AT EF5I

5 4 F IBEEIEKE
4.2 I8 - (1) SAT K&

BB

https://faculty.ustc.edu.cn/huangwenchao
— HFIRE — ERXUFESS

https://faculty.ustc.edu.cn/huangwenchao

IRBIEIR R AEAE

% 4 ZF: AMAIFIA rules I&IE M E ¢7?

o 41 WA
o g MF ¢ BiEia @k A validity [2]#
o 1% validity [a]E%E{k A satifiability [a]5%
o {EF SAT/SMT T B Z3 B satifiability |a]5%

o HTHER A BFMiKE Symbolic Execution

° 42 KEANE (FEiR)
o K SAT [a)BHIZEFTiR?
o Kf# SMT [l ARYZH T %7
o H'E SAT [JEHEZHAE?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | [a]Z&4y 47

E [EMX: Validity
We call ¢ valid, if £ ¢ holds.

1B EX: SAT (B

SAT is the decision problem: given a propositional formula, is it satisfiable?

Let ¢ be a formula of propositional logic. Then ¢ is satisfiable iff —¢ is
not valid.
In other words, ¢ is valid iff —¢ is not satisfiable.

BEE: Validity [@EATIARE 4L A SAT [a]7%
o] ATk AR SAT ja)@i?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | [a]Z&4y 47

)R AR AR SAT [a)RR?

E]: EM.: Propositional Logic in BNF

¢:=pl(=0) | (6AQ) [(V)] (P—9)

where p stands for any atomic proposition and each occurrence of ¢ to the
right of ::= stands for any already constructed formula.

Provable equivalence:

“(pAq) F==gVv-p —(pVgq) A--gA-p
p—q—qg—-p p—q=-pVg
pANg—pTdrv-r pAqg—rd-p—(¢g—r).

BIF: rules X%: #HRITTFER, FSHAETR
o BAOTRMAS, RITEFHERRE

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 18t

2.1 Solve SAT | [a]Z&4y 47

B IMARA RS, RITEERE X 7
TG ER:
e CNF (conjunctive normal form) B
o WITF (—k. Z) 5
o {A,V,—}
@ Horn clauses EEFf]
o WITF (—kk. Z;) 5
o {N,—}
Flal@: A CNF #1T SAT Kf#
o WM&t CNF B rules?
o HNA{E A rule iZITER?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | CNF (conjunctive normal form) §EGE

A literal L is either an atom p or the negation of an atom —p.

EX: Conjunctive normal form (CNF)

A formula C'is in conjunctive normal form (CNF) if it is a conjunction of
clauses, where each clause D is a disjunction of literals:

Li=p|-p
D:=L|LVD
C:=D|DAC

f5]: Formulas in CNF

° (mqVpVr)A(=pVr)Ag
o clauses: (—gVpVr), (-pVr),q
o (pVr)A(-pVr)A(pV-m)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | CNF (conjunctive normal form) §BGER | KEREE

Two Problems:
@ Problem 1: Checking SAT of a propositional formula
@ Problem 2: Checking SAT of a CNF formula
How to solve problem 17
@ Step 1: Transform Problem 1 to Problem 2
@ Step 2: Solve Problem 2.
Step 1 (one way by applying the following rules):
e —,V,A: Do nothing
@ > p—=>qg=-pVgq
o perqg=(p—9 AN(g—Dp)

Step 1 (another clever way): Tseitin transformation (IfgF).
Step 2: WT T

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | CNF (conjunctive normal form) §BGER | KEREE

Idea: Step 2: Checking SAT of a CNF formula

@ Design only one rule: resolution rule

@ (ngVpVr)A(—pVT)Ag
o clauses: (mgVpVr), (-pVr),q

Is the above formula satisfiable?
@ Derive a new clause from the old clauses: pV r
@ Derive another new clause: r
o Answer: sat, r =T, pe {T,F},q=T

So, how to design the resolution rule? Il 11

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | CNF (conjunctive normal form) §EER | Resolution rule

EMX: Resolution Rule

If there are clauses of the shape p V'V and —p V W, then the new clause
V' VW may be added.

pVV, -pVW
VVW

Discussions:

@ Order of literals in a clause does not play a role since pVg=qVp
@ Double occurrences of literals may be removed since pVp =p

o If an empty clause, i.e., L is derived from a CNF, the CNF is not
satisfiable. b —p

L

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Resolution Rule | Example

Example:
We prove that the CNF consisting of the following clauses 1 to 5 is
unsatisfiable

Vg
Vs
-qVr
-V s
-pVr
pVvr
r

(1,3,9)
(5,6,p)
s (2,7,1)
(4,8,5)
(7,9,7)

© 00 NOCT B WN B~

-r

—_
o
|_

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 188

2.1 Solve SAT | Resolution Rule | Designing Algorithms

Remarks for designing algorithms:

@ A lot of freedom in choice: several other sequences of resolution steps
will lead to L too.

@ Resolution steps on p in which V' contains ¢ and W contains —¢ for
some ¢ (or conversely) are allowed but useless.

@ In that case the new clause V'V W is of the shape ¢V —¢V --- and
hence equivalent to T, not containing fruitful information.

o If a clause consists of a single literal | (a unit clause), then the
resolution rule allows to remove the literal =l from a clause
containing —l.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Resolution Rule | Designing Algorithms

Remarks for requirements of the algorithms
@ Soundness: Correctness of the resolution rule

o Completeness: If a CNF is unsatisfiable, then this can be derived by
only applying the resolution rule

@ Soundness and Completeness: A CNF is unsatisfiable iff 1 can be
derived by only using the resolution rule.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | Prove validity using CNF and resolution

Prove using CNF and resolution rules.

EIE:

Let ¢ be a formula of propositional logic. Then ¢ is satisfiable iff —¢ is
not valid.

In other words, ¢ is valid iff ~¢ is not satisfiable.

¥ 1: How to prove ¢y F ¢ ?
Prove 1 A —¢ is unsatisfiable.

o +(pVe)=vAp

#Ei£ 2: How to prove F (¢ <> v)
Prove (¢ V) A (—¢ V 1) is unsatisfiable.
o (¢) =(9VY)A(m9V)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 188

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Example: A Lewis Carroll Puzzle

@ Good-natured tenured professors are dynamic

@ Grumpy student advisors play slot machines

Smokers wearing a cap are phlegmatic

Comical student advisors are professors

Smoking untenured members are nervous

Phlegmatic tenured members wearing caps are comical
Student advisors who are not stock market players are scholars
Relaxed student advisors are creative

Creative scholars who do not play slot machines wear caps
Nervous smokers play slot machines

@ Student advisors who play slot machines do not smoke

@ Creative good-natured stock market players wear caps

60000000

Then we have to prove that no student advisor is smoking

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2024-03-29

R 7mES5|

L2 m@ip

Feooccccocooe

Lewis Carroll may have exaggerated a little, as math professors often do
about the utility of their subject. Carroll is best known for his nonsensical
books, including the infamous “Alice in Wonderland” , written for chil-
dren of ages five to ninety; but his main line of work was as a professor
of mathematics at Oxford University in England. He studied logic as a
vocation, and he played with logic in his writings. His stories of little girls
and strange creatures are filled with bad puns and other plays with words,
absurd implications, contradictions, and numerous and various offenses to
common sense. It is as though he were writing his silly stories as much to
amuse himself as to entertain his audiences.

2024-03-29

R 7mES5|

L2 m@ip

As a teacher of logic and a lover of nonsense, Carroll designed enter-
taining puzzles to train people in systematic reasoning. In these puzzles he
strings together a list of implications, purposefully inane so that the reader
is not influenced by any preconceived opinions. The job of the reader is to
use all the listed implications to arrive at an inescapable conclusion.

2. IBit

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

The first step is giving names to every

notion to be formalized

>
(5]
3
o

meaning

opposite

good-natured
tenured

professor
dynamic

wearing a cap
smoke

comical

relaxed

play stock market

SZ QU QW

hao
https://faculty.ustc.edu.cn/hue

grumpy

phlegmatic

nervous

R FEFS

Example:
1. Good-natured tenured
professors are dynamic

(ANBANC)— D=

—AV-BV-CVD

©0000O0

—AV-BV-CVD
AV-MVL
-FV-EV-D
-GV-MVC
-FVBYV-H
DVv-BvVv-EVG

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

So we have to prove that assuming properties 1 to 12, we can conclude
—(M A F) stating that no student advisor is smoking.
So we have to prove that

IA2A3ANAABAGCATASAINIONILIANI2ZAMAF

is unsatisfiable.

Elf: EX: Literal (e.g., unit clause)

A literal L is either an atom p or the negation of an atom —p.

Method: Unit resolution on M and F': remove —M and —F' everywhere

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Method

®Oe600000060O0CO0

EH#B https://faculty.ustc.edu.cn/hu:

~AV-BV-CVD
AV-MVL
~FV —EV —D
-GV -MVC
~FV BV -H
DV-BV-EVG
INV-MVJ =
~HV-MVK
~-KV-JVLVE
HV-FVL
~LV =MV ~F

~KV-AV-IVE
R =S|

®Oe600000060O0O0

: Unit resolution on M and F: remove -M and —F everywhere

—-AV-BV-CVD
AV L

-EvV-D
-GV C
BvV-H
DVv-BV-EVG
IvJ

-HV K
-KV-JVLVE
HVL

-L
-KV-AV=IVE

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Method

66000000000

EH#B https://faculty.ustc.edu.cn/hu:

~AV-BV-CVD
A

~EV-D
-GV C
BvV-H
DV-BV-EVG -
IvJ

~HV K
~KV-JVE
H
~KV-AV-IVE

R FEFS

®Oe600000060O0O0

: Unit resolution on = L: remove L everywhere

—-AV-BV-CVD
AV L

-EvV-D
-GV C
BvV-H
DVv-BV-EVG
IvJ

-HV K
-KV-JVLVE
HVL

-L
-KV-AV=IVE

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Method: Unit resolution on A and H: remove = A and —H everywhere

Q@ ~Av-Bv-CVvD
QA

-EvV-D
-GVvC
Bv-H
DvV-BV-EVG
IvJ

-HVK

Q@ - KVv-JVE
® H

@ KV-AV-IVE

©0 006060

E#B https://faculty.ustc.edu.cn/hu: R FEFS

0000000 O0CO

-BVvV-CVD
-EV-D

-G VC

B
DvV-BV-EVG
IvJ

K

-KV-JVE
-KV-IVE

https://faculty.ustc.edu.cn/huangwenchao

2. IBip

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Method: Unit resolution on K and B: remove —K and —~B everywhere

~-C'V D
~EV =D

-GV C

DV-EVG -
IvJ

~JVE

~IVE

E#B https://faculty.ustc.edu.cn/hu: R FEFS

0000000 O0CO

-BVvV-CVD
-EvV-D
-GVC

B
DV-BV-EVG
IvJ

K

-KVv-JVE
“KV-IVE

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

@ CvVvD

Q@ ~-EFVv-D

@ -GVl Unit resolution on E:
Q@ DV-EVG © -CvD
QIvJ @ -D

Q@ JVE = @ -GV

@ ~IvE @ DVG

Normal Resolution
Q@ JVE (57,1)
Q E (6,8,J)

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 188

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Unit resolution on —D:

Q C
Q@ GvC
QG

EH#B https://faculty.ustc.edu.cn/hu:

R FEFS

-CVvD
-D
-GVC
DvG

https://faculty.ustc.edu.cn/huangwenchao

2. 188

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Unit resolution on —C' and G:
Q C
Q@ Gv[C - QoL
QG

Result: unsatisfiable, i.e., it is proved that no student advisor is smoking.
Conclusion: apply unit resolution as long as possible.

T—NiEl&: JRAEEMERA unit resolution, MMANZITEE?

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 188

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

A classical algorithm: DPLL

@ After more than 50 years the DPLL procedure still forms the basis for
most efficient complete SAT solvers.

Idea of DPLL:

@ First apply unit resolution as long as possible
@ If you cannot proceed by unit resolution or trivial observations

e choose a variable p
e introduce the cases p and —p
e and for both cases go on recursively.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2024-03-29

XU TESSI

L2 m@ip

DPLL (Davis-Putnam-Logemann-Loveland) &%, 2—f5E&R. YL
B ARMPNEE, ATFBRRAESECEX (CNF) FaBiBiEMNH/RA
R R, Wtk CNF-SAT a3,

B 1962 FHET - 4. FHE TR, T8 SEENS
4 BRZEHEERY, FARBHRER-STHREEEN—MKEt. &
HH- TR ELRBENT S TR E 1960 ELRM—FEX.

DPLL E—MExHIiERF, HELT 40 ZEXRHENH SAT f#E
%, URREZ—HiZEN B E IR EM.

2. 188

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

&% Unit Resolution unit-resol(X)
Input X: a set of clauses.
Algorithm: as long as a clause occurs in X consisting of one literal [(a
unit clause):
@ remove —l from all clauses in X containing -l
e i.e., unit resolution

@ remove all clauses containing [
e i.e., remove redundant clauses

R FEFS

EH#B https://faculty.ustc.edu.cn/hu:

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

iR B DPLL(X)

X :=unit-resol(X)
if L € X then
return(unsatisfiable)
if X =0 then
return(satisfiable)
if 1 & X then
choose variable p in X
DPLL(X U {p})
DPLL(X U {-p})
return ?(A)

EH#B https://faculty.ustc.edu.cn/hu:

@ Terminates since every recursive call
decreases number of variables

DPLL(X U {p}) and DPLL(X U {-p})

o If 'satisfiable’ is returned from either
one, then all involved unit clauses
yield a satisfying assignment

@ Otherwise, it is a big case analysis
yielding L for all cases, so unsat

R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm | Example

Consider the CNF consisting of the following nine clauses

-pV-os pVr sVt
—-pV-r pVs qVs
gVt rVvVt qV-r

No unit resolution possible: choose variable p

Add p, unit resolution: Add —p, unit resolution:

—s, T

T, s

q (use —s), t (use —r) q (use r), t (use s)
—t (use q) —it (use q)

1 1

Both branches yield L, so original CNF is unsatisfiable

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm | Example

Consider the CNF consisting of the following eight clauses

-pV-os pVr sVt
—-pV-r pVvVs qVs
gVt rVi

No unit resolution possible: choose variable p

Add p, unit resolution:

Add —p, unit resolution:
A T,
q (use —s), t (use —r) t (use s)
It (use q) —q (use t)

Yields satisfying assignment p=q=F,r=s=t=T

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 188

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm | Conclusion

Concluding:
@ DPLL is a complete method (ERAME) for satisfiability, based on unit
resolution and case analysis
o Completeness: If a CNF is unsatisfiable, then this can be derived by
only applying the resolution rule
o Efficiency strongly depends on the choice of the variable

@ Current SAT solvers follow this scheme, combined with good
heuristics for variable choice and several optimizations

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

CDCL: conflict driven clause learning

@ An efficient way to implement DPLL, extended by optimizations

BiRRBE: DPLL(X)
X :=unit-resol(X)
if L € X then
return(unsatisfiable)
if X =0 then
return(satisfiable)
if 1 & X then
choose variable p in X
DPLL(X U {p})
DPLL(X U {-p})
return 7(fg)

EH#B https://faculty.ustc.edu.cn/hu:

@&k 1: How to choose variable p? (&%)
[B]&& 2: How is the computation cost?
A naive implementation

@ cost: make copies of the full CNF X
at every recursive call
A better solution
@ backtracking instead of recursive call

o Keep track of a list M of literals
that has been chosen and derived
during the execution of DPLL

@ mimic: unit-resol and case analysis

R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

B & :How to keep track of M?
M will be extended if

@ a case analysis starts: Decide or

o a literal is derived by unit resolution: UnitPropagate
Part of M will be removed if

@ case analysis is continued after finding a contradiction: Backtrack

EMX: list M HItAXEN
For a literal I, we write

e M E I ifl occursin M

| A\

@ M E —=C if =l occurs in M for every literal [in C

@ [is undefined in M if neither | nor —[occurs in M

.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 188

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 1: UnitPropagate

If all literals in M occur as a unit clause, and there is a clause C' V[
satisfying M F —C, then by unit resolution all literals in C' can be removed

Then the single literal [remains, so the new unit clause [can be derived

This justifies the first rule

Rule 1: UnitPropagate

M — Ml

if [is undefined in M and the CNF contains a clause C' V[satisfying
ME -C

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 2: Decide

If no UnitPropagate is possible, we have to start a case analysis by Decide

Rule 2: Decide

M = MI¢
if [is undefined in M

Here the added literal [is marked by 'd’ (decision literal) in order to be
able to do backtracking = go back to last start of case analysis

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 3: Backtrack

Rule 3: Backtrack

MICN — M-l

if MIYN E —C for a clause C in the CNF and N contains no decision
literals

So Backtrack applies if a contradiction is found, and everything in M
behind the last decision literal is removed, and this decision literal is
replaced by its negation

Note that this negation is not decision literal anymore: now it has been
derived

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 188

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 4: Fail

In case a contradiction is found, while M does not contain any decision
literal, then we have a contradiction for the full formula, so we have
derived that the formula is unsatisfiable.

This is expressed by the last rule Fail

Rule 4: Fail

M = fail

if M = —C for a clause C in the CNF and M contains no decision literals

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

E £ B E&: How to use M instead of recursive call

Start with M being empty and apply the rules as long as possible always
ends in either

o fail, proving that the CNF is unsatisfiable, or

@ a list M containing p or —p for every variable p, yielding a satisfying
assignment

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

EHITE: 41
Consider the CNF consisting of the
following nine clauses

sVt
qVs

—pV -8
—pV r

pVr
pVs

q q
EH#B https://faculty.ustc.edu.cn/hu:

BRUTESE|

Rule 1: UnitPropagate

M — Ml

if [is undefined in M and the CNF
contains a clause C'V [satisfying
ME-C

V.

Rule 2: Decide

M = Ml°
if [is undefined in M

Rule 3: Backtrack

MIeN — M-l

.

https://faculty.ustc.edu.cn/huangwenchao

2. 188

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

Concluding,
o We saw a way to implement DPLL while only working on the original
CNF
@ Combined with the optimizations of the next section, this is Conflict
Driven Clause Learning, CDCL, as is used in all current powerful SAT
solvers.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

FixE#: DPLL(X)

CDCL Rule 1: UnitPropagate
X :=unit-resol(X) M — Ml

if L € X then
return(unsatisfiable)

CDCL Rule 2: Decide
if X =0 then M = Ml¢

return(satisfiable)

if L & X then CDCL Rule 3: Backtrack
choose variable p in X MIN = M-l

DPLL(X U {p})

DPLL(X U {-p}) CDCL Rule 4: Fail
return ?(H&) M = fail

v

[E[@: (@&t 1: How to choose variable p?
o B — a)8k: How to choose [for case analysis in Decide?
H—/ #rio)88: Backtrack always goes back to the /ast decision literal

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations
EB— #ha)F: Backtrack always goes back to the /ast decision literal
Consider the following example:
/ \ o Mpiq?... // explore SubTree 1
o Mp?~q... // explore SubTree 2
@ M-p... // explore SubTree 3

/ \ If p does not play a role in contradiction
in SubTree 1, e.g.,

o M E—-gVtand M EF—qV -t
‘ ‘ SubTree @ Then —q can be derived
SubTree || SubTree 3 o A better way: Mplg?. .. — M—q
1 2

o Instead of Mpig?. .. = MpP-q

So jumping back to an earlier decision literal than the last one (as in
backtrack) is correct and increases efficiency

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

Rule: Backjump

MIUN = M

if MIYN E —C for a clause C in the CNF and there is a clause C’ VI’
derivable from the CNF such that M = —C" and [’ is undefined in M

Correct by definition: if C’ VI’ would have been in the CNF, then going
from M to MI' is just UnitPropagate

[a]E5: How to find the new clause C' Vv I'?

@ by investigating the literals that play a role in the found
contradiction, and mimic this by resolution.

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

Rule: Backjump

MIAN — MU'

if MIYN E —C for a clause C in the CNF and there is a clause C’ VI’
derivable from the CNF such that M E —C" and ! is undefined in M

Apart from doing this Backjump step, this new clause C’ Vv I” will be
added to the CNF:

@ Learn: CNF=CNF u{C’" v '}
Variants of this idea may also cause Learn of new clauses, as long as they
can be derived from the original clauses

Original clauses may become redundant due to addition of new clauses,
and may be removed: Forget

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 188

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

It often occurs that the process does not make progress, while several new
clauses have been learned

@ Then it helps to Restart: start with empty M using the adjusted CNF

The new clauses may influence the heuristics of choosing variables and
cause better progress

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. 188

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

UnitPropagate
Consider the CNF consisting of the following eight clauses | Decide

Learn
z1V x4 x1V—x3V g 1 VsV ario Backjump
xo V T11 —x7V x3Vaeg —x7VagV -xg Backtrack

x7 VgV —x1g a7V TV ZT12

—|33(il T4 mg T8 T12 —|5L‘g T11 CCC7l
Contradiction (xg, ~z9)
CNF=CNFU{—z3 V —x7 V 3}
—|$Cll X4 xg Xy 12 X7 X110
Contradiction (x12, 7212)
CNFZCNFU{J)l VarVaegV 1‘10}
_chll Ty X3 a:g :L’g T

Sat

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

2. IBit

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

Concluding, the full CDCL Algorithm consists of
@ the basic format of UnitPropagate, Decide, Backtrack and Fail
o the Backjump optimization and variants
@ Learn new clauses by these optimizations
o Forget redundant clauses
@ clever heuristics for choosing Decide variables
@ clever heuristics for when to do Restart

This is the heart of current SAT solvers.
Q: Other Solutions? Local Search

E#B https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

SKEAEA (FTik): BITi&IT CNF B SAT KEgE%E EX:
o ATLMERMAE % (0 DPLL, CDCL), WA BITZITHtE %
o AIUMILIGITAIMATIE R, WATKMEMI AT REEFHZOEEL
(EREESVES)
o ACMEMIKE (AR LERMIKE)

o Pff EIFLMRISAY: EIELIIE, HiEME, SUAIR (W 23)
ERIIEREXTLL

E#8 https://faculty.ustc.edu.cn/hu: R FEFS

https://faculty.ustc.edu.cn/huangwenchao

