形式化方法导引

第 4 章 逻辑问题求解 4.2 理论 - (2) SMT 求解

黄文超

https://faculty.ustc.edu.cn/huangwenchao

→ 教学课程 → 形式化方法导引

2.2 Solve SMT | 问题分析

回顾: 定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

回顾: 定义: SMT problem

Extension of SAT, to deal with *numbers* and *inequalities*.

回顾: SMT 在软件测试中的一个重要应用: 符号执行 (*Symbolic Execution*) 问题: How to explore different program paths and for each path to

- generate a set of concrete input values exercising that path
- check for the presence of various kinds of errors

本节讲解内容: The Simplex method (单纯形法).

• dealing with linear inequalities

2.2 Solve SMT | 问题分析

回顾: 定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

回顾: 定义: SMT problem

Extension of SAT, to deal with *numbers* and *inequalities*.

回顾: SMT 在软件测试中的一个重要应用: 符号执行 (*Symbolic Execution*) 问题: How to explore different program paths and for each path to

- generate a set of concrete input values exercising that path
- check for the presence of various kinds of errors

本节讲解内容: The Simplex method (单纯形法).

• dealing with linear inequalities

2.2 Solve SMT | 问题分析

回顾: 定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

回顾: 定义: SMT problem

Extension of SAT, to deal with *numbers* and *inequalities*.

回顾: SMT 在软件测试中的一个重要应用: 符号执行 (*Symbolic Execution*) 问题: How to explore different program paths and for each path to

- generate a set of concrete input values exercising that path
- check for the presence of various kinds of errors

本节讲解内容: The Simplex method (单纯形法).

• dealing with *linear inequalities*

The Simplex method (单纯形法).

• dealing with *linear inequalities*

Do real numbers x, y exist such that

$$x \ge y$$
$$y \ge 2$$
$$2x + y \le$$

So indeed the *blue* part describes the values x, y satisfying the requirements.

The Simplex method (单纯形法).

• dealing with *linear inequalities*

Do real numbers x,y exist such that

$$x \ge y$$
$$y \ge 2$$
$$2x + y \le 7$$

So indeed the *blue* part describes the values x,y satisfying the requirements.

The Simplex method (单纯形法).

• dealing with *linear inequalities*

Do real numbers x,y exist such that

$$x \ge y$$
$$y \ge 2$$
$$2x + y \le 7$$

So indeed the *blue* part describes the values x,y satisfying the requirements.

The Simplex method (单纯形法).

• dealing with *linear inequalities*

Do real numbers x,y exist such that

$$x \ge y$$
$$y \ge 2$$
$$2x + y \le 7$$

So indeed the *blue* part describes the values x, y satisfying the requirements.

The Simplex method (单纯形法).

• dealing with *linear inequalities*

Do real numbers x, y exist such that

$$x \ge y$$
$$y \ge 2$$
$$2x + y \le 7$$

So indeed the *blue* part describes the values x,y satisfying the requirements.

2.2 Solve SMT | 问题分析

问题: How to solve for > 2 variables?

分析: *No such pictures*: we want to do this for *thousands* of inequalities /variables

- Not only determines existence of solution, but finds an optimal
 - one for which a given linear expression has the *highest possible* value

2.2 Solve SMT | 问题分析

问题: How to solve for > 2 variables?

分析: No such pictures: we want to do this for thousands of inequalities /variables

- Not only determines existence of solution, but finds an optimal
 - one for which a given linear expression has the *highest possible* value

2.2 Solve SMT | 问题分析

问题: How to solve for > 2 variables?

分析: No such pictures: we want to do this for thousands of inequalities /variables

- Not only determines existence of solution, but finds an optimal
 - one for which a given linear expression has the *highest possible* value

2.2 Solve SMT | 问题分析

问题: How to solve for > 2 variables?

分析: No such pictures: we want to do this for thousands of inequalities /variables

- Not only determines existence of solution, but finds an optimal
 - one for which a given linear expression has the *highest possible* value

2.2 Solve SMT | 问题分析

问题: How to solve for > 2 variables?

分析: No such pictures: we want to do this for thousands of inequalities /variables

- Not only determines existence of solution, but finds an optimal
 - one for which a given linear expression has the *highest possible* value

问题定义: The Simplex Method

Among all real values $x_1, \ldots, x_n \ge 0$ find the *maxmal* value of a linear *goal function*

$$v + c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

satisfying k linear constraints

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

for $i=1,2,\ldots,k$. Here v,a_{ij},c_i and b_i are given real values, satisfying $b_i\geq 0$ for $i=1,2,\ldots,k$

求解思路

Initialization: $x_i = 0$ for all i, Do steps (pivots, 转轴):

• the value of the goal function *increases until* its optimal value

问题定义: The Simplex Method

Among all real values $x_1, \ldots, x_n \ge 0$ find the *maxmal* value of a linear *goal function*

$$v + c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

satisfying k linear constraints

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

for $i=1,2,\ldots,k$. Here v,a_{ij},c_i and b_i are given real values, satisfying $b_i\geq 0$ for $i=1,2,\ldots,k$

求解思路

Initialization: $x_i = 0$ for all i,

Do steps (*pivots*,转轴):

• the value of the goal function increases until its optimal value

问题定义: The Simplex Method

Among all real values $x_1, \ldots, x_n \ge 0$ find the *maxmal* value of a linear *goal function*

$$v + c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

satisfying k linear constraints

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

for $i=1,2,\ldots,k$. Here v,a_{ij},c_i and b_i are given real values, satisfying $b_i\geq 0$ for $i=1,2,\ldots,k$

求解思路

Initialization: $x_i = 0$ for all i,

Do steps (pivots, 转轴):

• the value of the goal function increases until its optimal value

• in an inequality \geq , multiply both sides by -1:

$$x_1 - 2x_2 + 3x_3 \ge -5 \equiv -x_1 + 2x_2 - 3x_3 \le 5$$

- \bullet an equality A=B is replaced by two inequalities $A\leq B$ and $B\leq A$
- if one wants to minimize, multiply goal function by -1
- if a variable x runs over all reals (positive and negative), replace it by $x_1 x_2$ for fresh variables x_1, x_2 satisfying $x_i \ge 0$ for i = 1, 2

• in an inequality \geq , multiply both sides by -1:

$$x_1 - 2x_2 + 3x_3 \ge -5 \equiv -x_1 + 2x_2 - 3x_3 \le 5$$

- \bullet an equality A=B is replaced by two inequalities $A\leq B$ and $B\leq A$
- if one wants to minimize, multiply goal function by -1
- if a variable x runs over all reals (positive and negative), replace it by x_1-x_2 for fresh variables x_1,x_2 satisfying $x_i\geq 0$ for i=1,2

• in an inequality \geq , multiply both sides by -1:

$$x_1 - 2x_2 + 3x_3 \ge -5 \equiv -x_1 + 2x_2 - 3x_3 \le 5$$

- \bullet an equality A=B is replaced by two inequalities $A\leq B$ and $B\leq A$
- if one wants to minimize, multiply goal function by -1
- if a variable x runs over all reals (positive and negative), replace it by x_1-x_2 for fresh variables x_1,x_2 satisfying $x_i \geq 0$ for i=1,2

• in an inequality \geq , multiply both sides by -1:

$$x_1 - 2x_2 + 3x_3 \ge -5 \equiv -x_1 + 2x_2 - 3x_3 \le 5$$

- \bullet an equality A=B is replaced by two inequalities $A\leq B$ and $B\leq A$
- if one wants to minimize, multiply goal function by -1
- if a variable x runs over all reals (positive and negative), replace it by $x_1 x_2$ for fresh variables x_1, x_2 satisfying $x_i \ge 0$ for i = 1, 2

• in an inequality \geq , multiply both sides by -1:

$$x_1 - 2x_2 + 3x_3 \ge -5 \equiv -x_1 + 2x_2 - 3x_3 \le 5$$

- \bullet an equality A=B is replaced by two inequalities $A\leq B$ and $B\leq A$
- if one wants to minimize, multiply goal function by -1
- if a variable x runs over all reals (positive and negative), replace it by x_1-x_2 for fresh variables x_1,x_2 satisfying $x_i\geq 0$ for i=1,2

• in an inequality \geq , multiply both sides by -1:

$$x_1 - 2x_2 + 3x_3 \ge -5 \equiv -x_1 + 2x_2 - 3x_3 \le 5$$

- \bullet an equality A=B is replaced by two inequalities $A\leq B$ and $B\leq A$
- if one wants to minimize, multiply goal function by -1
- if a variable x runs over all reals (positive and negative), replace it by x_1-x_2 for fresh variables x_1,x_2 satisfying $x_i\geq 0$ for i=1,2

定义: Slack form 松弛型

For every linear inequality

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

a fresh variable $y_i \geq 0$ is introduced

The linear inequality is replaced by the equality

$$y_i = b_i - a_{i1}x_1 - a_{i2}x_2 - \dots - a_{in}x_n$$

Together with $y_i \ge 0$, this is equivalent to the original inequality

This format with equalities is called the slack form

定义: Slack form 松弛型

For every linear inequality

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

a fresh variable $y_i \geq 0$ is introduced

The linear inequality is *replaced* by the equality

$$y_i = b_i - a_{i1}x_1 - a_{i2}x_2 - \dots - a_{in}x_n$$

Together with $y_i \ge 0$, this is equivalent to the original inequality

This format with equalities is called the slack form

定义: Slack form 松弛型

For every linear inequality

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

a fresh variable $y_i \geq 0$ is introduced

The linear inequality is *replaced* by the equality

$$y_i = b_i - a_{i1}x_1 - a_{i2}x_2 - \dots - a_{in}x_n$$

Together with $y_i \ge 0$, this is equivalent to the original inequality

This format with equalities is called the slack form

Some terminology on a slack form with equations

$$y_i = b_i - a_{i1}x_1 - a_{i2}x_2 - \dots - a_{in}x_n$$

for i = 1, 2, ..., k

- The solution $y_i = b_i$, for i = 1, 2, ..., k and $x_j = 0$ for j = 1, 2, ..., k is called the *basic solution*
- The variables y_i for $i=1,2,\ldots,k$ are called basic variables (基变量)
- The variables x_j for $j=1,2,\ldots,k$ are called *non-basic variables* (非基变量)

算法思路: The simplex algorithm consists of a *repetition* of pivots

 A pivot chooses a basic variable and a non-basic variable, swaps their roles, and makes a new slack form that is equivalent to the original one, but with a higher value for the goal function.

Some terminology on a slack form with equations

$$y_i = b_i - a_{i1}x_1 - a_{i2}x_2 - \dots - a_{in}x_n$$

for i = 1, 2, ..., k

- The solution $y_i = b_i$, for i = 1, 2, ..., k and $x_j = 0$ for j = 1, 2, ..., k is called the *basic solution*
- The variables y_i for $i=1,2,\ldots,k$ are called basic variables (基变量)
- The variables x_j for $j=1,2,\ldots,k$ are called *non-basic variables* (非基变量)

算法思路: The simplex algorithm consists of a *repetition* of pivots

 A pivot chooses a basic variable and a non-basic variable, swaps their roles, and makes a new slack form that is equivalent to the original one, but with a higher value for the goal function.

Some terminology on a slack form with equations

$$y_i = b_i - a_{i1}x_1 - a_{i2}x_2 - \dots - a_{in}x_n$$

for i = 1, 2, ..., k

- The solution $y_i = b_i$, for i = 1, 2, ..., k and $x_j = 0$ for j = 1, 2, ..., kis called the basic solution
- The variables y_i for $i=1,2,\ldots,k$ are called basic variables (基变量)
- The variables x_i for $j=1,2,\ldots,k$ are called *non-basic variables* (# 基变量)

算法思路: The simplex algorithm consists of a *repetition* of pivots

 A pivot chooses a basic variable and a non-basic variable, swaps their roles, and makes a new slack form that is equivalent to the original

8/34

Some terminology on a slack form with equations

$$y_i = b_i - a_{i1}x_1 - a_{i2}x_2 - \dots - a_{in}x_n$$

for i = 1, 2, ..., k

- The solution $y_i = b_i$, for i = 1, 2, ..., k and $x_j = 0$ for j = 1, 2, ..., k is called the *basic solution*
- The variables y_i for $i=1,2,\ldots,k$ are called basic variables (基变量)
- The variables x_j for $j=1,2,\ldots,k$ are called *non-basic variables* (非基变量)

算法思路: The simplex algorithm consists of a repetition of pivots

 A pivot chooses a basic variable and a non-basic variable, swaps their roles, and makes a new slack form that is equivalent to the original one, but with a higher value for the goal function.

2.2 Solve SMT | Example

回顾: 问题定义: The Simplex Method

Among all real values $x_1, \ldots, x_n \ge 0$ find the *maxmal* value of a linear *goal function*

$$v + c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

satisfying k linear constraints

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

for
$$i = 1, 2, ..., k$$
.

例:

Maximize $z = 3 + x_1 + x_3$ satisfying the constraints:

$$-x_1 + x_2 - x_3 \le 2$$
$$x_1 + x_3 \le 3$$

回顾: 问题定义: The Simplex Method

Among all real values $x_1, \ldots, x_n \geq 0$ find the *maxmal* value of a linear *goal function*

$$v + c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

satisfying k linear constraints

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

for
$$i = 1, 2, ..., k$$
.

例:

Maximize $z = 3 + x_1 + x_3$ satisfying the constraints:

$$-x_1 + x_2 - x_3 \le 2$$
$$x_1 + x_3 \le 3$$
$$2x_1 - x_2 \le 4$$

例:

Maximize $z = 3 + x_1 + x_3$ satisfying the constraints:

$$-x_1 + x_2 - x_3 \le 2$$

 $x_1 + x_3 \le 3$
 $2x_1 - x_2 \le 4$

步骤 0: Slack form 松弛型

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

Goal: Maximize $z = 3 + x_1 + x_3$, while keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

2.2 Solve SMT | Example

例:

Maximize $z = 3 + x_1 + x_3$ satisfying the constraints:

$$-x_1 + x_2 - x_3 \le 2$$

 $x_1 + x_3 \le 3$
 $2x_1 - x_2 \le 4$

步骤 0: Slack form 松弛型

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

Goal: Maximize $z = 3 + x_1 + x_3$, while keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

2.2 Solve SMT | Example

步骤 0: Slack form 松弛型

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

Goal: Maximize $z = 3 + x_1 + x_3$, while keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

北骤 1: basic solution

$$x_1 = x_2 = x_3 = 0$$

$$y_1 = 2, \ y_2 = 3, \ y_3 = 4$$

Goal: Maximize $z=3+x_1+x_3$, while keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

Observation: if we increase x_1 , and x_2 and x_3 remain 0, then the goal function z will increase

步骤 0: Slack form 松弛型

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

Goal: Maximize $z=3+x_1+x_3$, while keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

步骤 1: basic solution

$$x_1 = x_2 = x_3 = 0$$

$$y_1 = 2, \ y_2 = 3, \ y_3 = 4$$

Goal: Maximize $z=3+x_1+x_3$, while keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

Observation: if we increase x_1 , and x_2 and x_3 remain 0, then the goal function z will increase

步骤 0: Slack form 松弛型

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

Goal: Maximize $z = 3 + x_1 + x_3$, while keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

+ 場 1: basic solution

$$x_1 = x_2 = x_3 = 0$$

$$y_1 = 2, \ y_2 = 3, \ y_3 = 4$$

Goal: Maximize $z=3+x_1+x_3$, while keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

Observation: if we increase x_1 , and x_2 and x_3 remain 0, then the goal function z will increase

2.2 Solve SMT | Example

分析: We want to increase x_1 as much as possible, keeping $x_2=x_3=0$, while in the equations

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

- $y_1 = 2 + x_1 \ge 0$: OK if x_1 increases
- $y_2 = 3 x_1 \ge 0$: only OK if $x_1 \le 3$
- $y_3 = 4 2x_1 \ge 0$: only OK if $x_1 \le 2$

So $y_i \ge 0$ only holds for all i if $x_1 \le 2$

2.2 Solve SMT | Example

分析: We want to increase x_1 as much as possible, keeping $x_2=x_3=0$, while in the equations

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

- $y_1 = 2 + x_1 \ge 0$: OK if x_1 increases
- $y_2 = 3 x_1 \ge 0$: only OK if $x_1 \le 3$
- $y_3 = 4 2x_1 \ge 0$: only OK if $x_1 \le 2$

So $y_i \ge 0$ only holds for all i if $x_1 \le 2$

2.2 Solve SMT | Example

分析: We want to increase x_1 as much as possible, keeping $x_2=x_3=0$, while in the equations

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

- $y_1 = 2 + x_1 \ge 0$: OK if x_1 increases
- $y_2 = 3 x_1 \ge 0$: *only* OK if $x_1 \le 3$
- $y_3 = 4 2x_1 \ge 0$: only OK if $x_1 \le 2$

So $y_i \ge 0$ only holds for all i if $x_1 \le 2$

2.2 Solve SMT | Example

分析: We want to increase x_1 as much as possible, keeping $x_2=x_3=0$, while in the equations

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

- $y_1 = 2 + x_1 \ge 0$: OK if x_1 increases
- $y_2 = 3 x_1 \ge 0$: *only* OK if $x_1 \le 3$
- $y_3 = 4 2x_1 \ge 0$: only OK if $x_1 \le 2$

So $y_i \ge 0$ only holds for all i if $x_1 \le 2$

2.2 Solve SMT | Example

分析: We want to increase x_1 as much as possible, keeping $x_2=x_3=0$, while in the equations

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

- $y_1 = 2 + x_1 \ge 0$: OK if x_1 increases
- $y_2 = 3 x_1 \ge 0$: only OK if $x_1 \le 3$
- $y_3 = 4 2x_1 \ge 0$: only OK if $x_1 \le 2$

So $y_i \ge 0$ only holds for all i if $x_1 \le 2$

分析: We want to increase x_1 as much as possible, keeping $x_2=x_3=0$, while in the equations

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

keeping $\forall i.x_i \geq 0$ and $\forall i.y_i \geq 0$

- $y_1 = 2 + x_1 \ge 0$: OK if x_1 increases
- $y_2 = 3 x_1 \ge 0$: only OK if $x_1 \le 3$
- $y_3 = 4 2x_1 \ge 0$: only OK if $x_1 \le 2$

So $y_i \ge 0$ only holds for all i if $x_1 \le 2$

2.2 Solve SMT | Example

Highest allowed value for x_1 is 2, then y_3 will be 0

步骤 2: *pivot*: swap x_1 and y_3

Recall that

 x_1 is *non-basic*: right from '=',=0 in basic solution

 y_3 is *basic*: left from '=', possibly ≥ 0 in basic solution

By the pivot

- the *non-basic* variable x_1 will become *basic*
- the *basic* variable y_3 will become *non-basic*

2.2 Solve SMT | Example

Highest allowed value for x_1 is 2, then y_3 will be 0

步骤 2: pivot: swap x_1 and y_3

Recall that

 x_1 is *non-basic*: right from '=',=0 in basic solution

 y_3 is *basic*: left from '=', possibly ≥ 0 in basic solution

By the pivot

- the *non-basic* variable x_1 will become *basic*
- the *basic* variable y_3 will become *non-basic*

2.2 Solve SMT | Example

Highest allowed value for x_1 is 2, then y_3 will be 0

步骤 2: *pivot*: swap x_1 and y_3

Recall that

 x_1 is *non-basic*: right from '=',=0 in basic solution

 y_3 is *basic*: left from '=', possibly ≥ 0 in basic solution

By the pivot

- the *non-basic* variable x_1 will become *basic*
- the *basic* variable y_3 will become *non-basic*

2.2 Solve SMT | Example

Highest allowed value for x_1 is 2, then y_3 will be 0

步骤 2: *pivot*: swap x_1 and y_3

Recall that

 x_1 is *non-basic*: right from '=',=0 in basic solution

 y_3 is *basic*: left from '=', possibly ≥ 0 in basic solution

By the pivot

- the *non-basic* variable x_1 will become *basic*
- the *basic* variable y_3 will become *non-basic*

2.2 Solve SMT | Example

Highest allowed value for x_1 is 2, then y_3 will be 0

步骤 2: *pivot*: swap x_1 and y_3

Recall that

 x_1 is *non-basic*: right from '=',=0 in basic solution

 y_3 is *basic*: left from '=', possibly ≥ 0 in basic solution

By the *pivot*

- the *non-basic* variable x_1 will become *basic*
- the *basic* variable y_3 will become *non-basic*

2.2 Solve SMT | Example

Highest allowed value for x_1 is 2, then y_3 will be 0

步骤 2: *pivot*: swap x_1 and y_3

Recall that

 x_1 is *non-basic*: right from '=',=0 in basic solution

 y_3 is *basic*: left from '=', possibly ≥ 0 in basic solution

By the *pivot*

- the *non-basic* variable x_1 will become *basic*
- the *basic* variable y_3 will become *non-basic*

2.2 Solve SMT | Example

pivot: swap x_1 and y_3 in

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

In the equation $y_3 = 4 - 2x_1 + x_2$ move x_1 to the left and y_3 to the right:

$$x_1 = 2 + \frac{1}{2}x_2 - \frac{1}{2}y_3$$

Next replace every x_1 by $2 + \frac{1}{2}x_2 - \frac{1}{2}y_3$ in the equations for z, y_1, y_2 , yielding the following slack form:

maximize
$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

$$x_1 = 2 + \frac{1}{2}x_2 - \frac{1}{2}y_3$$

$$y_1 = 4 - \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

$$y_2 = 1 - \frac{1}{2}x_2 - x_3 + \frac{1}{2}y_3$$

2.2 Solve SMT | Example

pivot: swap x_1 and y_3 in

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

In the equation $y_3 = 4 - 2x_1 + x_2$ move x_1 to the left and y_3 to the right:

$$x_1 = 2 + \frac{1}{2}x_2 - \frac{1}{2}y_3$$

Next replace every x_1 by $2+\frac{1}{2}x_2-\frac{1}{2}y_3$ in the equations for z,y_1,y_2 , yielding the following slack form:

maximize
$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

$$x_1 = 2 + \frac{1}{2}x_2 - \frac{1}{2}y_3$$

$$y_1 = 4 - \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

$$y_2 = 1 - \frac{1}{2}x_2 - x_3 + \frac{1}{2}y_3$$

2.2 Solve SMT | Example

pivot: swap x_1 and y_3 in

$$y_1 = 2 + x_1 - x_2 + x_3$$

$$y_2 = 3 - x_1 - x_3$$

$$y_3 = 4 - 2x_1 + x_2$$

In the equation $y_3 = 4 - 2x_1 + x_2$ move x_1 to the left and y_3 to the right:

$$x_1 = 2 + \frac{1}{2}x_2 - \frac{1}{2}y_3$$

Next replace every x_1 by $2+\frac{1}{2}x_2-\frac{1}{2}y_3$ in the equations for z,y_1,y_2 , yielding the following slack form:

maximize
$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

$$x_1 = 2 + \frac{1}{2}x_2 - \frac{1}{2}y_3$$

$$y_1 = 4 - \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

$$y_2 = 1 - \frac{1}{2}x_2 - x_3 + \frac{1}{2}y_3$$

This is the end of the first pivot

Observe

- all equations are replaced by *equivalent* equations, so the optimization problem is *equivalent* to the original one
- \bullet Now the *basic variables* are x_1,y_1,y_2 and the *non-basic variables* are x_2,x_3,y_3
- By construction again, we have a slack form with a basic solution in which all non-basic variables are 0, and all basic variables are ≥ 0
- In this new basic solution the goal function

$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

This is the *end* of the *first pivot* Observe

- all equations are replaced by equivalent equations, so the optimization problem is equivalent to the original one
- Now the *basic variables* are x_1,y_1,y_2 and the *non-basic variables* are x_2,x_3,y_3
- By construction again, we have a slack form with a basic solution in which all non-basic variables are 0, and all basic variables are ≥ 0
- In this new basic solution the goal function

$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

This is the *end* of the *first pivot* Observe

- all equations are replaced by equivalent equations, so the optimization problem is equivalent to the original one
- Now the *basic variables* are x_1,y_1,y_2 and the *non-basic variables* are x_2,x_3,y_3
- By construction again, we have a slack form with a basic solution in which all non-basic variables are 0, and all basic variables are ≥ 0
- In this new basic solution the goal function

$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

This is the *end* of the *first pivot* Observe

- all equations are replaced by equivalent equations, so the optimization problem is equivalent to the original one
- Now the *basic variables* are x_1,y_1,y_2 and the *non-basic variables* are x_2,x_3,y_3
- By construction again, we have a *slack form* with a *basic solution* in which *all non-basic variables are* 0, and *all basic variables are* 0
- In this new basic solution the goal function

$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

This is the *end* of the *first pivot* Observe

- all equations are replaced by equivalent equations, so the optimization problem is equivalent to the original one
- Now the *basic variables* are x_1,y_1,y_2 and the *non-basic variables* are x_2,x_3,y_3
- By construction again, we have a *slack form* with a *basic solution* in which *all non-basic variables are* 0, and *all basic variables are* 0
- In this new basic solution the goal function

$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

In this goal function

$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

the non-basic variable x_2 has a *positive* factor $\frac{1}{2}$: increasing x_2 is the goal of the *next pivot*, while the other non-basic variables remain 0

$$x_1 = 2 + \frac{1}{2}x_2 - \frac{1}{2}y_3$$

$$y_1 = 4 - \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

$$y_2 = 1 - \frac{1}{2}x_2 - x_3 + \frac{1}{2}y_3$$

$$x_1=2+\frac{1}{2}x_2\geq 0$$
. OK if x_2 increases $y_1=4-\frac{1}{2}x_2\geq 0$. only OK if $x_2\leq 8$ $y_2=1-\frac{1}{2}x_2\geq 0$, only OK if $x_2\leq 2$

So the maximal allowed value for x_2 is 2, in which case y_2 will get the value $0 \Longrightarrow \textit{pivot swapping } x_2$ and y_2

In this goal function

$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

the non-basic variable x_2 has a *positive* factor $\frac{1}{2}$: increasing x_2 is the goal of the *next pivot*, while the other non-basic variables remain 0

$$x_1 = 2 + \frac{1}{2}x_2 - \frac{1}{2}y_3$$

$$y_1 = 4 - \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

$$y_2 = 1 - \frac{1}{2}x_2 - x_3 + \frac{1}{2}y_3$$

$$x_1=2+rac{1}{2}x_2\geq 0.$$
 OK if x_2 increases $y_1=4-rac{1}{2}x_2\geq 0.$ only OK if $x_2\leq 8$ $y_2=1-rac{1}{2}x_2\geq 0,$ only OK if $x_2\leq 2$

So the maximal allowed value for x_2 is 2, in which case y_2 will get the value $0 \Longrightarrow \textit{pivot swapping } x_2$ and y_2

In this goal function

$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

the non-basic variable x_2 has a *positive* factor $\frac{1}{2}$: increasing x_2 is the goal of the *next pivot*, while the other non-basic variables remain 0

$$x_1 = 2 + \frac{1}{2}x_2 - \frac{1}{2}y_3$$

$$y_1 = 4 - \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

$$y_2 = 1 - \frac{1}{2}x_2 - x_3 + \frac{1}{2}y_3$$

$$\begin{array}{l} x_1=2+\frac{1}{2}x_2\geq 0. \text{ OK if } x_2 \text{ increases}\\ y_1=4-\frac{1}{2}x_2\geq 0. \text{ only OK if } x_2\leq 8\\ y_2=1-\frac{1}{2}x_2\geq 0, \text{ only OK if } x_2\leq 2 \end{array}$$

So the maximal allowed value for x_2 is 2, in which case y_2 will get the value $0 \Longrightarrow \textit{pivot swapping } x_2$ and y_2

In this goal function

$$z = 5 + \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

the non-basic variable x_2 has a *positive* factor $\frac{1}{2}$: increasing x_2 is the goal of the *next pivot*, while the other non-basic variables remain 0

$$x_1 = 2 + \frac{1}{2}x_2 - \frac{1}{2}y_3$$

$$y_1 = 4 - \frac{1}{2}x_2 + x_3 - \frac{1}{2}y_3$$

$$y_2 = 1 - \frac{1}{2}x_2 - x_3 + \frac{1}{2}y_3$$

$$x_1 = 2 + \frac{1}{2}x_2 \ge 0$$
. OK if x_2 increases $y_1 = 4 - \frac{1}{2}x_2 \ge 0$. only OK if $x_2 \le 8$ $y_2 = 1 - \frac{1}{2}x_2 \ge 0$, only OK if $x_2 \le 2$

So the maximal allowed value for x_2 is 2, in which case y_2 will get the value 0 \Longrightarrow pivot swapping x_2 and y_2

步骤 3: pivot swapping x_2 and y_2

$$y_2 = 1 - \frac{1}{2}x_2 - x_3 + \frac{1}{2}y_3$$

yields $x_2=2-2x_3-2y_2+y_3$, so in the goal function and in the other equations we replace x_2 by $2-2x_3-2y_2+y_3$, yielding

Maximize $z = 6 - y_2$ satisfying

$$x_1 = 3 - x_3 - y_2$$

$$x_2 = 2 - 2x_3 - 2y_2 + y_3$$

$$y_1 = 3 + 2x_3 + y_2 - y_3$$

步骤 3: pivot swapping x_2 and y_2

$$y_2 = 1 - \frac{1}{2}x_2 - x_3 + \frac{1}{2}y_3$$

yields $x_2=2-2x_3-2y_2+y_3$, so in the goal function and in the other equations we replace x_2 by $2-2x_3-2y_2+y_3$, yielding Maximize $z=6-y_2$ satisfying

$$x_1 = 3 - x_3 - y_2$$

$$x_2 = 2 - 2x_3 - 2y_2 + y_3$$

$$y_1 = 3 + 2x_3 + y_2 - y_3$$

Observation: since in

$$z = 6 - y_2$$

 y_2 should be ≥ 0 , the value z will always be ≤ 6

On the other hand, in the basic solution with

$$x_3 = y_2 = y_3 = 0$$

and

$$x_1 = 3, x_2 = 2, y_1 = 3$$

we obtain z = 6, so this basic solution yields the *maximal value* for z

Observation: since in

$$z = 6 - y_2$$

 y_2 should be ≥ 0 , the value z will always be ≤ 6

On the other hand, in the basic solution with

$$x_3 = y_2 = y_3 = 0$$

and

$$x_1 = 3, x_2 = 2, y_1 = 3$$

we obtain z=6, so this basic solution yields the *maximal value* for z

Solve a linear optimization problem in slack form maximize $z=v+\sum_{j=1}^n c_j x_j$ under a set of constraints of the shape

$$y_i = b_i + \sum_{j=1}^n a_{ij} x_j$$

with $b_i \geq 0$, for $i = 1, \ldots, k$

As long there exists j such that $c_j > 0$ do a *pivot*, that is

- find the highest value for x_j for which $b_i + a_{ij}x_j \ge 0$ for all i, and $b_i + a_{ij}x_j = 0$ for one particular i
- ullet swap x_i and y_i and bring the result in slack form

Solve a linear optimization problem in slack form maximize $z=v+\sum_{j=1}^n c_j x_j$ under a set of constraints of the shape

$$y_i = b_i + \sum_{j=1}^n a_{ij} x_j$$

with $b_i \geq 0$, for $i = 1, \ldots, k$

As long there exists j such that $c_j > 0$ do a *pivot*, that is

- find the highest value for x_j for which $b_i + a_{ij}x_j \ge 0$ for all i, and $b_i + a_{ij}x_j = 0$ for one particular i
- ullet swap x_i and y_i and bring the result in slack form

Solve a linear optimization problem in slack form maximize $z=v+\sum_{j=1}^n c_j x_j$ under a set of constraints of the shape

$$y_i = b_i + \sum_{j=1}^n a_{ij} x_j$$

with $b_i \geq 0$, for $i = 1, \ldots, k$

As long there exists j such that $c_j > 0$ do a *pivot*, that is

- find the highest value for x_j for which $b_i + a_{ij}x_j \ge 0$ for all i, and $b_i + a_{ij}x_j = 0$ for one particular i
- ullet swap x_i and y_i and bring the result in slack form

Solve a linear optimization problem in slack form maximize $z=v+\sum_{j=1}^n c_j x_j$ under a set of constraints of the shape

$$y_i = b_i + \sum_{j=1}^n a_{ij} x_j$$

with $b_i \geq 0$, for $i = 1, \ldots, k$

As long there exists j such that $c_j > 0$ do a *pivot*, that is

- find the highest value for x_j for which $b_i + a_{ij}x_j \ge 0$ for all i, and $b_i + a_{ij}x_j = 0$ for one particular i
- ullet swap x_i and y_i and bring the result in slack form

Solve a linear optimization problem in slack form maximize $z=v+\sum_{j=1}^n c_j x_j$ under a set of constraints of the shape

$$y_i = b_i + \sum_{j=1}^n a_{ij} x_j$$

with $b_i \geq 0$, for $i = 1, \ldots, k$

As long there exists j such that $c_j > 0$ do a *pivot*, that is

- find the highest value for x_j for which $b_i + a_{ij}x_j \ge 0$ for all i, and $b_i + a_{ij}x_j = 0$ for one particular i
- ullet swap x_j and y_i and bring the result in slack form

2.2 Solve SMT | Simplex Method

General remarks

- Optimization problems may be *unbounded*; in this mechanism this will be encountered if no equation yields an upper bound on x_i
- A pivot only requires complexity O(kn)
- If $c_j > 0$ for more than one value of j, then the procedure is non-deterministic
- Always choose smallest j with $c_j > 0$: then repetition of pivots will terminate
- Worst case: number of pivots may be exponential.
 - In practice the simplex method is very efficient

新问题: Until now: *only* find *optimal value* when starting by *basic solution* However, for SMT the situation is *opposite*: *no interest* in *optimal solution*, only in *existence* of *a solution*

2.2 Solve SMT | Simplex Method

General remarks

- Optimization problems may be *unbounded*; in this mechanism this will be encountered if no equation yields an upper bound on x_i
- A pivot only requires complexity O(kn)
- If $c_j > 0$ for more than one value of j, then the procedure is non-deterministic
- Always choose smallest j with $c_j > 0$: then repetition of pivots will terminate
- Worst case: number of pivots may be exponential.
 - In practice the simplex method is very efficient

新问题: Until now: *only* find *optimal value* when starting by *basic solution* However, for SMT the situation is *opposite*: *no interest* in *optimal solution*, only in *existence* of *a solution*

General remarks

- Optimization problems may be *unbounded*; in this mechanism this will be encountered if no equation yields an upper bound on x_i
- A pivot only requires complexity O(kn)
- If $c_j > 0$ for more than one value of j, then the procedure is non-deterministic
- Always choose smallest j with $c_j > 0$: then repetition of pivots will terminate
- Worst case: number of pivots may be exponential.
 - In practice the simplex method is very efficient

2.2 Solve SMT | Simplex Method

General remarks

- Optimization problems may be *unbounded*; in this mechanism this will be encountered if no equation yields an upper bound on x_i
- A pivot only requires complexity O(kn)
- If $c_j > 0$ for more than one value of j, then the procedure is non-deterministic
- Always choose smallest j with $c_j > 0$: then repetition of pivots will terminate
- Worst case: number of pivots may be exponential.
 - In practice the simplex method is very efficient

2.2 Solve SMT | Simplex Method

General remarks

- Optimization problems may be *unbounded*; in this mechanism this will be encountered if no equation yields an upper bound on x_i
- A pivot only requires complexity O(kn)
- If $c_j > 0$ for more than one value of j, then the procedure is non-deterministic
- Always choose smallest j with $c_j > 0$: then repetition of pivots will terminate
- Worst case: number of pivots may be exponential.
 - In practice the simplex method is very efficient

2.2 Solve SMT | Simplex Method

General remarks

- Optimization problems may be *unbounded*; in this mechanism this will be encountered if no equation yields an upper bound on x_i
- A pivot only requires complexity O(kn)
- If $c_j > 0$ for more than one value of j, then the procedure is non-deterministic
- Always choose smallest j with $c_j > 0$: then repetition of pivots will terminate
- Worst case: number of pivots may be exponential.
 - In practice the simplex method is very efficient

General remarks

- Optimization problems may be *unbounded*; in this mechanism this will be encountered if no equation yields an upper bound on x_i
- A pivot only requires complexity O(kn)
- If $c_j > 0$ for more than one value of j, then the procedure is non-deterministic
- Always choose smallest j with $c_j > 0$: then repetition of pivots will terminate
- Worst case: number of pivots may be exponential.
 - In practice the simplex method is very efficient

2.2 Solve SMT | Simplex Method

General remarks

- Optimization problems may be *unbounded*; in this mechanism this will be encountered if no equation yields an upper bound on x_i
- A pivot only requires complexity O(kn)
- If $c_j > 0$ for more than one value of j, then the procedure is non-deterministic
- Always choose smallest j with $c_j > 0$: then repetition of pivots will terminate
- Worst case: number of pivots may be exponential.
 - In practice the simplex method is very efficient

定义: feasible

A set of constraints is called *feasible* if it admits a solution.

- 问题: how to apply the *simplex method* presented so far
 - to determine *feasibility* of *any* given set of inequalities

问题定义: feasibility

For a set of linear inequalities

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

for i = 1, ..., k, and $x_j \ge 0$ for j = 1, ..., n.

2.2 Solve SMT | Check feasibility by the Simplex method

定义: feasible

A set of constraints is called *feasible* if it admits a solution.

问题: how to apply the *simplex method* presented so far

• to determine *feasibility* of *any* given set of inequalities

问题定义: feasibility

For a set of linear inequalities

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_n$$

for $i=1,\ldots,k$, and $x_j\geq 0$ for $j=1,\ldots,n$.

2.2 Solve SMT | Check feasibility by the Simplex method

定义: feasible

A set of constraints is called *feasible* if it admits a solution.

问题: how to apply the simplex method presented so far

• to determine *feasibility* of *any* given set of inequalities

问题定义: feasibility

For a set of linear inequalities

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

for i = 1, ..., k, and $x_j \ge 0$ for j = 1, ..., n.

2.2 Solve SMT | Check feasibility by the Simplex method

定义: feasible

A set of constraints is called *feasible* if it admits a solution.

问题: how to apply the simplex method presented so far

• to determine *feasibility* of *any* given set of inequalities

问题定义: feasibility

For a set of linear inequalities

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

for $i = 1, \ldots, k$, and $x_i \ge 0$ for $j = 1, \ldots, n$.

问题定义: feasibility

For a set of linear inequalities

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

for $i=1,\ldots,k$, and $x_j\geq 0$ for $j=1,\ldots,n$.

Note: (not all $b_i \geq 0$)

方法思路: introduce a fresh variable $z \ge 0$ Extend the set of inequalities to

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - z \le b_i$$

for $i = 1, \dots, k$

问题定义: feasibility

For a set of linear inequalities

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

for $i = 1, \ldots, k$, and $x_j \ge 0$ for $j = 1, \ldots, n$.

Note: (not all $b_i \geq 0$)

方法思路: introduce a *fresh variable* $z \ge 0$

Extend the set of inequalities to

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - z \le b_i$$

for
$$i = 1, \ldots, k$$

The extended problem

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - z \le b_i$$

is *always* feasible, even if $b_i \leq 0$: choose z very *large*

定理

Original problem feasible \Leftrightarrow maximal value of -z is 0 in extended problem

证明:

- (\Leftarrow) If extended problem has solution with -z=0, then it is solution of the original problem, so feasible
- (\Rightarrow) If original problem feasible, then extended one has solution with -z=0
 - Since $z \ge 0$, this is the maximal value for -z

The extended problem

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - z \le b_i$$

is *always* feasible, even if $b_i \leq 0$: choose z very *large*

定理

Original problem feasible \Leftrightarrow maximal value of -z is 0 in extended problem

证明:

- (\Leftarrow) If extended problem has solution with -z=0, then it is solution of the original problem, so feasible
- (\Rightarrow) If original problem feasible, then extended one has solution with -z=0
 - Since $z \ge 0$, this is the maximal value for -z

The extended problem

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - z \le b_i$$

is *always* feasible, even if $b_i \leq 0$: choose z very *large*

定理

Original problem feasible \Leftrightarrow maximal value of -z is 0 in extended problem

证明:

- (\Leftarrow) If extended problem has solution with -z=0, then it is solution of the original problem, so feasible
- (\Rightarrow) If original problem feasible, then extended one has solution with -z=0
 - Since $z \ge 0$, this is the maximal value for -z

定理

Original problem feasible \Leftrightarrow maximal value of -z is 0 in extended problem

So now we want to maximize - z in the extended problem by the simplex method

例: 问题: Check feasibility

Find values $x, y \ge 0$ satisfying

$$-x - 3y \le -12$$
$$x + y \le 10$$
$$-x + y \le -7$$

步骤 1:

$$-x - 3y - z \le -12$$
$$x + y - z \le 10$$
$$-x + y - z \le -7$$

定理

Original problem feasible \Leftrightarrow maximal value of -z is 0 in extended problem

So now we want to maximize - z in the extended problem by the simplex method

例: 问题: Check feasibility

Find values $x, y \ge 0$ satisfying

$$-x - 3y \le -12$$
$$x + y \le 10$$
$$-x + y \le -7$$

步骤 1:

$$-x - 3y - z \le -12$$
$$x + y - z \le 10$$
$$-x + y - z \le -7$$

定理

Original problem feasible \Leftrightarrow maximal value of -z is 0 in extended problem

So now we want to maximize - z in the extended problem by the simplex method

例: 问题: Check feasibility

Find values $x, y \ge 0$ satisfying

$$-x - 3y \le -12$$
$$x + y \le 10$$
$$-x + y \le -7$$

步骤 1:

$$-x - 3y - z \le -12$$
$$x + y - z \le 10$$

$$-x + y - z \le -7$$

定理

Original problem feasible \Leftrightarrow maximal value of -z is 0 in extended problem

So now we want to maximize - z in the extended problem by the simplex method

例: 问题: Check feasibility

Find values $x, y \ge 0$ satisfying

$$-x - 3y \le -12$$
$$x + y \le 10$$
$$-x + y \le -7$$

步骤 1:

$$-x - 3y - z \le -12$$
$$x + y - z \le 10$$
$$-x + y - z \le -7$$

Fine values $x, y \ge 0$ satisfying

$$-x - 3y \le -12$$
$$x + y \le 10$$
$$-x + y \le -7$$

步骤 1:

Introduce z for maximizing -z:

$$-x - 3y - z \le -12$$
$$x + y - z \le 10$$
$$-x + y - z \le -7$$

步骤 2: Slack form:

Maximize -z satisfying

$$y_1 = -12 + x + 3y + z$$

$$y_2 = 10 - x - y + z$$

$$y_3 = -7 + x - y + z$$

问题分析: Since b_i may be negative, we may have no basic solution with all variables ≥ 0 解决技巧: As the first pivot swap, the non-basic variable z with the basic variable y_i for i for which b_i is the most negative

Fine values $x, y \ge 0$ satisfying

$$-x - 3y \le -12$$
$$x + y \le 10$$
$$-x + y \le -7$$

步骤 1:

Introduce z for maximizing -z:

$$-x - 3y - z \le -12$$
$$x + y - z \le 10$$
$$-x + y - z \le -7$$

步骤 2: Slack form:

Maximize -z satisfying

$$y_1 = -12 + x + 3y + z$$

 $y_2 = 10 - x - y + z$
 $y_3 = -7 + x - y + z$

问题分析: Since b_i may be negative, we may have no basic solution with all variables ≥ 0 解决技巧: As the first pivot swap, the non-basic variable z with the basic variable y_i for i for which b_i is the most negative

Fine values $x, y \ge 0$ satisfying

$$-x - 3y \le -12$$
$$x + y \le 10$$
$$-x + y \le -7$$

步骤 1:

Introduce z for maximizing -z:

$$-x - 3y - z \le -12$$
$$x + y - z \le 10$$
$$-x + y - z \le -7$$

步骤 2: Slack form:

Maximize -z satisfying

$$y_1 = -12 + x + 3y + z$$

$$y_2 = 10 - x - y + z$$

$$y_3 = -7 + x - y + z$$

问题分析: Since b_i may be negative, we may have *no* basic solution with all variables ≥ 0

解决技巧: As the first pivot swap, the non-basic variable z with the basic variable y_i for i for which b_i is the most negative

Fine values $x, y \ge 0$ satisfying

$$-x - 3y \le -12$$
$$x + y \le 10$$
$$-x + y \le -7$$

步骤 1:

Introduce z for maximizing -z:

$$-x - 3y - z \le -12$$
$$x + y - z \le 10$$
$$-x + y - z \le -7$$

步骤 2: Slack form:

Maximize -z satisfying

$$y_1 = -12 + x + 3y + z$$

 $y_2 = 10 - x - y + z$
 $y_3 = -7 + x - y + z$

问题分析: Since b_i may be negative, we may have no basic solution with all variables ≥ 0 解决技巧: As the first pivot swap, the non-basic variable z with the basic variable y_i for i for which b_i is the $most\ negative$

步骤 2:

Maximize
$$-z$$
 satisfying
$$y_1 = -12 + x + 3y + z$$

$$y_2 = 10 - x - y + z$$

$$y_3 = -7 + x - y + z$$

Most negative b_i is $b_1 = -12$, so do pivot on z and y_1

步骤 3: pivot z and y, replace every $z = 12 - x - 3y + y_1$

Maximize
$$-12 + x + 3y - y_1$$
 satisfying

$$z = 12 - x - 3y + y_1$$
$$y_2 = 22 - 2x - 4y + y_1$$
$$y_3 = 5 - 4y + y_1$$

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 2:

Maximize
$$-z$$
 satisfying
$$y_1 = -12 + x + 3y + z$$

$$y_2 = 10 - x - y + z$$

$$y_3 = -7 + x - y + z$$

Indeed x=y=z=0 does not yield a basic solution, since then $y_1=-12$ and $y_3=-7$ do not satisfy $y_i\geq 0$

Most negative b_i is $b_1 = -12$, so do pivot on z and y_1

步骤 3: pivot z and y, replace every $z=12-x-3y+y_1$

Maximize $-12 + x + 3y - y_1$ satisfying

$$z = 12 - x - 3y + y_1$$
$$y_2 = 22 - 2x - 4y + y_1$$
$$y_3 = 5 - 4y + y_1$$

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 2:

 ${\sf Maximize}\ -z\ {\sf satisfying}$

$$y_1 = -12 + x + 3y + z$$
$$y_2 = 10 - x - y + z$$

$$y_2 = 7 + x \quad y + x$$

$$y_3 = -7 + x - y + z$$

Indeed x=y=z=0 does not yield a basic solution, since then $y_1=-12$ and $y_3=-7$ do not satisfy $y_i\geq 0$

Most negative b_i is $b_1 = -12$, so do pivot on z and y_1

步骤 3: pivot z and y, replace every $z = 12 - x - 3y + y_1$

Maximize $-12 + x + 3y - y_1$ satisfying

$$z = 12 - x - 3y + y_1$$

$$y_2 = 22 - 2x - 4y + y$$

$$y_3 = 5 - 4y + y_1$$

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 2:

Maximize -z satisfying

$$y_1 = -12 + x + 3y + z$$

 $y_2 = 10 - x - y + z$
 $y_3 = -7 + x - y + z$

Indeed x=y=z=0 does not yield a basic solution, since then $y_1=-12$ and $y_3=-7$ do not satisfy $y_i\geq 0$

Most negative b_i is $b_1 = -12$, so do pivot on z and y_1

步骤 3: pivot z and y, replace every $z = 12 - x - 3y + y_1$

 ${\sf Maximize}\ -12 + x + 3y - y_1\ {\sf satisfying}$

$$z = 12 - x - 3y + y_1$$
$$y_2 = 22 - 2x - 4y + y_1$$
$$y_3 = 5 - 4y + y_1$$

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 2:

Maximize -z satisfying

$$y_1 = -12 + x + 3y + z$$

 $y_2 = 10 - x - y + z$
 $y_3 = -7 + x - y + z$

Indeed now we have a *basic* solution:

$$\begin{aligned} x &= y = y_1 = 0, \\ z &= 12, y_2 = 22, y_3 = 5, \\ \mathrm{all} &\geq 0 \end{aligned}$$

Most negative b_i is $b_1 = -12$, so do pivot on z and y_1

步骤 3: pivot z and y, replace every $z = 12 - x - 3y + y_1$

 ${\sf Maximize}\ -12 + x + 3y - y_1\ {\sf satisfying}$

$$z = 12 - x - 3y + y_1$$
$$y_2 = 22 - 2x - 4y + y_1$$
$$y_3 = 5 - 4y + y_1$$

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 3: pivot z and y, replace every $z = 12 - x - 3y + y_1$

Maximize
$$-12+x+3y-y_1$$
 satisfying
$$z=12-x-3y+y_1$$

$$y_2=22-2x-4y+y_1$$

$$y_3=5-4y+y_1$$

From now on: proceed by simplex algorithm as before Maximize $-12+x+3y-y_1$, so swap x with z,y_2 or y

步骤 4: pivot: swap ${\sf x}$ with y_2

Maximize
$$-1+y-\frac{1}{2}y_1-\frac{1}{2}y_2$$
 satisfying
$$x=11-2y+\frac{1}{2}y_1-\frac{1}{2}y_2$$

$$z=1-y+\frac{1}{2}y_1+\frac{1}{2}y_2$$

$$y_3=5-4y+y_1$$

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 3: pivot z and y, replace every $z = 12 - x - 3y + y_1$

Maximize
$$-12+x+3y-y_1$$
 satisfying
$$z=12-x-3y+y_1$$

$$y_2=22-2x-4y+y_1$$

$$y_3=5-4y+y_1$$

From now on: proceed by simplex algorithm as before

Maximize $-12 + x + 3y - y_1$, so swap x with z, y_2 or y_3

步骤 4: pivot: swap imes with y_2

Maximize
$$-1+y-\frac{1}{2}y_1-\frac{1}{2}y_2$$
 satisfying
$$x=11-2y+\frac{1}{2}y_1-\frac{1}{2}y_2$$

$$z=1-y+\frac{1}{2}y_1+\frac{1}{2}y_2$$

$$y_3=5-4y+y_1$$

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 3: pivot z and y, replace every $z = 12 - x - 3y + y_1$

Maximize
$$-12+x+3y-y_1$$
 satisfying
$$z=12-x-3y+y_1$$

$$y_2=22-2x-4y+y_1$$

$$y_3=5-4y+y_1$$

From now on: proceed by simplex algorithm as before Maximize $-12+x+3y-y_1$, so swap x with z,y_2 or y_3

步骤 4: pivot: swap ${\sf x}$ with y_2

Maximize
$$-1+y-\frac{1}{2}y_1-\frac{1}{2}y_2$$
 satisfying
$$x=11-2y+\frac{1}{2}y_1-\frac{1}{2}y_2$$

$$z=1-y+\frac{1}{2}y_1+\frac{1}{2}y_2$$

$$y_3=5-4y+y_1$$

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 3: pivot z and y, replace every $z = 12 - x - 3y + y_1$

Maximize
$$-12+x+3y-y_1$$
 satisfying
$$z=12-x-3y+y_1$$

$$y_2=22-2x-4y+y_1$$

$$y_3=5-4y+y_1$$

From now on: proceed by simplex algorithm as before Maximize $-12 + x + 3y - y_1$, so swap x with z, y_2 or y_3

步骤 4: pivot: swap x with y_2

Maximize
$$-1+y-\frac12y_1-\frac12y_2$$
 satisfying
$$x=11-2y+\frac12y_1-\frac12y_2$$

$$z=1-y+\frac12y_1+\frac12y_2$$

$$y_3=5-4y+y_1$$

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 4: pivot: swap x with y_2

Maximize
$$-1+y-\frac{1}{2}y_1-\frac{1}{2}y_2$$
 satisfying
$$x=11-2y+\frac{1}{2}y_1-\frac{1}{2}y_2$$

$$z=1-y+\frac{1}{2}y_1+\frac{1}{2}y_2$$

$$y_3=5-4y+y_1$$

步骤 5: pivot: swap y with a

Maximize -z satisfying

$$x = 9 \cdots z \cdots y_1 \cdots y_2$$

$$y = 1 - z + \frac{1}{2}y_1 + \frac{1}{2}y_2$$

$$y_3 = 1 \cdots z \cdots y_1 \cdots y_2$$

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 4: pivot: swap x with y_2

Maximize
$$-1+y-\frac{1}{2}y_1-\frac{1}{2}y_2$$
 satisfying
$$x=11-2y+\frac{1}{2}y_1-\frac{1}{2}y_2$$

$$z=1-y+\frac{1}{2}y_1+\frac{1}{2}y_2$$

$$y_3=5-4y+y_1$$

步骤 5: pivot: swap y with z

Maximize -z satisfying

$$x = 9 \cdots z \cdots y_1 \cdots y_2$$

$$y = 1 - z + \frac{1}{2}y_1 + \frac{1}{2}y_2$$

$$y_3 = 1 \cdots z \cdots y_1 \cdots y_2$$

4 D > 4 B > 4 B > 4 B > 6 C

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 5: pivot: swap y with z

Maximize -z satisfying

$$x = 9 \cdots z \cdots y_1 \cdots y_2$$

$$y = 1 - z + \frac{1}{2}y_1 + \frac{1}{2}y_2$$

$$y_3 = 1 \cdots z \cdots y_1 \cdots y_2$$

Surprise: we are back at our original maximization function -z Since it has no positive factors anymore, the resulting basic solution

$$z = y_1 = y_2 = 0, x = 9, y = 1, y_3 = 1$$

yields the optimal value -z=0

Since -z = 0, the original set of inequalities

$$-x - 3y \le 12 \land x + y \le 10 \land -x + y \le -7$$

is satisfiable: we found the solution x=9,y=1

2.2 Solve SMT | Check feasibility by the Simplex method

步骤 5: pivot: swap y with z

Maximize -z satisfying

$$x = 9 \cdots z \cdots y_1 \cdots y_2$$

$$y = 1 - z + \frac{1}{2}y_1 + \frac{1}{2}y_2$$

$$y_3 = 1 \cdots z \cdots y_1 \cdots y_2$$

Surprise: we are back at our original maximization function -z Since it has no positive factors anymore, the resulting basic solution

$$z = y_1 = y_2 = 0, x = 9, y = 1, y_3 = 1$$

yields the optimal value -z=0

Since -z = 0, the original set of inequalities

$$-x - 3y \le 12 \land x + y \le 10 \land -x + y \le -7$$

is satisfiable: we found the solution x=9,y=1

2.2 Solve SMT | Check feasibility by the Simplex method

Concluding:

• We saw how the check on *feasibility* of a set of linear inequalities can be executed by *adding a fresh variable* z and maximize -z by the original *simplex* approach

引申: Linear programming (线性规划问题)

- Given a set of linear inequalities on real valued variables and a linear goal function, determine whether this is feasible
- If so, find the maximal value of the goal function satisfying the inequalities

复杂度: Worst case the number of pivots is exponential, but *in practice* exponential blow-up is *rare*.

2.2 Solve SMT | Check feasibility by the Simplex method

Concluding:

• We saw how the check on *feasibility* of a set of linear inequalities can be executed by *adding a fresh variable* z and maximize -z by the original *simplex* approach

引申: Linear programming (线性规划问题)

- Given a set of linear inequalities on real valued variables and a linear goal function, determine whether this is feasible
- If so, find the maximal value of the goal function satisfying the inequalities

复杂度: Worst case the number of pivots is exponential, but *in practice* exponential blow-up is *rare*.

2.2 Solve SMT | Check feasibility by the Simplex method

Concluding:

• We saw how the check on *feasibility* of a set of linear inequalities can be executed by *adding a fresh variable* z and maximize -z by the original *simplex* approach

引申: Linear programming (线性规划问题)

- Given a set of linear inequalities on real valued variables and a linear goal function, determine whether this is feasible
- If so, find the maximal value of the goal function satisfying the inequalities

复杂度: Worst case the number of pivots is exponential, but in practice exponential blow-up is rare.

2.2 Solve SMT | Check feasibility by the Simplex method

Concluding:

• We saw how the check on *feasibility* of a set of linear inequalities can be executed by *adding a fresh variable* z and maximize -z by the original *simplex* approach

引申: Linear programming (线性规划问题)

- Given a set of linear inequalities on real valued variables and a linear goal function, determine whether this is feasible
- If so, find the maximal value of the goal function satisfying the inequalities

复杂度: Worst case the number of pivots is exponential, but in practice exponential blow-up is rare.

2.2 Solve SMT | Apply Simplex method to SMT

We saw how the *simplex method*

- applies for optimizing a goal function starting from a basic solution,
- also check *feasibility*: whether a set of linear inequalities has a solution
- applies for linear programming

Now: From SAT to SMT

- a CNF: a conjunction of clauses
- a clause: a disjunction of literals
- a literal: an atom or a negation of an atom
- an atom:
 - For SAT: just a boolean variable
 - for *SMT*: an *expression* in the *corresponding theory*, in our case: *a linear inequality*

2.2 Solve SMT | Apply Simplex method to SMT

We saw how the *simplex method*

- applies for optimizing a goal function starting from a basic solution,
- also check feasibility: whether a set of linear inequalities has a solution
- applies for linear programming

Now: From *SAT* to SMT

定义与比较:

- a CNF: a conjunction of clauses
- a clause: a disjunction of literals
- a literal: an atom or a negation of an atom
- an atom:
 - For SAT: just a boolean variable
 - for *SMT*: an *expression* in the *corresponding theory*, in our case: *a linear inequality*

2.2 Solve SMT | Apply Simplex method to SMT

We saw how the *simplex method*

- applies for optimizing a goal function starting from a basic solution,
- also check feasibility: whether a set of linear inequalities has a solution
- applies for linear programming

Now: From *SAT* to SMT

定义与比较:

- a CNF: a conjunction of clauses
- a clause: a disjunction of literals
- a literal: an atom or a negation of an atom
- an atom:
 - For SAT: just a boolean variable
 - for *SMT*: an *expression* in the *corresponding theory*, in our case: *a linear inequality*

2.2 Solve SMT | Apply Simplex method to SMT

We saw how the *simplex method*

- applies for optimizing a goal function starting from a basic solution,
- also check feasibility: whether a set of linear inequalities has a solution
- applies for linear programming

Now: From *SAT* to SMT

定义与比较:

- a CNF: a conjunction of clauses
- a clause: a disjunction of literals
- a literal: an atom or a negation of an atom
- an atom:
 - For SAT: just a boolean variable
 - for SMT: an expression in the corresponding theory, in our case: a linear inequality

2.2 Solve SMT | Apply Simplex method to SMT

We saw how the *simplex method*

- applies for optimizing a goal function starting from a basic solution,
- also check feasibility: whether a set of linear inequalities has a solution
- applies for linear programming

Now: From *SAT* to SMT

定义与比较:

- a CNF: a conjunction of clauses
- a *clause*: a disjunction of *literals*
- a literal: an atom or a negation of an atom
- an atom:
 - For *SAT*: just a boolean *variable*
 - for SMT: an expression in the corresponding theory, in our case: a linear inequality

2.2 Solve SMT | Apply Simplex method to SMT

We saw how the *simplex method*

- applies for optimizing a goal function starting from a basic solution,
- also check feasibility: whether a set of linear inequalities has a solution
- applies for linear programming

Now: From *SAT* to SMT

定义与比较:

- a CNF: a conjunction of clauses
- a *clause*: a disjunction of *literals*
- a literal: an atom or a negation of an atom
- an atom:
 - For SAT: just a boolean variable
 - for *SMT*: an expression in the corresponding theory, in our case: a linear inequality

2.2 Solve SMT | Apply Simplex method to SMT

We saw how the *simplex method*

- applies for optimizing a goal function starting from a basic solution,
- also check feasibility: whether a set of linear inequalities has a solution
- applies for linear programming

Now: From *SAT* to SMT

定义与比较:

- a CNF: a conjunction of clauses
- a *clause*: a disjunction of *literals*
- a literal: an atom or a negation of an atom
- an atom:
 - For *SAT*: just a boolean *variable*
 - for SMT: an expression in the corresponding theory, in our case: a linear inequality

2.2 Solve SMT | Apply Simplex method to SMT

We saw how the *simplex method*

- applies for optimizing a goal function starting from a basic solution,
- also check *feasibility*: whether a set of linear inequalities has a solution
- applies for linear programming

Now: From *SAT* to SMT

定义与比较:

- a CNF: a conjunction of clauses
- a clause: a disjunction of literals
- a literal: an atom or a negation of an atom
- an atom:
 - For *SAT*: just a boolean *variable*
 - for SMT: an expression in the corresponding theory, in our case: a linear inequality

2.2 Solve SMT | Apply Simplex method to SMT | Example of extending CDCL

Consider the CNF of the following three clauses

(1)
$$x \ge y + 1 \lor z \ge y + 1$$

(2)
$$y \ge z$$

(3)
$$z \ge x + 1$$

解:

$$(y \ge z)$$

Inipropagate on (2)

Unipropagate on (1)

since $y \ge z \land z \ge y + 1$ is unfeasible by Simplex

Fail on (3)

since $y \ge z \land x \ge y + 1 \land z \ge x + 1$ is unfeasible

This proves that the given CNF is unsatisfiable

2.2 Solve SMT | Apply Simplex method to SMT | Example of extending CDCL

Consider the CNF of the following three clauses

(1)
$$x \ge y + 1 \lor z \ge y + 1$$

(2)
$$y \ge z$$

(3)
$$z \ge x + 1$$

解:

$$(y \ge z)$$
$$(y > z) (x > y + 1)$$

Unipropagate on (2)

Unipropagate on (1)

since $y \ge z \land z \ge y + 1$ is unfeasible by Simplex

Fail on (3)

since $y \ge z \land x \ge y + 1 \land z \ge x + 1$ is unfeasible

This proves that the given CNF is unsatisfiable

This is how current SMT solvers (Z3, CVC4, Yices, ...) deal with linear inequalities

- ullet Simplex is called very often for combination of M and literals from clauses
- Other theories: combine CDCL with efficient method for checking whether a conjunction of literals is contradictory
- Integer Linear programming (ILP), 整数线性规划 is harder (even NP-complete), but effectively supported by current SMT solvers

This is how current SMT solvers (Z3, CVC4, Yices, ...) deal with linear inequalities

- ullet Simplex is called very often for combination of M and literals from clauses
- Other theories: combine CDCL with efficient method for checking whether a conjunction of literals is contradictory
- Integer Linear programming (ILP), 整数线性规划 is harder (even NP-complete), but effectively supported by current SMT solvers

This is how current SMT solvers (Z3, CVC4, Yices, ...) deal with linear inequalities

- ullet Simplex is called very often for combination of M and literals from clauses
- Other theories: combine CDCL with efficient method for checking whether a conjunction of literals is contradictory
- Integer Linear programming (ILP), 整数线性规划 is harder (even NP-complete), but effectively supported by current SMT solvers

This is how current SMT solvers (Z3, CVC4, Yices, ...) deal with linear inequalities

- ullet Simplex is called very often for combination of M and literals from clauses
- Other theories: combine CDCL with efficient method for checking whether a conjunction of literals is contradictory
- Integer Linear programming (ILP), 整数线性规划 is harder (even NP-complete), but effectively supported by current SMT solvers

This is how current SMT solvers (Z3, CVC4, Yices, ...) deal with linear inequalities

- ullet Simplex is called very often for combination of M and literals from clauses
- Other theories: combine CDCL with efficient method for checking whether a conjunction of literals is contradictory
- Integer Linear programming (ILP), 整数线性规划 is harder (even NP-complete), but effectively supported by current SMT solvers

作业

使用 Simplex Method, 求解如下问题:

1. Maximize $z = 1 + 2x_1 + 3x_2 + 4x_3$ satisfying the constraints:

$$x_1 + 2x_2 + 3x_3 \le 10$$
$$x_1 - x_3 \le 3$$
$$-x_2 + 2x_3 \le 5$$

where $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

2. Fine values $x, y \ge 0$ satisfying

$$x - y \le -3$$
$$2x + y \le 7$$
$$-x - 2y \le -8$$