形式化方法导引

第 4 章 逻辑问题求解 4.2 理论 - (3) CNF 与 Horn Clauses

黄文超

https://faculty.ustc.edu.cn/huangwenchao

→ 教学课程 → 形式化方法导引

2.3 CNF and Horn Clauses | 回顾

回顾: SAT 求解所遇到的问题:

Provable equivalence:

rules 太多: 推演过于复杂, 符号也有冗余

• 减少冗余的符号,设计自动推演算法

问题: 如何减少冗余的符号,设计自动推演算法? 先给部分结果:

- 比给部分结果:
 - CNF (conjunctive normal form) 合取范式
 - 取如下 (一元、二元) 符号
 - {∧, ∨, ¬}
 - Horn clauses 霍恩子句
 - 取如下 (一元、二元) 符号
 - $\{\land, \rightarrow\}$

2.3 CNF and Horn Clauses | 回顾

回顾: SAT 的一种求解思路:

Two Problems:

- Problem 1: Checking SAT of a proposition formula
- Problem 2: Checking SAT of a CNF formula

How to solve problem 1?

- Step 1: Transform Problem 1 to Problem 2
- Step 2: Solve Problem 2.

Step 1 (one way by applying the following rules):

- \neg , \vee , \wedge : Do nothing
- $\bullet \to : p \to q \equiv \neg p \lor q$
- \leftrightarrow : $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

Step 1 (another clever way): *Tseitin transformation*.

Step 2: 已解

2.3 CNF and Horn Clauses | 本节内容

本节内容:

How to transform a propositional formula to CNF?

- challenge:
 - show how it is possible
 - why a naive solution may blow up
- Tseitin transformation
 - linear in the size of the formula
 - used in current SAT solvers

How to solve SAT based on *Horn clauses* instead of CNF?

2.3 CNF and Horn Clauses | Transform a propositional formula to CNF | Challenges

For any formula ϕ we can make its truth table

For any 0 in this truth table, we can make a correpsonding clause

p	\overline{q}	r	ϕ	$p \lor \neg q \lor r$	$\neg p \vee q \vee \neg r$	$\neg p \lor \neg q \lor \neg r$
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	0	0	0	1	1
0	1	1	1	1	1	1
1	0	0	1	1	1	1
1	0	1	0	1	0	1
1	1	0	1	1	1	1
1	1	1	0	1	1	0

Now the conjunction $(p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$ of these clauses has the same truth table as ϕ , so it is logically equivalent to ϕ

2.3 CNF and Horn Clauses | Transform a propositional formula to CNF | Challenges

This approach always works: if the truth table of ϕ contains k 0's, then we obtain a CNF consisting of k clauses

Drawback: this k may be very large

- ullet consider the case: n variables in ϕ
 - How many clauses for constructing ϕ ?
 - How many literals for each clause?

Good case: A smaller CNF logically equivalent to ϕ may exist, have clauses of $\leq n$ literals

• Example: $p \land (\neg q \lor r)$ is a CNF with 2 clauses, having 5 0's in truth table of 8 rows

Bad case: For some formulas the exponential number of clauses is unavoidable (见下页)

-2. 理论

This approach always works: if the truth table of ϕ contains k 0's, then we obtain a CHF consisting of k classes

D'enabeck: this k may be very large

o consider the case: κ variables in ϕ How many classes for constructing ϕ^2

9 神冷

Good case: A smaller CNF logically equivalent to ϕ may exist, have clauses of $\leq n$ literals

• Example: $p \land (\neg \phi \lor p)$ is a CNF with 2 clauses, having 5 0's in truth

. How many literals for each clause?

table of 8 rows

Bad case: For some formulas the exponential number of clauses is unavoidable (见下页)

Drawback: if there are n variables, then the truth table has 2^n rows: exponential in n

All of these clauses have exactly n literals

2.3 CNF and Horn Clauses | Transform a propositional formula to CNF | Challenges

Example: $\Phi: (\cdots ((p_1 \leftrightarrow p_2) \leftrightarrow p_3) \cdots \leftrightarrow p_n)$

This formula yields true iff an *even number* of $p_i's$ has the value false

命题

Let X be a CNF satisfying $\Phi \equiv X$

Then every clause C in X contains exactly n literals

证明:

Assume not, then some p_i does not occur in a clause C of X

Then you can give values to the remaining variables such that C is false, and X is false too, independent of the value of p_i

Swapping values of p_i does not swap values of X, contradicting $\Phi \equiv X$

2.3 CNF and Horn Clauses \mid Transform a propositional formula to CNF \mid Challenges

Example: $\Phi: (\cdots ((p_1 \leftrightarrow p_2) \leftrightarrow p_3) \cdots \leftrightarrow p_n)$

命题

Let X be a CNF satisfying $\Phi \equiv X$

Then every clause C in X contains exactly n literals

The truth table of Φ contains 2^n rows, half of which containing 0

So exactly 2^{n-1} rows contain 0

Every clause of exactly n literals has one 0 in its truth table

So we need 2^{n-1} such clauses to obtain the truth table of Φ

So for this Φ the *exponential* size is unavoidable

2.3 CNF and Horn Clauses | Transform a propositional formula to CNF | Challenges

Summarizing the *challenge*:

- ullet For any propositional formula ϕ , it is possible to find a logically equivalent CNF
- Bad case: but the size of this CNF may be exponential

新方法: Tseitin transformation (见下页)

Tseitin transformation

• Linear transformation of arbitrary propositional formula to CNF

思路: Give a name to every subformula (except literals) and use this name as a *fresh* variable

- \bullet For every formula ϕ on ≤ 3 variables there is a small CNF $\mathit{cnf}(\phi) \equiv \phi$
- Transform a big formula ϕ to the conjunction of $cnf(\phi_i)$ for many small formulas ϕ_i obtained from ϕ , one for each subformula

More precisely, for every subformula ψ , we define

- $n_{\psi} = \psi$, if ψ is a literal
- $n_{\psi}=$ the name of ψ , otherwise

└─2. 理论

Tabilit transformation

• Linear transformation of arbitrary propositional formula to CNF

Big: Give a name to every subformula (except literals) and use this name as a few available

2. 理论

 $_{\bullet}$ For every formula ϕ on ≤ 3 variables there is a small CNF $cnf(\phi) \equiv \phi$ $_{\bullet}$ Transform a big formula ϕ to the conjunction of $cnf(\phi_i)$ for many small formulas ψ , obtained from ϕ , one for each subformula More pecisis ψ , for every subformula ψ , we define

• $n_{\psi} = \psi$, if ψ is a literal • $n_{\psi} = +$ the name of ψ , otherwise

参考论文: GS Tseitin, On the complexity of derivation in propositional calculus, 引用次数:1973

2.3 CNF and Horn Clauses \mid Tseitin transformation

More precisely, for every subformula ψ

- $n_{\psi} = \psi$, if ψ is a literal
- ullet $n_{\psi}=$ the name of ψ , otherwise

The Tseitin transformation $T(\phi)$ of ϕ , is defined to be the CNF consisting of:

- \bullet n_{ψ}
- $\mathit{cnf}(q \leftrightarrow \neg n_{\psi})$ for every non-literal subformula of the shape $\neg \psi$ having name q
- $\mathit{cnf}(q \leftrightarrow (n_{\psi_1} \diamond n_{\psi_2}))$ for every subformula of the shape $\psi_1 \diamond \psi_2$ having name q, for

$$\diamond \in \{\lor, \land, \rightarrow, \leftrightarrow\}$$

Example ϕ :

$$\underbrace{(\neg s \land p)}_{B} \leftrightarrow \underbrace{(\underbrace{(q \to r)}_{D} \lor \neg p)}_{C}$$

yields $T(\phi)$:

$$\begin{array}{l} n_{\phi} \wedge \\ \operatorname{cnf}(n_{\phi} \leftrightarrow (B \leftrightarrow C)) \wedge \\ \operatorname{cnf}(B \leftrightarrow (\neg s \wedge p)) \wedge \\ \operatorname{cnf}(C \leftrightarrow (D \vee \neg p)) \wedge \\ \operatorname{cnf}(D \leftrightarrow (q \rightarrow r)) \end{array}$$

定理

 ϕ is satisfiable if and only if $T(\phi)$ is satisfiable

证明: 略(若感兴趣, 可见 note)

剩下的问题: We still need to compute the formula $\mathit{cnf}(n_\psi \leftrightarrow \cdots)$

$$\begin{aligned} \mathit{cnf}(p \leftrightarrow \neg q) = & (p \lor q) \\ & \land (\neg p \lor \neg q) \\ \\ \mathit{cnf}(p \leftrightarrow (q \land r)) = & (p \lor \neg q \lor \neg r) \\ & \land (\neg p \lor q) \\ & \land (\neg p \lor r) \end{aligned} \qquad \begin{aligned} & \land (p \lor \neg q) \\ & \land (p \lor \neg r) \\ & \land (p \lor \neg q \lor \neg r) \\ & \land (\neg p \lor q \lor \neg r) \\ & \land (\neg p \lor \neg q \lor \neg r) \\ & \land (\neg p \lor \neg q \lor \neg r) \end{aligned}$$

 $cnf(p \leftrightarrow (q \lor r)) = (\neg p \lor q \lor r)$

-2. 理论

2. ISSN 201500 of these Cases? These transformers: | Presentation of translations | Extended to the control of the control of

证: (1) let ϕ is satisfiable, then it admits a satisfying assignment. Extend this to n_{ψ} for subformula ψ : n_{ψ} gets the value of the subformula ψ

Then by construction this yields a satisfying assignment for $T(\phi)$:

- n_{ϕ} yields true
- $q\leftrightarrow \neg n_\psi$ yields true for subformula $\neg \psi$ with name q, so does $\mathit{cnf}(q\leftrightarrow \neg n_\psi)$

So satisfiability of ϕ implies satisfiability of $T(\phi)$

-2. 理论

(2) Conversely, assume $T(\phi)$ is satisfiable = admits a satisfying assignment

Apply this same satisfying assignment to the original formula $\boldsymbol{\phi}$

Since $q\leftrightarrow (n_{\psi_1}\diamond n_{\psi_2})$ yields true for every subformula $\psi_1\diamond\psi_2$ having name q (and similar for $\neg n_\psi$), we obtain that every subformula ψ of ϕ gets the value of n_ψ

Since n_ϕ yields true (as part of $T(\phi)$), we obtain that the original formula ϕ yields true, so ϕ is satisfiable

2024-04-02

2.3 CNF and Horn Clauses | Tseitin transformation | Preservation of satisfiability

Concluding

- \bullet For every propositional formula ϕ its Tseitin transformation $T(\phi)$ is easily computed
- Size of $T(\phi)$ is linear in size of ϕ
- Preserves satisfiability
- Not only CNF, even 3-CNF
- Used in current SAT solvers

2.3 CNF and Horn Clauses | 本节内容

回顾本节内容:

How to transform a propositional formula to CNF?

- challenge:
 - show how it is possible
 - why a naive solution may blow up
- Tseitin transformation
 - linear in the size of the formula
 - used in current SAT solvers

问题: How to solve SAT based on *Horn clauses* instead of CNF?

2.3 CNF and Horn Clauses | Horn clauses

定义: Horn clause

A *Horn formula* is a formula ϕ propositional logic if it can be generated as instance of H in this grammar:

$$P ::== \bot \mid \top \mid p$$

$$A ::== P \mid P \land A$$

$$C ::== A \rightarrow P$$

$$H ::== C \mid C \land H$$

We call each instance of C a *Horn clause*.

Recall that the logical constants:

- ullet denotes an unsatisfiable formula
- ⊤ denotes a tautology

例: Examples of Horn formulas:

$$(p \land q \land s \to p) \land (q \land r \to p) \land (p \land s \to s)$$

算法: $HORN(\phi)$

begin function

end function

```
mark all occurrences of \top in \phi; while there is a conjunct P_1 \wedge P_2 \wedge \cdots \wedge P_{k_i} \to P' of \phi such that all P_j are marked but P' isn't do mark P' end while if \bot is marked then return 'unsatisfiable' else return 'satisfiable'
```

2.3 CNF and Horn Clauses | Horn clauses

例 1: Horn (ϕ)

$$\phi = (p \land q \land w \to \bot) \land (t \to \bot) \land (r \to p) \land (\top \to r) \land (\top \to q) \land (u \to s) \land (\top \to u)$$

Marked: $\top r \ q \ u \ p \ s$ return 'satisfiable'

例 2: Horn (ϕ)

$$\phi = (p \land q \land w \to \bot) \land (t \to \bot) \land (r \to p) \land (\top \to r) \land (\top \to q) \land (r \land u \to w) \land (u \to s) \land (\top \to u)$$

Marked: $\top r \ q \ u \ p \ w \perp$ return 'unsatisfiable'

例 3: Horn (ϕ)

$$\phi = (p \land q \land s \to p) \land (q \land r \to p) \land (p \land s \to s)$$

Marked: None... return 'satisfiable'

2.3 CNF and Horn Clauses | Horn clauses

Concluding

- There are practically important subclasses, e.g., *Horn formulas*, which have much more *efficient ways* of deciding their satisfiability
- Horn clauses have been applied to many classical formal verifiers, e.g., the protocol verifier ProVerif.
- How to transform propositional formulas to Horn formulas?

作业

1. Construct a formula in CNF based on the following truth table:

p	q	r	ϕ
1	1	1	0
1	1	0	1
1	0	1	0
0	1	1	1
1	0	0	0
0	1	0	0
0	0	1	1
0	0	0	0

- 2. Apply algorithm HORN to each of these Horn formulas: