
形式化方法导引
第 4 章 逻辑问题求解

4.2 理论 - (1) SAT 求解

黄文超
https://faculty.ustc.edu.cn/huangwenchao

−→ 教学课程 −→ 形式化方法导引

https://faculty.ustc.edu.cn/huangwenchao

课前回顾及本章内容

第 4 章: 如何利用 rules 验证 M ⊨ ϕ?
4.1 应用

将 M ⊨ ϕ 验证问题转化为 validity 问题
将 validity 问题转化为 satifiability 问题
使用 SAT/SMT 工具 Z3 直接求解 satifiability 问题

衍生应用: 软件测试与 Symbolic Execution
4.2 本章内容 (理论)

求解 SAT 问题的经典方法?
求解 SMT 问题的经典方法?
其它 SAT 问题的经典方法?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 2 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | 问题分析

回顾: 定义: Validity
We call ϕ valid, if ⊨ ϕ holds.

回顾: 定义: SAT 问题
SAT is the decision problem: given a propositional formula, is it satisfiable?

定理:
Let ϕ be a formula of propositional logic. Then ϕ is satisfiable iff ¬ϕ is
not valid.
In other words, ϕ is valid iff ¬ϕ is not satisfiable.

总结: Validity 问题可以转化为 SAT 问题
问题: 如何求解 SAT 问题?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 3 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | 问题分析

问题: 如何求解 SAT 问题?

回顾: 定义: Propositional Logic in BNF

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)

where p stands for any atomic proposition and each occurrence of ϕ to the
right of ::= stands for any already constructed formula.

Provable equivalence:

1.2 Natural deduction 29

The proof rule ¬i is very similar to →i and has the same beneficial effect
on your proof attempt. It gives you an extra premise to work with and
simplifies your conclusion.

At any stage of a proof, several rules are likely to be applicable. Before
applying any of them, list the applicable ones and think about which one
is likely to improve the situation for your proof. You’ll find that →i and ¬i
most often improve it, so always use them whenever you can. There is no
easy recipe for when to use the other rules; often you have to make judicious
choices.

1.2.4 Provable equivalence

Definition 1.25 Let φ and ψ be formulas of propositional logic. We say
that φ and ψ are provably equivalent iff (we write ‘iff’ for ‘if, and only
if’ in the sequel) the sequents φ " ψ and ψ " φ are valid; that is, there
is a proof of ψ from φ and another one going the other way around.
As seen earlier, we denote that φ and ψ are provably equivalent by
φ #" ψ.

Note that, by Remark 1.12, we could just as well have defined φ #" ψ to
mean that the sequent " (φ→ ψ) ∧ (ψ → φ) is valid; it defines the same
concept. Examples of provably equivalent formulas are

¬(p ∧ q) #" ¬q ∨ ¬p ¬(p ∨ q) #" ¬q ∧ ¬p
p → q #" ¬q → ¬p p → q #" ¬p ∨ q
p ∧ q → p #" r ∨ ¬r p ∧ q → r #" p → (q → r).

The reader should prove all of these six equivalences in natural
deduction.

1.2.5 An aside: proof by contradiction

Sometimes we can’t prove something directly in the sense of taking apart
given assumptions and reasoning with their constituents in a constructive
way. Indeed, the proof system of natural deduction, summarised in Fig-
ure 1.2, specifically allows for indirect proofs that lack a constructive quality:
for example, the rule

¬φ
...
⊥

φ
PBC

回顾: rules 太多: 推演过于复杂, 符号也有冗余
减少冗余的符号，设计自动推演算法

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 4 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | 问题分析

问题: 如何减少冗余的符号，设计自动推演算法？
先给部分结果：

CNF (conjunctive normal form) 合取范式
取如下 (一元、二元) 符号

{∧, ∨, ¬}
Horn clauses 霍恩子句

取如下 (一元、二元) 符号
{∧, →}

子问题: 使用 CNF 进行 SAT 求解
如何设计 CNF 的 rules?
如何使用 rule 设计算法?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 5 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | CNF (conjunctive normal form) 合取范式

定义: Literal
A literal L is either an atom p or the negation of an atom ¬p.

定义: Conjunctive normal form (CNF)
A formula C is in conjunctive normal form (CNF) if it is a conjunction of
clauses, where each clause D is a disjunction of literals:

L ::= p | ¬p
D ::= L | L ∨D

C ::= D | D ∧ C

例：Formulas in CNF
(¬q ∨ p ∨ r) ∧ (¬p ∨ r) ∧ q

clauses: (¬q ∨ p ∨ r), (¬p ∨ r), q
(p ∨ r) ∧ (¬p ∨ r) ∧ (p ∨ ¬r)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 6 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Two Problems:
Problem 1: Checking SAT of a propositional formula
Problem 2: Checking SAT of a CNF formula

How to solve problem 1?
Step 1: Transform Problem 1 to Problem 2
Step 2: Solve Problem 2.

Step 1 (one way by applying the following rules):
¬,∨,∧: Do nothing
→: p → q ≡ ¬p ∨ q

↔: p ↔ q ≡ (p → q) ∧ (q → p)
Step 1 (another clever way): Tseitin transformation (见后).
Step 2: 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 7 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Idea: Step 2: Checking SAT of a CNF formula
Design only one rule: resolution rule

例：Formulas in CNF
(¬q ∨ p ∨ r) ∧ (¬p ∨ r) ∧ q

clauses: (¬q ∨ p ∨ r), (¬p ∨ r), q

Is the above formula satisfiable?
Derive a new clause from the old clauses: p ∨ r

Derive another new clause: r
Answer: sat, r = T, p ∈ {T,F}, q = T

So, how to design the resolution rule? 见下页

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 8 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | Resolution rule

定义: Resolution Rule
If there are clauses of the shape p ∨ V and ¬p ∨W , then the new clause
V ∨W may be added.

p ∨ V, ¬p ∨W

V ∨W

Discussions:
Order of literals in a clause does not play a role since p ∨ q ≡ q ∨ p

Double occurrences of literals may be removed since p ∨ p ≡ p

If an empty clause, i.e., ⊥ is derived from a CNF, the CNF is not
satisfiable.

p, ¬p
⊥

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 9 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Resolution Rule | Example

Example:
We prove that the CNF consisting of the following clauses 1 to 5 is
unsatisfiable

1 p ∨ q
2 ¬r ∨ s
3 ¬q ∨ r
4 ¬r ∨ ¬s
5 ¬p ∨ r

6 p ∨ r (1, 3, q)
7 r (5, 6, p)
8 s (2, 7, r)
9 ¬r (4, 8, s)
10 ⊥ (7, 9, r)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 10 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Resolution Rule | Designing Algorithms

Remarks for designing algorithms:
A lot of freedom in choice: several other sequences of resolution steps
will lead to ⊥ too.
Resolution steps on p in which V contains q and W contains ¬q for
some q (or conversely) are allowed but useless.

In that case the new clause V ∨W is of the shape q ∨ ¬q ∨ · · · and
hence equivalent to T, not containing fruitful information.

If a clause consists of a single literal l (a unit clause), then the
resolution rule allows to remove the literal ¬l from a clause
containing ¬l.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 11 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Resolution Rule | Designing Algorithms

Remarks for requirements of the algorithms
Soundness: Correctness of the resolution rule
Completeness: If a CNF is unsatisfiable, then this can be derived by
only applying the resolution rule
Soundness and Completeness: A CNF is unsatisfiable iff ⊥ can be
derived by only using the resolution rule.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 12 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | Prove validity using CNF and resolution

Prove using CNF and resolution rules.

定理:
Let ϕ be a formula of propositional logic. Then ϕ is satisfiable iff ¬ϕ is
not valid.
In other words, ϕ is valid iff ¬ϕ is not satisfiable.

推论 1: How to prove ψ ⊨ ϕ ?
Prove ψ ∧ ¬ϕ is unsatisfiable.

¬(¬ψ ∨ ϕ) ≡ ψ ∧ ¬ϕ

推论 2: How to prove ⊨ (ϕ ↔ ψ)
Prove (ϕ ∨ ψ) ∧ (¬ϕ ∨ ψ) is unsatisfiable.

¬(ϕ ↔ ψ) ≡ (ϕ ∨ ψ) ∧ (¬ϕ ∨ ¬ψ)

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 13 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Example: A Lewis Carroll Puzzle
1 Good-natured tenured professors are dynamic
2 Grumpy student advisors play slot machines
3 Smokers wearing a cap are phlegmatic
4 Comical student advisors are professors
5 Smoking untenured members are nervous
6 Phlegmatic tenured members wearing caps are comical
7 Student advisors who are not stock market players are scholars
8 Relaxed student advisors are creative
9 Creative scholars who do not play slot machines wear caps
10 Nervous smokers play slot machines
11 Student advisors who play slot machines do not smoke
12 Creative good-natured stock market players wear caps

Then we have to prove that no student advisor is smoking

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 14 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Example: A Lewis Carroll Puzzle
1 Good-natured tenured professors are dynamic
2 Grumpy student advisors play slot machines
3 Smokers wearing a cap are phlegmatic
4 Comical student advisors are professors
5 Smoking untenured members are nervous
6 Phlegmatic tenured members wearing caps are comical
7 Student advisors who are not stock market players are scholars
8 Relaxed student advisors are creative
9 Creative scholars who do not play slot machines wear caps
10 Nervous smokers play slot machines
11 Student advisors who play slot machines do not smoke
12 Creative good-natured stock market players wear caps

Then we have to prove that no student advisor is smoking

20
24

-0
3-

29
形式化方法导引

2. 理论

Lewis Carroll may have exaggerated a little, as math professors often do
about the utility of their subject. Carroll is best known for his nonsensical
books, including the infamous “Alice in Wonderland”, written for chil-
dren of ages five to ninety; but his main line of work was as a professor
of mathematics at Oxford University in England. He studied logic as a
vocation, and he played with logic in his writings. His stories of little girls
and strange creatures are filled with bad puns and other plays with words,
absurd implications, contradictions, and numerous and various offenses to
common sense. It is as though he were writing his silly stories as much to
amuse himself as to entertain his audiences.

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Example: A Lewis Carroll Puzzle
1 Good-natured tenured professors are dynamic
2 Grumpy student advisors play slot machines
3 Smokers wearing a cap are phlegmatic
4 Comical student advisors are professors
5 Smoking untenured members are nervous
6 Phlegmatic tenured members wearing caps are comical
7 Student advisors who are not stock market players are scholars
8 Relaxed student advisors are creative
9 Creative scholars who do not play slot machines wear caps
10 Nervous smokers play slot machines
11 Student advisors who play slot machines do not smoke
12 Creative good-natured stock market players wear caps

Then we have to prove that no student advisor is smoking

20
24

-0
3-

29
形式化方法导引

2. 理论

As a teacher of logic and a lover of nonsense, Carroll designed enter-
taining puzzles to train people in systematic reasoning. In these puzzles he
strings together a list of implications, purposefully inane so that the reader
is not influenced by any preconceived opinions. The job of the reader is to
use all the listed implications to arrive at an inescapable conclusion.

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

The first step is giving names to every
notion to be formalized

name meaning opposite
A good-natured grumpy
B tenured
C professor
D dynamic phlegmatic
E wearing a cap
F smoke
G comical
H relaxed nervous
I play stock market
J scholar
K creative
L plays slot machine
M student advisor

Example:
1. Good-natured tenured
professors are dynamic

(A ∧B ∧ C) → D ≡

¬A ∨ ¬B ∨ ¬C ∨D

1 ¬A ∨ ¬B ∨ ¬C ∨D

2 A ∨ ¬M ∨ L

3 ¬F ∨ ¬E ∨ ¬D
4 ¬G ∨ ¬M ∨ C

5 ¬F ∨B ∨ ¬H
6 D ∨ ¬B ∨ ¬E ∨G

7 I ∨ ¬M ∨ J

8 ¬H ∨ ¬M ∨K

9 ¬K ∨ ¬J ∨ L ∨ E

10 H ∨ ¬F ∨ L

11 ¬L ∨ ¬M ∨ ¬F
12 ¬K ∨ ¬A ∨ ¬I ∨ E

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 15 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

So we have to prove that assuming properties 1 to 12, we can conclude
¬(M ∧ F) stating that no student advisor is smoking.
So we have to prove that

1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7 ∧ 8 ∧ 9 ∧ 10 ∧ 11 ∧ 12 ∧M ∧ F

is unsatisfiable.

回顾：定义: Literal (e.g., unit clause)
A literal L is either an atom p or the negation of an atom ¬p.

Method: Unit resolution on M and F : remove ¬M and ¬F everywhere

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 16 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Method: Unit resolution on M and F : remove ¬M and ¬F everywhere
1 ¬A∨¬B∨¬C∨D
2 A ∨ ¬M ∨ L

3 ¬F ∨ ¬E ∨ ¬D
4 ¬G ∨ ¬M ∨ C

5 ¬F ∨B ∨ ¬H
6 D∨¬B∨¬E∨G
7 I ∨ ¬M ∨ J

8 ¬H ∨ ¬M ∨K

9 ¬K ∨ ¬J ∨L∨E
10 H ∨ ¬F ∨ L

11 ¬L ∨ ¬M ∨ ¬F
12 ¬K∨¬A∨¬I∨E

⇒

1 ¬A∨¬B∨¬C∨D
2 A ∨ L

3 ¬E ∨ ¬D
4 ¬G ∨ C

5 B ∨ ¬H
6 D∨¬B∨¬E∨G
7 I ∨ J

8 ¬H ∨K

9 ¬K ∨ ¬J ∨L∨E
10 H ∨ L

11 ¬L
12 ¬K∨¬A∨¬I∨E

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 17 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Method: Unit resolution on ¬L: remove L everywhere

1 ¬A∨¬B∨¬C∨D
2 A

3 ¬E ∨ ¬D
4 ¬G ∨ C

5 B ∨ ¬H
6 D∨¬B∨¬E∨G
7 I ∨ J

8 ¬H ∨K

9 ¬K ∨ ¬J ∨ E

10 H

11 ¬K∨¬A∨¬I∨E

⇐

1 ¬A∨¬B∨¬C∨D
2 A ∨ L

3 ¬E ∨ ¬D
4 ¬G ∨ C

5 B ∨ ¬H
6 D∨¬B∨¬E∨G
7 I ∨ J

8 ¬H ∨K

9 ¬K ∨ ¬J ∨L∨E
10 H ∨ L

11 ¬L
12 ¬K∨¬A∨¬I∨E

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 18 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Method: Unit resolution on A and H: remove ¬A and ¬H everywhere
1 ¬A∨¬B∨¬C∨D
2 A

3 ¬E ∨ ¬D
4 ¬G ∨ C

5 B ∨ ¬H
6 D∨¬B∨¬E∨G
7 I ∨ J

8 ¬H ∨K

9 ¬K ∨ ¬J ∨ E

10 H

11 ¬K∨¬A∨¬I∨E

⇒

1 ¬B ∨ ¬C ∨D

2 ¬E ∨ ¬D
3 ¬G ∨ C

4 B

5 D∨¬B∨¬E∨G
6 I ∨ J

7 K

8 ¬K ∨ ¬J ∨ E

9 ¬K ∨ ¬I ∨ E

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 19 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Method: Unit resolution on K and B: remove ¬K and ¬B everywhere

1 ¬C ∨D

2 ¬E ∨ ¬D
3 ¬G ∨ C

4 D ∨ ¬E ∨G

5 I ∨ J

6 ¬J ∨ E

7 ¬I ∨ E

⇐

1 ¬B ∨ ¬C ∨D

2 ¬E ∨ ¬D
3 ¬G ∨ C

4 B

5 D∨¬B∨¬E∨G
6 I ∨ J

7 K

8 ¬K ∨ ¬J ∨ E

9 ¬K ∨ ¬I ∨ E

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 20 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

1 ¬C ∨D

2 ¬E ∨ ¬D
3 ¬G ∨ C

4 D ∨ ¬E ∨G

5 I ∨ J

6 ¬J ∨ E

7 ¬I ∨ E

Normal Resolution
8 J ∨ E (5, 7, I)
9 E (6, 8, J)

⇒

Unit resolution on E:
1 ¬C ∨D

2 ¬D
3 ¬G ∨ C

4 D ∨G

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 21 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Unit resolution on ¬D:

1 ¬C
2 ¬G ∨ C

3 G
⇐

1 ¬C ∨D

2 ¬D
3 ¬G ∨ C

4 D ∨G

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 22 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Unit resolution on ¬C and G:
1 ¬C
2 ¬G ∨ C

3 G
⇒ 1 ⊥

Result: unsatisfiable, i.e., it is proved that no student advisor is smoking.
Conclusion: apply unit resolution as long as possible.
下一个问题: 如果不能使用 unit resolution, 如何设计算法?

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 23 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

A classical algorithm: DPLL
After more than 50 years the DPLL procedure still forms the basis for
most efficient complete SAT solvers.

Idea of DPLL:
First apply unit resolution as long as possible
If you cannot proceed by unit resolution or trivial observations

choose a variable p
introduce the cases p and ¬p
and for both cases go on recursively.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 24 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

A classical algorithm: DPLL
After more than 50 years the DPLL procedure still forms the basis for
most efficient complete SAT solvers.

Idea of DPLL:
First apply unit resolution as long as possible
If you cannot proceed by unit resolution or trivial observations

choose a variable p
introduce the cases p and ¬p
and for both cases go on recursively.20

24
-0

3-
29

形式化方法导引

2. 理论

DPLL（Davis-Putnam-Logemann-Loveland）算法，是一种完备的、以
回溯为基础的算法，用于解决在合取范式（CNF）中命题逻辑的布尔可
满足性问题；也就是解决 CNF-SAT 问题。
它在 1962 年由马丁·戴维斯、希拉里·普特南、乔治·洛吉曼和多

纳·洛夫兰德共同提出，作为早期戴维斯-普特南算法的一种改进。戴
维斯-普特南算法是戴维斯与普特南在 1960 年发展的一种算法。

DPLL 是一种高效的程序，并且经过 40 多年还是最有效的 SAT 解
法，以及很多一阶逻辑的自动定理证明的基础。

2. 理论
2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

算法: Unit Resolution unit-resol(X)
Input X: a set of clauses.
Algorithm: as long as a clause occurs in X consisting of one literal l (a
unit clause):

remove ¬l from all clauses in X containing ¬l
i.e., unit resolution

remove all clauses containing l
i.e., remove redundant clauses

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 25 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

算法思路: DPLL(X)
X:=unit-resol(X)
if ⊥ ∈ X then

return(unsatisfiable)
if X = ∅ then

return(satisfiable)
if ⊥ ̸∈ X then

choose variable p in X
DPLL(X ∪ {p})
DPLL(X ∪ {¬p})

return ?(见右)

Terminates since every recursive call
decreases number of variables

DPLL(X ∪ {p}) and DPLL(X ∪ {¬p})
If ’satisfiable’ is returned from either
one, then all involved unit clauses
yield a satisfying assignment
Otherwise, it is a big case analysis
yielding ⊥ for all cases, so unsat

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 26 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | DPLL Algorithm | Example

例 1
Consider the CNF consisting of the following nine clauses

¬p ∨ ¬s p ∨ r ¬s ∨ t
¬p ∨ ¬r p ∨ s q ∨ s
¬q ∨ ¬t r ∨ t q ∨ ¬r

No unit resolution possible: choose variable p
Add p, unit resolution:
¬s,¬r
q (use ¬s), t (use ¬r)
¬t (use q)
⊥

Add ¬p, unit resolution:
r, s
q (use r), t (use s)
¬t (use q)
⊥

Both branches yield ⊥, so original CNF is unsatisfiable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 27 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | DPLL Algorithm | Example

例 2
Consider the CNF consisting of the following eight clauses

¬p ∨ ¬s p ∨ r ¬s ∨ t
¬p ∨ ¬r p ∨ s q ∨ s
¬q ∨ ¬t r ∨ t

No unit resolution possible: choose variable p
Add p, unit resolution:
¬s,¬r
q (use ¬s), t (use ¬r)
¬t (use q)
⊥

Add ¬p, unit resolution:
r, s
t (use s)
¬q (use t)

Yields satisfying assignment p = q = F, r = s = t = T

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 28 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | DPLL Algorithm | Conclusion

Concluding:
DPLL is a complete method (证明略) for satisfiability, based on unit
resolution and case analysis

Completeness: If a CNF is unsatisfiable, then this can be derived by
only applying the resolution rule

Efficiency strongly depends on the choice of the variable
Current SAT solvers follow this scheme, combined with good
heuristics for variable choice and several optimizations

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 29 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

CDCL: conflict driven clause learning
An efficient way to implement DPLL, extended by optimizations

算法思路: DPLL(X)
X:=unit-resol(X)
if ⊥ ∈ X then

return(unsatisfiable)
if X = ∅ then

return(satisfiable)
if ⊥ ̸∈ X then

choose variable p in X
DPLL(X ∪ {p})
DPLL(X ∪ {¬p})

return ?(略)

问题 1: How to choose variable p? (稍等)
问题 2: How is the computation cost?
A naive implementation

cost: make copies of the full CNF X
at every recursive call

A better solution
backtracking instead of recursive call

Keep track of a list M of literals
that has been chosen and derived
during the execution of DPLL

mimic: unit-resol and case analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 30 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

思路:How to keep track of M?
M will be extended if

a case analysis starts: Decide or
a literal is derived by unit resolution: UnitPropagate

Part of M will be removed if
case analysis is continued after finding a contradiction: Backtrack

定义: list M 的相关定义
For a literal l, we write

M ⊨ l, if l occurs in M
M ⊨ ¬C if ¬l occurs in M for every literal l in C
l is undefined in M if neither l nor ¬l occurs in M

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 31 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 1: UnitPropagate

If all literals in M occur as a unit clause, and there is a clause C ∨ l
satisfying M ⊨ ¬C, then by unit resolution all literals in C can be removed

Then the single literal l remains, so the new unit clause l can be derived

This justifies the first rule

Rule 1: UnitPropagate

M =⇒ Ml

if l is undefined in M and the CNF contains a clause C ∨ l satisfying
M ⊨ ¬C

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 32 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 2: Decide

If no UnitPropagate is possible, we have to start a case analysis by Decide

Rule 2: Decide
M =⇒ Mld

if l is undefined in M

Here the added literal l is marked by ’d’ (decision literal) in order to be
able to do backtracking = go back to last start of case analysis

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 33 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 3: Backtrack

Rule 3: Backtrack
MldN =⇒ M¬l

if MldN ⊨ ¬C for a clause C in the CNF and N contains no decision
literals

So Backtrack applies if a contradiction is found, and everything in M
behind the last decision literal is removed, and this decision literal is
replaced by its negation

Note that this negation is not decision literal anymore: now it has been
derived

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 34 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 4: Fail

In case a contradiction is found, while M does not contain any decision
literal, then we have a contradiction for the full formula, so we have
derived that the formula is unsatisfiable.

This is expressed by the last rule Fail

Rule 4: Fail
M =⇒ fail

if M ⊨ ¬C for a clause C in the CNF and M contains no decision literals

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 35 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

算法思路: How to use M instead of recursive call
Start with M being empty and apply the rules as long as possible always
ends in either

fail, proving that the CNF is unsatisfiable, or
a list M containing p or ¬p for every variable p, yielding a satisfying
assignment

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 36 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算: 例 1
Consider the CNF consisting of the
following nine clauses

¬p ∨ ¬s p ∨ r ¬s ∨ t
¬p ∨ ¬r p ∨ s q ∨ s
¬q ∨ ¬t r ∨ t q ∨ ¬r

Rule 1: UnitPropagate

M =⇒ Ml

if l is undefined in M and the CNF
contains a clause C ∨ l satisfying
M ⊨ ¬C

Rule 2: Decide
M =⇒ Mld

if l is undefined in M

Rule 3: Backtrack
MldN =⇒ M¬l

if MldN ⊨ ¬C for a clause C in
the CNF and N contains no
decision literals

Rule 4: Fail
M =⇒ fail

if M ⊨ ¬C for a clause C in the
CNF and M contains no decision
literals

List M : pd ¬s ¬r t q
Backtrack:
¬p r s q t
Fail
So we have proved that the CNF is unsatisfiable

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 37 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

Concluding,
We saw a way to implement DPLL while only working on the original
CNF
Combined with the optimizations of the next section, this is Conflict
Driven Clause Learning, CDCL, as is used in all current powerful SAT
solvers.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 38 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

算法思路: DPLL(X)
X:=unit-resol(X)
if ⊥ ∈ X then

return(unsatisfiable)
if X = ∅ then

return(satisfiable)
if ⊥ ̸∈ X then

choose variable p in X
DPLL(X ∪ {p})
DPLL(X ∪ {¬p})

return ?(略)

CDCL Rule 1: UnitPropagate
M =⇒ Ml

CDCL Rule 2: Decide
M =⇒ Mld

CDCL Rule 3: Backtrack
MldN =⇒ M¬l

CDCL Rule 4: Fail
M =⇒ fail

回顾: 问题 1: How to choose variable p?
换为另一个问题: How to choose l for case analysis in Decide?

还有一个新问题: Backtrack always goes back to the last decision literal

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 39 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

...

p

q

SubTree
1

¬q

SubTree
2

¬p

SubTree
3

Consider the following example:
Mpdqd . . . // explore SubTree 1
Mpd¬q . . . // explore SubTree 2
M¬p . . . // explore SubTree 3

If p does not play a role in contradiction
in SubTree 1, e.g.,

M ⊨ ¬q ∨ t and M ⊨ ¬q ∨ ¬t
Then ¬q can be derived
A better way: Mpdqd · · · =⇒ M¬q
Instead of Mpdqd · · · =⇒ Mpd¬q

So jumping back to an earlier decision literal than the last one (as in
backtrack) is correct and increases efficiency

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 40 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

Rule: Backjump

MldN =⇒ Ml′

if MldN ⊨ ¬C for a clause C in the CNF and there is a clause C ′ ∨ l′

derivable from the CNF such that M ⊨ ¬C ′ and l′ is undefined in M

Correct by definition: if C ′ ∨ l′ would have been in the CNF, then going
from M to Ml′ is just UnitPropagate
问题: How to find the new clause C ′ ∨ l′?

by investigating the literals that play a role in the found
contradiction, and mimic this by resolution.

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 41 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

Rule: Backjump

MldN =⇒ Ml′

if MldN ⊨ ¬C for a clause C in the CNF and there is a clause C ′ ∨ l′

derivable from the CNF such that M ⊨ ¬C ′ and l′ is undefined in M

Apart from doing this Backjump step, this new clause C ′ ∨ l′ will be
added to the CNF:

Learn: CNF=CNF ∪{C ′ ∨ l′}
Variants of this idea may also cause Learn of new clauses, as long as they
can be derived from the original clauses
Original clauses may become redundant due to addition of new clauses,
and may be removed: Forget

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 42 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

It often occurs that the process does not make progress, while several new
clauses have been learned

Then it helps to Restart: start with empty M using the adjusted CNF

The new clauses may influence the heuristics of choosing variables and
cause better progress

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 43 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

例 3
Consider the CNF consisting of the following eight clauses

x1 ∨ x4 x1 ∨ ¬x3 ∨ ¬x8 x1 ∨ x8 ∨ x12
x2 ∨ x11 ¬x7 ∨ ¬x3 ∨ x9 ¬x7 ∨ x8 ∨ ¬x9
x7 ∨ x8 ∨ ¬x10 x7 ∨ x10 ∨ ¬x12

UnitPropagate
Decide
Learn
Backjump
Backtrack

¬xd
1 x4 x

d
3 ¬x8 x12 ¬xd

2 x11 x
d
7

Contradiction (x9,¬x9)
CNF=CNF∪{¬x3 ∨ ¬x7 ∨ x8}
¬xd

1 x4 x
d
3 ¬x8 x12 ¬x7 ¬x10

Contradiction (x12,¬x12)
CNF=CNF∪{x1 ∨ x7 ∨ x8 ∨ x10}
¬xd

1 x4 ¬x3 x
d
8 x

d
2 x7

Sat
黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 44 / 46

https://faculty.ustc.edu.cn/huangwenchao

2. 理论
2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

Concluding, the full CDCL Algorithm consists of
the basic format of UnitPropagate, Decide, Backtrack and Fail
the Backjump optimization and variants
Learn new clauses by these optimizations
Forget redundant clauses
clever heuristics for choosing Decide variables
clever heuristics for when to do Restart

This is the heart of current SAT solvers.
Q: Other Solutions? Local Search

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 45 / 46

https://faculty.ustc.edu.cn/huangwenchao

作业

实验大作业 (可选): 自行设计 CNF 的 SAT 求解算法, 要求:
可以使用现有算法 (如 DPLL, CDCL)，也可以自行设计其他算法
可以独立设计可执行程序，也可以修改现有开源程序的核心算法
（选取后者分数更高）
自己构建测试集（可网上查找测试集）
附上详细的文档: 包括实现过程，算法解释，与现有工具 (如 Z3)
等的性能对比

黄文超 https://faculty.ustc.edu.cn/huangwenchao −→ 教学课程 −→ 形式化方法导引形式化方法导引 46 / 46

https://faculty.ustc.edu.cn/huangwenchao

