number rectangles from 1 to n
- for $i = 1 \dots n$ introduce variables:
 - w_i is the width of rectangle i
 - h_i is the height of rectangle i
 - x_i is the *x*-coordinate of the left lower corner of rectangle *i*
 - y_i is the y-coordinate of the left lower corner of rectangle i

★ ∃ ► < ∃ ►</p>

应用 条例实现 | Rectangle fitting

问题: Rectangle fitting

Given a big rectangle and a number of small rectangles, can you fit the small rectangles in the big one such that no two overlap.

How to specify this problem?

- $\bullet\,$ Number rectangles from 1 to n
- for $i = 1 \dots n$ introduce variables:
 - w_i is the width of rectangle i
 - h_i is the height of rectangle i
 - x_i is the *x*-coordinate of the left lower corner of rectangle *i*
 - y_i is the y-coordinate of the left lower corner of rectangle i

★ ∃ ► < ∃ ►</p>

问题: Rectangle fitting

Given a big rectangle and a number of small rectangles, can you fit the small rectangles in the big one such that no two overlap.

How to specify this problem?

- $\bullet\,$ Number rectangles from 1 to n
- for $i = 1 \dots n$ introduce variables:
 - w_i is the width of rectangle i
 - h_i is the height of rectangle i
 - x_i is the *x*-coordinate of the left lower corner of rectangle *i*
 - y_i is the y-coordinate of the left lower corner of rectangle i

- Configuration of small rectangles:
 - 例子: First rectangle has width 4 and height 6:
 - $(w_1 = 4 \land h_1 = 6) \lor (w_1 = 6 \land h_1 = 4)$
- Configuration of the big rectangle
 - (0,0) = lower left corner of big rectangle.
 - W =width of big rectangle.
 - H =height of big rectangle.

• Requirements:

 $x_i \ge 0 \land x_i + w_i \le W$ $y_i \ge 0 \land y_i + h_i \le H$

for all $i = 1, \ldots, n$

★ ∃ ► < ∃ ►</p>

- Configuration of small rectangles:
 - 例子: First rectangle has width 4 and height 6:
 - $(w_1 = 4 \land h_1 = 6) \lor (w_1 = 6 \land h_1 = 4)$

• Configuration of the big rectangle

- (0,0) = lower left corner of big rectangle.
- W =width of big rectangle.
- H = height of big rectangle.

• Requirements:

 $x_i \ge 0 \land x_i + w_i \le W$ $y_i \ge 0 \land y_i + h_i \le H$

for all $i = 1, \ldots, n$

A B M A B M

- Configuration of small rectangles:
 - 例子: First rectangle has width 4 and height 6:
 - $(w_1 = 4 \land h_1 = 6) \lor (w_1 = 6 \land h_1 = 4)$
- Configuration of the big rectangle
 - (0,0) = lower left corner of big rectangle.
 - W = width of big rectangle.
 - H =height of big rectangle.

• Requirements:

 $x_i \ge 0 \land x_i + w_i \le W$ $y_i \ge 0 \land y_i + h_i \le H$

for all $i = 1, \ldots, n$

• • = • • = •

- Configuration of small rectangles:
 - 例子: First rectangle has width 4 and height 6:
 - $(w_1 = 4 \land h_1 = 6) \lor (w_1 = 6 \land h_1 = 4)$
- Configuration of the big rectangle
 - (0,0) = lower left corner of big rectangle.
 - W = width of big rectangle.
 - H =height of big rectangle.

• Requirements:

$$x_i \ge 0 \land x_i + w_i \le W$$
$$y_i \ge 0 \land y_i + h_i \le H$$

for all $i = 1, \ldots, n$

• = • • = •

So for all i, j = 1, ..., n, i < j, we should add the negation of this overlappingness:

 $\neg (x_j < x_i + w_i \land x_i < x_j + w_j \land y_j < y_i + h_i \land y_i < y_j + h_j)$

or, equivalently

 $x_j \ge x_i + w_i \lor x_i \ge x_j + w_j \lor y_j \ge y_i + h_i \lor y_i \ge y_j + h_j$

イロト イヨト イヨト ・

$$\begin{array}{c|c} (x_i,y_i+h_i) \\ \hline \\ (x_j,y_j) \\ (x_j,y_j) \\ (x_j+w_j,y_i) \end{array} \begin{array}{c} \text{Rectangles i and j overlap is} \\ \bullet & x_j < x_i+w_i \\ \bullet & \text{and } x_i < x_j+w_j \\ \bullet & \text{and } y_j < y_i+h_i \\ \bullet & \text{and } y_i < y_j+h_j \end{array}$$

So for all i, j = 1, ..., n, i < j, we should add the negation of this overlappingness:

$$\neg (x_j < x_i + w_i \land x_i < x_j + w_j \land y_j < y_i + h_i \land y_i < y_j + h_j)$$

or, equivalently

 $x_j \ge x_i + w_i \lor x_i \ge x_j + w_j \lor y_j \ge y_i + h_i \lor y_i \ge y_j + h_j$

э

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶ ○

$$\begin{array}{c|c} (x_i,y_i+h_i) \\ \hline \\ (x_j,y_j) \\ (x_j,y_j) \\ (x_i,y_i) \\ (x_i+w_i,y_i) \end{array} \begin{array}{c} \text{Rectangles i and j overlap is in a gradient of the set of the$$

So for all $i, j = 1, \ldots, n, i < j$, we should add the negation of this overlappingness:

$$\neg (x_j < x_i + w_i \land x_i < x_j + w_j \land y_j < y_i + h_i \land y_i < y_j + h_j)$$

or, equivalently

$$x_j \geq x_i + w_i \lor x_i \geq x_j + w_j \lor y_j \geq y_i + h_i \lor y_i \geq y_j + h_j$$

æ

应用 案例实现 | Rectangle fitting

n

The following formula is *satisfiable* iff the fitting problem *has a solution*

$$\bigwedge_{i=1}^{n} ((w_i = W_i \land h_i = H_i) \lor (w_i = H_i \land h_i = W_i))$$

$$\wedge \bigwedge_{i=1}^{n} (x_i \ge 0 \land x_i + w_i \le W \land y_i \ge 0 \land y_i + h_i \le H)$$

$$\wedge \bigwedge_{1 \le i < j \le n} (x_j \ge x_i + w_i \lor x_i \ge x_j + w_j \lor y_j \ge y_i + h_i \lor y_i \ge y_j + h_j)$$

If the formula is satisfiable, then the SMT solver yields a satisfying assignment, that is, the corresponding values of x_i, y_i, w_i, h_i

Applying a standard SMT solver like Z3, Yices, or CVC4: feasible for rectangle fitting problems up to *20 or 25 rectangles*

< 日 > < 同 > < 三 > < 三 >

应用 案例实现 | Rectangle fitting

n

m

The following formula is *satisfiable* iff the fitting problem *has a solution*

$$\bigwedge_{i=1}^{n} ((w_i = W_i \land h_i = H_i) \lor (w_i = H_i \land h_i = W_i))$$

$$\wedge \bigwedge_{i=1}^{n} (x_i \ge 0 \land x_i + w_i \le W \land y_i \ge 0 \land y_i + h_i \le H)$$

 $\wedge \bigwedge_{1 \le i < j \le n} (x_j \ge x_i + w_i \lor x_i \ge x_j + w_j \lor y_j \ge y_i + h_i \lor y_i \ge y_j + h_j)$

If the formula is satisfiable, then the SMT solver yields a satisfying assignment, that is, the corresponding values of x_i, y_i, w_i, h_i

Applying a standard SMT solver like Z3, Yices, or CVC4: feasible for rectangle fitting problems up to *20 or 25 rectangles*

应用 案例实现 | Rectangle fitting

n

m

The following formula is *satisfiable* iff the fitting problem *has a solution*

$$\bigwedge_{i=1}^{n} ((w_i = W_i \land h_i = H_i) \lor (w_i = H_i \land h_i = W_i))$$

$$\wedge \bigwedge_{i=1}^{n} (x_i \ge 0 \land x_i + w_i \le W \land y_i \ge 0 \land y_i + h_i \le H)$$

$$\wedge \bigwedge_{1 \le i < j \le n} (x_j \ge x_i + w_i \lor x_i \ge x_j + w_j \lor y_j \ge y_i + h_i \lor y_i \ge y_j + h_j)$$

If the formula is satisfiable, then the SMT solver yields a satisfying assignment, that is, the corresponding values of x_i, y_i, w_i, h_i

Applying a standard SMT solver like Z3, Yices, or CVC4: feasible for rectangle fitting problems up to *20 or 25 rectangles*

形式化方法导引

Fill the blank cells in such a way that

- every row, and
- every column, and
- $\bullet\,$ every fat $3\,\, {\rm block}$

contains the numbers 1 to 9, all occurring exactly once

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6 7	5			
	4		9	7				

最强大脑?: The puzzle may by very hard, and *backtracking* and/or *advanced solving techniques* are required. For SAT/SMT it is peanuts: *just* specify the problem. How?

Fill the blank cells in such a way that

- every row, and
- every column, and
- $\bullet\,$ every fat $3\,\, {\rm block}$

contains the numbers 1 to 9, all occurring exactly once

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6	5			
	4		9	7				

最强大脑?: The puzzle may by very hard, and *backtracking* and/or *advanced solving techniques* are required. For SAT/SMT it is peanuts: *just* specify the problem. How?

Fill the blank cells in such a way that

- every row, and
- every column, and
- $\bullet\,$ every fat $3\,\, {\rm block}$

contains the numbers 1 to 9, all occurring exactly once

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6	5			
	4		9	7				

最强大脑?: The puzzle may by very hard, and *backtracking* and/or *advanced solving techniques* are required. For SAT/SMT it is peanuts: *just* specify the problem. How?

Fill the blank cells in such a way that

- every row, and
- every column, and
- $\bullet\,$ every fat $3\,\, {\rm block}$

contains the numbers 1 to 9, all occurring exactly once

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6	5			
	4		9	7				

最强大脑?: The puzzle may by very hard, and *backtracking* and/or *advanced solving techniques* are required. For SAT/SMT it is peanuts: *just* specify the problem. How?

- Pure SAT: for every cell and every number 1 to 9, introduce boolean variable describing whether that number is on that position, so $9^3 = 729$ boolean variables.
- SMT: for every cell define an integer variable for the corresponding number.

We elaborate the latter.

- Pure SAT: for every cell and every number 1 to 9, introduce boolean variable describing whether that number is on that position, so $9^3 = 729$ boolean variables.
- SMT: for every cell define an integer variable for the corresponding number.

We elaborate the latter.

- Pure SAT: for every cell and every number 1 to 9, introduce boolean variable describing whether that number is on that position, so $9^3 = 729$ boolean variables.
- SMT: for every cell define an integer variable for the corresponding number.

We elaborate the latter.

- Pure SAT: for every cell and every number 1 to 9, introduce boolean variable describing whether that number is on that position, so $9^3 = 729$ boolean variables.
- SMT: for every cell define an integer variable for the corresponding number.

We elaborate the latter.

- Pure SAT: for every cell and every number 1 to 9, introduce boolean variable describing whether that number is on that position, so $9^3 = 729$ boolean variables.
- SMT: for every cell define an integer variable for the corresponding number.

We elaborate the latter.

Define 9×9 matrix of integer variables.

• Each cell contains a value in 1, ..., 9

X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(9)]
for i in range(9)]
cells_c = [And(1 <= X[i][j], X[i][j] <= 9)
for i in range(9) for j in range(9)]</pre>

Each row/column/fat 3 block contains a number at most once.

Define 9×9 matrix of integer variables.

• Each cell contains a value in 1, ..., 9

X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(9)]
for i in range(9)]
cells_c = [And(1 <= X[i][j], X[i][j] <= 9)
for i in range(9) for j in range(9)]</pre>

Each row/column/fat 3 block contains a number at most once.

```
sudoku_c = cells_c + rows_c + cols_c + sq_c
instance = ((0.0.0.9.4.0.3.0)).
             (0.0.0.5.1.0.0.0.7).
             (0, 8, 9, 0, 0, 0, 0, 4, 0),
             (0, 0, 0, 0, 0, 0, 0, 2, 0, 8),
             (0, 6, 0, 2, 0, 1, 0, 5, 0),
             (1,0,2,0,0,0,0,0,0),
             (0,7,0,0,0,0,5,2,0),
             (9,0,0,0,6,5,0,0.0).
             (0, 4, 0, 9, 7, 0, 0, 0, 0))
instance_c = [ If(instance[i][j] == 0,
                    True.
                    X[i][j] == instance[i][j])
                 for i in range(9) for j in range(9) ]
```

- 4 同 ト 4 三 ト - 4 三 ト - -

```
运行结果:
s = Solver()
                                        $python3 z3-5-sudoku.py
s.add(sudoku_c + instance_c)
                                          [[7, 1, 5, 8, 9, 4, 6, 3, 2],
if s.check() == sat:
                                          [2, 3, 4, 5, 1, 6, 8, 9, 7],
     m=s.model()
                                          [6, 8, 9, 7, 2, 3, 1, 4, 5],
     r=[ [m.evaluate(X[i][i])
                                          [4, 9, 3, 6, 5, 7, 2, 1, 8],
          for j in range(9)]
                                          [8, 6, 7, 2, 3, 1, 9, 5, 4],
          for i in range(9) ]
                                          [1, 5, 2, 4, 8, 9, 7, 6, 3],
     print_matrix(r)
                                          [3, 7, 6, 1, 4, 8, 5, 2, 9],
else:
                                          [9, 2, 8, 3, 6, 5, 4, 7, 1],
     print("failed to solve")
                                          [5, 4, 1, 9, 7, 2, 3, 8, 6]]
```

• Solutions of sudoku puzzles are quickly found by just specifying the rules of the game in SMT format, and apply an SMT solver.

• For several other types of puzzles (kakuro, killer sudoku, binario, ...) the SAT/SMT approach to solve or generate them works well too.

```
运行结果:
s = Solver()
                                        $python3 z3-5-sudoku.py
s.add(sudoku_c + instance_c)
                                          [[7, 1, 5, 8, 9, 4, 6, 3, 2],
if s.check() == sat:
                                          [2, 3, 4, 5, 1, 6, 8, 9, 7],
     m=s.model()
                                          [6, 8, 9, 7, 2, 3, 1, 4, 5],
     r=[ [m.evaluate(X[i][i])
                                          [4, 9, 3, 6, 5, 7, 2, 1, 8],
          for j in range(9)]
                                          [8, 6, 7, 2, 3, 1, 9, 5, 4],
          for i in range(9) ]
                                          [1, 5, 2, 4, 8, 9, 7, 6, 3],
     print_matrix(r)
                                          [3, 7, 6, 1, 4, 8, 5, 2, 9],
else:
                                          [9, 2, 8, 3, 6, 5, 4, 7, 1],
     print("failed to solve")
                                          [5, 4, 1, 9, 7, 2, 3, 8, 6]]
```

- Solutions of sudoku puzzles are quickly found by just specifying the rules of the game in SMT format, and apply an SMT solver.
- For several other types of puzzles (kakuro, killer sudoku, binario, ...) the SAT/SMT approach to solve or generate them works well too.

```
运行结果:
s = Solver()
                                        $python3 z3-5-sudoku.py
s.add(sudoku_c + instance_c)
                                          [[7, 1, 5, 8, 9, 4, 6, 3, 2],
if s.check() == sat:
                                          [2, 3, 4, 5, 1, 6, 8, 9, 7],
     m=s.model()
                                          [6, 8, 9, 7, 2, 3, 1, 4, 5],
     r=[ [m.evaluate(X[i][i])
                                          [4, 9, 3, 6, 5, 7, 2, 1, 8],
          for j in range(9)]
                                          [8, 6, 7, 2, 3, 1, 9, 5, 4],
          for i in range(9) ]
                                          [1, 5, 2, 4, 8, 9, 7, 6, 3],
     print_matrix(r)
                                          [3, 7, 6, 1, 4, 8, 5, 2, 9],
else:
                                          [9, 2, 8, 3, 6, 5, 4, 7, 1],
     print("failed to solve")
                                          [5, 4, 1, 9, 7, 2, 3, 8, 6]]
```

- Solutions of sudoku puzzles are quickly found by just specifying the rules of the game in SMT format, and apply an SMT solver.
- For several other types of puzzles (kakuro, killer sudoku, binario, ...) the SAT/SMT approach to solve or generate them works well too.

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)

```
• 文献: Symbolic Execution for Software Testing: Three Decades Later
```

- *generate* a set of concrete *input*
- *check* for the presence of *various*

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)

• 文献: Symbolic Execution for Software Testing: Three Decades Later

可起: How to explore different program paths and for each path to

- *generate* a set of concrete *input* values exercising that path
- *check* for the presence of *various kinds* of errors

int main()

x = sym_input(); y = sym_input(); testme(x, y); return 0; int twice (int v) { return 2*v;

```
void testme (int x, int y) {
    z = twice (y);
    if (z == x) {
        if (x > y+10)
            ERROR;
    }
}
```

1. 应用 1.4 其他应用: Symbolic Execution

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)

 文献: Symbolic Execution for Software Testing: Three Decades Later
 问题: How to explore different program paths and for each path to

• *generate* a set of concrete *input* values exercising that path

• *check* for the presence of *various kinds* of errors

int main()

x = sym_input(); y = sym_input(); testme(x, y); return 0; return 2*v;

```
id testme (int x, int y) {
    z = twice (y);
    if (z == x) {
        if (x > y+10)
            ERROR;
    }
}
```

- E > - E >

1. 应用 1.4 其他应用: Symbolic Execution

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)

- 文献: Symbolic Execution for Software Testing: Three Decades Later 问题: How to explore different program paths and for each path to
 - *generate* a set of concrete *input* values exercising that path
 - *check* for the presence of *various kinds* of errors

int main()

```
x = sym_input();
y = sym_input();
testme(x, y);
return 0;
```

1. 应用 1.4 其他应用: Symbolic Execution

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)

- 文献: Symbolic Execution for Software Testing: Three Decades Later 问题: How to explore different program paths and for each path to
 - *generate* a set of concrete *input* values exercising that path
 - *check* for the presence of *various kinds* of errors

```
int main()
```

```
x = sym_input();
y = sym_input();
testme(x, y);
return 0;
```

```
void testme (int x, int y) {
    z = twice (y);
    if (z == x) {
        if (x > y+10)
            ERROR;
    }
}
```

- E - - E -

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)

- 文献: Symbolic Execution for Software Testing: Three Decades Later 问题: How to explore different program paths and for each path to
 - generate a set of concrete input values exercising that path
 - *check* for the presence of *various* kinds of errors
- int main() {

```
x = sym_input();
y = sym_input();
testme(x, y);
return 0;
```

4 3 4 3 4

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)

 文献: Symbolic Execution for Software Testing: Three Decades Later
 问题: How to explore different program paths and for each path to
 int twice (int v) { return 2*v;

- *generate* a set of concrete *input* values exercising that path
- *check* for the presence of *various kinds* of errors
- int main() {
 - x = sym_input(); y = sym_input(); testme(x, y); return 0;

void testme (int x, int y) {
 z = twice (y);
 if (z == x) {
 if (x > y+10)
 ERROR;
 }
 }
}

< 3 > < 3 >

< ロト < 同ト < ヨト < ヨト

 $x = 2y \land x > y + 10$

< ロト < 同ト < ヨト < ヨト

$$x=2y\wedge x>y+10$$

▶ ∢ ∃ ▶

作业

实验小作业 1: 使用 pure SAT 求解 N-Queen 问题, 并对比 PPT 中 SMT 的实现的效率。要求:

• 代码: 使用 SMT 实现代码, 和 PureSAT 实现代码

文档: 写出实验记录,要求对比 N 取值不同时,两者的效率
 实验小作业 2(二选一): 使用 pure SAT 求解 d=a+b 或 d=a-b,其中,a,b
 为正整数。要求:

- 加法和减法问题仅需做一题,减法的实现分数更高
- 代码
- 文档: 简要写出编码思路, 代码使用文档和实验结果

实验大作业 (可选): 分别用 Z3 和自己设计的算法求解 rectangle fitting。 要求:

- 代码: (1) 使用 Z3 实现 PPT 中的设计 (2) 自己设计算法 (使用 C、 C++ 语言等)
- 文档: (1) 解释自己的算法思路 (2) 设计测试集,对比两个方法的效率

大作业可参考论文 (但不限于下列论文):

- ◎ 应用
 - Notary: A device for secure transaction approval

• 工具实现

- Z3: An Efficient SMT Solver
- Deep Cooperation of CDCL and Local Search for SAT

3 1 4 3 1