
形式化方法导引
第 4 章 逻辑问题求解——一种通用求解方法:SAT/SMT 求解

4.1 应用

黄文超
https://faculty.ustc.edu.cn/huangwenchao

−→ 教学课程 −→ 形式化方法导引

https://faculty.ustc.edu.cn/huangwenchao

课程回顾

第 1 章: 自动机、可计算性、复杂度理论
问题是什么？可以解么? 有多难?

第 2 章: 怎样用逻辑来定义一个验证器问题?
Propositional logic, first-order logic, higher-order logic

第 3 章: 怎样进一步定义一种演算规则rules 来降低求解难度?
The proof calculus of natural deduction

本章: 如何针对上述的 rules求解?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 2 / 40

https://faculty.ustc.edu.cn/huangwenchao

课程回顾

第 1 章: 自动机、可计算性、复杂度理论
问题是什么？可以解么? 有多难?

第 2 章: 怎样用逻辑来定义一个验证器问题?
Propositional logic, first-order logic, higher-order logic

第 3 章: 怎样进一步定义一种演算规则rules 来降低求解难度?
The proof calculus of natural deduction

本章: 如何针对上述的 rules求解?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 2 / 40

https://faculty.ustc.edu.cn/huangwenchao

课程回顾

第 1 章: 自动机、可计算性、复杂度理论
问题是什么？可以解么? 有多难?

第 2 章: 怎样用逻辑来定义一个验证器问题?
Propositional logic, first-order logic, higher-order logic

第 3 章: 怎样进一步定义一种演算规则rules 来降低求解难度?
The proof calculus of natural deduction

本章: 如何针对上述的 rules求解?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 2 / 40

https://faculty.ustc.edu.cn/huangwenchao

课程回顾

第 1 章: 自动机、可计算性、复杂度理论
问题是什么？可以解么? 有多难?

第 2 章: 怎样用逻辑来定义一个验证器问题?
Propositional logic, first-order logic, higher-order logic

第 3 章: 怎样进一步定义一种演算规则rules 来降低求解难度?
The proof calculus of natural deduction

本章: 如何针对上述的 rules求解?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 2 / 40

https://faculty.ustc.edu.cn/huangwenchao

本章内容

1 应用：如何用工具解决经典逻辑相关的问题？
SAT,SMT 问题
问题求解工具 Z3
案例实现

Satisfiability
Validity
Numbers and inequalities
Eight Queens problem
Binary Arithmetic
Rectangle fitting
Solving Sudoku

其它应用: Symbolic execution
2 理论：这些工具的核心算法?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 3 / 40

https://faculty.ustc.edu.cn/huangwenchao

本章内容

1 应用：如何用工具解决经典逻辑相关的问题？
SAT,SMT 问题
问题求解工具 Z3
案例实现

Satisfiability
Validity
Numbers and inequalities
Eight Queens problem
Binary Arithmetic
Rectangle fitting
Solving Sudoku

其它应用: Symbolic execution
2 理论：这些工具的核心算法?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 3 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 回顾

定义: Propositional Logic in BNF

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)

where p stands for any atomic proposition and each occurrence of ϕ to the
right of ::= stands for any already constructed formula.

定义: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

问题：M ⊨ ϕ 在命题逻辑中更简单的表达是什么？

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 回顾

定义: Propositional Logic in BNF

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)

where p stands for any atomic proposition and each occurrence of ϕ to the
right of ::= stands for any already constructed formula.

定义: Verification in Logics
Most logics used in the design, specification and verification of computer
systems fundamentally deal with a satisfaction relation:

M ⊨ ϕ

问题：M ⊨ ϕ 在命题逻辑中更简单的表达是什么？

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 更简单的表达?

问题：M ⊨ ϕ 在命题逻辑中更简单的表达是什么？

引理: (去除 M)
Given formulas ϕ1, ϕ2, . . . , ϕn and ψ of propositional logic,
ϕ1, ϕ2, . . . , ϕn ⊨ ψ holds iff ⊨ ϕ1 → (ϕ2 → (ϕ3 → · · · → (ϕn → ψ)))
holds.

答：去除 M 后，求解 validity (见如下定义)

定义: Validity
We call ϕ valid, if ⊨ ϕ holds.

We also call ϕ as a tautology (重言式), if ϕ is valid.

下一个问题：怎么求解 validity？
答：换一个问题求解: Satisfiability (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 更简单的表达?

问题：M ⊨ ϕ 在命题逻辑中更简单的表达是什么？

引理: (去除 M)
Given formulas ϕ1, ϕ2, . . . , ϕn and ψ of propositional logic,
ϕ1, ϕ2, . . . , ϕn ⊨ ψ holds iff ⊨ ϕ1 → (ϕ2 → (ϕ3 → · · · → (ϕn → ψ)))
holds.

答：去除 M 后，求解 validity (见如下定义)

定义: Validity
We call ϕ valid, if ⊨ ϕ holds.

We also call ϕ as a tautology (重言式), if ϕ is valid.

下一个问题：怎么求解 validity？
答：换一个问题求解: Satisfiability (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 更简单的表达?

问题：M ⊨ ϕ 在命题逻辑中更简单的表达是什么？

引理: (去除 M)
Given formulas ϕ1, ϕ2, . . . , ϕn and ψ of propositional logic,
ϕ1, ϕ2, . . . , ϕn ⊨ ψ holds iff ⊨ ϕ1 → (ϕ2 → (ϕ3 → · · · → (ϕn → ψ)))
holds.

答：去除 M 后，求解 validity (见如下定义)

定义: Validity
We call ϕ valid, if ⊨ ϕ holds.

We also call ϕ as a tautology (重言式), if ϕ is valid.

下一个问题：怎么求解 validity？
答：换一个问题求解: Satisfiability (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 更简单的表达?

问题：M ⊨ ϕ 在命题逻辑中更简单的表达是什么？

引理: (去除 M)
Given formulas ϕ1, ϕ2, . . . , ϕn and ψ of propositional logic,
ϕ1, ϕ2, . . . , ϕn ⊨ ψ holds iff ⊨ ϕ1 → (ϕ2 → (ϕ3 → · · · → (ϕn → ψ)))
holds.

答：去除 M 后，求解 validity (见如下定义)

定义: Validity
We call ϕ valid, if ⊨ ϕ holds.

We also call ϕ as a tautology (重言式), if ϕ is valid.

下一个问题：怎么求解 validity？
答：换一个问题求解: Satisfiability (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 更简单的表达?

问题：M ⊨ ϕ 在命题逻辑中更简单的表达是什么？

引理: (去除 M)
Given formulas ϕ1, ϕ2, . . . , ϕn and ψ of propositional logic,
ϕ1, ϕ2, . . . , ϕn ⊨ ψ holds iff ⊨ ϕ1 → (ϕ2 → (ϕ3 → · · · → (ϕn → ψ)))
holds.

答：去除 M 后，求解 validity (见如下定义)

定义: Validity
We call ϕ valid, if ⊨ ϕ holds.

We also call ϕ as a tautology (重言式), if ϕ is valid.

下一个问题：怎么求解 validity？
答：换一个问题求解: Satisfiability (见下页)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 等价问题?

定义: Satisfiability
Given a formula ϕ in propositional logic, we say that ϕ is satisfiable if it
has a valuation in which is evaluates to T.

例子:
p ∨ q → p is satisfiable, since it computes T if we assign T to p.
Note that p ∨ q → p is not valid.

定理:
Let ϕ be a formula of propositional logic. Then ϕ is satisfiable iff ¬ϕ is
not valid.
In other words, ϕ is valid iff ¬ϕ is not satisfiable.

总结: 求解 M ⊨ ϕ ——求解 Validity ——求解 Satisfiability.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 等价问题?

定义: Satisfiability
Given a formula ϕ in propositional logic, we say that ϕ is satisfiable if it
has a valuation in which is evaluates to T.

例子:
p ∨ q → p is satisfiable, since it computes T if we assign T to p.
Note that p ∨ q → p is not valid.

定理:
Let ϕ be a formula of propositional logic. Then ϕ is satisfiable iff ¬ϕ is
not valid.
In other words, ϕ is valid iff ¬ϕ is not satisfiable.

总结: 求解 M ⊨ ϕ ——求解 Validity ——求解 Satisfiability.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 等价问题?

定义: Satisfiability
Given a formula ϕ in propositional logic, we say that ϕ is satisfiable if it
has a valuation in which is evaluates to T.

例子:
p ∨ q → p is satisfiable, since it computes T if we assign T to p.
Note that p ∨ q → p is not valid.

定理:
Let ϕ be a formula of propositional logic. Then ϕ is satisfiable iff ¬ϕ is
not valid.
In other words, ϕ is valid iff ¬ϕ is not satisfiable.

总结: 求解 M ⊨ ϕ ——求解 Validity ——求解 Satisfiability.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 等价问题?

定义: Satisfiability
Given a formula ϕ in propositional logic, we say that ϕ is satisfiable if it
has a valuation in which is evaluates to T.

例子:
p ∨ q → p is satisfiable, since it computes T if we assign T to p.
Note that p ∨ q → p is not valid.

定理:
Let ϕ be a formula of propositional logic. Then ϕ is satisfiable iff ¬ϕ is
not valid.
In other words, ϕ is valid iff ¬ϕ is not satisfiable.

总结: 求解 M ⊨ ϕ ——求解 Validity ——求解 Satisfiability.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 等价问题?

定义: Satisfiability
Given a formula ϕ in propositional logic, we say that ϕ is satisfiable if it
has a valuation in which is evaluates to T.

例子:
p ∨ q → p is satisfiable, since it computes T if we assign T to p.
Note that p ∨ q → p is not valid.

定理:
Let ϕ be a formula of propositional logic. Then ϕ is satisfiable iff ¬ϕ is
not valid.
In other words, ϕ is valid iff ¬ϕ is not satisfiable.

总结: 求解 M ⊨ ϕ ——求解 Validity ——求解 Satisfiability.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 等价问题?

定义: Satisfiability
Given a formula ϕ in propositional logic, we say that ϕ is satisfiable if it
has a valuation in which is evaluates to T.

例子:
p ∨ q → p is satisfiable, since it computes T if we assign T to p.
Note that p ∨ q → p is not valid.

定理:
Let ϕ be a formula of propositional logic. Then ϕ is satisfiable iff ¬ϕ is
not valid.
In other words, ϕ is valid iff ¬ϕ is not satisfiable.

总结: 求解 M ⊨ ϕ ——求解 Validity ——求解 Satisfiability.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 等价问题?

定义: Satisfiability
Given a formula ϕ in propositional logic, we say that ϕ is satisfiable if it
has a valuation in which is evaluates to T.

例子:
p ∨ q → p is satisfiable, since it computes T if we assign T to p.
Note that p ∨ q → p is not valid.

定理:
Let ϕ be a formula of propositional logic. Then ϕ is satisfiable iff ¬ϕ is
not valid.
In other words, ϕ is valid iff ¬ϕ is not satisfiable.

总结: 求解 M ⊨ ϕ ——求解 Validity ——求解 Satisfiability.
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 问题定义

定义: SAT 问题
SAT is the decision problem: given a propositional formula, is it satisfiable?

SAT 问题可用于模型的验证！

回顾：问题可以解么? – 问题 4
Given a set A ⊆ S, and x ∈ S, whether there is a machine that can
compute whether x ∈ A.

Define a new machine, named Turing machine, 图灵机.
If yes, i.e., there is a Turing machine M for A, language A is
decidable.
If no, but there is a Turing machine M that can only accept s, if
s ∈ A, language A is still Turing-recognizable.

SAT 是可计算的 (见下页)
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 7 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 问题定义

定义: SAT 问题
SAT is the decision problem: given a propositional formula, is it satisfiable?

SAT 问题可用于模型的验证！

回顾：问题可以解么? – 问题 4
Given a set A ⊆ S, and x ∈ S, whether there is a machine that can
compute whether x ∈ A.

Define a new machine, named Turing machine, 图灵机.
If yes, i.e., there is a Turing machine M for A, language A is
decidable.
If no, but there is a Turing machine M that can only accept s, if
s ∈ A, language A is still Turing-recognizable.

SAT 是可计算的 (见下页)
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 7 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 问题分析

定义: SAT 问题
SAT is the decision problem: given a propositional formula, is it satisfiable?

SAT 是可计算的:
Essentially, this consists of computing the values of the formula for all
2n ways to choose T or F for the n variables.

问：SAT 属于哪一类问题? (复杂度)
答：SAT 属于经典的 NP-Complete 问题 (1970 年开始研究)(Bad news)。

回顾：定义: NP-complete and NP-hard
A language B is NP-complete if it satisfies two conditions:

1 B is in NP, and
2 every A in NP is polynomial time reducible to B.

Here, B is NP-hard if it satisfies condition 2.
Classical NP-complete problem: SAT (形式化方法的重要问题之一).

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 问题分析

定义: SAT 问题
SAT is the decision problem: given a propositional formula, is it satisfiable?

SAT 是可计算的:
Essentially, this consists of computing the values of the formula for all
2n ways to choose T or F for the n variables.

问：SAT 属于哪一类问题? (复杂度)
答：SAT 属于经典的 NP-Complete 问题 (1970 年开始研究)(Bad news)。

回顾：定义: NP-complete and NP-hard
A language B is NP-complete if it satisfies two conditions:

1 B is in NP, and
2 every A in NP is polynomial time reducible to B.

Here, B is NP-hard if it satisfies condition 2.
Classical NP-complete problem: SAT (形式化方法的重要问题之一).

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 问题分析

定义: SAT 问题
SAT is the decision problem: given a propositional formula, is it satisfiable?

SAT 是可计算的:
Essentially, this consists of computing the values of the formula for all
2n ways to choose T or F for the n variables.

问：SAT 属于哪一类问题? (复杂度)
答：SAT 属于经典的 NP-Complete 问题 (1970 年开始研究)(Bad news)。

回顾：定义: NP-complete and NP-hard
A language B is NP-complete if it satisfies two conditions:

1 B is in NP, and
2 every A in NP is polynomial time reducible to B.

Here, B is NP-hard if it satisfies condition 2.
Classical NP-complete problem: SAT (形式化方法的重要问题之一).

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 问题分析

定义: SAT 问题
SAT is the decision problem: given a propositional formula, is it satisfiable?

SAT 是可计算的:
Essentially, this consists of computing the values of the formula for all
2n ways to choose T or F for the n variables.

问：SAT 属于哪一类问题? (复杂度)
答：SAT 属于经典的 NP-Complete 问题 (1970 年开始研究)(Bad news)。

回顾：定义: NP-complete and NP-hard
A language B is NP-complete if it satisfies two conditions:

1 B is in NP, and
2 every A in NP is polynomial time reducible to B.

Here, B is NP-hard if it satisfies condition 2.
Classical NP-complete problem: SAT (形式化方法的重要问题之一).

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 问题定义

Good news: Current SAT solvers are successful for several big formulas.
例子: solving the n-queens problem for n=100 yields a 50Mb formula
over 10000 variables, but is solved in 10 seconds by the SAT solver
Z3.

定义: SMT problem
Extension of SAT, to deal with numbers and inequalities.

SAT, SMT 求解工具:
Z3, YICES, CVC4
For non-commercial use they are free to download and to use

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 问题定义

Good news: Current SAT solvers are successful for several big formulas.
例子: solving the n-queens problem for n=100 yields a 50Mb formula
over 10000 variables, but is solved in 10 seconds by the SAT solver
Z3.

定义: SMT problem
Extension of SAT, to deal with numbers and inequalities.

SAT, SMT 求解工具:
Z3, YICES, CVC4
For non-commercial use they are free to download and to use

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.1 SAT and SMT Problem | 问题定义

Good news: Current SAT solvers are successful for several big formulas.
例子: solving the n-queens problem for n=100 yields a 50Mb formula
over 10000 variables, but is solved in 10 seconds by the SAT solver
Z3.

定义: SMT problem
Extension of SAT, to deal with numbers and inequalities.

SAT, SMT 求解工具:
Z3, YICES, CVC4
For non-commercial use they are free to download and to use

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.2 问题求解工具 (Z3)

Z3
Z3 is a theorem prover from Microsoft Research.

Z3 interfaces
Default input format is SMTLIB2
Other native foreign function interfaces:

C++ API
.NET API
Java API
Python API
C
OCaml
Julia

参考阅读
SAT/SMT by Example

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 10 / 40

http://staff.ustc.edu.cn/~huangwc/book/SAT_SMT_by_example.pdf
https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.2 问题求解工具 (Z3)

Z3
Z3 is a theorem prover from Microsoft Research.

Z3 interfaces
Default input format is SMTLIB2
Other native foreign function interfaces:

C++ API
.NET API
Java API
Python API
C
OCaml
Julia

参考阅读
SAT/SMT by Example

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 10 / 40

http://staff.ustc.edu.cn/~huangwc/book/SAT_SMT_by_example.pdf
https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.2 问题求解工具 (Z3)

Z3
Z3 is a theorem prover from Microsoft Research.

Z3 interfaces
Default input format is SMTLIB2
Other native foreign function interfaces:

C++ API
.NET API
Java API
Python API
C
OCaml
Julia

参考阅读
SAT/SMT by Example

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 10 / 40

http://staff.ustc.edu.cn/~huangwc/book/SAT_SMT_by_example.pdf
https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Satisfiability

问题: Is ϕ satisfiable?
ϕ = (p → q) ∧ (r ↔ ¬q) ∧ (¬p ∨ r)

from z3 import *
p = Bool(’p’)

q = Bool(’q’)

r = Bool(’r’)

solve(Implies(p, q), r == Not(q), Or(Not(p), r))

运行结果:
$python3 z3-1-sat.py

[q = True, p = False, r = False]
解析:
存在一个解，满足 ⊨ ϕ。解为 q = T ∧ p = F ∧ r = F

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 11 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Satisfiability

问题: Is ϕ satisfiable?
ϕ = (p → q) ∧ (r ↔ ¬q) ∧ (¬p ∨ r)

from z3 import *
p = Bool(’p’)

q = Bool(’q’)

r = Bool(’r’)

solve(Implies(p, q), r == Not(q), Or(Not(p), r))

运行结果:
$python3 z3-1-sat.py

[q = True, p = False, r = False]
解析:
存在一个解，满足 ⊨ ϕ。解为 q = T ∧ p = F ∧ r = F

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 11 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Satisfiability

问题: Is ϕ satisfiable?
ϕ = (p → q) ∧ (r ↔ ¬q) ∧ (¬p ∨ r)

from z3 import *
p = Bool(’p’)

q = Bool(’q’)

r = Bool(’r’)

solve(Implies(p, q), r == Not(q), Or(Not(p), r))

运行结果:
$python3 z3-1-sat.py

[q = True, p = False, r = False]
解析:
存在一个解，满足 ⊨ ϕ。解为 q = T ∧ p = F ∧ r = F

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 11 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Satisfiability

问题: Is ϕ satisfiable?
ϕ = (p → q) ∧ (r ↔ ¬q) ∧ (¬p ∨ r)

from z3 import *
p = Bool(’p’)

q = Bool(’q’)

r = Bool(’r’)

solve(Implies(p, q), r == Not(q), Or(Not(p), r))

运行结果:
$python3 z3-1-sat.py

[q = True, p = False, r = False]
解析:
存在一个解，满足 ⊨ ϕ。解为 q = T ∧ p = F ∧ r = F

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 11 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Validity

from z3 import *
p, q = Bools(’p q’)

demorgan = \

And(p, q) == \

Not(Or(Not(p), Not(q)))

def prove(f):
s = Solver()

s.add(Not(f))

if s.check() == unsat:
print("proved")

else:
print("failed to prove")

prove(demorgan)

问题: Is ϕ valid ? (i.e., ⊨ ϕ?)
ϕ = (p ∧ q) ↔ ¬(¬p ∨ ¬q)

运行结果:
$python3 z3-2-valid.py

proved
解析:
ϕ is valid,

iff ¬ϕ is not satisfiable.
So, ϕ is valid.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Validity

from z3 import *
p, q = Bools(’p q’)

demorgan = \

And(p, q) == \

Not(Or(Not(p), Not(q)))

def prove(f):
s = Solver()

s.add(Not(f))

if s.check() == unsat:
print("proved")

else:
print("failed to prove")

prove(demorgan)

问题: Is ϕ valid ? (i.e., ⊨ ϕ?)
ϕ = (p ∧ q) ↔ ¬(¬p ∨ ¬q)

运行结果:
$python3 z3-2-valid.py

proved
解析:
ϕ is valid,

iff ¬ϕ is not satisfiable.
So, ϕ is valid.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Validity

from z3 import *
p, q = Bools(’p q’)

demorgan = \

And(p, q) == \

Not(Or(Not(p), Not(q)))

def prove(f):
s = Solver()

s.add(Not(f))

if s.check() == unsat:
print("proved")

else:
print("failed to prove")

prove(demorgan)

问题: Is ϕ valid ? (i.e., ⊨ ϕ?)
ϕ = (p ∧ q) ↔ ¬(¬p ∨ ¬q)

运行结果:
$python3 z3-2-valid.py

proved
解析:
ϕ is valid,

iff ¬ϕ is not satisfiable.
So, ϕ is valid.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | numbers and inequalities

问题: Solve the following system of constraints
x > 2 ∧ y < 10 ∧ x+ 2y = 7, where x, y are integers.

from z3 import *
x = Int(’x’)

y = Int(’y’)

solve(x > 2, y < 10, x + 2*y == 7)
运行结果:

$python3 z3-3-inequalities.py
[y = 0, x = 7]

解析:
该问题为 SMT 问题

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | numbers and inequalities

问题: Solve the following system of constraints
x > 2 ∧ y < 10 ∧ x+ 2y = 7, where x, y are integers.

from z3 import *
x = Int(’x’)

y = Int(’y’)

solve(x > 2, y < 10, x + 2*y == 7)
运行结果:

$python3 z3-3-inequalities.py
[y = 0, x = 7]

解析:
该问题为 SMT 问题

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | numbers and inequalities

问题: Solve the following system of constraints
x > 2 ∧ y < 10 ∧ x+ 2y = 7, where x, y are integers.

from z3 import *
x = Int(’x’)

y = Int(’y’)

solve(x > 2, y < 10, x + 2*y == 7)
运行结果:

$python3 z3-3-inequalities.py
[y = 0, x = 7]

解析:
该问题为 SMT 问题

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | numbers and inequalities

问题: Solve the following system of constraints
x > 2 ∧ y < 10 ∧ x+ 2y = 7, where x, y are integers.

from z3 import *
x = Int(’x’)

y = Int(’y’)

solve(x > 2, y < 10, x + 2*y == 7)
运行结果:

$python3 z3-3-inequalities.py
[y = 0, x = 7]

解析:
该问题为 SMT 问题

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

问题: Eight-Queens
The eight queens puzzle is the problem of placing eight chess queens on
an 8 × 8 chessboard so that no two queens attack each other. Thus, a
solution requires that no two queens share the same row, column, or
diagonal.

As usual in SAT/SMT, don’t think about how to
solve it, but only specify the problem.

Pure SAT: only boolean variables, no numbers,
no inequalities.
For every position (i, j) on the board: boolean
variable pij expresses whether there is a queen
or not.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 14 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

问题: Eight-Queens
The eight queens puzzle is the problem of placing eight chess queens on
an 8 × 8 chessboard so that no two queens attack each other. Thus, a
solution requires that no two queens share the same row, column, or
diagonal.

As usual in SAT/SMT, don’t think about how to
solve it, but only specify the problem.

Pure SAT: only boolean variables, no numbers,
no inequalities.
For every position (i, j) on the board: boolean
variable pij expresses whether there is a queen
or not.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 14 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

问题: Eight-Queens
The eight queens puzzle is the problem of placing eight chess queens on
an 8 × 8 chessboard so that no two queens attack each other. Thus, a
solution requires that no two queens share the same row, column, or
diagonal.

As usual in SAT/SMT, don’t think about how to
solve it, but only specify the problem.

Pure SAT: only boolean variables, no numbers,
no inequalities.
For every position (i, j) on the board: boolean
variable pij expresses whether there is a queen
or not.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 14 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

问题: Eight-Queens
The eight queens puzzle is the problem of placing eight chess queens on
an 8 × 8 chessboard so that no two queens attack each other. Thus, a
solution requires that no two queens share the same row, column, or
diagonal.

As usual in SAT/SMT, don’t think about how to
solve it, but only specify the problem.

Pure SAT: only boolean variables, no numbers,
no inequalities.
For every position (i, j) on the board: boolean
variable pij expresses whether there is a queen
or not.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 14 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

p11 p12 p13 p14 p15 p16 p17 p18
p21 p22 p23 p24 p25 p26 p27 p28
p31 p32 p33 p34 p35 p36 p37 p38
p41 p42 p43 p44 p45 p46 p47 p48
p51 p52 p53 p54 p55 p56 p57 p58
p61 p62 p63 p64 p65 p66 p67 p68
p71 p72 p73 p74 p75 p76 p77 p78
p81 p82 p83 p84 p85 p86 p87 p88

(1) At least one queen on row i:
pi1 ∨ pi2 ∨ pi3 ∨ pi4 ∨ pi5 ∨ pi6 ∨
pi7 ∨ pi8

8∨
j=1

pij

(2) At most one queen on row i:
For every j < k not both pij

and pik are true∧
0<j<k≤8

(¬pij ∨ ¬pik)

Requirements until now (on every row):
8∧

i=1

8∨
j=1

pij ∧
8∧

i=1

∧
0<j<k≤8

(¬pij ∨ ¬pik)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

p11 p12 p13 p14 p15 p16 p17 p18
p21 p22 p23 p24 p25 p26 p27 p28
p31 p32 p33 p34 p35 p36 p37 p38
p41 p42 p43 p44 p45 p46 p47 p48
p51 p52 p53 p54 p55 p56 p57 p58
p61 p62 p63 p64 p65 p66 p67 p68
p71 p72 p73 p74 p75 p76 p77 p78
p81 p82 p83 p84 p85 p86 p87 p88

(1) At least one queen on row i:
pi1 ∨ pi2 ∨ pi3 ∨ pi4 ∨ pi5 ∨ pi6 ∨
pi7 ∨ pi8

8∨
j=1

pij

(2) At most one queen on row i:
For every j < k not both pij

and pik are true∧
0<j<k≤8

(¬pij ∨ ¬pik)

Requirements until now (on every row):
8∧

i=1

8∨
j=1

pij ∧
8∧

i=1

∧
0<j<k≤8

(¬pij ∨ ¬pik)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

p11 p12 p13 p14 p15 p16 p17 p18
p21 p22 p23 p24 p25 p26 p27 p28
p31 p32 p33 p34 p35 p36 p37 p38
p41 p42 p43 p44 p45 p46 p47 p48
p51 p52 p53 p54 p55 p56 p57 p58
p61 p62 p63 p64 p65 p66 p67 p68
p71 p72 p73 p74 p75 p76 p77 p78
p81 p82 p83 p84 p85 p86 p87 p88

(1) At least one queen on row i:
pi1 ∨ pi2 ∨ pi3 ∨ pi4 ∨ pi5 ∨ pi6 ∨
pi7 ∨ pi8

8∨
j=1

pij

(2) At most one queen on row i:
For every j < k not both pij

and pik are true∧
0<j<k≤8

(¬pij ∨ ¬pik)

Requirements until now (on every row):
8∧

i=1

8∨
j=1

pij ∧
8∧

i=1

∧
0<j<k≤8

(¬pij ∨ ¬pik)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

p11 p12 p13 p14 p15 p16 p17 p18
p21 p22 p23 p24 p25 p26 p27 p28
p31 p32 p33 p34 p35 p36 p37 p38
p41 p42 p43 p44 p45 p46 p47 p48
p51 p52 p53 p54 p55 p56 p57 p58
p61 p62 p63 p64 p65 p66 p67 p68
p71 p72 p73 p74 p75 p76 p77 p78
p81 p82 p83 p84 p85 p86 p87 p88

(1) At least one queen on row i:
pi1 ∨ pi2 ∨ pi3 ∨ pi4 ∨ pi5 ∨ pi6 ∨
pi7 ∨ pi8

8∨
j=1

pij

(2) At most one queen on row i:
For every j < k not both pij

and pik are true∧
0<j<k≤8

(¬pij ∨ ¬pik)

Requirements until now (on every row):
8∧

i=1

8∨
j=1

pij ∧
8∧

i=1

∧
0<j<k≤8

(¬pij ∨ ¬pik)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

p11 p12 p13 p14 p15 p16 p17 p18
p21 p22 p23 p24 p25 p26 p27 p28
p31 p32 p33 p34 p35 p36 p37 p38
p41 p42 p43 p44 p45 p46 p47 p48
p51 p52 p53 p54 p55 p56 p57 p58
p61 p62 p63 p64 p65 p66 p67 p68
p71 p72 p73 p74 p75 p76 p77 p78
p81 p82 p83 p84 p85 p86 p87 p88

(1) At least one queen on row i:
pi1 ∨ pi2 ∨ pi3 ∨ pi4 ∨ pi5 ∨ pi6 ∨
pi7 ∨ pi8

8∨
j=1

pij

(2) At most one queen on row i:
For every j < k not both pij

and pik are true∧
0<j<k≤8

(¬pij ∨ ¬pik)

Requirements until now (on every row):
8∧

i=1

8∨
j=1

pij ∧
8∧

i=1

∧
0<j<k≤8

(¬pij ∨ ¬pik)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

p11 p12 p13 p14 p15 p16 p17 p18
p21 p22 p23 p24 p25 p26 p27 p28
p31 p32 p33 p34 p35 p36 p37 p38
p41 p42 p43 p44 p45 p46 p47 p48
p51 p52 p53 p54 p55 p56 p57 p58
p61 p62 p63 p64 p65 p66 p67 p68
p71 p72 p73 p74 p75 p76 p77 p78
p81 p82 p83 p84 p85 p86 p87 p88

(1) At least one queen on row i:
pi1 ∨ pi2 ∨ pi3 ∨ pi4 ∨ pi5 ∨ pi6 ∨
pi7 ∨ pi8

8∨
j=1

pij

(2) At most one queen on row i:
For every j < k not both pij

and pik are true∧
0<j<k≤8

(¬pij ∨ ¬pik)

Requirements until now (on every row):
8∧

i=1

8∨
j=1

pij ∧
8∧

i=1

∧
0<j<k≤8

(¬pij ∨ ¬pik)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

p11 p12 p13 p14 p15 p16 p17 p18
p21 p22 p23 p24 p25 p26 p27 p28
p31 p32 p33 p34 p35 p36 p37 p38
p41 p42 p43 p44 p45 p46 p47 p48
p51 p52 p53 p54 p55 p56 p57 p58
p61 p62 p63 p64 p65 p66 p67 p68
p71 p72 p73 p74 p75 p76 p77 p78
p81 p82 p83 p84 p85 p86 p87 p88

(1) At least one queen on row i:
pi1 ∨ pi2 ∨ pi3 ∨ pi4 ∨ pi5 ∨ pi6 ∨
pi7 ∨ pi8

8∨
j=1

pij

(2) At most one queen on row i:
For every j < k not both pij

and pik are true∧
0<j<k≤8

(¬pij ∨ ¬pik)

Requirements until now (on every row):
8∧

i=1

8∨
j=1

pij ∧
8∧

i=1

∧
0<j<k≤8

(¬pij ∨ ¬pik)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

p11 p12 p13 p14 p15 p16 p17 p18
p21 p22 p23 p24 p25 p26 p27 p28
p31 p32 p33 p34 p35 p36 p37 p38
p41 p42 p43 p44 p45 p46 p47 p48
p51 p52 p53 p54 p55 p56 p57 p58
p61 p62 p63 p64 p65 p66 p67 p68
p71 p72 p73 p74 p75 p76 p77 p78
p81 p82 p83 p84 p85 p86 p87 p88

DIY

Similarly, on every column:

8∧
j=1

8∨
i=1

pij ∧
8∧

j=1

∧
0<i<k≤8

(¬pij ∨ ¬pkj)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

p11 p12 p13 p14 p15 p16 p17 p18
p21 p22 p23 p24 p25 p26 p27 p28
p31 p32 p33 p34 p35 p36 p37 p38
p41 p42 p43 p44 p45 p46 p47 p48
p51 p52 p53 p54 p55 p56 p57 p58
p61 p62 p63 p64 p65 p66 p67 p68
p71 p72 p73 p74 p75 p76 p77 p78
p81 p82 p83 p84 p85 p86 p87 p88

pij and pi′j′ on such a diagnoal

i− j = i′ − j′

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 17 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

p11 p12 p13 p14 p15 p16 p17 p18
p21 p22 p23 p24 p25 p26 p27 p28
p31 p32 p33 p34 p35 p36 p37 p38
p41 p42 p43 p44 p45 p46 p47 p48
p51 p52 p53 p54 p55 p56 p57 p58
p61 p62 p63 p64 p65 p66 p67 p68
p71 p72 p73 p74 p75 p76 p77 p78
p81 p82 p83 p84 p85 p86 p87 p88

pij and pi′j′ on such a diagonal

i+ j = i′ + j′

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 18 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

So far all i, j, i′, j′ with (i, j) ̸= (i′, j′) satisfying i+ j = i′ + j′ or
i− j = i′ − j′:

¬pij ∨ ¬pi′j′

stating that on (i, j) and (i′, j′) being two distinct positions on a diagonal,
no two queens are allowed.
We may restrict to i < i′, yielding∧

0<i<i′≤8
(

∧
j,j′:i+j=i′+j′∨i−j=i′−j′

¬pij ∨ ¬pi′j′)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 19 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

So far all i, j, i′, j′ with (i, j) ̸= (i′, j′) satisfying i+ j = i′ + j′ or
i− j = i′ − j′:

¬pij ∨ ¬pi′j′

stating that on (i, j) and (i′, j′) being two distinct positions on a diagonal,
no two queens are allowed.
We may restrict to i < i′, yielding∧

0<i<i′≤8
(

∧
j,j′:i+j=i′+j′∨i−j=i′−j′

¬pij ∨ ¬pi′j′)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 19 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

8∧
i=1

8∨
j=1

pij∧
8∧

i=1

∧
0<j<k≤8

(¬pij∨¬pik)∧
8∧

j=1

8∨
i=1

pij∧
8∧

j=1

∧
0<i<k≤8

(¬pij∨¬pkj)

∧
0<i<i′≤8

(
∧

j,j′:i+j=i′+j′∨i−j=i′−j′

¬pij ∨ ¬pi′j′)

from z3 import *
Q = [Int(’Q_%i’ % (i + 1)) for i in range(8)]
val_c = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]
col_c = [Distinct(Q)]

diag_c = [If(i == j, True,

And(i+Q[i]!=j+Q[j], i+Q[j]!=j+Q[i]))

for i in range(8) for j in range(i)]
solve(val_c + col_c + diag_c)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

8∧
i=1

8∨
j=1

pij∧
8∧

i=1

∧
0<j<k≤8

(¬pij∨¬pik)∧
8∧

j=1

8∨
i=1

pij∧
8∧

j=1

∧
0<i<k≤8

(¬pij∨¬pkj)

∧
0<i<i′≤8

(
∧

j,j′:i+j=i′+j′∨i−j=i′−j′

¬pij ∨ ¬pi′j′)

from z3 import *
Q = [Int(’Q_%i’ % (i + 1)) for i in range(8)]
val_c = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]
col_c = [Distinct(Q)]

diag_c = [If(i == j, True,

And(i+Q[i]!=j+Q[j], i+Q[j]!=j+Q[i]))

for i in range(8) for j in range(i)]
solve(val_c + col_c + diag_c)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

o
o

o
o

o
o

o
o

运行结果:
$python3 z3-4-queens.py

[Q_5 = 1, Q_8 = 7, Q_3 = 8, Q_2 = 2,
Q_6 = 3, Q_4 = 6, Q_7 = 5, Q_1 = 4]

解析:
From Eight-Queens to N-Queens?

26s for 40 queens
思考: 不使用 SMT, 而是换之前解释的方法（pure
SAT），效率会不会更高?

看下面讲解

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

o
o

o
o

o
o

o
o

运行结果:
$python3 z3-4-queens.py

[Q_5 = 1, Q_8 = 7, Q_3 = 8, Q_2 = 2,
Q_6 = 3, Q_4 = 6, Q_7 = 5, Q_1 = 4]

解析:
From Eight-Queens to N-Queens?

26s for 40 queens
思考: 不使用 SMT, 而是换之前解释的方法（pure
SAT），效率会不会更高?

看下面讲解

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

o
o

o
o

o
o

o
o

运行结果:
$python3 z3-4-queens.py

[Q_5 = 1, Q_8 = 7, Q_3 = 8, Q_2 = 2,
Q_6 = 3, Q_4 = 6, Q_7 = 5, Q_1 = 4]

解析:
From Eight-Queens to N-Queens?

26s for 40 queens
思考: 不使用 SMT, 而是换之前解释的方法（pure
SAT），效率会不会更高?

看下面讲解

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Eight-Queens

o
o

o
o

o
o

o
o

运行结果:
$python3 z3-4-queens.py

[Q_5 = 1, Q_8 = 7, Q_3 = 8, Q_2 = 2,
Q_6 = 3, Q_4 = 6, Q_7 = 5, Q_1 = 4]

解析:
From Eight-Queens to N-Queens?

26s for 40 queens
思考: 不使用 SMT, 而是换之前解释的方法（pure
SAT），效率会不会更高?

看下面讲解

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

Arithmetic: addition, subtraction, multiplication of integers

问题
Compute 13+7?

解析: Covered by SMT, why do it in pure SAT?
Interesting how to express a non-SAT looking problem in SAT
Introduces flavor of bounded model checking

BMC, 有界模型检测, 见第 5 章
one of the most important applications of SAT/SMT

Often (e.g., in hardware verification), SAT encoding of arithmetic
outperforms SMT

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

Arithmetic: addition, subtraction, multiplication of integers

问题
Compute 13+7?

解析: Covered by SMT, why do it in pure SAT?
Interesting how to express a non-SAT looking problem in SAT
Introduces flavor of bounded model checking

BMC, 有界模型检测, 见第 5 章
one of the most important applications of SAT/SMT

Often (e.g., in hardware verification), SAT encoding of arithmetic
outperforms SMT

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

Arithmetic: addition, subtraction, multiplication of integers

问题
Compute 13+7?

解析: Covered by SMT, why do it in pure SAT?
Interesting how to express a non-SAT looking problem in SAT
Introduces flavor of bounded model checking

BMC, 有界模型检测, 见第 5 章
one of the most important applications of SAT/SMT

Often (e.g., in hardware verification), SAT encoding of arithmetic
outperforms SMT

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

Arithmetic: addition, subtraction, multiplication of integers

问题
Compute 13+7?

解析: Covered by SMT, why do it in pure SAT?
Interesting how to express a non-SAT looking problem in SAT
Introduces flavor of bounded model checking

BMC, 有界模型检测, 见第 5 章
one of the most important applications of SAT/SMT

Often (e.g., in hardware verification), SAT encoding of arithmetic
outperforms SMT

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

Arithmetic: addition, subtraction, multiplication of integers

问题
Compute 13+7?

解析: Covered by SMT, why do it in pure SAT?
Interesting how to express a non-SAT looking problem in SAT
Introduces flavor of bounded model checking

BMC, 有界模型检测, 见第 5 章
one of the most important applications of SAT/SMT

Often (e.g., in hardware verification), SAT encoding of arithmetic
outperforms SMT

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

Arithmetic: addition, subtraction, multiplication of integers

问题
Compute 13+7?

解析: Covered by SMT, why do it in pure SAT?
Interesting how to express a non-SAT looking problem in SAT
Introduces flavor of bounded model checking

BMC, 有界模型检测, 见第 5 章
one of the most important applications of SAT/SMT

Often (e.g., in hardware verification), SAT encoding of arithmetic
outperforms SMT

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

In SAT we only have Boolean variables.

问题: Binary representation
How to Express a number by a sequence of Boolean values?

解: Binary representation
a1a2 · · · an

of number a:
ai ∈ {0, 1} and

a = an + 2an−1 + 4an−2 + · · · =
n∑

i=1
ai ∗ 2n−i

例:
01101 represents 8+4+1=13
00111 represents 4+2+1=7

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

In SAT we only have Boolean variables.

问题: Binary representation
How to Express a number by a sequence of Boolean values?

解: Binary representation
a1a2 · · · an

of number a:
ai ∈ {0, 1} and

a = an + 2an−1 + 4an−2 + · · · =
n∑

i=1
ai ∗ 2n−i

例:
01101 represents 8+4+1=13
00111 represents 4+2+1=7

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

In SAT we only have Boolean variables.

问题: Binary representation
How to Express a number by a sequence of Boolean values?

解: Binary representation
a1a2 · · · an

of number a:
ai ∈ {0, 1} and

a = an + 2an−1 + 4an−2 + · · · =
n∑

i=1
ai ∗ 2n−i

例:
01101 represents 8+4+1=13
00111 represents 4+2+1=7

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

In SAT we only have Boolean variables.

问题: Binary representation
How to Express a number by a sequence of Boolean values?

解: Binary representation
a1a2 · · · an

of number a:
ai ∈ {0, 1} and

a = an + 2an−1 + 4an−2 + · · · =
n∑

i=1
ai ∗ 2n−i

例:
01101 represents 8+4+1=13
00111 represents 4+2+1=7

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

问题: Add
How to compute d = a+ b?

Basic rules: Take care of carry c

0 + 0 + 0 = 0, carry = 0
0 + 0 + 1 = 1, carry = 0

0 + 1 + 1 = 0, carry = 1
1 + 1 + 1 = 1, carry = 1

Start by rightmost carry = 0, compute from right to left

carries c: 0 1 1 1 1 0
number a=13: 0 1 1 0 1
number b=7: 0 0 1 1 1
result d 1 0 1 0 0

indeed yielding 10100 representing 20
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 24 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

问题: Add
How to compute d = a+ b?

Basic rules: Take care of carry c

0 + 0 + 0 = 0, carry = 0
0 + 0 + 1 = 1, carry = 0

0 + 1 + 1 = 0, carry = 1
1 + 1 + 1 = 1, carry = 1

Start by rightmost carry = 0, compute from right to left

carries c: 0 1 1 1 1 0
number a=13: 0 1 1 0 1
number b=7: 0 0 1 1 1
result d 1 0 1 0 0

indeed yielding 10100 representing 20
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 24 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

问题: Add
How to compute d = a+ b?

Basic rules: Take care of carry c

0 + 0 + 0 = 0, carry = 0
0 + 0 + 1 = 1, carry = 0

0 + 1 + 1 = 0, carry = 1
1 + 1 + 1 = 1, carry = 1

Start by rightmost carry = 0, compute from right to left

carries c: 0 1 1 1 1 0
number a=13: 0 1 1 0 1
number b=7: 0 0 1 1 1
result d 1 0 1 0 0

indeed yielding 10100 representing 20
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 24 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

问题: d = a+ b?
Result di in a formula for i = 1, . . . , n :

di ↔ (ai ↔ (bi ↔ ci)) (1)

correct, since (ai ↔ (bi ↔ ci) yields true if and only if 1 or 3 among
{ai, bi, ci} yield true

Carry ci−1 in a formula for i = 1, . . . , n:

ci−1 ↔ ((ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci)) (2)

correct, since (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci) yields true if and only at least
2 among {ai, bi, ci} yield true.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

问题: d = a+ b?
Result di in a formula for i = 1, . . . , n :

di ↔ (ai ↔ (bi ↔ ci)) (1)

correct, since (ai ↔ (bi ↔ ci) yields true if and only if 1 or 3 among
{ai, bi, ci} yield true

Carry ci−1 in a formula for i = 1, . . . , n:

ci−1 ↔ ((ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci)) (2)

correct, since (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci) yields true if and only at least
2 among {ai, bi, ci} yield true.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

问题: d = a+ b?
Result di in a formula for i = 1, . . . , n :

di ↔ (ai ↔ (bi ↔ ci)) (1)

correct, since (ai ↔ (bi ↔ ci) yields true if and only if 1 or 3 among
{ai, bi, ci} yield true

Carry ci−1 in a formula for i = 1, . . . , n:

ci−1 ↔ ((ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci)) (2)

correct, since (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci) yields true if and only at least
2 among {ai, bi, ci} yield true.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

问题: d = a+ b?
Result di in a formula for i = 1, . . . , n :

di ↔ (ai ↔ (bi ↔ ci)) (1)

correct, since (ai ↔ (bi ↔ ci) yields true if and only if 1 or 3 among
{ai, bi, ci} yield true

Carry ci−1 in a formula for i = 1, . . . , n:

ci−1 ↔ ((ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci)) (2)

correct, since (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci) yields true if and only at least
2 among {ai, bi, ci} yield true.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

问题: d = a+ b?
Result di in a formula for i = 1, . . . , n :

di ↔ (ai ↔ (bi ↔ ci)) (1)

correct, since (ai ↔ (bi ↔ ci) yields true if and only if 1 or 3 among
{ai, bi, ci} yield true

Carry ci−1 in a formula for i = 1, . . . , n:

ci−1 ↔ ((ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci)) (2)

correct, since (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci) yields true if and only at least
2 among {ai, bi, ci} yield true.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

To express that we start by rightmost carry = 0, we state
¬cn (3)

To express that the result should fit in n bits, at the end we should not
have a carry left, and we state

¬c0 (4)

Let ϕ be the conjunction of all these requirements; this expresses the
correctness of the corresponding binary addition
To compute a+ b for a = 13, b = 7, we apply a SAT solver to

ϕ ∧ ¬a1 ∧ a2 ∧ a3 ∧ ¬a4 ∧ a5︸ ︷︷ ︸
a=13=01101

∧ ¬b1 ∧ ¬b2 ∧ b3 ∧ b4 ∧ b5︸ ︷︷ ︸
b=7=00111

The resulting satisfying assignment will contain d1,¬d2, d3,¬d4,¬d5
representing the result d = 20

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

To express that we start by rightmost carry = 0, we state
¬cn (3)

To express that the result should fit in n bits, at the end we should not
have a carry left, and we state

¬c0 (4)

Let ϕ be the conjunction of all these requirements; this expresses the
correctness of the corresponding binary addition
To compute a+ b for a = 13, b = 7, we apply a SAT solver to

ϕ ∧ ¬a1 ∧ a2 ∧ a3 ∧ ¬a4 ∧ a5︸ ︷︷ ︸
a=13=01101

∧ ¬b1 ∧ ¬b2 ∧ b3 ∧ b4 ∧ b5︸ ︷︷ ︸
b=7=00111

The resulting satisfying assignment will contain d1,¬d2, d3,¬d4,¬d5
representing the result d = 20

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

To express that we start by rightmost carry = 0, we state
¬cn (3)

To express that the result should fit in n bits, at the end we should not
have a carry left, and we state

¬c0 (4)

Let ϕ be the conjunction of all these requirements; this expresses the
correctness of the corresponding binary addition
To compute a+ b for a = 13, b = 7, we apply a SAT solver to

ϕ ∧ ¬a1 ∧ a2 ∧ a3 ∧ ¬a4 ∧ a5︸ ︷︷ ︸
a=13=01101

∧ ¬b1 ∧ ¬b2 ∧ b3 ∧ b4 ∧ b5︸ ︷︷ ︸
b=7=00111

The resulting satisfying assignment will contain d1,¬d2, d3,¬d4,¬d5
representing the result d = 20

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

To express that we start by rightmost carry = 0, we state
¬cn (3)

To express that the result should fit in n bits, at the end we should not
have a carry left, and we state

¬c0 (4)

Let ϕ be the conjunction of all these requirements; this expresses the
correctness of the corresponding binary addition
To compute a+ b for a = 13, b = 7, we apply a SAT solver to

ϕ ∧ ¬a1 ∧ a2 ∧ a3 ∧ ¬a4 ∧ a5︸ ︷︷ ︸
a=13=01101

∧ ¬b1 ∧ ¬b2 ∧ b3 ∧ b4 ∧ b5︸ ︷︷ ︸
b=7=00111

The resulting satisfying assignment will contain d1,¬d2, d3,¬d4,¬d5
representing the result d = 20

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

To express that we start by rightmost carry = 0, we state
¬cn (3)

To express that the result should fit in n bits, at the end we should not
have a carry left, and we state

¬c0 (4)

Let ϕ be the conjunction of all these requirements; this expresses the
correctness of the corresponding binary addition
To compute a+ b for a = 13, b = 7, we apply a SAT solver to

ϕ ∧ ¬a1 ∧ a2 ∧ a3 ∧ ¬a4 ∧ a5︸ ︷︷ ︸
a=13=01101

∧ ¬b1 ∧ ¬b2 ∧ b3 ∧ b4 ∧ b5︸ ︷︷ ︸
b=7=00111

The resulting satisfying assignment will contain d1,¬d2, d3,¬d4,¬d5
representing the result d = 20

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Arithmetic in pure SAT

Concluding,

In this way computing d = a+ b can be done by SAT solving for any
binary numbers a, b.

By adding given values for ai, di to the formula ϕ expressing d = a+ b,
and reading bi from resulting satisfying assignment, we can compute
b = d− a by exploiting the same formula.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

问题: Rectangle fitting
Given a big rectangle and a number of small rectangles, can you fit the
small rectangles in the big one such that no two overlap.

How to specify this problem?
Number rectangles from 1 to n
for i = 1 . . . n introduce variables:

wi is the width of rectangle i
hi is the height of rectangle i
xi is the x-coordinate of the left
lower corner of rectangle i
yi is the y-coordinate of the left
lower corner of rectangle i

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

问题: Rectangle fitting
Given a big rectangle and a number of small rectangles, can you fit the
small rectangles in the big one such that no two overlap.

How to specify this problem?
Number rectangles from 1 to n
for i = 1 . . . n introduce variables:

wi is the width of rectangle i
hi is the height of rectangle i
xi is the x-coordinate of the left
lower corner of rectangle i
yi is the y-coordinate of the left
lower corner of rectangle i

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

问题: Rectangle fitting
Given a big rectangle and a number of small rectangles, can you fit the
small rectangles in the big one such that no two overlap.

How to specify this problem?
Number rectangles from 1 to n
for i = 1 . . . n introduce variables:

wi is the width of rectangle i
hi is the height of rectangle i
xi is the x-coordinate of the left
lower corner of rectangle i
yi is the y-coordinate of the left
lower corner of rectangle i

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

问题: Rectangle fitting
Given a big rectangle and a number of small rectangles, can you fit the
small rectangles in the big one such that no two overlap.

How to specify this problem?
Number rectangles from 1 to n
for i = 1 . . . n introduce variables:

wi is the width of rectangle i
hi is the height of rectangle i
xi is the x-coordinate of the left
lower corner of rectangle i
yi is the y-coordinate of the left
lower corner of rectangle i

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

How to specify this problem?
Configuration of small rectangles:

例子: First rectangle has width 4 and height 6:
(w1 = 4 ∧ h1 = 6) ∨ (w1 = 6 ∧ h1 = 4)

Configuration of the big rectangle
(0,0) = lower left corner of big rectangle.
W = width of big rectangle.
H = height of big rectangle.

Requirements:
xi ≥ 0 ∧ xi + wi ≤ W

yi ≥ 0 ∧ yi + hi ≤ H

for all i = 1, . . . , n

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 29 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

How to specify this problem?
Configuration of small rectangles:

例子: First rectangle has width 4 and height 6:
(w1 = 4 ∧ h1 = 6) ∨ (w1 = 6 ∧ h1 = 4)

Configuration of the big rectangle
(0,0) = lower left corner of big rectangle.
W = width of big rectangle.
H = height of big rectangle.

Requirements:
xi ≥ 0 ∧ xi + wi ≤ W

yi ≥ 0 ∧ yi + hi ≤ H

for all i = 1, . . . , n

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 29 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

How to specify this problem?
Configuration of small rectangles:

例子: First rectangle has width 4 and height 6:
(w1 = 4 ∧ h1 = 6) ∨ (w1 = 6 ∧ h1 = 4)

Configuration of the big rectangle
(0,0) = lower left corner of big rectangle.
W = width of big rectangle.
H = height of big rectangle.

Requirements:
xi ≥ 0 ∧ xi + wi ≤ W

yi ≥ 0 ∧ yi + hi ≤ H

for all i = 1, . . . , n

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 29 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

How to specify this problem?
Configuration of small rectangles:

例子: First rectangle has width 4 and height 6:
(w1 = 4 ∧ h1 = 6) ∨ (w1 = 6 ∧ h1 = 4)

Configuration of the big rectangle
(0,0) = lower left corner of big rectangle.
W = width of big rectangle.
H = height of big rectangle.

Requirements:
xi ≥ 0 ∧ xi + wi ≤ W

yi ≥ 0 ∧ yi + hi ≤ H

for all i = 1, . . . , n

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 29 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

(xi, yi) (xi + wi, yi)

(xj , yj)

(xi, yi + hi)

(xj + wj , yi)

Rectangles i and j overlap if
xj < xi + wi

and xi < xj + wj

and yj < yi + hi

and yi < yj + hj

So for all i, j = 1, . . . , n, i < j, we should add the negation of this
overlappingness:

¬(xj < xi + wi ∧ xi < xj + wj ∧ yj < yi + hi ∧ yi < yj + hj)

or, equivalently

xj ≥ xi + wi ∨ xi ≥ xj + wj ∨ yj ≥ yi + hi ∨ yi ≥ yj + hj

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

(xi, yi) (xi + wi, yi)

(xj , yj)

(xi, yi + hi)

(xj + wj , yi)

Rectangles i and j overlap if
xj < xi + wi

and xi < xj + wj

and yj < yi + hi

and yi < yj + hj

So for all i, j = 1, . . . , n, i < j, we should add the negation of this
overlappingness:

¬(xj < xi + wi ∧ xi < xj + wj ∧ yj < yi + hi ∧ yi < yj + hj)

or, equivalently

xj ≥ xi + wi ∨ xi ≥ xj + wj ∨ yj ≥ yi + hi ∨ yi ≥ yj + hj

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

(xi, yi) (xi + wi, yi)

(xj , yj)

(xi, yi + hi)

(xj + wj , yi)

Rectangles i and j overlap if
xj < xi + wi

and xi < xj + wj

and yj < yi + hi

and yi < yj + hj

So for all i, j = 1, . . . , n, i < j, we should add the negation of this
overlappingness:

¬(xj < xi + wi ∧ xi < xj + wj ∧ yj < yi + hi ∧ yi < yj + hj)

or, equivalently

xj ≥ xi + wi ∨ xi ≥ xj + wj ∨ yj ≥ yi + hi ∨ yi ≥ yj + hj

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

The following formula is satisfiable iff the fitting problem has a solution
n∧

i=1
((wi = Wi ∧ hi = Hi) ∨ (wi = Hi ∧ hi = Wi))

∧
n∧

i=1
(xi ≥ 0 ∧ xi + wi ≤ W ∧ yi ≥ 0 ∧ yi + hi ≤ H)

∧
∧

1≤i<j≤n

(xj ≥ xi + wi ∨ xi ≥ xj + wj ∨ yj ≥ yi + hi ∨ yi ≥ yj + hj)

If the formula is satisfiable, then the SMT solver yields a satisfying
assignment, that is, the corresponding values of xi, yi, wi, hi

Applying a standard SMT solver like Z3, Yices, or CVC4: feasible for
rectangle fitting problems up to 20 or 25 rectangles

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 31 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

The following formula is satisfiable iff the fitting problem has a solution
n∧

i=1
((wi = Wi ∧ hi = Hi) ∨ (wi = Hi ∧ hi = Wi))

∧
n∧

i=1
(xi ≥ 0 ∧ xi + wi ≤ W ∧ yi ≥ 0 ∧ yi + hi ≤ H)

∧
∧

1≤i<j≤n

(xj ≥ xi + wi ∨ xi ≥ xj + wj ∨ yj ≥ yi + hi ∨ yi ≥ yj + hj)

If the formula is satisfiable, then the SMT solver yields a satisfying
assignment, that is, the corresponding values of xi, yi, wi, hi

Applying a standard SMT solver like Z3, Yices, or CVC4: feasible for
rectangle fitting problems up to 20 or 25 rectangles

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 31 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Rectangle fitting

The following formula is satisfiable iff the fitting problem has a solution
n∧

i=1
((wi = Wi ∧ hi = Hi) ∨ (wi = Hi ∧ hi = Wi))

∧
n∧

i=1
(xi ≥ 0 ∧ xi + wi ≤ W ∧ yi ≥ 0 ∧ yi + hi ≤ H)

∧
∧

1≤i<j≤n

(xj ≥ xi + wi ∨ xi ≥ xj + wj ∨ yj ≥ yi + hi ∨ yi ≥ yj + hj)

If the formula is satisfiable, then the SMT solver yields a satisfying
assignment, that is, the corresponding values of xi, yi, wi, hi

Applying a standard SMT solver like Z3, Yices, or CVC4: feasible for
rectangle fitting problems up to 20 or 25 rectangles

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 31 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

问题: Sudoku（数独游戏）
Fill the blank cells in such a way that

every row, and
every column, and
every fat 3 block

contains the numbers 1 to 9, all occurring
exactly once

最强大脑？: The puzzle may by very hard, and backtracking and/or
advanced solving techniques are required.
For SAT/SMT it is peanuts: just specify the problem.
How?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 32 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

问题: Sudoku（数独游戏）
Fill the blank cells in such a way that

every row, and
every column, and
every fat 3 block

contains the numbers 1 to 9, all occurring
exactly once

最强大脑？: The puzzle may by very hard, and backtracking and/or
advanced solving techniques are required.
For SAT/SMT it is peanuts: just specify the problem.
How?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 32 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

问题: Sudoku（数独游戏）
Fill the blank cells in such a way that

every row, and
every column, and
every fat 3 block

contains the numbers 1 to 9, all occurring
exactly once

最强大脑？: The puzzle may by very hard, and backtracking and/or
advanced solving techniques are required.
For SAT/SMT it is peanuts: just specify the problem.
How?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 32 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

问题: Sudoku（数独游戏）
Fill the blank cells in such a way that

every row, and
every column, and
every fat 3 block

contains the numbers 1 to 9, all occurring
exactly once

最强大脑？: The puzzle may by very hard, and backtracking and/or
advanced solving techniques are required.
For SAT/SMT it is peanuts: just specify the problem.
How?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 32 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

Several approaches, all working well
Pure SAT: for every cell and every number 1 to 9, introduce boolean
variable describing whether that number is on that position, so
93 = 729 boolean variables.
SMT: for every cell define an integer variable for the corresponding
number.

We elaborate the latter.
问题: How to specify that every row (and column, and 3 × 3 block)
contains the numbers 1 to 9, all occurring once?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 33 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

Several approaches, all working well
Pure SAT: for every cell and every number 1 to 9, introduce boolean
variable describing whether that number is on that position, so
93 = 729 boolean variables.
SMT: for every cell define an integer variable for the corresponding
number.

We elaborate the latter.
问题: How to specify that every row (and column, and 3 × 3 block)
contains the numbers 1 to 9, all occurring once?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 33 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

Several approaches, all working well
Pure SAT: for every cell and every number 1 to 9, introduce boolean
variable describing whether that number is on that position, so
93 = 729 boolean variables.
SMT: for every cell define an integer variable for the corresponding
number.

We elaborate the latter.
问题: How to specify that every row (and column, and 3 × 3 block)
contains the numbers 1 to 9, all occurring once?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 33 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

Several approaches, all working well
Pure SAT: for every cell and every number 1 to 9, introduce boolean
variable describing whether that number is on that position, so
93 = 729 boolean variables.
SMT: for every cell define an integer variable for the corresponding
number.

We elaborate the latter.
问题: How to specify that every row (and column, and 3 × 3 block)
contains the numbers 1 to 9, all occurring once?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 33 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

Several approaches, all working well
Pure SAT: for every cell and every number 1 to 9, introduce boolean
variable describing whether that number is on that position, so
93 = 729 boolean variables.
SMT: for every cell define an integer variable for the corresponding
number.

We elaborate the latter.
问题: How to specify that every row (and column, and 3 × 3 block)
contains the numbers 1 to 9, all occurring once?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 33 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

Define 9 × 9 matrix of integer variables.
Each cell contains a value in 1, ..., 9

X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(9)]
for i in range(9)]

cells_c = [And(1 <= X[i][j], X[i][j] <= 9)

for i in range(9) for j in range(9)]

Each row/column/fat 3 block contains a number at most once.
rows_c=[Distinct(X[i]) for i in range(9)]
cols_c=[Distinct([X[i][j] for i in range(9)])

for j in range(9)]
sq_c =[Distinct([X[3*i0 + i][3*j0 + j]

for i in range(3) for j in range(3)])
for i0 in range(3) for j0 in range(3)]

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 34 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

Define 9 × 9 matrix of integer variables.
Each cell contains a value in 1, ..., 9

X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(9)]
for i in range(9)]

cells_c = [And(1 <= X[i][j], X[i][j] <= 9)

for i in range(9) for j in range(9)]

Each row/column/fat 3 block contains a number at most once.
rows_c=[Distinct(X[i]) for i in range(9)]
cols_c=[Distinct([X[i][j] for i in range(9)])

for j in range(9)]
sq_c =[Distinct([X[3*i0 + i][3*j0 + j]

for i in range(3) for j in range(3)])
for i0 in range(3) for j0 in range(3)]

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 34 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

sudoku_c = cells_c + rows_c + cols_c + sq_c

instance = ((0,0,0,0,9,4,0,3,0),

(0,0,0,5,1,0,0,0,7),

(0,8,9,0,0,0,0,4,0),

(0,0,0,0,0,0,2,0,8),

(0,6,0,2,0,1,0,5,0),

(1,0,2,0,0,0,0,0,0),

(0,7,0,0,0,0,5,2,0),

(9,0,0,0,6,5,0,0,0),

(0,4,0,9,7,0,0,0,0))

instance_c = [If(instance[i][j] == 0,

True,

X[i][j] == instance[i][j])

for i in range(9) for j in range(9)]

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 35 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

s = Solver()

s.add(sudoku_c + instance_c)

if s.check() == sat:
m=s.model()

r=[[m.evaluate(X[i][j])

for j in range(9)]
for i in range(9)]

print_matrix(r)

else:
print("failed to solve")

运行结果:
$python3 z3-5-sudoku.py

[[7, 1, 5, 8, 9, 4, 6, 3, 2],
[2, 3, 4, 5, 1, 6, 8, 9, 7],
[6, 8, 9, 7, 2, 3, 1, 4, 5],
[4, 9, 3, 6, 5, 7, 2, 1, 8],
[8, 6, 7, 2, 3, 1, 9, 5, 4],
[1, 5, 2, 4, 8, 9, 7, 6, 3],
[3, 7, 6, 1, 4, 8, 5, 2, 9],
[9, 2, 8, 3, 6, 5, 4, 7, 1],
[5, 4, 1, 9, 7, 2, 3, 8, 6]]

Solutions of sudoku puzzles are quickly found by just specifying the
rules of the game in SMT format, and apply an SMT solver.
For several other types of puzzles (kakuro, killer sudoku, binario, …)
the SAT/SMT approach to solve or generate them works well too.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 36 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

s = Solver()

s.add(sudoku_c + instance_c)

if s.check() == sat:
m=s.model()

r=[[m.evaluate(X[i][j])

for j in range(9)]
for i in range(9)]

print_matrix(r)

else:
print("failed to solve")

运行结果:
$python3 z3-5-sudoku.py

[[7, 1, 5, 8, 9, 4, 6, 3, 2],
[2, 3, 4, 5, 1, 6, 8, 9, 7],
[6, 8, 9, 7, 2, 3, 1, 4, 5],
[4, 9, 3, 6, 5, 7, 2, 1, 8],
[8, 6, 7, 2, 3, 1, 9, 5, 4],
[1, 5, 2, 4, 8, 9, 7, 6, 3],
[3, 7, 6, 1, 4, 8, 5, 2, 9],
[9, 2, 8, 3, 6, 5, 4, 7, 1],
[5, 4, 1, 9, 7, 2, 3, 8, 6]]

Solutions of sudoku puzzles are quickly found by just specifying the
rules of the game in SMT format, and apply an SMT solver.
For several other types of puzzles (kakuro, killer sudoku, binario, …)
the SAT/SMT approach to solve or generate them works well too.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 36 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.3 案例实现 | Suduku

s = Solver()

s.add(sudoku_c + instance_c)

if s.check() == sat:
m=s.model()

r=[[m.evaluate(X[i][j])

for j in range(9)]
for i in range(9)]

print_matrix(r)

else:
print("failed to solve")

运行结果:
$python3 z3-5-sudoku.py

[[7, 1, 5, 8, 9, 4, 6, 3, 2],
[2, 3, 4, 5, 1, 6, 8, 9, 7],
[6, 8, 9, 7, 2, 3, 1, 4, 5],
[4, 9, 3, 6, 5, 7, 2, 1, 8],
[8, 6, 7, 2, 3, 1, 9, 5, 4],
[1, 5, 2, 4, 8, 9, 7, 6, 3],
[3, 7, 6, 1, 4, 8, 5, 2, 9],
[9, 2, 8, 3, 6, 5, 4, 7, 1],
[5, 4, 1, 9, 7, 2, 3, 8, 6]]

Solutions of sudoku puzzles are quickly found by just specifying the
rules of the game in SMT format, and apply an SMT solver.
For several other types of puzzles (kakuro, killer sudoku, binario, …)
the SAT/SMT approach to solve or generate them works well too.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 36 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 其他应用: Symbolic Execution

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)
文献: Symbolic Execution for Software Testing: Three Decades Later

问题: How to explore different
program paths and for each path to

generate a set of concrete input
values exercising that path
check for the presence of various
kinds of errors

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 37 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 其他应用: Symbolic Execution

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)
文献: Symbolic Execution for Software Testing: Three Decades Later

问题: How to explore different
program paths and for each path to

generate a set of concrete input
values exercising that path
check for the presence of various
kinds of errors

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 37 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 其他应用: Symbolic Execution

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)
文献: Symbolic Execution for Software Testing: Three Decades Later

问题: How to explore different
program paths and for each path to

generate a set of concrete input
values exercising that path
check for the presence of various
kinds of errors

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 37 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 其他应用: Symbolic Execution

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)
文献: Symbolic Execution for Software Testing: Three Decades Later

问题: How to explore different
program paths and for each path to

generate a set of concrete input
values exercising that path
check for the presence of various
kinds of errors

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 37 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 其他应用: Symbolic Execution

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)
文献: Symbolic Execution for Software Testing: Three Decades Later

问题: How to explore different
program paths and for each path to

generate a set of concrete input
values exercising that path
check for the presence of various
kinds of errors

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 37 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 其他应用: Symbolic Execution

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)
文献: Symbolic Execution for Software Testing: Three Decades Later

问题: How to explore different
program paths and for each path to

generate a set of concrete input
values exercising that path
check for the presence of various
kinds of errors

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 37 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 其他应用: Symbolic Execution

SMT 在软件测试中的一个重要应用: 符号执行 (Symbolic Execution)
文献: Symbolic Execution for Software Testing: Three Decades Later

问题: How to explore different
program paths and for each path to

generate a set of concrete input
values exercising that path
check for the presence of various
kinds of errors

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 37 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 其他应用: Symbolic Execution

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

问题: How to reach code ERROR?
SMT problem: Solve x, y satisfying

x = 2y ∧ x > y + 10

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 38 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 其他应用: Symbolic Execution

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

问题: How to reach code ERROR?
SMT problem: Solve x, y satisfying

x = 2y ∧ x > y + 10

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 38 / 40

https://faculty.ustc.edu.cn/huangwenchao

1. 应用
1.4 其他应用: Symbolic Execution

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

1 int twice (int v) {
2 return 2⇤v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;

10 }
11 }
12 }
13
14 /⇤ simple driver exercising testme () with sym inputs ⇤/

15 int main() {
16 x = sym input();
17 y = sym input();
18 testme(x, y);
19 return 0;
20 }

Figure 1. Simple example to illustrate symbolic execution.

{x = 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 15}.
The goal is to generate such a set of inputs so that all the
execution paths depending on the symbolic input values—or
as many as possible in a given time budget—can be explored
exactly once by running the program on those inputs.

Symbolic execution maintains a symbolic state �, which
maps variables to symbolic expressions, and a symbolic
path constraint PC, which is a quantifier-free first-order
formula over symbolic expressions. At the beginning of a
symbolic execution, � is initialized to an empty map and
PC is initialized to true. Both � and PC are updated during
the course of symbolic execution. At the end of a symbolic
execution along an execution path of the program, PC is
solved using a constraint solver to generate concrete input
values. If the program is executed on these concrete input
values, it will take exactly the same path as the symbolic
execution and terminate in the same way.

For example, symbolic execution of the code in Fig-
ure 1 starts with an empty symbolic state and with sym-
bolic path constraint true. At every read statement var =
sym input() that receives program input, symbolic execu-
tion adds the mapping var 7! s to �, where s is a fresh (un-
constrained) symbolic value. For example, symbolic execu-
tion of the first two lines of the main() function (lines 16–
17) results in � = {x 7! x0, y 7! y0}, where x0, y0 are
two initially unconstrained symbolic values. At every as-
signment v = e, symbolic execution updates � by mapping
v to �(e), the symbolic expression obtained by evaluating e
in the current symbolic state. For example, after executing
line 6, � = {x 7! x0, y 7! y0, z 7! 2y0}.

At every conditional statement if (e) S1 else S2,
PC is updated to PC ^ �(e) (“then” branch), and a fresh

ERROR!

2*y == x2*y == x

x > y+10x > y+10

true
false

truefalse
x = 0x = 0
y = 1

x = 2x = 2
y = 1

x = 30x = 30
y = 15

Figure 2. Execution tree for the example in Figure 1.

path constraint PC 0 is created and initialized to PC^¬�(e)
(“else” branch). If PC is satisfiable for some assignment of
concrete to symbolic values, then symbolic execution con-
tinues along the “then” branch with the symbolic state � and
symbolic path constraint PC. Similarly, if PC 0 is satisfiable,
then another instance of symbolic execution is created with
symbolic state � and symbolic path constraint PC 0, which
continues the execution along the “else” branch; note that
unlike in concrete execution, both branches can be taken,
resulting in two execution paths. If any of PC or PC 0 is
not satisfiable, symbolic execution terminates along the cor-
responding path. For example, after line 7 in the example
code, two instances of symbolic execution are created with
path constraints x0 = 2y0 and x0 6= 2y0, respectively. Sim-
ilarly, after line 8, two instances of symbolic execution are
created with path constraints (x0 = 2y0) ^ (x0 > y0 + 10)
and (x0 = 2y0) ^ (x0 y0 + 10), respectively.

If a symbolic execution instance hits an exit statement or
an error (e.g., the program crashes or violates an assertion),
the current instance of symbolic execution is terminated and
a satisfying assignment to the current symbolic path con-
straint is generated, using an off-the-shelf constraint solver.
The satisfying assignment forms the test inputs: if the pro-
gram is executed on these concrete input values, it will take
exactly the same path as the symbolic execution and termi-
nate in the same way. For example, on our example code
we get three instances of symbolic executions which result
in the test inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination
condition for the loop or recursion is symbolic. For example,
the code in Figure 3 has an infinite number of execution
paths, where each execution path is either a sequence of
an arbitrary number of trues followed by a false or a

2 2013/4/10

问题: How to reach code ERROR?
SMT problem: Solve x, y satisfying

x = 2y ∧ x > y + 10

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 38 / 40

https://faculty.ustc.edu.cn/huangwenchao

作业

实验小作业 1: 使用 pure SAT 求解 N-Queen 问题, 并对比 PPT 中 SMT
的实现的效率。要求：

代码：使用 SMT 实现代码，和 PureSAT 实现代码
文档: 写出实验记录，要求对比 N 取值不同时，两者的效率

实验小作业 2(二选一): 使用 pure SAT 求解 d=a+b 或 d=a-b, 其中,a,b
为正整数。要求:
加法和减法问题仅需做一题，减法的实现分数更高
代码
文档: 简要写出编码思路，代码使用文档和实验结果

实验大作业 (可选): 分别用 Z3 和自己设计的算法求解 rectangle fitting。
要求：

代码: (1) 使用 Z3 实现 PPT 中的设计 (2) 自己设计算法（使用 C、
C++ 语言等）
文档: (1) 解释自己的算法思路 (2) 设计测试集，对比两个方法的效
率

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 39 / 40

https://faculty.ustc.edu.cn/huangwenchao

本章大作业参考论文

大作业可参考论文 (但不限于下列论文):
应用

Notary: A device for secure transaction approval
工具实现

Z3: An Efficient SMT Solver
Deep Cooperation of CDCL and Local Search for SAT

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 40 / 40

http://www.abelay.me/data/notary_sosp19.pdf
https://link.springer.com/chapter/10.1007/978-3-540-78800-3_24
https://link.springer.com/chapter/10.1007/978-3-030-80223-3_6
https://faculty.ustc.edu.cn/huangwenchao

