形式化方法导引

第4章 逻辑问题求解———种通用求解方法：SAT／SMT 求解 4.1 应用

黄文超

https：／／faculty．ustc．edu．cn／huangwenchao
\longrightarrow 教学课程 \longrightarrow 形式化方法导引

课程回顾

- 第 1 章：自动机，可计算性，复杂度理论
- 问题是什么？可以解么？有多难？
- 第 2 章：怎样用逻辑来定义一个验证器问题？
－Propositional logic，first－order logic，higher－order logic
－第 3 章：怎样进一步定义一种演算规则rules 来降低求解难度？
－The proof calculus of natural deduction
－本章：如何针对上述的 rules求解？

课程回顾

- 第1章：自动机，可计算性，复杂度理论
- 问题是什么？可以解么？有多难？
- 第 2 章：怎样用逻辑来定义一个验证器问题？
－Propositional logic，first－order logic，higher－order logic
－第 3 章：怎样进一步定义一种演算规则rules 来降低求解难度？ －The proof calculus of natural deduction
－本章：如何针对上述的 rules求解？

课程回顾

- 第 1 章：自动机，可计算性，复杂度理论
- 问题是什么？可以解么？有多难？
- 第 2 章：怎样用逻辑来定义一个验证器问题？
－Propositional logic，first－order logic，higher－order logic
－第 3 章：怎样进一步定义一种演算规则rules 来降低求解难度？
－The proof calculus of natural deduction
－本章：如何针对上述的 rules求解？

课程回顾

- 第1章：自动机，可计算性，复杂度理论
- 问题是什么？可以解么？有多难？
- 第 2 章：怎样用逻辑来定义一个验证器问题？
－Propositional logic，first－order logic，higher－order logic
－第 3 章：怎样进一步定义一种演算规则rules 来降低求解难度？
－The proof calculus of natural deduction
－本章：如何针对上述的 rules求解？

本章内容

（1）应用：如何用工具解决经典逻辑相关的问题？

- SAT，SMT 问题
- 问题求解工具 Z3
- 案例实现
－Satisfiability
－Validity
－Numbers and inequalities
－Eight Queens problem
－Binary Arithmetic
－Rectangle fitting
－Solving Sudoku
－其它应用：Symbolic execution
（2）理论：这些工具的核心算法？

本章内容

（1）应用：如何用工具解决经典逻辑相关的问题？

- SAT，SMT 问题
- 问题求解工具 Z3
- 案例实现
－Satisfiability
－Validity
－Numbers and inequalities
－Eight Queens problem
－Binary Arithmetic
－Rectangle fitting
－Solving Sudoku
－其它应用：Symbolic execution
（2 理论：这些工具的核心算法？

1．应用
 1．1 SAT and SMT Problem｜回顾

定义：Propositional Logic in BNF

$$
\phi::=p|(\neg \phi)|(\phi \wedge \phi)|(\phi \vee \phi)|(\phi \rightarrow \phi)
$$

where p stands for any atomic proposition and each occurrence of ϕ to the right of $::=$ stands for any already constructed formula．

定义：Verification in Logics

Most logics used in the design，specification and verification of computer systems fundamentally deal with a satisfaction relation：

$$
\mathcal{M} \vDash \phi
$$

问题： $\mathcal{M} \vDash \phi$ 在命题逻辑中更简单的表达是什么？

1．应用
 1．1 SAT and SMT Problem｜回顾

定义：Propositional Logic in BNF

$$
\phi::=p|(\neg \phi)|(\phi \wedge \phi)|(\phi \vee \phi)|(\phi \rightarrow \phi)
$$

where p stands for any atomic proposition and each occurrence of ϕ to the right of $::=$ stands for any already constructed formula．

定义：Verification in Logics

Most logics used in the design，specification and verification of computer systems fundamentally deal with a satisfaction relation：

$$
\mathcal{M} \vDash \phi
$$

问题： $\mathcal{M} \vDash \phi$ 在命题逻辑中更简单的表达是什么？

1．应用
 1．1 SAT and SMT Problem｜更简单的表达？

问题： $\mathcal{M} \vDash \phi$ 在命题逻辑中更简单的表达是什么？
引理：（去除 \mathcal{M} ）
Given formulas $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ and ψ of propositional logic， $\phi_{1}, \phi_{2}, \ldots, \phi_{n} \vDash \psi$ holds iff $\vDash \phi_{1} \rightarrow\left(\phi_{2} \rightarrow\left(\phi_{3} \rightarrow \cdots \rightarrow\left(\phi_{n} \rightarrow \psi\right)\right)\right)$ holds．

答：去除 \mathcal{M} 后，求解 validity（见如下定义）

定义：Validity

We call ϕ valid，if $=\phi$ holds
－We also call ϕ as a tautology（重言式），if ϕ is valid

1．应用
 1．1 SAT and SMT Problem｜更简单的表达？

问题： $\mathcal{M} \vDash \phi$ 在命题逻辑中更简单的表达是什么？

引理：（去除 \mathcal{M} ）

Given formulas $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ and ψ of propositional logic， $\phi_{1}, \phi_{2}, \ldots, \phi_{n} \vDash \psi$ holds iff $\vDash \phi_{1} \rightarrow\left(\phi_{2} \rightarrow\left(\phi_{3} \rightarrow \cdots \rightarrow\left(\phi_{n} \rightarrow \psi\right)\right)\right)$ holds．

答：去除 \mathcal{M} 后，求解 validity（见如下定义）

定义：Validity

We call ϕ valid，if $\vDash \phi$ holds．
－We also call ϕ as a tautology（重言式），if ϕ is valid

1．应用
 1．1 SAT and SMT Problem｜更简单的表达？

问题： $\mathcal{M} \vDash \phi$ 在命题逻辑中更简单的表达是什么？

引理：（去除 \mathcal{M} ）

Given formulas $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ and ψ of propositional logic， $\phi_{1}, \phi_{2}, \ldots, \phi_{n} \vDash \psi$ holds iff $\vDash \phi_{1} \rightarrow\left(\phi_{2} \rightarrow\left(\phi_{3} \rightarrow \cdots \rightarrow\left(\phi_{n} \rightarrow \psi\right)\right)\right)$ holds．

答：去除 \mathcal{M} 后，求解 validity（见如下定义）

定义：Validity

We call ϕ valid，if $\vDash \phi$ holds．
－We also call ϕ as a tautology（重言式），if ϕ is valid．

1．应用
 1．1 SAT and SMT Problem｜更简单的表达？

问题： $\mathcal{M} \vDash \phi$ 在命题逻辑中更简单的表达是什么？

引理：（去除 \mathcal{M} ）

Given formulas $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ and ψ of propositional logic， $\phi_{1}, \phi_{2}, \ldots, \phi_{n} \vDash \psi$ holds iff $\vDash \phi_{1} \rightarrow\left(\phi_{2} \rightarrow\left(\phi_{3} \rightarrow \cdots \rightarrow\left(\phi_{n} \rightarrow \psi\right)\right)\right)$ holds．

答：去除 \mathcal{M} 后，求解 validity（见如下定义）

定义：Validity

We call ϕ valid，if $\vDash \phi$ holds．
－We also call ϕ as a tautology（重言式），if ϕ is valid．
下一个问题：怎么求解 validity？
答：换一个问题求解：Satisfiability（见下页）

1．应用
 1．1 SAT and SMT Problem｜更简单的表达？

问题： $\mathcal{M} \vDash \phi$ 在命题逻辑中更简单的表达是什么？

引理：（去除 \mathcal{M} ）

Given formulas $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ and ψ of propositional logic， $\phi_{1}, \phi_{2}, \ldots, \phi_{n} \vDash \psi$ holds iff $\vDash \phi_{1} \rightarrow\left(\phi_{2} \rightarrow\left(\phi_{3} \rightarrow \cdots \rightarrow\left(\phi_{n} \rightarrow \psi\right)\right)\right)$ holds．

答：去除 \mathcal{M} 后，求解 validity（见如下定义）

定义：Validity

We call ϕ valid，if $\vDash \phi$ holds．
－We also call ϕ as a tautology（重言式），if ϕ is valid．
下一个问题：怎么求解 validity？
答：换一个问题求解：Satisfiability（见下页）

1．应用
 1．1 SAT and SMT Problem \｜等价问题？

定义：Satisfiability

Given a formula ϕ in propositional logic，we say that ϕ is satisfiable if it has a valuation in which is evaluates to \mathbf{T} ．

例子：

$p \vee q \rightarrow p$ is satisfiable，since it computes T if we assign T to p

 Note that $p \vee q \rightarrow p$ is not valid．
定理

Let ϕ be a formula of propositional logic．Then ϕ is satisfiable iff $\neg \phi$ is not valid．
In other words，ϕ is valid iff $\neg \phi$ is not satisfiable．
总结：求解 $\mathcal{M}=\phi$ ——求解 Validity ——求解 Satisfiability．

1．应用
 1．1 SAT and SMT Problem \｜等价问题？

定义：Satisfiability

Given a formula ϕ in propositional logic，we say that ϕ is satisfiable if it has a valuation in which is evaluates to \mathbf{T} ．

例子：

$p \vee q \rightarrow p$ is satisfiable，since it computes \mathbf{T} if we assign \mathbf{T} to p ． Note that $p \vee q \rightarrow p$ is not valid．

```
定理:
Let }\phi\mathrm{ be a formula of propositional logic. Then }\phi\mathrm{ is satisfiable iff }\neg\phi\mathrm{ is
not valid.
In other words, \phi is valid iff }\neg\phi\mathrm{ is not satisfiable.
```

总结: 求解 $\mathcal{M}=\phi$ ——求解 Validity ——求解 Satisfiability.

1．应用
 1．1 SAT and SMT Problem \｜等价问题？

定义：Satisfiability

Given a formula ϕ in propositional logic，we say that ϕ is satisfiable if it has a valuation in which is evaluates to \mathbf{T} ．

例子：

$p \vee q \rightarrow p$ is satisfiable，since it computes \mathbf{T} if we assign \mathbf{T} to p ．
Note that $p \vee q \rightarrow p$ is not valid．

定理：

Let ϕ be a formula of propositional logic．Then ϕ is satisfiable iff $\neg \phi$ is not valid．
In other words，ϕ is valid iff $\neg \phi$ is not satisfiable．
总结：求解 $\mathcal{M} \vDash \phi$ ——求解 Validity ——求解 Satisfiability．

1．应用
 1．1 SAT and SMT Problem \｜等价问题？

定义：Satisfiability

Given a formula ϕ in propositional logic，we say that ϕ is satisfiable if it has a valuation in which is evaluates to \mathbf{T} ．

例子：

$p \vee q \rightarrow p$ is satisfiable，since it computes \mathbf{T} if we assign \mathbf{T} to p ．
Note that $p \vee q \rightarrow p$ is not valid．

定理：

Let ϕ be a formula of propositional logic．Then ϕ is satisfiable iff $\neg \phi$ is not valid．
In other words，ϕ is valid iff $\neg \phi$ is not satisfiable．
求解 $\mathcal{M} \vDash \phi$ ——求解 Validity

1．应用
 1．1 SAT and SMT Problem \｜等价问题？

定义：Satisfiability

Given a formula ϕ in propositional logic，we say that ϕ is satisfiable if it has a valuation in which is evaluates to \mathbf{T} ．

例子：

$p \vee q \rightarrow p$ is satisfiable，since it computes \mathbf{T} if we assign \mathbf{T} to p ．
Note that $p \vee q \rightarrow p$ is not valid．

定理：

Let ϕ be a formula of propositional logic．Then ϕ is satisfiable iff $\neg \phi$ is not valid．
In other words，ϕ is valid iff $\neg \phi$ is not satisfiable．
总结：求解 $\mathcal{M} \vDash \phi$ ——求解 Validity ——求解 Satisfiability．

1．应用
 1．1 SAT and SMT Problem｜等价问题？

定义：Satisfiability

Given a formula ϕ in propositional logic，we say that ϕ is satisfiable if it has a valuation in which is evaluates to \mathbf{T} ．

例子：

$p \vee q \rightarrow p$ is satisfiable，since it computes \mathbf{T} if we assign \mathbf{T} to p ．
Note that $p \vee q \rightarrow p$ is not valid．

定理：

Let ϕ be a formula of propositional logic．Then ϕ is satisfiable iff $\neg \phi$ is not valid．
In other words，ϕ is valid iff $\neg \phi$ is not satisfiable．
总结：求解 $\mathcal{M} \vDash \phi$ ——求解 Validity ——求解 Satisfiability．

1．应用
 1．1 SAT and SMT Problem｜等价问题？

定义：Satisfiability

Given a formula ϕ in propositional logic，we say that ϕ is satisfiable if it has a valuation in which is evaluates to \mathbf{T} ．

例子：

$p \vee q \rightarrow p$ is satisfiable，since it computes \mathbf{T} if we assign \mathbf{T} to p ．
Note that $p \vee q \rightarrow p$ is not valid．

定理：

Let ϕ be a formula of propositional logic．Then ϕ is satisfiable iff $\neg \phi$ is not valid．
In other words，ϕ is valid iff $\neg \phi$ is not satisfiable．
总结：求解 $\mathcal{M} \vDash \phi$ ——求解 Validity ——求解 Satisfiability．

1．应用
1．1 SAT and SMT Problem｜问题定义

定义：SAT 问题

SAT is the decision problem：given a propositional formula，is it satisfiable？

SAT 问题可用于模型的验证！

回颃
Given a set $A \subseteq S$ ，and $x \in S$ ，whether there is a machine that can compute whether $x \in A$
－Define a new machine，named Turing machine，图灵机
－If yes，i．e．，there is a Turing machine M for A ，language A is decidable．
－If no，but there is a Turing machine M that can only accept s ，if $s \in A$ ，language A is still Turing－recognizable

1．应用

1．1 SAT and SMT Problem｜问题定义

定义：SAT 问题

SAT is the decision problem：given a propositional formula，is it satisfiable？

SAT 问题可用于模型的验证！

回顾：问题可以解么？－问题 4

Given a set $A \subseteq S$ ，and $x \in S$ ，whether there is a machine that can compute whether $x \in A$ ．
－Define a new machine，named Turing machine，图灵机．
－If yes，i．e．，there is a Turing machine M for A ，language A is decidable．
－If no，but there is a Turing machine M that can only accept s ，if $s \in A$ ，language A is still Turing－recognizable．

SAT 是可计算的（见下页）

1．应用
 1．1 SAT and SMT Problem｜问题分析

定义：SAT 问题

SAT is the decision problem：given a propositional formula，is it satisfiable？

SAT 是可计算的：

－Essentially，this consists of computing the values of the formula for all 2^{n} ways to choose \mathbf{T} or \mathbf{F} for the n variables．
问：SAT 属干哪一类问题？（复杂度）
答：SAT 属于经典的 NP－Complete 问题（1970 年开始研究）（Bad news）

回故

六 Y：NP－complete and NP－hardA language B is NP－complete if it satisfies two conditions：
\square
（2）every A in NP is polynomial time reducible to B
Here，B is NP－hard if it satisfies condition ？ Classical NP－complete problem：SAT（形式化方法的重要问题之一）

1．应用

1．1 SAT and SMT Problem｜问题分析

定义：SAT 问题

SAT is the decision problem：given a propositional formula，is it satisfiable？

SAT 是可计算的：

－Essentially，this consists of computing the values of the formula for all 2^{n} ways to choose \mathbf{T} or \mathbf{F} for the n variables．

A language B is NP－complete if it satisfies two conditions
\square
（2）every A in NP is polynomial time reducible to B ．
Here，B is NP－hard if it satisfies condition 2.
\square

1．应用

1．1 SAT and SMT Problem｜问题分析

定义：SAT 问题

SAT is the decision problem：given a propositional formula，is it satisfiable？

SAT 是可计算的：

－Essentially，this consists of computing the values of the formula for all 2^{n} ways to choose \mathbf{T} or \mathbf{F} for the n variables．
问：SAT 属于哪一类问题？（复杂度）
答：SAT 属于经典的 NP－Complete 问题（1970 年开始研究）（Bad news）

回顾：

定 X：NP－complete and NP－hard
A language B is NP－complete if it satisfies two conditions
\square
（2）every A in NP is polynomial time reducible to B ．
Here，B is NP－hard if it satisfies condition 2.
\square

1．应用
 1．1 SAT and SMT Problem｜问题分析

定义：SAT 问题

SAT is the decision problem：given a propositional formula，is it satisfiable？
SAT 是可计算的：
－Essentially，this consists of computing the values of the formula for all 2^{n} ways to choose \mathbf{T} or \mathbf{F} for the n variables．
问：SAT 属于哪一类问题？（复杂度）
答：SAT 属于经典的 NP－Complete 问题（1970 年开始研究）（Bad news）。

回顾：定义：NP－complete and NP－hard

A language B is $N P$－complete if it satisfies two conditions：
（1）B is in NP，and
（2）every A in NP is polynomial time reducible to B ．
Here，B is NP－hard if it satisfies condition 2.
Classical NP－complete problem：SAT（形式化方法的重要问题之一）．

1．应用
 1．1 SAT and SMT Problem｜问题定义

Good news：Current SAT solvers are successful for several big formulas．
－例子：solving the n－queens problem for $n=100$ yields a 50 Mb formula over 10000 variables，but is solved in 10 seconds by the SAT solver Z3．

－Z3，
－For non－commercial use they are free to download and to use

1．应用
 1．1 SAT and SMT Problem｜问题定义

Good news：Current SAT solvers are successful for several big formulas．
－例子：solving the n－queens problem for $n=100$ yields a 50 Mb formula over 10000 variables，but is solved in 10 seconds by the SAT solver Z3．

定义：SMT problem

Extension of SAT，to deal with numbers and inequalities．

1．应用
 1．1 SAT and SMT Problem｜问题定义

Good news：Current SAT solvers are successful for several big formulas．
－例子：solving the n－queens problem for $n=100$ yields a 50 Mb formula over 10000 variables，but is solved in 10 seconds by the SAT solver Z3．

定义：SMT problem

Extension of SAT，to deal with numbers and inequalities．
SAT，SMT 求解工具：
－Z3，YICES，CVC4
－For non－commercial use they are free to download and to use

1．应用

1.2 问题求解工具（Z3）

Z3
－Z3 is a theorem prover from Microsoft Research．

Z3 interfaces

－Default input format is SMTLIB2
－Other native foreign function interfaces：

```
- C++ API
- .NET API
- Java API
- Python API
- C
- OCaml
- Julia
```


参考阅读

－SAT／SMT by Example

1．应用

1.2 问题求解工具（Z3）

Z3
－Z3 is a theorem prover from Microsoft Research．
Z3 interfaces
－Default input format is SMTLIB2
－Other native foreign function interfaces：
－ $\mathrm{C}++\mathrm{API}$
－．NET API
－Java API
－Python API
－C
－OCaml
－Julia

参考阅读
 －SAT／SMT by Example

1．应用

1.2 问题求解工具（Z3）

Z3
－Z3 is a theorem prover from Microsoft Research．
Z3 interfaces
－Default input format is SMTLIB2
－Other native foreign function interfaces：
－C＋＋API
－．NET API
－Java API
－Python API
－C
－OCaml
－Julia

参考阅读

－SAT／SMT by Example

1．应用

1.3 案例实现｜Satisfiability

问题：Is ϕ satisfiable？

$$
\phi=(p \rightarrow q) \wedge(r \leftrightarrow \neg q) \wedge(\neg p \vee r)
$$

```
from z3 import *
```

$\mathrm{p}=\mathrm{Bool}(\mathrm{\prime} \mathrm{p}$ ')
$\mathrm{q}=\mathrm{Bool}\left(\right.$ ' $\left.^{\prime}{ }^{\prime}\right)$
$r=B o o l(' r ')$
solve(Implies(p, q), $r==\operatorname{Not}(q), \operatorname{Or(Not(p),r))}$
运行结果:
\$python3 z3-1-sat.py
$[q=$ True, $p=$ False, $r=$ False $]$
解析:
存在一个解, 满足 $F \phi$ 。解为 $q=T \wedge p=F \wedge r=F$

1．应用

1.3 案例实现｜Satisfiability

问题：Is ϕ satisfiable？

$$
\phi=(p \rightarrow q) \wedge(r \leftrightarrow \neg q) \wedge(\neg p \vee r)
$$

from z3 import＊
p＝Bool（＇p＇）
$\mathrm{q}=\operatorname{Bool}\left({ }^{\prime} \mathrm{q}^{\prime}\right)$
r＝Bool（＇r＇）
solve（Implies（p，q），$r==\operatorname{Not}(q), \operatorname{Or}(\operatorname{Not}(p), r))$
运行结果
\＄python3 z3－1－sat．py ［ $\mathrm{q}=$ True， $\mathrm{p}=$ False， $\mathrm{r}=$ False $]$
解析
存在一个解，满足 $\vDash \phi$ 。解为 $q=\mathbf{T} \wedge p=\mathbf{F} \wedge r=\mathbf{F}$

1．应用

1.3 案例实现｜Satisfiability

问题：Is ϕ satisfiable？

$$
\phi=(p \rightarrow q) \wedge(r \leftrightarrow \neg q) \wedge(\neg p \vee r)
$$

from z3 import＊
$\mathrm{p}=\mathrm{Bool}\left(\mathrm{'p}^{\prime}\right)$
$\mathrm{q}=\operatorname{Bool}\left({ }^{\prime} \mathrm{q}^{\prime}\right)$
r＝Bool（＇r＇）
solve（Implies（p，q），$r==\operatorname{Not}(q), \operatorname{Or}(\operatorname{Not}(p), r))$
运行结果：
\＄python3 z3－1－sat．py ［ $q=$ True，$p=$ False，$r=$ False］
解析
存在一个解，满足 $\vDash \phi$ 。解为 $q=\mathbf{T} \wedge p=\mathbf{F} \wedge r=\mathbf{F}$

1．应用

1.3 案例实现｜Satisfiability

问题：Is ϕ satisfiable？

$$
\phi=(p \rightarrow q) \wedge(r \leftrightarrow \neg q) \wedge(\neg p \vee r)
$$

from z3 import＊

```
p = Bool('p')
\(\mathrm{q}=\) Bool('q')
r = Bool('r')
solve(Implies(p, q), r == Not(q), Or(Not(p), r))
```

运行结果：
\＄python3 z3－1－sat．py ［ $q=$ True，$p=$ False，$r=$ False］
解析：
存在一个解，满足 $\vDash \phi$ 。解为 $q=\mathbf{T} \wedge p=\mathbf{F} \wedge r=\mathbf{F}$

1．应用
 1.3 案例实现｜Validity

from z3 import＊

p，q＝Bools（＇p q＇）
demorgan＝\}
And（p，q）＝＝\} Not（Or（Not（p），Not（q）））
def prove（f）：
$\mathrm{s}=$ Solver（）
s．add（Not（f））
if $\mathrm{s} . \operatorname{check}()==$ unsat： print（＂proved＂）
else：
print（＂failed to prove＂）
问题：Is ϕ valid ？（i．e．，$\vDash \phi$ ？）
$\phi=(p \wedge q) \leftrightarrow \neg(\neg p \vee \neg q)$
运行结果
\＄python3 z3－2－valid．py proved
解析
ϕ is valid，
iff $\neg \phi$ is not satisfiable So，ϕ is valid prove（demorgan）

1．应用

1.3 案例实现｜Validity

from z3 import＊

p，q＝Bools（＇p q＇）
demorgan＝\}
And（p，q）＝＝\} Not（Or（Not（p），Not（q）））
def prove（f）：

$$
\mathrm{s}=\text { Solver () }
$$

if $\mathrm{s} . \operatorname{check}()==$ unsat： print（＂proved＂）
else：
print（＂failed to prove＂）
问题：Is ϕ valid ？（i．e．，$\vDash \phi$ ？）
$\phi=(p \wedge q) \leftrightarrow \neg(\neg p \vee \neg q)$
运行结果：
\＄python3 z3－2－valid．py
s.add (Not (f)) proved
解析

1．应用

1.3 案例实现｜Validity

from z3 import＊

$\mathrm{p}, \mathrm{q}=\operatorname{Bools('p~q')}$
demorgan $=\$
And（p，q）＝＝\} $\operatorname{Not}(\operatorname{Or}(\operatorname{Not}(p), \operatorname{Not}(q)))$
def prove（f）：

$$
\mathrm{s}=\text { Solver () }
$$

if $\mathrm{s} . \operatorname{check}()==$ unsat： print（＂proved＂）
else：
问题：Is ϕ valid？（i．e．，$\vDash \phi$ ？）
$\phi=(p \wedge q) \leftrightarrow \neg(\neg p \vee \neg q)$
运行结果：
\＄python3 z3－2－valid．py
s.add (Not (f)) proved
解析：
ϕ is valid，
iff $\neg \phi$ is not satisfiable．
print（＂failed to prove＂）So，ϕ is valid．
prove（demorgan）

1．应用

1.3 案例实现｜numbers and inequalities

问题：Solve the following system of constraints
$x>2 \wedge y<10 \wedge x+2 y=7$ ，where x, y are integers．
from z3 import＊

运行结果
\＄python3 z3－3－inequalities．py $[y=0, x=7]$
解析：
该问题为 SMT 问题

1．应用

1.3 案例实现 \｜numbers and inequalities

问题：Solve the following system of constraints

$x>2 \wedge y<10 \wedge x+2 y=7$ ，where x, y are integers．
from z3 import＊

```
x = Int('x')
y = Int ('y')
solve( \(\mathrm{x}>2, \mathrm{y}<10, \mathrm{x}+2 * \mathrm{y}==7\) )
```

运行结果

1．应用

1.3 案例实现 \｜numbers and inequalities

问题：Solve the following system of constraints

$x>2 \wedge y<10 \wedge x+2 y=7$ ，where x, y are integers．
from z3 import＊

```
x = Int('x')
y = Int ('y')
solve( \(\mathrm{x}>2, \mathrm{y}<10, \mathrm{x}+2 * \mathrm{y}==7\) )
```

运行结果：
\＄python3 z3－3－inequalities．py

$$
[y=0, x=7]
$$

解析
该问题为 SMT 问题

1．应用

1.3 案例实现 \｜numbers and inequalities

问题：Solve the following system of constraints

$x>2 \wedge y<10 \wedge x+2 y=7$ ，where x, y are integers．
from z3 import＊

```
x = Int('x')
y = Int ('y')
solve( \(\mathrm{x}>2, \mathrm{y}<10, \mathrm{x}+2 * \mathrm{y}==7\) )
```

运行结果：
\＄python3 z3－3－inequalities．py

$$
[y=0, x=7]
$$

解析：
该问题为 SMT 问题

1．应用

1.3 案例实现｜Eight－Queens

问题：Eight－Queens

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens attack each other．Thus，a solution requires that no two queens share the same row，column，or diagonal．

As usual in SAT／SMT，don＇t think about how to solve it，but only specify the problem．
－Pure SAT：only boolean variables，no numbers， no inequalities．
－For every position (i, j) on the board：boolean variable $p_{i j}$ expresses whether there is a queen
or not．

1．应用

1.3 案例实现｜Eight－Queens

问题：Eight－Queens

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens attack each other．Thus，a solution requires that no two queens share the same row，column，or diagonal．

As usual in SAT／SMT，don＇t think about how to solve it，but only specify the problem．
－Pure SAT：only boolean variables，no numbers，
no inequalities．
－For every nosition (i, j) on the board：boolean variable $p_{i j}$ expresses whether there is a queen or not．

1．应用

1.3 案例实现｜Eight－Queens

问题：Eight－Queens

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens attack each other．Thus，a solution requires that no two queens share the same row，column，or diagonal．

As usual in SAT／SMT，don＇t think about how to solve it，but only specify the problem．
－Pure SAT：only boolean variables，no numbers， no inequalities．
－For every position (i, j) on the board：boolean variable $p_{i j}$ expresses whether there is a queen or not．

1．应用

1.3 案例实现｜Eight－Queens

问题：Eight－Queens

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens attack each other．Thus，a solution requires that no two queens share the same row，column，or diagonal．

As usual in SAT／SMT，don＇t think about how to solve it，but only specify the problem．
－Pure SAT：only boolean variables，no numbers， no inequalities．
－For every position (i, j) on the board：boolean variable $p_{i j}$ expresses whether there is a queen or not．

1．应用

1.3 案例实现｜Eight－Queens

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

（2）At most one queen on row i
 and $p_{i k}$ are true

Requirements until now（on every row）：

1．应用

1.3 案例实现｜Eight－Queens

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

Requirements until now（on every row）
（2）At most one queen on row
 and $p_{i k}$ are true $\Lambda\left(\neg p_{i j} \vee \neg p_{i k}\right)$

1．应用

1.3 案例实现｜Eight－Queens

（1）At least one queen on row i ：

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

－$p_{i 1} \vee p_{i 2} \vee p_{i 3} \vee p_{i 4} \vee p_{i 5} \vee p_{i 6} \vee$ $p_{i 7} \vee p_{i 8}$
（2）At most one queen on row i
－For every $j<k$ not both $p_{i j}$ and $p_{i k}$ are true

Requirements until now（on every row）

1．应用

1.3 案例实现｜Eight－Queens

（1）At least one queen on row i ：
－$p_{i 1} \vee p_{i 2} \vee p_{i 3} \vee p_{i 4} \vee p_{i 5} \vee p_{i 6} \vee$ $p_{i 7} \vee p_{i 8}$

$$
\bigvee_{j=1}^{8} p_{i j}
$$

（2）At most one queen on row i
－For every $j<k$ not both $p_{i j}$ and $p_{i k}$ are true

Requirements until now（on every row）

1．应用

1.3 案例实现｜Eight－Queens

（1）At least one queen on row i ：
－$p_{i 1} \vee p_{i 2} \vee p_{i 3} \vee p_{i 4} \vee p_{i 5} \vee p_{i 6} \vee$ $p_{i 7} \vee p_{i 8}$

$$
\bigvee_{j=1}^{8} p_{i j}
$$

（2）At most one queen on row i ：
－For every $j<k$ not both $p_{i j}$ and $p_{i k}$ are true

1．应用

1.3 案例实现｜Eight－Queens

（1）At least one queen on row i ：
－$p_{i 1} \vee p_{i 2} \vee p_{i 3} \vee p_{i 4} \vee p_{i 5} \vee p_{i 6} \vee$ $p_{i 7} \vee p_{i 8}$

$$
\bigvee_{j=1}^{8} p_{i j}
$$

（2）At most one queen on row i ：
－For every $j<k$ not both $p_{i j}$ and $p_{i k}$ are true

$$
\bigwedge_{0<j<k \leq 8}\left(\neg p_{i j} \vee \neg p_{i k}\right)
$$

Requirements until now（on every row）：

1．应用

1.3 案例实现｜Eight－Queens

（1）At least one queen on row i ：
－$p_{i 1} \vee p_{i 2} \vee p_{i 3} \vee p_{i 4} \vee p_{i 5} \vee p_{i 6} \vee$ $p_{i 7} \vee p_{i 8}$

$$
\bigvee_{j=1}^{8} p_{i j}
$$

（2）At most one queen on row i ：
－For every $j<k$ not both $p_{i j}$ and $p_{i k}$ are true

$$
\bigwedge_{0<j<k \leq 8}\left(\neg p_{i j} \vee \neg p_{i k}\right)
$$

Requirements until now（on every row）：

$$
\bigwedge_{i=1}^{8} \bigvee_{j=1}^{8} p_{i j} \wedge \bigwedge_{i=1}^{8} \bigwedge_{0<j<k \leq 8}\left(\neg p_{i j} \vee \neg p_{i k}\right)
$$

1．应用

1.3 案例实现｜Eight－Queens

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

Similarly，on every column：

$$
\bigwedge_{j=1}^{8} \bigvee_{i=1}^{8} p_{i j} \wedge \bigwedge_{j=1}^{8} \bigwedge_{0<i<k \leq 8}\left(\neg p_{i j} \vee \neg p_{k j}\right)
$$

1．应用

1.3 案例实现｜Eight－Queens

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

$p_{i j}$ and $p_{i^{\prime} j^{\prime}}$ on such a diagnoal

$$
i-j=i^{\prime}-j^{\prime}
$$

1．应用

1.3 案例实现｜Eight－Queens

p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}
p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	p_{26}	p_{27}	p_{28}
p_{31}	p_{32}	p_{33}	p_{34}	p_{35}	p_{36}	p_{37}	p_{38}
p_{41}	p_{42}	p_{43}	p_{44}	p_{45}	p_{46}	p_{47}	p_{48}
p_{51}	p_{52}	p_{53}	p_{54}	p_{55}	p_{56}	p_{57}	p_{58}
p_{61}	p_{62}	p_{63}	p_{64}	p_{65}	p_{66}	p_{67}	p_{68}
p_{71}	p_{72}	p_{73}	p_{74}	p_{75}	p_{76}	p_{77}	p_{78}
p_{81}	p_{82}	p_{83}	p_{84}	p_{85}	p_{86}	p_{87}	p_{88}

$p_{i j}$ and $p_{i^{\prime} j^{\prime}}$ on such a diagonal

$$
i+j=i^{\prime}+j^{\prime}
$$

1．应用

1.3 案例实现｜Eight－Queens

So far all $i, j, i^{\prime}, j^{\prime}$ with $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$ satisfying $i+j=i^{\prime}+j^{\prime}$ or $i-j=i^{\prime}-j^{\prime}$ ：

$$
\neg p_{i j} \vee \neg p_{i^{\prime} j^{\prime}}
$$

stating that on (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ being two distinct positions on a diagonal， no two queens are allowed．
We may restrict to $i<i^{\prime}$ ，yielding

1．应用

1.3 案例实现｜Eight－Queens

So far all $i, j, i^{\prime}, j^{\prime}$ with $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$ satisfying $i+j=i^{\prime}+j^{\prime}$ or $i-j=i^{\prime}-j^{\prime}$ ：

$$
\neg p_{i j} \vee \neg p_{i^{\prime} j^{\prime}}
$$

stating that on (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ being two distinct positions on a diagonal， no two queens are allowed．
We may restrict to $i<i^{\prime}$ ，yielding

$$
\bigwedge_{0<i<i^{\prime} \leq 8}\left(\bigwedge_{j, j^{\prime}: i+j=i^{\prime}+j^{\prime} \vee i-j=i^{\prime}-j^{\prime}} \neg p_{i j} \vee \neg p_{i^{\prime} j^{\prime}}\right)
$$

1．应用

1.3 案例实现｜Eight－Queens

$$
\begin{gathered}
\bigwedge_{i=1}^{8} \bigvee_{j=1}^{8} p_{i j} \wedge \bigwedge_{i=1}^{8} \bigwedge_{0<j<k \leq 8}\left(\neg p_{i j} \vee \neg p_{i k}\right) \wedge \bigwedge_{j=1}^{8} \bigvee_{i=1}^{8} p_{i j} \wedge \bigwedge_{j=1}^{8} \bigwedge_{0<i<k \leq 8}\left(\neg p_{i j} \vee \neg p_{k j}\right) \\
\bigwedge_{0<i<i^{\prime} \leq 8}\left(\bigwedge_{j, j^{\prime}: i+j=i^{\prime}+j^{\prime} \vee i-j=i^{\prime}-j^{\prime}} \neg p_{i j} \vee \neg p_{i^{\prime} j^{\prime}}\right)
\end{gathered}
$$

from z3 import
$\mathrm{Q}=\left[\operatorname{Int}\left(\right.\right.$＇ $\left.\mathrm{Q} \% \mathrm{~F} \mathrm{I}^{\prime} \%(\mathrm{i}+1)\right)$ for i in range（8）］
val＿c $=$［ And $(1<=Q[i], Q[i]<=8)$ for i in range（8）］
col＿c $=$［ Distinct（Q）］
diag＿c $=[\operatorname{If}(i==j, \quad$ True，

$$
\text { And }(i+Q[i]!=j+Q[j], \quad i+Q[j]!=j+Q[i]))
$$

for i in range（8）for j in range（i）］
solve（val＿c＋col＿c＋diag＿c）

1．应用

1.3 案例实现｜Eight－Queens

$$
\begin{gathered}
\bigwedge_{i=1}^{8} \bigvee_{j=1}^{8} p_{i j} \wedge \bigwedge_{i=1}^{8} \bigwedge_{0<j<k \leq 8}\left(\neg p_{i j} \vee \neg p_{i k}\right) \wedge \bigwedge_{j=1}^{8} \bigvee_{i=1}^{8} p_{i j} \wedge \bigwedge_{j=1}^{8} \bigwedge_{0<i<k \leq 8}\left(\neg p_{i j} \vee \neg p_{k j}\right) \\
\bigwedge_{0<i<i^{\prime} \leq 8}\left(\bigwedge_{j, j^{\prime}: i+j=i^{\prime}+j^{\prime} \vee i-j=i^{\prime}-j^{\prime}} \neg p_{i j} \vee \neg p_{i^{\prime} j^{\prime}}\right)
\end{gathered}
$$

from z3 import＊
$\mathrm{Q}=\left[\operatorname{Int}\left({ }^{\prime} \mathrm{Q}_{-} \% \mathrm{i}\right.\right.$ \％（ $\left.\mathrm{i}+1\right)$ ）for i in range（8）］
val＿c＝［ And（1＜＝Q［i］，$Q[i] ~<=~ 8) ~ f o r ~ i n ~ r a n g e(8) ~] ~$
col＿c＝［ Distinct（Q）］
diag＿c＝［ If（i＝＝j，True，

$$
\text { And }(i+Q[i]!=j+Q[j], \quad i+Q[j]!=j+Q[i]))
$$

for i in range（8）for j in range（i）］
solve（val＿c＋col＿c＋diag＿c）

1．应用

1.3 案例实现｜Eight－Queens

运行结果：

\＄python3 z3－4－queens．py

$$
\begin{aligned}
{\left[Q _5\right.} & =1, Q _8=7, Q _3=8, Q _2=2, \\
Q _6 & \left.=3, Q _4=6, Q _7=5, Q _1=4\right]
\end{aligned}
$$

From Eight－Queens to N －Queens？ 26s for 40 queens
思考：不使用 SMT，而是换之前解释的方法（pure效率会不会更高？

看下面讲解

1．应用

1.3 案例实现｜Eight－Queens

运行结果：

\＄python3 z3－4－queens．py
$\left[Q _5=1, Q _8=7, Q _3=8, Q _2=2\right.$ ，
Q＿6 $\left.=3, \mathrm{Q} _4=6, \mathrm{Q} _7=5, \mathrm{Q} _1=4\right]$
解析：
From Eight－Queens to N－Queens？ 26s for 40 queens
效率会不会更高？

1．应用
 1.3 案例实现｜Eight－Queens

			0				
	0						
							0
					0		
0							
		0					
				0			
						0	

运行结果：
\＄python3 z3－4－queens．py

$$
\begin{aligned}
{\left[Q _5\right.} & =1, Q _8=7, Q _3=8, Q _2=2, \\
Q _6 & \left.=3, Q _4=6, Q _7=5, Q _1=4\right]
\end{aligned}
$$

解析：
From Eight－Queens to N－Queens？ 26s for 40 queens
思考：不使用 SMT，而是换之前解释的方法（pure SAT），效率会不会更高？

1．应用

1.3 案例实现｜Eight－Queens

运行结果：
\＄python3 z3－4－queens．py

$$
\left.\begin{array}{rl}
{\left[Q _5\right.} & =1, Q _8=7, Q _3=8, Q _2=2, \\
Q _6 & =3, Q _4
\end{array}=6, Q _7=5, Q _1=4\right]
$$

解析：
From Eight－Queens to N－Queens？ 26s for 40 queens
思考：不使用 SMT，而是换之前解释的方法（pure SAT），效率会不会更高？

看下面讲解

			0				
	0						
							0
					0		
0							
		0					
				0			
						0	

1．应用

1.3 案例实现｜Arithmetic in pure SAT

Arithmetic：addition，subtraction，multiplication of integers

问题

Compute $13+7$ ？
解析：Covered by SMT，why do it in pure SAT？
－Interesting how to express a non－SAT looking problem in SAT
－Introduces flavor of bounded model checking
－BMC，有界模型检测，见第5章
－one of the most important applications of SAT／SMT
－Often（e．g．，in hardware verification），SAT encoding of arithmetic outperforms SMT

1．应用

1.3 案例实现｜Arithmetic in pure SAT

Arithmetic：addition，subtraction，multiplication of integers

问题

Compute $13+7$ ？

解析：Covered by SMT，why do it in pure SAT？
 －Interesting how to express a non－SAT looking problem in SAT
 －Introduces flavor of bounded model checking
 －BMC，有界模型检测，见第5章
 －one of the most important applications of SAT／SMT
 －Often（e．g．，in hardware verification），SAT encoding of arithmetic outperforms SMT

1．应用

1.3 案例实现｜Arithmetic in pure SAT

Arithmetic：addition，subtraction，multiplication of integers

问题

Compute $13+7$ ？
解析：Covered by SMT，why do it in pure SAT？
－Interesting how to express a non－SAT looking problem in SAT
－Introduces flavor of bounded model checking
－BMC，有界模型检测，见第5章
－one of the most important applications of SAT／SMT
－Often（e．g．，in hardware verification），SAT encoding of arithmetic outperforms SMT

1．应用

1.3 案例实现｜Arithmetic in pure SAT

Arithmetic：addition，subtraction，multiplication of integers

问题

Compute $13+7$ ？
解析：Covered by SMT，why do it in pure SAT？
－Interesting how to express a non－SAT looking problem in SAT
－Introduces flavor of bounded model checking －BMC，有界模型检测，见第5章
－one of the most important applications of SAT／SMT
－Often（e．g．，in hardware verification），SAT encoding of arithmetic outperforms SMT

1．应用

1.3 案例实现｜Arithmetic in pure SAT

Arithmetic：addition，subtraction，multiplication of integers

问题

Compute $13+7$ ？
解析：Covered by SMT，why do it in pure SAT？
－Interesting how to express a non－SAT looking problem in SAT
－Introduces flavor of bounded model checking
－BMC，有界模型检测，见第5章
－one of the most important applications of SAT／SMT
－Often（e．g．，in hardware verification），SAT encoding of arithmetic
outperforms SMT

1．应用

1.3 案例实现｜Arithmetic in pure SAT

Arithmetic：addition，subtraction，multiplication of integers

问题

Compute $13+7$ ？
解析：Covered by SMT，why do it in pure SAT？
－Interesting how to express a non－SAT looking problem in SAT
－Introduces flavor of bounded model checking
－BMC，有界模型检测，见第5章
－one of the most important applications of SAT／SMT
－Often（e．g．，in hardware verification），SAT encoding of arithmetic outperforms SMT

1．应用

1.3 案例实现｜Arithmetic in pure SAT

In SAT we only have Boolean variables．

问题：Binary representation

How to Express a number by a sequence of Boolean values？
解：Binary representation

$$
a_{1} a_{2} \cdots a_{n}
$$

of number a ：

例：
－ 01101 represents $8+4+1=13$
－ 00111 represents $4+2+1=7$

1．应用
 1.3 案例实现｜Arithmetic in pure SAT

In SAT we only have Boolean variables．
问题：Binary representation
How to Express a number by a sequence of Boolean values？
解：Binary representation
$a_{1} a_{2} \cdots a_{n}$
of number a ：

例
－ 01101 represents $8+4+1=13$
－ 00111 represents $4+2+1=7$

1．应用

1.3 案例实现｜Arithmetic in pure SAT

In SAT we only have Boolean variables．

问题：Binary representation

How to Express a number by a sequence of Boolean values？
解：Binary representation

$$
a_{1} a_{2} \cdots a_{n}
$$

of number a ：

$$
\begin{gathered}
a_{i} \in\{0,1\} \text { and } \\
a=a_{n}+2 a_{n-1}+4 a_{n-2}+\cdots=\sum_{i=1}^{n} a_{i} * 2^{n-i}
\end{gathered}
$$

例：
－ 01101 represents $8+4+1=13$
－ 00111 represents $4+2+1=7$

1．应用

1.3 案例实现｜Arithmetic in pure SAT

In SAT we only have Boolean variables．

问题：Binary representation

How to Express a number by a sequence of Boolean values？
解：Binary representation

$$
a_{1} a_{2} \cdots a_{n}
$$

of number a ：

$$
\begin{gathered}
a_{i} \in\{0,1\} \text { and } \\
a=a_{n}+2 a_{n-1}+4 a_{n-2}+\cdots=\sum_{i=1}^{n} a_{i} * 2^{n-i}
\end{gathered}
$$

例：
－ 01101 represents $8+4+1=13$
－ 00111 represents $4+2+1=7$

1．应用

1.3 案例实现｜Arithmetic in pure SAT

问题：Add

How to compute $d=a+b$ ？
－Basic rules：Take care of carry c
－ $0+0+0=0$ ，carry $=0$
－ $0+1+1=0$, carry $=1$
－ $0+0+1=1$ ，carry $=0$
－ $1+1+1=1$ ，carry $=1$

Start by rightmost carry $=0$ ，compute from right to left

indeed yielding 10100 representing 20

1．应用

1.3 案例实现｜Arithmetic in pure SAT

问题：Add

How to compute $d=a+b$ ？
－Basic rules：Take care of carry c
－ $0+0+0=0$ ，carry $=0$
－ $0+1+1=0$ ，carry $=1$
－ $0+0+1=1$ ，carry $=0$
－ $1+1+1=1$ ，carry $=1$

Start by rightmost carry $=0$ ，compute from right to left

indeed yielding 10100 representing 20

1．应用

1.3 案例实现｜Arithmetic in pure SAT

问题：Add

How to compute $d=a+b$ ？
－Basic rules：Take care of carry c
－ $0+0+0=0$ ，carry $=0$
－ $0+1+1=0$ ，carry $=1$
－ $0+0+1=1$ ，carry $=0$
－ $1+1+1=1$ ，carry＝ 1

Start by rightmost carry $=0$ ，compute from right to left

carries $c:$	0	1	1	1	1	0
number $a=13:$		0	1	1	0	1
number $b=7:$	0	0	1	1	1	
result d	1	0	1	0	0	

indeed yielding 10100 representing 20

1．应用

1.3 案例实现｜Arithmetic in pure SAT

问题：$d=a+b$ ？
Result d_{i} in a formula for $i=1, \ldots, n$ ：

$$
\begin{equation*}
d_{i} \leftrightarrow\left(a_{i} \leftrightarrow\left(b_{i} \leftrightarrow c_{i}\right)\right) \tag{1}
\end{equation*}
$$

correct，since $\left(a_{i} \leftrightarrow\left(b_{i} \leftrightarrow c_{i}\right)\right.$ yields true if and only if 1 or 3 among $\left\{a_{i}, b_{i}, c_{i}\right\}$ yield true

Carry c_{i-1} in a formula for $i=1, \ldots, n$ ：

$$
\begin{equation*}
c_{i-1} \leftrightarrow\left(\left(a_{i} \wedge b_{i}\right) \vee\left(a_{i} \wedge c_{i}\right) \vee\left(b_{i} \wedge c_{i}\right)\right) \tag{2}
\end{equation*}
$$

correct，since $\left(a_{i} \wedge b_{i}\right) \vee\left(a_{i} \wedge c_{i}\right) \vee\left(b_{i} \wedge c_{i}\right)$ yields true if and only at least 2 among $\left\{a_{i}, b_{i}, c_{i}\right\}$ yield true．

1．应用

1.3 案例实现｜Arithmetic in pure SAT

问题：$d=a+b$ ？
Result d_{i} in a formula for $i=1, \ldots, n$ ：

$$
\begin{equation*}
d_{i} \leftrightarrow\left(a_{i} \leftrightarrow\left(b_{i} \leftrightarrow c_{i}\right)\right) \tag{1}
\end{equation*}
$$

correct，since $\left(a_{i} \leftrightarrow\left(b_{i} \leftrightarrow c_{i}\right)\right.$ yields true if and only if 1 or 3 among $\left\{a_{i}, b_{i}, c_{i}\right\}$ yield true

Carry c_{i-1} in a formula for $i=1, \ldots, n$ ：

$$
\begin{equation*}
c_{i-1} \leftrightarrow\left(\left(a_{i} \wedge b_{i}\right) \vee\left(a_{i} \wedge c_{i}\right) \vee\left(b_{i} \wedge c_{i}\right)\right) \tag{2}
\end{equation*}
$$

correct，since $\left(a_{i} \wedge b_{i}\right) \vee\left(a_{i} \wedge c_{i}\right) \vee\left(b_{i} \wedge c_{i}\right)$ yields true if and only at least 2 among $\left\{a_{i}, b_{i}, c_{i}\right\}$ yield true．

1．应用

1.3 案例实现｜Arithmetic in pure SAT

问题：$d=a+b$ ？
Result d_{i} in a formula for $i=1, \ldots, n$ ：

$$
\begin{equation*}
d_{i} \leftrightarrow\left(a_{i} \leftrightarrow\left(b_{i} \leftrightarrow c_{i}\right)\right) \tag{1}
\end{equation*}
$$

correct，since $\left(a_{i} \leftrightarrow\left(b_{i} \leftrightarrow c_{i}\right)\right.$ yields true if and only if 1 or 3 among $\left\{a_{i}, b_{i}, c_{i}\right\}$ yield true

Carry c_{i-1} in a formula for $i=1, \ldots, n$ ：
correct，since $\left(a_{i} \wedge b_{i}\right) \vee\left(a_{i} \wedge c_{i}\right) \vee\left(b_{i} \wedge c_{i}\right)$ yields true if and only at least 2 among $\left\{a_{i}, b_{i}, c_{i}\right\}$ yield true．

1．应用

1.3 案例实现｜Arithmetic in pure SAT

问题：$d=a+b$ ？
Result d_{i} in a formula for $i=1, \ldots, n$ ：

$$
\begin{equation*}
d_{i} \leftrightarrow\left(a_{i} \leftrightarrow\left(b_{i} \leftrightarrow c_{i}\right)\right) \tag{1}
\end{equation*}
$$

correct，since $\left(a_{i} \leftrightarrow\left(b_{i} \leftrightarrow c_{i}\right)\right.$ yields true if and only if 1 or 3 among $\left\{a_{i}, b_{i}, c_{i}\right\}$ yield true

Carry c_{i-1} in a formula for $i=1, \ldots, n$ ：

$$
\begin{equation*}
c_{i-1} \leftrightarrow\left(\left(a_{i} \wedge b_{i}\right) \vee\left(a_{i} \wedge c_{i}\right) \vee\left(b_{i} \wedge c_{i}\right)\right) \tag{2}
\end{equation*}
$$

correct，since $\left(a_{i} \wedge b_{i}\right) \vee\left(a_{i} \wedge c_{i}\right) \vee\left(b_{i} \wedge c_{i}\right)$ yields true if and only at least 2 among $\left\{a_{i}, b_{i}, c_{i}\right\}$ yield true．

1．应用

1.3 案例实现｜Arithmetic in pure SAT

问题：$d=a+b$ ？
Result d_{i} in a formula for $i=1, \ldots, n$ ：

$$
\begin{equation*}
d_{i} \leftrightarrow\left(a_{i} \leftrightarrow\left(b_{i} \leftrightarrow c_{i}\right)\right) \tag{1}
\end{equation*}
$$

correct，since $\left(a_{i} \leftrightarrow\left(b_{i} \leftrightarrow c_{i}\right)\right.$ yields true if and only if 1 or 3 among $\left\{a_{i}, b_{i}, c_{i}\right\}$ yield true

Carry c_{i-1} in a formula for $i=1, \ldots, n$ ：

$$
\begin{equation*}
c_{i-1} \leftrightarrow\left(\left(a_{i} \wedge b_{i}\right) \vee\left(a_{i} \wedge c_{i}\right) \vee\left(b_{i} \wedge c_{i}\right)\right) \tag{2}
\end{equation*}
$$

correct，since $\left(a_{i} \wedge b_{i}\right) \vee\left(a_{i} \wedge c_{i}\right) \vee\left(b_{i} \wedge c_{i}\right)$ yields true if and only at least 2 among $\left\{a_{i}, b_{i}, c_{i}\right\}$ yield true．

1．应用

1.3 案例实现｜Arithmetic in pure SAT

To express that we start by rightmost carry $=0$ ，we state

$$
\begin{equation*}
\neg c_{n} \tag{3}
\end{equation*}
$$

To express that the result should fit in n bits，at the end we should not have a carry left，and we state
\qquad
Let ϕ be the conjunction of all these requirements；this expresses the correctness of the corresponding binary addition

To compute $a+b$ for $a=13, b=7$ ，we apply a SAT solver to

The resulting satisfying assignment will contain $d_{1}, \neg d_{2}, d_{3}, \neg d_{4}, \neg d_{5}$ representing the result $d=20$

1．应用

1.3 案例实现｜Arithmetic in pure SAT

To express that we start by rightmost carry $=0$ ，we state

$$
\begin{equation*}
\neg C_{n} \tag{3}
\end{equation*}
$$

To express that the result should fit in n bits，at the end we should not have a carry left，and we state

$$
\neg c_{0}
$$

Let ϕ be the conjunction of all these requirements；this expresses the correctness of the corresponding binary addition
To compute $a+b$ for $a=13, b=7$ ，we apply a SAT solver to

The resulting satisfying assignment will contain $d_{1}, \neg d_{2}, d_{3}, \neg d_{4}, \neg d_{5}$ representing the result $d=20$

1．应用

1.3 案例实现｜Arithmetic in pure SAT

To express that we start by rightmost carry $=0$ ，we state

$$
\begin{equation*}
\neg C_{n} \tag{3}
\end{equation*}
$$

To express that the result should fit in n bits，at the end we should not have a carry left，and we state

$$
\begin{equation*}
\neg c_{0} \tag{4}
\end{equation*}
$$

Let ϕ be the conjunction of all these requirements；this expresses the correctness of the corresponding binary addition

To compute $a+b$ for $a=13, b=7$ ，we apply a SAT solver to

The resulting satisfying assignment will contain $d_{1}, \neg d_{2}, d_{3}, \neg d_{4}, \neg d_{5}$
representing the result $d=20$

1．应用

1.3 案例实现｜Arithmetic in pure SAT

To express that we start by rightmost carry $=0$ ，we state

$$
\begin{equation*}
\neg C_{n} \tag{3}
\end{equation*}
$$

To express that the result should fit in n bits，at the end we should not have a carry left，and we state

$$
\begin{equation*}
\neg c_{0} \tag{4}
\end{equation*}
$$

Let ϕ be the conjunction of all these requirements；this expresses the correctness of the corresponding binary addition

To compute $a+b$ for $a=13, b=7$ ，we apply a SAT solver to

$$
\phi \wedge \underbrace{\neg a_{1} \wedge a_{2} \wedge a_{3} \wedge \neg a_{4} \wedge a_{5}}_{a=13=01101} \wedge \underbrace{\neg b_{1} \wedge \neg b_{2} \wedge b_{3} \wedge b_{4} \wedge b_{5}}_{b=7=00111}
$$

The resulting satisfying assignment will contain $d_{1}, \neg d_{2}, d_{3}, \neg d_{4}, \neg d_{5}$
representing the result $d=20$

1．应用

1.3 案例实现｜Arithmetic in pure SAT

To express that we start by rightmost carry $=0$ ，we state

$$
\begin{equation*}
\neg c_{n} \tag{3}
\end{equation*}
$$

To express that the result should fit in n bits，at the end we should not have a carry left，and we state

$$
\begin{equation*}
\neg c_{0} \tag{4}
\end{equation*}
$$

Let ϕ be the conjunction of all these requirements；this expresses the correctness of the corresponding binary addition

To compute $a+b$ for $a=13, b=7$ ，we apply a SAT solver to

$$
\phi \wedge \underbrace{\neg a_{1} \wedge a_{2} \wedge a_{3} \wedge \neg a_{4} \wedge a_{5}}_{a=13=01101} \wedge \underbrace{\neg b_{1} \wedge \neg b_{2} \wedge b_{3} \wedge b_{4} \wedge b_{5}}_{b=7=00111}
$$

The resulting satisfying assignment will contain $d_{1}, \neg d_{2}, d_{3}, \neg d_{4}, \neg d_{5}$ representing the result $d=20$

1．应用
 1.3 案例实现｜Arithmetic in pure SAT

Concluding，

In this way computing $d=a+b$ can be done by SAT solving for any binary numbers a, b ．

By adding given values for a_{i}, d_{i} to the formula ϕ expressing $d=a+b$ ， and reading b_{i} from resulting satisfying assignment，we can compute $b=d-a$ by exploiting the same formula．

1．应用

1.3 案例实现｜Rectangle fitting

问题：Rectangle fitting

Given a big rectangle and a number of small rectangles，can you fit the small rectangles in the big one such that no two overlap．

How to specify this problem？
－Number rectangles from 1 to n
－for $i=1 \ldots n$ introduce variables：
－w_{i} is the width of rectangle ？
－h_{i} is the height of rectangle i
－x_{i} is the x－coordinate of the left
lower corner of rectangle i
－y_{i} is the y－coordinate of the left
lower corner of rectangle i

1．应用

1.3 案例实现｜Rectangle fitting

问题：Rectangle fitting

Given a big rectangle and a number of small rectangles，can you fit the small rectangles in the big one such that no two overlap．

How to specify this problem？
－Number rectangles from 1 to n
－for $i=1 \ldots n$ introduce variables：
－w_{i} is the width of rectangle i
－h_{i} is the height of rectangle i
－x_{i} is the x－coordinate of the left
lower corner of rectangle i
－y_{i} is the y－coordinate of the left
lower corner of rectangle i

1．应用

1.3 案例实现｜Rectangle fitting

问题：Rectangle fitting

Given a big rectangle and a number of small rectangles，can you fit the small rectangles in the big one such that no two overlap．

How to specify this problem？
－Number rectangles from 1 to n
－for $i=1 \ldots n$ introduce variables：
－w_{i} is the width of rectangle i
－h_{i} is the height of rectangle i
－x_{i} is the x－coordinate of the left
lower corner of rectangle i
－y_{i} is the y－coordinate of the left
lower corner of rectangle i

1．应用

1.3 案例实现｜Rectangle fitting

问题：Rectangle fitting

Given a big rectangle and a number of small rectangles，can you fit the small rectangles in the big one such that no two overlap．

How to specify this problem？
－Number rectangles from 1 to n
－for $i=1 \ldots n$ introduce variables：
－w_{i} is the width of rectangle i
－h_{i} is the height of rectangle i
－x_{i} is the x－coordinate of the left lower corner of rectangle i
－y_{i} is the y－coordinate of the left lower corner of rectangle i

1．应用

1.3 案例实现｜Rectangle fitting

How to specify this problem？
－Configuration of small rectangles：
－例子：First rectangle has width 4 and height 6：
－$\left(w_{1}=4 \wedge h_{1}=6\right) \vee\left(w_{1}=6 \wedge h_{1}=4\right)$
－Configuration of the big rectangle
－$(0,0)=$ lower left corner of big rectangle．
－$W=$ width of big rectangle．
－$H=$ height of big rectangle．
－Requirements：

$$
\begin{aligned}
x_{i} & \geq 0 \wedge x_{i}+w_{i} \leq W \\
y_{i} & \geq 0 \wedge y_{i}+h_{i} \leq H
\end{aligned}
$$

for all $i=1, \ldots, n$

1．应用

1.3 案例实现｜Rectangle fitting

How to specify this problem？
－Configuration of small rectangles：
－例子：First rectangle has width 4 and height 6 ：
－$\left(w_{1}=4 \wedge h_{1}=6\right) \vee\left(w_{1}=6 \wedge h_{1}=4\right)$
－Configuration of the big rectangle
－$(0,0)=$ lower left corner of big rectangle．
－$W=$ width of big rectangle．
－$I I=$ height of big rectangle．
－Requirements：
for all $i=1, \ldots, n$

1．应用

1.3 案例实现｜Rectangle fitting

How to specify this problem？
－Configuration of small rectangles：
－例子：First rectangle has width 4 and height 6：
－$\left(w_{1}=4 \wedge h_{1}=6\right) \vee\left(w_{1}=6 \wedge h_{1}=4\right)$
－Configuration of the big rectangle
－$(0,0)=$ lower left corner of big rectangle．
－$W=$ width of big rectangle．
－$H=$ height of big rectangle．
－Requirements：
for all $i=1, \ldots, n$

1．应用

1.3 案例实现｜Rectangle fitting

How to specify this problem？
－Configuration of small rectangles：
－例子：First rectangle has width 4 and height 6：
－$\left(w_{1}=4 \wedge h_{1}=6\right) \vee\left(w_{1}=6 \wedge h_{1}=4\right)$
－Configuration of the big rectangle
－$(0,0)=$ lower left corner of big rectangle．
－$W=$ width of big rectangle．
－$H=$ height of big rectangle．
－Requirements：

$$
\begin{aligned}
x_{i} & \geq 0 \wedge x_{i}+w_{i} \leq W \\
y_{i} & \geq 0 \wedge y_{i}+h_{i} \leq H
\end{aligned}
$$

for all $i=1, \ldots, n$

1．应用

1.3 案例实现｜Rectangle fitting

Rectangles i and j overlap if
－$x_{j}<x_{i}+w_{i}$
－and $x_{i}<x_{j}+w_{j}$
－and $y_{j}<y_{i}+h_{i}$
－and $y_{i}<y_{j}+h_{j}$

So for all $i, j=1, \ldots, n, i<j$ ，we should add the negation of this

 overlappingness：$\neg\left(x_{j}<x_{i}+w_{i} \wedge x_{i}<x_{j}+w_{j} \wedge y_{j}<y_{i}+h_{i} \wedge y_{i}<y_{j}+h_{j}\right)$

or，equivalently

1．应用

1.3 案例实现｜Rectangle fitting

Rectangles i and j overlap if
－$x_{j}<x_{i}+w_{i}$
－and $x_{i}<x_{j}+w_{j}$
－and $y_{j}<y_{i}+h_{i}$
－and $y_{i}<y_{j}+h_{j}$
So for all $i, j=1, \ldots, n, i<j$ ，we should add the negation of this overlappingness：

$$
\neg\left(x_{j}<x_{i}+w_{i} \wedge x_{i}<x_{j}+w_{j} \wedge y_{j}<y_{i}+h_{i} \wedge y_{i}<y_{j}+h_{j}\right)
$$

or，equivalently

1．应用

1.3 案例实现｜Rectangle fitting

Rectangles i and j overlap if
－$x_{j}<x_{i}+w_{i}$
－and $x_{i}<x_{j}+w_{j}$
－and $y_{j}<y_{i}+h_{i}$
－and $y_{i}<y_{j}+h_{j}$
So for all $i, j=1, \ldots, n, i<j$ ，we should add the negation of this overlappingness：

$$
\neg\left(x_{j}<x_{i}+w_{i} \wedge x_{i}<x_{j}+w_{j} \wedge y_{j}<y_{i}+h_{i} \wedge y_{i}<y_{j}+h_{j}\right)
$$

or，equivalently

$$
x_{j} \geq x_{i}+w_{i} \vee x_{i} \geq x_{j}+w_{j} \vee y_{j} \geq y_{i}+h_{i} \vee y_{i} \geq y_{j}+h_{j}
$$

1．应用

1.3 案例实现｜Rectangle fitting

The following formula is satisfiable iff the fitting problem has a solution

$$
\begin{aligned}
& \bigwedge_{i=1}^{n}\left(\left(w_{i}=W_{i} \wedge h_{i}=H_{i}\right) \vee\left(w_{i}=H_{i} \wedge h_{i}=W_{i}\right)\right) \\
\wedge & \bigwedge_{i=1}^{n}\left(x_{i} \geq 0 \wedge x_{i}+w_{i} \leq W \wedge y_{i} \geq 0 \wedge y_{i}+h_{i} \leq H\right)
\end{aligned}
$$

$\wedge \bigwedge_{1<i<j \leq n}\left(x_{j} \geq x_{i}+w_{i} \vee x_{i} \geq x_{j}+w_{j} \vee y_{j} \geq y_{i}+h_{i} \vee y_{i} \geq y_{j}+h_{j}\right)$ $1 \leq i<j \leq n$

If the formula is satisfiable，then the SMT solver yields a satisfying assignment，that is，the corresponding values of $x_{i}, y_{i}, w_{i}, h_{i}$

Applying a standard SMT solver like Z3，Yices，or CVC4：feasible for rectangle fitting problems up to 20 or 25 rectangles

1．应用

1.3 案例实现｜Rectangle fitting

The following formula is satisfiable iff the fitting problem has a solution

$$
\begin{aligned}
& \bigwedge_{i=1}^{n}\left(\left(w_{i}=W_{i} \wedge h_{i}=H_{i}\right) \vee\left(w_{i}=H_{i} \wedge h_{i}=W_{i}\right)\right) \\
\wedge & \bigwedge_{i=1}^{n}\left(x_{i} \geq 0 \wedge x_{i}+w_{i} \leq W \wedge y_{i} \geq 0 \wedge y_{i}+h_{i} \leq H\right)
\end{aligned}
$$

$$
\wedge \bigwedge_{1 \leq i<j \leq n}\left(x_{j} \geq x_{i}+w_{i} \vee x_{i} \geq x_{j}+w_{j} \vee y_{j} \geq y_{i}+h_{i} \vee y_{i} \geq y_{j}+h_{j}\right)
$$

If the formula is satisfiable，then the SMT solver yields a satisfying assignment，that is，the corresponding values of $x_{i}, y_{i}, w_{i}, h_{i}$

Applying a standard SMT solver like Z3，Yices，or CVC4：feasible for rectangle fitting problems up to 20 or 25 rectangles

1．应用

1.3 案例实现｜Rectangle fitting

The following formula is satisfiable iff the fitting problem has a solution

$$
\begin{aligned}
& \bigwedge_{i=1}^{n}\left(\left(w_{i}=W_{i} \wedge h_{i}=H_{i}\right) \vee\left(w_{i}=H_{i} \wedge h_{i}=W_{i}\right)\right) \\
\wedge & \bigwedge_{i=1}^{n}\left(x_{i} \geq 0 \wedge x_{i}+w_{i} \leq W \wedge y_{i} \geq 0 \wedge y_{i}+h_{i} \leq H\right)
\end{aligned}
$$

$$
\wedge \bigwedge_{1 \leq i<j \leq n}\left(x_{j} \geq x_{i}+w_{i} \vee x_{i} \geq x_{j}+w_{j} \vee y_{j} \geq y_{i}+h_{i} \vee y_{i} \geq y_{j}+h_{j}\right)
$$

If the formula is satisfiable，then the SMT solver yields a satisfying assignment，that is，the corresponding values of $x_{i}, y_{i}, w_{i}, h_{i}$

Applying a standard SMT solver like Z3，Yices，or CVC4：feasible for rectangle fitting problems up to 20 or 25 rectangles

1．应用
 1.3 案例实现｜Suduku

问题：Sudoku（数独游戏）

Fill the blank cells in such a way that
－every row，and
－every column，and
－every fat 3 block
contains the numbers 1 to 9 ，all occurring exactly once

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6	5			
	4		9	7				

最强大脑？：The puzzle may by very hard，and backtracking and／or advanced solving techniques are required
For SAT／SMT it is peanuts：just specify the problem．
How？

1．应用
 1.3 案例实现／Suduku

问题：Sudoku（数独游戏）

Fill the blank cells in such a way that
－every row，and
－every column，and
－every fat 3 block
contains the numbers 1 to 9 ，all occurring exactly once

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6	5			
	4		9	7				

最强大脑 ？：The puzzle may by very hard，and backtracking and／or advanced solving techniques are required．
For SAT／SMT it is peanuts：just specify the problem
How？

1．应用

1.3 案例实现 \｜Suduku

问题：Sudoku（数独游戏）

Fill the blank cells in such a way that
－every row，and
－every column，and
－every fat 3 block
contains the numbers 1 to 9 ，all occurring exactly once

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6	5			
	4		9	7				

最强大脑 ？：The puzzle may by very hard，and backtracking and／or advanced solving techniques are required． For SAT／SMT it is peanuts：just specify the problem．
How？

1．应用

1.3 案例实现 \｜Suduku

问题：Sudoku（数独游戏）

Fill the blank cells in such a way that
－every row，and
－every column，and
－every fat 3 block
contains the numbers 1 to 9 ，all occurring exactly once

				9	4		3	
			5	1				7
	8	9					4	
						2		8
	6		2		1		5	
1		2						
	7					5	2	
9				6	5			
	4		9	7				

最强大脑 ？：The puzzle may by very hard，and backtracking and／or advanced solving techniques are required． For SAT／SMT it is peanuts：just specify the problem． How？

1．应用

1.3 案例实现｜Suduku

Several approaches，all working well
－Pure SAT：for every cell and every number 1 to 9 ，introduce boolean variable describing whether that number is on that position，so $9^{3}=729$ boolean variables．
－SMT：for every cell define an integer variable for the corresponding number．

We claborate the latter．

问题：How to specify that every row（and column，and 3×3 block） contains the numbers 1 to 9 ，all occurring once？

1．应用

1.3 案例实现 \｜Suduku

Several approaches，all working well
－Pure SAT：for every cell and every number 1 to 9 ，introduce boolean variable describing whether that number is on that position，so $9^{3}=729$ boolean variables．
－SMT：for every cell define an integer variable for the corresponding number．

We elaborate the latter

问题：How to specify that every row（and column，and 3×3 block） contains the numbers 1 to 9 ，all occurring once？

1．应用
 1.3 案例实现｜Suduku

Several approaches，all working well
－Pure SAT：for every cell and every number 1 to 9 ，introduce boolean variable describing whether that number is on that position，so $9^{3}=729$ boolean variables．
－SMT：for every cell define an integer variable for the corresponding number．

We elaborate the latter
 问题：How to specify that every row（and column，and 3×3 block） contains the numbers 1 to 9 ，all occurring once？

1．应用
 1.3 案例实现｜Suduku

Several approaches，all working well
－Pure SAT：for every cell and every number 1 to 9 ，introduce boolean variable describing whether that number is on that position，so $9^{3}=729$ boolean variables．
－SMT：for every cell define an integer variable for the corresponding number．

We elaborate the latter．
问题：How to specify that every row（and column，and 3×3 block） contains the numbers 1 to 9 ，all occurring once？

1．应用
 1.3 案例实现｜Suduku

Several approaches，all working well
－Pure SAT：for every cell and every number 1 to 9 ，introduce boolean variable describing whether that number is on that position，so $9^{3}=729$ boolean variables．
－SMT：for every cell define an integer variable for the corresponding number．

We elaborate the latter．
问题：How to specify that every row（and column，and 3×3 block） contains the numbers 1 to 9 ，all occurring once？

1．应用
 1.3 案例实现 \｜Suduku

Define 9×9 matrix of integer variables．
－Each cell contains a value in $1, \ldots, 9$

$$
\begin{aligned}
& \mathrm{X}=\left[\mathrm{[} \operatorname{Int}\left(" \mathrm{x} _\% \mathrm{~s} _\% \mathrm{~s} \text { " \% (i+1, } \mathrm{j}+1\right) \text {) for } \mathrm{j}\right. \text { in range (9)] } \\
& \text { for } i \text { in range (9)] } \\
& \text { cells_c = [And(1 <= X[i][j], X[i][j] <= 9) } \\
& \text { for } i \text { in range (9) for } j \text { in range (9)] }
\end{aligned}
$$

Each row／column／fat 3 block contains a number at most once．

1．应用

1.3 案例实现 \｜Suduku

Define 9×9 matrix of integer variables．
－Each cell contains a value in $1, \ldots, 9$

$$
\begin{aligned}
& \text { X = [[Int("x_\%s_\%s" \% (i+1, j+1)) for j in range(9)] } \\
& \text { for } i \text { in range (9)] } \\
& \text { cells_c = [And(1 <= X[i][j], X[i][j] <= 9) } \\
& \text { for } i \text { in range (9) for } j \text { in range (9)] }
\end{aligned}
$$

Each row／column／fat 3 block contains a number at most once．

```
rows_c=[ Distinct(X[i]) for i in range(9) ]
cols_c=[ Distinct([ X[i][j] for i in range(9) ])
    for j in range(9) ]
sq_c =[ Distinct([ X[3*i0 + i][3*j0 + j]
    for i in range(3) for j in range(3) ])
    for i0 in range(3) for j0 in range(3) ]
```


1．应用

1.3 案例实现｜Suduku

$$
\begin{aligned}
\text { sudoku_c }= & c e l l s_{-} c+\text { rows_c }+\operatorname{col} s_{-} c+s q_{-} c \\
\text { instance }= & ((\theta, \theta, \theta, \theta, 9,4, \theta, 3, \theta) \\
& (\theta, \theta, \theta, 5,1, \theta, \theta, \theta, 7) \\
& (\theta, 8,9, \theta, \theta, \theta, \theta, 4, \theta) \\
& (\theta, \theta, \theta, \theta, \theta, \theta, 2, \theta, 8) \\
& (\theta, 6, \theta, 2, \theta, 1, \theta, 5, \theta), \\
& (1, \theta, 2, \theta, \theta, \theta, \theta, \theta, \theta) \\
& (\theta, 7, \theta, \theta, \theta, \theta, 5,2, \theta) \\
& (9, \theta, \theta, \theta, 6,5, \theta, \theta, \theta) \\
& (\theta, 4, \theta, 9,7, \theta, \theta, \theta, \theta))
\end{aligned}
$$

instance＿c $=$［ If（instance［i］［j］＝＝ \mathbb{Q} ，
True，

$$
\mathrm{X}[\mathrm{i}][\mathrm{j}]==\text { instance[i][j]) }
$$

for i in range（9）for j in range（9）］

1．应用

1.3 案例实现｜Suduku

$\mathrm{s}=$ Solver（）
s．add（sudoku＿c＋instance＿c）
if s．check（）＝＝sat：

$$
m=s . \operatorname{model}()
$$

$$
\mathrm{r}=[\quad[\mathrm{m} . \operatorname{evaluate}(\mathrm{X}[\mathrm{i}][\mathrm{j}])
$$

for j in range（9）］
for i in range（9）］ print＿matrix（r）
else：
print("failed to solve")

运行结果：

\＄python3 z3－5－sudoku．py
$[[7,1,5,8,9,4,6,3,2]$ ，
$[2,3,4,5,1,6,8,9,7]$ ， $[6,8,9,7,2,3,1,4,5]$ ， $[4,9,3,6,5,7,2,1,8]$ ， $[8,6,7,2,3,1,9,5,4]$ ， $[1,5,2,4,8,9,7,6,3]$ ， $[3,7,6,1,4,8,5,2,9]$ ， $[9,2,8,3,6,5,4,7,1]$ ， $[5,4,1,9,7,2,3,8,6]]$
－Solutions of sudoku puzzles are quickly found by just specifying the rules of the game in SMT format，and apply an SMT solver． For several other types of puzzles（kakuro，killer sudoku，binario，．．．） the SAT／SMT approach to solve or generate them works well too．

1．应用

1.3 案例实现｜Suduku

```
s = Solver()
s.add(sudoku_c + instance_c)
if s.check() == sat:
    m=s.model()
    r=[ [m.evaluate(X[i][j])
            for j in range(9)]
        for i in range(9) ]
print_matrix(r)
```

else:

```
print("failed to solve")
```


运行结果：

\＄python3 z3－5－sudoku．py ［［7，1，5，8，9，4，6，3，2］， $[2,3,4,5,1,6,8,9,7]$ ， $[6,8,9,7,2,3,1,4,5]$ ， $[4,9,3,6,5,7,2,1,8]$ ， $[8,6,7,2,3,1,9,5,4]$ ， $[1,5,2,4,8,9,7,6,3]$ ， $[3,7,6,1,4,8,5,2,9]$ ， $[9,2,8,3,6,5,4,7,1]$ ， $[5,4,1,9,7,2,3,8,6]]$
－Solutions of sudoku puzzles are quickly found by just specifying the rules of the game in SMT format，and apply an SMT solver．

For several other types of puzzles（kakuro，killer sudoku，binario， the SAT／SMT approach to solve or generate them works well too

1．应用

1.3 案例实现｜Suduku

```
s = Solver()
s.add(sudoku_c + instance_c)
if s.check() == sat:
    m=s.model()
    r=[ [m.evaluate(X[i][j])
            for j in range(9)]
        for i in range(9) ]
print_matrix(r)
```

else:
print("failed to solve")

运行结果：

\＄python3 z3－5－sudoku．py $[[7,1,5,8,9,4,6,3,2]$ ， $[2,3,4,5,1,6,8,9,7]$ ， $[6,8,9,7,2,3,1,4,5]$ ， $[4,9,3,6,5,7,2,1,8]$ ， $[8,6,7,2,3,1,9,5,4]$ ， $[1,5,2,4,8,9,7,6,3]$ ， $[3,7,6,1,4,8,5,2,9]$ ， $[9,2,8,3,6,5,4,7,1]$ ， $[5,4,1,9,7,2,3,8,6]]$
－Solutions of sudoku puzzles are quickly found by just specifying the rules of the game in SMT format，and apply an SMT solver．
－For several other types of puzzles（kakuro，killer sudoku，binario，．．．） the SAT／SMT approach to solve or generate them works well too．

1．应用

1.4 其他应用：Symbolic Execution

SMT 在软件测试中的一个重要应用：符号执行（Symbolic Execution）

1．应用

1.4 其他应用：Symbolic Execution

SMT 在软件测试中的一个重要应用：符号执行（Symbolic Execution）
－文献：Symbolic Execution for Software Testing：Three Decades Later
问题：How to explore different
program paths and for each path to

－generate a set of concrete input values exercising that path
－check for the presence of various kinds of errors
int main（）

$$
\begin{aligned}
& x=\text { sym_input }() \\
& y=\text { sym_input }() \\
& \text { testme }(x, y) \\
& \text { return } 0 ;
\end{aligned}
$$

1．应用

1.4 其他应用：Symbolic Execution

SMT 在软件测试中的一个重要应用：符号执行（Symbolic Execution）
－文献：Symbolic Execution for Software Testing：Three Decades Later问题：How to explore different program paths and for each path to

void testme（int x ，int y ）$\{$

1．应用

1.4 其他应用：Symbolic Execution

SMT 在软件测试中的一个重要应用：符号执行（Symbolic Execution）
－文献：Symbolic Execution for Software Testing：Three Decades Later问题：How to explore different program paths and for each path to
－generate a set of concrete input values exercising that path

1．应用

1.4 其他应用：Symbolic Execution

SMT 在软件测试中的一个重要应用：符号执行（Symbolic Execution）
－文献：Symbolic Execution for Software Testing：Three Decades Later问题：How to explore different program paths and for each path to
－generate a set of concrete input values exercising that path
－check for the presence of various kinds of errors
int main（）

$$
\begin{aligned}
& \mathrm{x}=\text { sym_input }() ; \\
& \mathrm{y}=\text { sym_input }() ; \\
& \text { testme }(\mathrm{x}, \mathrm{y}) ; \\
& \text { return } 0 ;
\end{aligned}
$$

void testme（int x ，int $y)\{$

1．应用

1.4 其他应用：Symbolic Execution

SMT 在软件测试中的一个重要应用：符号执行（Symbolic Execution）
－文献：Symbolic Execution for Software Testing：Three Decades Later问题：How to explore different program paths and for each path to
－generate a set of concrete input values exercising that path
－check for the presence of various kinds of errors
int main（）\｛
$\mathrm{x}=$ sym＿input（）；
$\mathrm{y}=$ sym＿input（）；
testme（x，y）；
return 0 ；

1．应用

1.4 其他应用：Symbolic Execution

SMT 在软件测试中的一个重要应用：符号执行（Symbolic Execution）
－文献：Symbolic Execution for Software Testing：Three Decades Later问题：How to explore different program paths and for each path to

$$
\begin{aligned}
& \text { int twice }(\text { int } v)\{ \\
& \text { return } 2 * \mathrm{v} \text {; }
\end{aligned}
$$

－generate a set of concrete input values exercising that path
－check for the presence of various kinds of errors

```
void testme (int x, int y) {
z = twice (y);
if (z == x) {
if (x > y+10)
ERROR;
```

$\mathrm{x}=\operatorname{sym}$ _input ()$;$
$\mathrm{y}=\operatorname{sym}$ input ()$;$
testme $(\mathrm{x}, \mathrm{y}) ;$
return $0 ;$
$\mathrm{x}=\operatorname{sym}$ _input ()$;$
$\mathrm{y}=\operatorname{sym}$ input ()$;$
testme $(\mathrm{x}, \mathrm{y}) ;$
return $0 ;$
$\mathrm{x}=\operatorname{sym}$ _input ()$;$
$\mathrm{y}=\operatorname{sym}$ input ()$;$
testme $(\mathrm{x}, \mathrm{y}) ;$
return $0 ;$
\}
int main() \{
$\mathrm{x}=\operatorname{sym}$ _input ()$;$
$\mathrm{y}=\operatorname{sym}$ input ()$;$
testme $(\mathrm{x}, \mathrm{y}) ;$
return $0 ;$

1．应用

1.4 其他应用：Symbolic Execution
int twice $($ int $v)\{$
return $2 * \mathrm{v}$ ；
\}
void testme（int x ，int y ）\｛
$\mathrm{z}=$ twice（ y ）；
if（ $\mathrm{z}=\mathrm{x}$ ）\｛
if $(x>y+10)$
ERROR；
\}
\}

问题：How to reach code ERROR？ SMT problem：Solve x, y satisfying

1．应用

1.4 其他应用：Symbolic Execution
int twice $($ int $v)\{$
return $2 * \mathrm{v}$ ；
\}
void testme（int x ，int y ）\｛
$\mathrm{z}=$ twice（ y ）；
if（ $\mathrm{z}=\mathrm{x}$ ）\｛
if $(x>y+10)$
ERROR；
\}
\}

问题：How to reach code ERROR？
SMT problem：Solve x, y satisfying

1．应用

1.4 其他应用：Symbolic Execution

int twice $($ int $v)\{$
return $2 * \mathrm{v}$ ；
\}
void testme（int x ，int y ）\｛

$$
\mathrm{z}=\text { twice }(\mathrm{y}) ;
$$

$$
\text { if }(z=x)\{
$$

$$
\text { if }(x>y+10)
$$

ERROR；
\}
\}

问题：How to reach code ERROR？
SMT problem：Solve x, y satisfying

$$
x=2 y \wedge x>y+10
$$

作业

实验小作业 1：使用 pure SAT 求解 N－Queen 问题，并对比 PPT 中 SMT的实现的效率。要求：

- 代码：使用 SMT 实现代码，和 PureSAT 实现代码
- 文档：写出实验记录，要求对比 N 取值不同时，两者的效率实验小作业 2 （二选一）：使用 pure SAT 求解 $d=a+b$ 或 $d=a-b$ ，其中，a, b为正整数。要求：
- 加法和减法问题仅需做一题，减法的实现分数更高
- 代码
- 文档：简要写出编码思路，代码使用文档和实验结果

实验大作业（可选）：分别用 Z3 和自己设计的算法求解 rectangle fitting。要求：
－代码：（1）使用 Z3 实现 PPT 中的设计（2）自己设计算法（使用 C， C ++ 语言等）
－文档：（1）解释自己的算法思路（2）设计测试集，对比两个方法的效率

本章大作业参考论文

大作业可参考论文（但不限于下列论文）：
－应用
－Notary：A device for secure transaction approval
－工具实现
－Z3：An Efficient SMT Solver
－Deep Cooperation of CDCL and Local Search for SAT

